
Finite	State	Machines		2

15-121	Intro	to	Data	Structures

115-121	Introduction	to	Data	Structures	



Deterministic	Finite-State	Automata	(review)

• A	DFSA	can	be	formally	defined	as	
A	=	(Q,	S,	¶,	q0,	F):

– Q,	a	finite	set	of	states.
– S,	a	finite	alphabet	of	input	symbols.
– q0 Î Q,	an	initial	start	state.
– F	Í Q,	a	set	of	final	states.
– ¶ (delta):	Q	x	S® Q,	a	transition	function.

215-121	Introduction	to	Data	Structures	



• We	can	define	¶ on	words,	¶w,	by	using	a	
recursive	definition:
– ¶w :	Q	x	S*	® Q		 A	function	of	(state,	

word)	to	a	state.
– ¶w(q,e)	=	q If	in	state	q,	output	

state	q	if	word	is	e.
– ¶w(q,xa)	=	¶(¶w(q,x),a)				 Otherwise,	use	¶ for	

one	step	and	recurse.

315-121	Introduction	to	Data	Structures	



• For	an	automaton	A,	we	can	define	the	
language	of	A:
– L(A)	=	{wÎ S*	:	¶w(q0,w)	Î F	}
– L(A)	is	a	subset	of	all	words	w	of	finite	length	over	
S,	such	that	the	transition	function	¶w(q0,w)	
produces	a	state	in	the	set	of	final	states	(F).

– Intuitively,	if	we	think	of	the	automaton	as	a	graph	
structure,	then	the	words	in	L(A)	represent	the	
“paths” which	end	in	a	final	state.	If	we	
concatenate	the	labels	from	the	edges	in	each	
such	path,	we	derive	a	string	w	Î L(A).

415-121	Introduction	to	Data	Structures	



Regular	Languages
A	language	L	Í S*	is	called	a	regular	language if	there	
exists	a	finite-state	automaton,	A,	such	that	L	=	L(A).

Examples	of	regular	languages:

L	=	S* (all	finite	words	in	S)
L	=	Æ (the	empty	set)
L	=	{e} (set	containing	just	the	empty	string)

(As	a	self-test,	draw	a	DFSA,	A,	for	each	L,	such	that	L	=	
L(A).	Use	S =	{a,b,c}.)

515-121	Introduction	to	Data	Structures	



Digression:	Encoding	a	
DFA

615-121	Introduction	to	Data	Structures	

1 2

1 1

0

0

1. Number of states.
2. First on 0.
3. First on 1.
4. Second on 0.
5. Second on 1.
6. Accepting states.

0010010101001100

Quiz: Does every Java program have an encoding?
Is every possible Java program found in {0,1}*	?



Non-Deterministic	Finite-State	Automata	
(NDFSA)

• The	DFSA	we	have	studied	so	far	are	called	
deterministic,	because	for	any	given	word	w	
there	is	a	single	path	through	the	automaton	
(or,	more	formally,	¶w(q0,w)	=	qn;	the	
automaton	transitions	to	a	single	state	on	any	
given	word).	The	result	is	“well-determined”
because	it	can	have	only	a	single	value.

715-121	Introduction	to	Data	Structures	



NDFSA
We	can	extend	the	definition	of	DFSA	to	be	less	
restrictive,	such	that	output	of	the	transition	
function	¶ is	a	set of	states	rather	than	a	single	
state:

¶ :	Q	x	S® 2Q	

The	non-deterministic	¶ can	produce	as	output	any	
subset	of	Q,	so	in	the	definition	we	use	2Q to	
indicate	the	power	set (set	of	all	possible	subsets)	
of	Q.	Will	this	change	add	power?

815-121	Introduction	to	Data	Structures	



• Since	there	can	be	more	than	one	“path”
through	an	NDFSA	for	a	given	word	w,	we	
have	to	revise	our	notion	of	acceptance	for	
NDFSA.	An	NDFSA	accepts	a	word	w	if	there	
exists	some computation	path	that	ends	in	a	
final	state	q	Î F.

915-121	Introduction	to	Data	Structures	



NDFSA	Example

1015-121	Introduction	to	Data	Structures	



NDFSA

Note	the	following	non-deterministic	transitions:

¶(q0,0)	=	{q0,q3}
¶(q0,1)	=	{q0,q1}

(As	a	self-test,	trace	all	of	the	paths	through	the	
example	NDFSA	for	w	=	0100.	Indicate	each	path	
by	writing	down	the	sequence	of	states.)

1115-121	Introduction	to	Data	Structures	



• For	NDFSA,	we	can	expand	the	notion	of	¶ on	
letters	to	¶ on	words,	¶w,	by	using	a	recursive	
definition	similar	to	the	one	we	used	for	DFSA:
– ¶w :	Q	x	S*	® 2Q

– ¶w(q,e)	=	{q}
– ¶w(q,xa)	=	{p	|	for	some	state	r	Î ¶w(q,x),	p	Î ¶(r,a)}

• The	third	statement	indicates	that:	starting	in	
state	q,	and	reading	the	string	x,	followed	by	the	
symbol	a,	we	can	be	in	state	p,	if	and	only	if	one	
possible	state	we	can	be	in	after	reading	x	is	r,	
and	from	r	we	may	go	to	p	upon	reading	a.

1215-121	Introduction	to	Data	Structures	



We	can	also	define	a	transition	function	that	accepts	a	set of	
states	as	one	of	its	inputs:

¶P :	2Q x	S*	® 2Q

So,	if	P	Í Q,	then	¶P(P,w)	=	Uq	in	P ¶w(q,w).	
Restated	in	English:	If	P	is	a	subset	of	the	states	in	Q,	then	the	

value	of	the	transition	function	¶P on	P	and	some	word	w	
will	be	the	union	of	all	of	the	sets	of	states	produced	by	
computing	¶w(q,w)	for	every	q	in	P.						

For	example,	in	the	automaton	shown	above,	¶P({q1,q3},1)	=	
{q2}.

The	transition	function	on	sets	of	states	allows	us	to	compute	
all	possible	next	states	after	each	symbol	or	word	is	
encountered,	giving	the	effect	of	trying	all	paths	in	parallel.

1315-121	Introduction	to	Data	Structures	



Equivalence	of	NDFSA	and	DFSA
• The	set	of	languages	L(A)	for	all	NDFSA	is	also	the	
set	of	regular	languages.	

• For	every	NDFSA	A,	we	can	construct	an	
equivalent	DFSA	B	such	that	L(A)	=	L(B).	

• The	equivalence	is	achieved	by	using	a	single	
state	in	the	DFSA	to	represent	a	set	of	states	in	
the	NDFSA.

• The	DFSA	keeps	track	of	all	possible	states	that	
the	NDFSA	could	be	in	after	reading	the	same	
input.	Formally,	if	the	NDFSA	has	a	set	of	states	
Q,	then	the	equivalent	DFSA	has	a	set	of	states	
Q’ =	2Q (all	possible	subsets	of	Q).	

1415-121	Introduction	to	Data	Structures	



An	element	of	Q’ is	denoted	as	[q1,q2,…,qm].	
q’0 =	[q0].	Then	we	can	define

¶’([q1,q2,…,qm],a)	=	[p1,p2,…,pn]

if	and	only	if

¶P({q1,q2,…,qm},a)	=	{p1,p2,…,pn}.

1515-121	Introduction	to	Data	Structures	



Example	Conversion	of	NDFSA	to	DFSA

1615-121	Introduction	to	Data	Structures	



We	can	construct	an	equivalent	DFSA,	A’ =	
{Q,{0,1},¶’,[q0],F)	such	that	L(A’)	=	L(A),	as	
follows.

The	elements	of	Q	will	be	the	power	set	of	
{q0,q1},	represented	using	the	square	bracket	
notation	introduced	in	the	previous	section	to	
indicate	that	each	state	in	Q	represents	a	set	
of	states	in	the	original	NDFSA.	Here	is	the	set	
of	states	in	Q:
[q0],	[q1],	[q0,q1],	Æ

1715-121	Introduction	to	Data	Structures	



NDFSA	to	DFSA	

1815-121	Introduction	to	Data	Structures	



Then	we	must	define	the	transitions	from[q0,q1]:

¶’([q0,q1],0)	=	[q0,q1],	since
¶({q0,q1},0)	=	¶(q0,0)	U	¶(q1,0)	=	{q0,q1}	U	Æ =	{q0,q1};

¶’([q0,q1],1)	=	[q0,q1],	since
¶({q0,q1},1)	=	¶(q0,1)	U	¶(q1,1)	=	{q1}	U	{q0,q1}	=	{q0,q1}.

The	set	F	of	final	states	is	the	set	of	all	states	in	Q	that	
contain	the	original	final	state,	q1;	so	F	=	{[q1],[q0,q1]}.

• (As	a	self-test,	trace	the	computation	of	some	sample	strings	
through	both	the	NDFSA	and	the	equivalent	DFSA	in	order	to	
convince	yourself	that	they	really	are	equivalent.	Try	the	conversion	
yourself	for	another	small	NDFSA.)

1915-121	Introduction	to	Data	Structures	



Context-Free	Grammars	and	Context-Free	Languages

• A	context-free	grammar G	is	defined	formally	as:
– V:	a	finite	set	of	variables	(“non-terminals”);	e.g.,	A,	B,	
C,	…

– T:	a	finite	set	of	symbols	(“terminals”),	e.g.,	a,	b,	c,	…
– P:	a	set	of	production	rules	of	the	form	A	®a,	where	
A	Î V	and	a Î (V	U	T)*

– S:	a	start	non-terminal;	S	Î V

• Production	rules	can	also	be	thought	of	as	
derivations.	

2015-121	Introduction	to	Data	Structures	



Assume	
G	=	({A},{a,b},{A	® aAb,	A	®e},	A)

Note	that	L(G)	=	{e,ab,aabb,aaabbb,…}.	

We	can	derive	each	string	in	L(G)	by	using	the	two	
production	rules	to	rewrite	the	initial	expression,	which	
consists	of	just	the	start	symbol.	For	example,	the	
derivation	of	aabb:

A
aAb (apply	first	rule)
aaAbb (apply	first	rule)
aabb (apply	second	rule)

2115-121	Introduction	to	Data	Structures	



We	use	the	symbol	Þ to	indicate	that	a	derivation	exists	
from	an	expression	to	another	expression	for	a	given	
grammar;	

e.g.,	for	the	grammar	G	defined	above,	A	Þ aabb.	
Then	we	can	define	L(G)	as	follows:

L(G)	=	{	w	Î T*	|	S	Þ w	}

In	plain	English,	the	language	of	a	grammar	G	is	the	set	of	
all	strings	that	can	be	derived	from	the	start	symbol	S	
using	the	production	rules	in	P.

A	language	L	is	a	context-free	language if	there	exists	a	
grammar	G	such	that	L	=	L(G).	

2215-121	Introduction	to	Data	Structures	



Context-Free	Language	vs.	Regular	Languages

• Consider	the	grammar	we	specified	in	a	prior	
example.	A	closed-form	expression	for	this	
grammar	is:

L(G)	=	{anbn |	n	³ 1}

• Question:	Why	is	L(G)	not a	regular	language?	
Recall	the	definition	of	a	regular	language.	For	
every	regular	language	L,	there	exists	some	DFSA	
A	such	that	L(A)	=	L.	Why	isn’t	it	possible	to	
define	a	DFSA	which	accepts	L(G)	=	{anbn |	n	³ 1}?

2315-121	Introduction	to	Data	Structures	



• Answer:	Because	the	derivation	of	each	w	Î L(G)	
adds	exactly	one	a	and	one	b	to	the	word	being	
constructed,	each	time	the	first	production	is	fired.	A	
DFSA	can	accept	only	one	symbol	at	a	time,	and	it	
cannot	“remember” how	many	instances	of	a	
particular	symbol	it	has	seen.	Any	DFSA	we	define	
that	accepts	strings	of	the	form	{anbn |	n	³ 1}	would	
also	accept	other	strings	{ambn |	m	¹ n}.

• By	the	pigeon	hole	principle,	n+1	a’s	will	require	that	
an	n	state	machine	be	in	some	same	state	more	than	
once.

(Self-test:	try	to	construct	a	DFSA	that	accepts	precisely	{anbn |	n	³ 1},	to	
convince	yourself	that	this	is	the	case.)

2415-121	Introduction	to	Data	Structures	



Pushdown	Automata

• In	the	previous	lecture,	we	explained	how	a	DFSA	
is	used	to	recognize	(accept	strings	in)	regular	
languages.	

• Context-free	languages	also	have	a	machine	
counterpart:	the	pushdown	automata (PDA).

• To	recognize	context-free	languages,	we	need	to	
define	a	machine	that	solves	the	“memory	
problem” we	noted	above.	

• The	solution	comes	from	adding	a	stack	data	
structure	to	a	finite-state	machine.

2515-121	Introduction	to	Data	Structures	



• To	understand	how	the	stack	is	used	in	conjunction	
with	a	finite-state	machine,	let’s	visualize	a	pushdown	
automaton	for	our	example	context-free	language,	

L(G)	=	{anbn |	n	³ 1}.	

• Let’s	define	a	machine	with	two	states,	as	follows:

– When	the	machine	is	in	q0 :	If	an	a	is	read,	push	a	marker	on	the	
stack	and	stay	in	q0;	if	a	b	is	read	and	there	is	a	marker	on	the	
stack,	pop	the	stack	and	go	to	q1.	

– When	the	machine	is	in	q1:	If	a	b	is	read	and	there	is	a	marker	
on	the	stack,	pop	the	stack	and	stay	in	q1.	

– Assume	that	all	other	transitions	are	undefined	and	cause	the	
machine	to	halt,	rejecting	the	input.	

– The	computation	ends	when	both	the	input	and	the	stack	are	
empty.

2615-121	Introduction	to	Data	Structures	



• Why	does	this	machine	accept	L(G)	=	{anbn |	n	³ 1}?	
• In	the	start	state	q0,	the	only	possible	moves	are	
a)	read	one	or	more	a’s,	adding	a	marker	to	the	stack	
for	each	a which	is	seen;	
b)	read	exactly	one	b,	popping	the	stack	and	moving	to	q1.	
• Assuming	we	have	read	n	a’s	and	1	b,	then	there	
will	be	n	– 1	markers	left	on	the	stack.	

• In	state	q1,	the	only	possible	move	is	to	read	a	b
and	pop	the	stack.	

• Since	the	machine	will	halt	(and	reject)	if	there	is	
input	remaining	and	the	stack	is	empty,	the	only	way	
to	exhaust	the	input	and	end	with	an	empty	stack	is	
to	read	exactly	the	same	number	of	a’s	and	b’s.

2715-121	Introduction	to	Data	Structures	



Here’s	the	formal	definition	of	a	pushdown	
automaton:

M	=	(Q,S,G,¶,q0,F)

Q:	a	set	of	states
S:	the	alphabet	of	input	symbols
G:	the	alphabet	of	stack	symbols
¶:	Q	x	S x	G ® Q	x	G
q0:	the	initial	state
F:	the	set	of	final	states

2815-121	Introduction	to	Data	Structures	



Intuitively,	if	¶(q,s,b)	=	(q’,g),	then	M,	whenever	it	is	
in	state	q	with	b at	the	top	of	the	stack,	may	read	
s	from	the	input,	replace	b by	g on	the	top	of	the	
stack,	and	enter	state	q’.

Pushing,	popping,	and	preserving	the	stack	are	
possible:

¶(q,a,e)	=	(q’,A) push	A	on	the	stack	without	popping

¶(q,a,A)	=	(q’,e) pop	A	from	the	stack	without	pushing

¶(q,a,e)	=	(q’,e) stack	unchanged

2915-121	Introduction	to	Data	Structures	



Now	we	can	define	a	PDA	M,	such	that	L(M)	=	L(G)	=	{anbn |	n	³ 1}:

M	=	({q0,q1},{a,b},{A},¶,q0,{q1})

¶(q0,a,e)	=	(q0,A)
¶(q0,b,A)	=	(q1,e)
¶(q1,b,A)	=	(q1,e)

(Self-test:	Trace	the	operation	of	M	on	some	strings	in	L(G),	and	some	
strings	not	in	L(G).	Assume	computation	is	successful	(accept)	only	
if	the	input	is	empty,	the	stack	is	empty,	and	the	machine	is	in	final	
state	q1.)

(Self-test:	Build	a	PDA	that	recognizes	{0i1j2k:	k	=	i	*	j}	.	Note:	You	will	
not	be	able	to	succeed.	The	pumping	lemma	can	be	used	to	prove	
this	result.)

3015-121	Introduction	to	Data	Structures	


