
Finite	State	Machines		1

15-121	Introduction	to	Data	
Structures

115-121	Introduction	to	Data	Structures	

Some	Results	First
Computing	
Model

Finite	
Automata

Pushdown	
Automata

Linear	
Bounded	
Automata

Turing	
Machines

Language	Class Regular	
Languages

Context-Free	
Languages

Context-
Sensitive	
Languages

Recursively	
Enumerable	
Languages

Non-
determinism

Makes	no	
difference

Makes	a	
difference

No	one	knows Makes	no	
difference

15-121	Introduction	to	Data	Structures	 2

Alphabets

• S (sigma):	a	finite	(non-empty)	set	of	symbols	
called	the	alphabet.

• Each	symbol	in	S is	a	letter.

• Letters	in	the	alphabet	are	usually	denoted	by	
lower	case	letters:	a,	b,	c,	…

315-121	Introduction	to	Data	Structures	

Strings
• A	word w	is	a	string	of	letters	from	S in	a	linear	
sequence.

• We	are	interested	only	in	finite	words	(bounded	
length).

• |w| denotes	the	length of	word	w.

• The	empty	string contains	no	letters	and	is					

written	as	e.
415-121	Introduction	to	Data	Structures	

Languages

• A	language L	is	a	set	(finite	or	infinite)	of	
words	from	a	given	S.	

• The	set	of	all	strings	over	some	fixed	alphabet	
S is	denoted	by	S*.	

• For	example,	if	S =	{a},	
then	S*	=	{e,	a,	aa,	aaa,	…}.

515-121	Introduction	to	Data	Structures	

Languages

• The	set	of	all	strings	of	length	i over	some	
fixed	alphabet	S is	denoted	by	Si.	

• For	example,	let	S =	{a,	b}.	
• Then	L	=	S2 =	{aa,	ab,	ba,	bb}	is	the	set	of	
words	w	such	that	|w| =	2.

615-121	Introduction	to	Data	Structures	

Operations	on	Words	and	Languages

• Concatenation: putting	two	strings	together
x	=	aa;	y=bb;	x.y	=	xy	=	aabb

• Power: concatenating	multiple	copies	of	a	letter	or	word
an =	a.an-1;	a1 =	a;	a2 =	a.a;	etc.
x	=	ab;	x3 =	ababab

• Kleene	Star: zero	or	more	copies	of	a	letter	or	word
a*	=	{e,	a,	aa,	aaa,	…}
x	=	ab;	x*	=	{e,	ab,	abab,	ababab,	…}

715-121	Introduction	to	Data	Structures	

Deterministic,	Finite	State	Automata

• A	finite-state	automaton comprises	the	
following	elements:
– A	sequence	of	input	symbols (the	input	“tape”).
– The	current	location	in	the	input,	which	indicates	
the	current	input	symbol	(the	read	“head”).

– The	current	state of	the	machine	(denoted	
q0,q1,…,qn).

– A	transition	function which	inputs	the	current	
state	and	the	current	input,	and	outputs	a	new	
(next)	state.

815-121	Introduction	to	Data	Structures	

During	computation,	
v The	FSA	begins	in	the	start	state	(usually,	q0).	
v At	each	step,	the	transition	function	is	called	on	
the	current	input	symbol	and	the	current	state,	
the	state	is	updated	to	the	new	state,	and	the	
read	head	moves	one	symbol	to	the	right.	

v The	end	of	computation	is	reached	when	the	FSA			
reaches	the	end	of	the	input.	

One	or	more	states	may	be	marked	as	final	states,	
such	that	the	computation	is	considered	
successful	if	and	only	if	computation	ends	in	a	
final	state.

915-121	Introduction	to	Data	Structures	

An	Example

• An	FSA	can	be	represented	graphically	as	a	
directed	graph,	where	the	nodes	in	the	graph	
denote	states and	the	edges	in	the	graph	
denote	transitions.	Final	states	are	denoted	by	
a	double	circle.	

• For	example,	here	is	a	graphical	
representation	of	a	DFSA	that	accepts	the	
language	L	=	{a2n :	n	³ 1}	:

1015-121	Introduction	to	Data	Structures	

• Input:	aaa	
States:	q0,	q1,	q2,	q1 (not	accepted)

• Input:	aaaa
States:	q0,	q1,	q2,	q1,	q2 (accepted)

1115-121	Introduction	to	Data	Structures	

DFSA	Definition

A	DFSA	can	be	formally	defined	as	
A	=	(Q,	S,	¶,	q0,	F):

– Q,	a	finite	set	of	states
– S,	a	finite	alphabet	of	input	symbols
– q0 Î Q,	an	initial	start	state
– F	Í Q,	a	set	of	final	states

– ¶ (delta):	Q	x	S® Q,	a	transition	function

1215-121	Introduction	to	Data	Structures	

Transition	function	- ¶

• We	can	expand	the	notion	of	¶ on	letters	to	¶
on	words,	¶w,	by	using	a	recursive	definition:

• ¶w :	Q	x	S*	® Q	- (a	function	of	(state,	word)	to	a	state)
• ¶w(q,e)	=	q - (in	state	q,	output	state	q	if	word	is	e)
• ¶w(q,xa)	=	¶(¶w(q,x),a)	- (otherwise,	use	¶ for	one	step	

and	recurse)

1315-121	Introduction	to	Data	Structures	

Language	Recognition
• For	an	automaton	A,	we	can	define	the	language	
of	A:
- L(A)	=	{wÎ S*	:	¶w(q0,w)	Î F	}
- L(A)	is	a	subset	of	all	words	w	of	finite	length	
over	S,	such	that	the	transition	function	¶w(q0,w)	
produces	a	state	in	the	set	of	final	states	(F).
- Intuitively,	if	we	think	of	the	automaton	as	a	
graph	structure,	then	the	words	in	L(A)	represent	
the	“paths”	which	end	in	a	final	state.	If	we	
concatenate	the	labels	from	the	edges	in	each	
such	path,	we	derive	a	string	w	Î L(A).

1415-121	Introduction	to	Data	Structures	

Implementing	DFSA	in	Java	(a	first	attempt)

• Implementing	a	DFSA	in	Java	has	some	
similarities	to	implementing	a	graph	structure.	As	
mentioned	earlier,	the	states	in	a	DFSA	
correspond	to	nodes	in	a	graph,	and	the	
transitions	correspond	to	edges	in	a	graph.	

• First,	let’s	consider	how	to	implement	the	
transition	function,	¶.	Recall	that	
¶(<state>,<letter>)	=	<state>	.	So,	for	any	given	
state	q,	we	need	to	know	if	there	is	a	transition	to	
the	other	states,	and	if	so,	what	letter	of	the	
alphabet	must	be	read	for	the	transition	to	occur.	

1515-121	Introduction	to	Data	Structures	

• If	each	vertex	in	a	directed	graph	has	at	most	one	edge	
leading	to	another	vertex	(possibly	the	vertex	itself)	
then	we	can	model	the	graph	using	a	two-dimensional	
array.	

• Suppose	we	want	to	model	a	DFSA	in	this	manner.	For	
each	state	in	the	DFSA,	there	is	a	row	in	the	array;	each	
column	in	that	row	corresponds	to	a	(possible)	
transition	to	another	state.	Each	cell	is	empty	(null)	if	
there	is	no	such	transition;	otherwise,	a	cell	contains	
the	letter	of	the	alphabet	which	must	be	read	for	the	
transition	to	be	valid.	

• Assuming	we	name	the	array	delta,	then	delta(m,n)	==	
null	if	there	is	no	transition	from	Qm to	Qn,	and	
delta(m,n)	==	<letter>	if	¶(Qm,<letter>)	=	Qn.

1615-121	Introduction	to	Data	Structures	

What	is	wrong	with	this	approach?

The	DFSA	on	the	previous	page	has	3	states,	so	it	can	be	
modeled	by	a	3x3	array:

Q0 Q1 Q2	 array transition	function

Q0 null a null delta(0,1)	=	a ¶(Q0,a)	=	Q1

Q1 null null a delta(1,2)	=	a ¶(Q1,a)	=	Q2

Q2 null a null delta(2,1)	=	a ¶(Q2,a)	=	Q1

1715-121	Introduction	to	Data	Structures	

• Note	that	this	works	only	when	there	is	a	single	
transition	from	one	state	to	another.	If	S were	
expanded	to	contain	two	characters	rather	than	
one,	and	if	there	were	two	transitions	leading	
from	Q0	to	say,	Q1,	then	we	could	not	use	this	
implementation.	

• Before	we	write	a	Java	class	for	this	DFSA,	we	
have	one	more	thing	to	consider.	
– How	can	we	represent	the	set	of	final	states?	

• A	straightforward	solution	is	to	use	a	one-
dimensional	boolean	array,	final,	of	length	n	
(assuming	we	have	n	states).	Then	final(i)	=	true	if	
qi is	a	final	state,	and	final(i)	=	false	otherwise.

1815-121	Introduction	to	Data	Structures	

public	class	DFSA	{

private	boolean[]	finalStates;
private	char[][]			delta;
private	int											startState;
private	int											currentState;
private	int											totalStates;

public	DFSA	(int	n,	int	start)	{
totalStates	=	n;
finalStates	=	new	boolean[totalStates];
delta	=	new	char[totalStates][totalStates];
startState	=	start;

}

private	boolean	isFinal	()	{
return	finalStates[currentState];

}

public	void	addTransition	(int	fromState,	int	toState,	char	letter)	{
delta[fromState][toState]	=	letter;

}
public	void	addFinalState	(int	q)	{
finalStates[q]	=	true;

}

1915-121	Introduction	to	Data	Structures	

public	boolean	isAccepted	(String	s)	{
currentState	=	startState;
readingSymbols:
for	(int	i	=	0;	i	<	s.length();	i++)	{
System.out.println("	current	state:	"+currentState);
System.out.println("	next	symbol:	"+s.charAt(i));
for	(int	j	=	0;	j	<	totalStates;	j++)	{

if	(delta[currentState][j]	==	s.charAt(i))	{
currentState	=	j;
continue	readingSymbols;

}
}
System.out.println("	d("+currentState+","+s.charAt(i)+")	is	undefined");
return	false;

}
System.out.println("	final	state:	"+currentState);
return	isFinal();

}

2015-121	Introduction	to	Data	Structures	

public	static	void	main	(String	args[])	{

//	Define	the	three-state	DFSA	from	the	handout.

DFSA	a	=	new	DFSA(3,0);
a.addTransition(0,1,'a');
a.addTransition(1,2,'a');
a.addTransition(2,1,'a');
a.addFinalState(2);

//	For	each	input	string,	check	value	of	isAccepted()

for	(int	i	=	0;	i	<	args.length;	i++)	{
System.out.println("\nInput	String:	"+args[i]);
if	(a.isAccepted(args[i]))	{
System.out.println("Accepted");

}	else	{
System.out.println("Rejected");

}
}

}

}

2115-121	Introduction	to	Data	Structures	

>	java	DFSA	aaa	aaaa	aabaa

Input	String:	aaa
current	state:	0
next	symbol:	a
current	state:	1
next	symbol:	a
current	state:	2
next	symbol:	a
final	state:	1
Rejected

Input	String:	aaaa
current	state:	0
next	symbol:	a
current	state:	1
next	symbol:	a
current	state:	2
next	symbol:	a
current	state:	1
next	symbol:	a
final	state:	2
Accepted

Input	String:	aabaa
current	state:	0
next	symbol:	a
current	state:	1
next	symbol:	a
current	state:	2
next	symbol:	b
d(2,b)	is	undefined
Rejected

2215-121	Introduction	to	Data	Structures	

Let’s	consider	making	certain	modifications	to	the	program	above	so	
that	it	allows	for	multiple	transitions	from	one	state	to	another	
based	on	a	S with	more	than	one	character.	

There	are	several	ways	this	could	be	done.	
- One	might	use	a	large	two-dimensional	array	whose	rows	are	
indexed	with	state	numbers	and	whose	columns	are	indexed	with	
all	the	characters	found	in	S.	This	would	give	O(1)	transition	lookups	
but	would	be	inefficient	with	respect	to	space.	
- Another	approach	would	be	to	use	an	adjaceny	set	
representation.	A	single	dimensional	array,	say	states,	could	be	
indexed	based	on	the	state	number.	The	element	at	states[i]	would	
contain	a	set	of	<character><next	state>	pairs.	Each	set	would	allow	
fast	<next	state>	lookups	given	the	character	symbol	from	S.	The	
set	could	be	implemented	with	a	linked	list	or,	perhaps,	with	a	
balanced	tree.

2315-121	Introduction	to	Data	Structures	

• Consider	modifying	the	program	above	so	that	it	
uses	an	adjaceny	set	representation	to	compute	
¶(Qm,<letter>).	The	set	could	be	implemented	as	
a	digital	search	tree.	The		DST	class	would	allow	
for	the	insertion	and	search	of	(<letter>,<next-
state>)	pairs.	The	<letter>	part	of	the	pair	would	
be	the	search	key.	When	inserting	or	searching,	
the	decision	to	move	left	or	right	in	the	search	
tree	would	be	based	on	the	bits	of	the	key.	The	
implementation	effort	for	this	type	of	data	
structure	is	about	the	same	as	binary	search	trees	
but	usually	has	better	performance.

2415-121	Introduction	to	Data	Structures	

Another	Example
Consider	running	such	a	program	that	would	model	the	
DFSA	below.	Such	a	program	might	read	a	series	of	
strings	from	the	command	line	(just	like	the	program	
above)	and	tell	the	user	whether	the	machine	below	
accepts	or	rejects	each	string.	

Q	=	{	q0,	q1,	q2 }
S =	{	R,0,1,2	}
q0	:	the	start	state
F	=	{	q0 }																																																										
¶ (delta):	Q	x	S® Q	

2515-121	Introduction	to	Data	Structures	

This	automaton	keeps	a	running	count	of	the	sum	of	the	numerical	input	symbols	it	reads,	modulo	3.	
Every	time	it	receives	the	R	(reset)	symbol	it	resets	the	count	to	0.	It	accepts	the	if	the	sum	is	0,	
modulo	3,	or	in	other	words,	if	the	sum	is	a	multiple	of	3.
This	automaton	is	from	“Introduction	to	the	Theory	of	Computation”	by	Michael	Sipser

2615-121	Introduction	to	Data	Structures	

Homework	Questions	(not	to	be	turned	in	
but	to	prepare	for	exam)

Give	state	diagrams	for	DFA’s	recognizing	the	following	
languages.	S =	{	0,1	}.

1.	{	w	|	w	begins	with	a	1	and	ends	with	a	0	}
2.	{	w	|	w	contains	at	least	three	1’s	}
3.	{	w	|	the	length	of	w	is	at	most	5	}
4.	{	w	|	w	contains	at	least	two	0’s	and	at	most	one	1.	}
5.	{	w	|	w	contains	an	even	number	of	0’s,	or	exactly	two			
1’s	}

6.	{	w	|	w	is	not	e }

2715-121	Introduction	to	Data	Structures	

