Lecture Notes: NP-Completeness

Introduction

As was demonstrated in a previous lecture, the Halting Problem cannot be solved by a Turing Machine. Here we are interested in problems that are tractable (polynomial time) and those that are solevable but intractable.

The Class P

The class P consists of those problems that are solvable in polynomial time. In other words, if the size of the input to the problem is n then the problem can be solved in time O(nk) for some constant k. 

In symbols, P = { L ( {0,1}* : there exists an algorithm A that decides L (declares yes or no) in polynomial time }

As an exercise, suppose L = {on1n : n >= 1}. Is L ε P?
The Class NP
The class NP consists of those problems that are verifiable in polynomial time. In other words, if the size of the input to the problem is n then a proposed solution (certificate) can be verified in time O(nk) for some constant k. 

In symbols, L ε NP ( L = {x ε {0,1}* : there exists a certificate y, a constant c and a two-input polynomial time algorithm A with|y| = O(|x|c) and A(x,y) = 1}.

The algorithm A is said to verify the language L in polynomial time.

As an exercise, suppose L = { x ε {0,1}* : x represents a  composite integer}. Is L ε NP?

Any problem in P is also in NP. If a problem can be solved in polynomial time we can simply solve it without consulting a proposed solution. So, we know that P ( NP but we don’t know whether or not P is a proper subset of NP. Of course, if P is not a proper subset of NP then P = NP.

Reducility

A problem Q can be reduced to another problem Q’ if any instance of Q can be ‘easily rephrased’ as an instance of Q’, the solution to which provides a solution to the instance of Q. For example, the problem of finding your way around in a new city may be reducible to finding a map. So, in a sense, the problem of finding your way around in a new city is no harder than the problem of finding a map. If we can reduce the problem Q to a problem Q’ in polynomial time we write Q ≤P Q’. 

As an exercise, suppose problem Q were proven to be very difficult to solve and that Q ≤P Q’. What can we say about Q’?

As an exercise suppose Q’ is shown to be easy and that  Q ≤P Q’. What can we say about Q?

In symbols we say a language L1 is polynomial-time reducible to a language L2, written L1 ≤P L2 if there exists a polynomial time function f: {0,1}* -> {0,1}* such that for all x ε {0,1}*, x ε L1 if and only if  f(x) ε L2.
If L1, L2  ( {0,1}* are languages such that L1 ≤P L2 then L2 ε P implies L1 ε P.
The Class NPC

A problem is in the class NP-complete (NPC) if it is in NP (that is, a proposed solution can be easily verified) and if it is as hard as any other problem in NP. It turns out that if any NPC problem can be solved in polynomial time then all of the NP problems can be solved in polynomial time. 

In symbols a language L  ( {0,1}* is NP-complete if

1. L ε NP, and 

2. L’  ≤P  L for every L’ ε NP

If a language L satisfies property 2 but not necessarily property 1, we say that L is NP-hard. So, all NPC problems (satisfying both 1 and 2) are NP-hard. An example of an NP-hard problem that satisfies 2 but not 1 is the halting problem.
If any NPC problem is in P, then P = NP. So, if any NPC problem is proven to be outside of P then all of the NPC problems are outside of P.

Example

SAT = {w | w is a satisfiable n variable boolean expression in conjuctive normal form}

Suppose w is a binary encoding of the expression

      _       _   _  _   _   _       _       _                _                     _   
(x+y+z)(x+y+z)(x+y+z)(x+y+z)(x+y+z)(x+y+z)(x+y+z).

Is w ε SAT? Hint: try x=0, y=1 and z = 1.

Is SAT ε NP? Hint: Consider w paired with x=0, y=1 and z=1.

SAT was the first language shown to be NP-Complete. It was shown to be as hard as any problem in NP and have a polynomial time verification algorithm. SAT gives us a foot in the door to prove other languages NP-Complete. The idea is to show that SAT (or some other NP-Complete language) can be easily reduced to a our new language. Our new language then is as least as hard as SAT.
Steps in proving a language L is NP-Complete:

1. Prove L ε NP. Show that a proposed solution is verifiable in polynomial time.

2. Select a known NP-Complete language L’.

3. Describe an algorithm that computes a function f mapping every instance x ε {0,1}* of L’ to an instance f(x) of L.

4. Prove that the function f satisfies x ε L’ if and only if f(x) ε L for all x ε {0,1}*.

5. Prove that the algorithm computing f runs in ploynomial time.

Suppose, contrary to historical circumstances, that 3COLOR was known to be NP-Complete and we wanted to prove that SAT was too. SAT has a polynomial time verification algorithm. Now we also need a reduction function. 

Example Reduction of 3COLOR to SAT
3COLOR = {G | the nodes of G can be colored with three colors such that no two nodes joined by an edge have the same color}

Suppose G is a binary encoding of  the following graph. Is G  ε 3COLOR?

 SHAPE  \* MERGEFORMAT 



If we could easily reduce 3COLOR to SAT then that would imply that SAT is as least as hard as 3COLOR. The following algorithm reduces 3COLOR to SAT and runs in polynomial time. So, 3COLOR  ≤P  SAT. 


For each vertex vi in G write (ri + yi + bi);

                                                                  _     _   _     _    _     _

           For each edge (vi , vj) in G write (ri + rj)(yi + yj)(bi + bj)

As an exercise run the reduction algorithm for the following graph. After running the algorithm, find a satisfying assignment that also colors the graph with three colors.
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Cash Prize
The P = NP problem is one of the Millennium Prize Problems and there is a $1 million prize from the Clay Mathematics Institute for the first to prove that P = NP or that P ( NP. How can you collect the cash?

One approach would be to solve an existing NPC problem in polynomial time. Since the NPC problem is at least as hard as every other problem in NP all of the problems in NP would have a polynomial time solution. You would then have shown that P = NP.

Another approach would involve finding a provably hard problem that has a polynomial time verification and therefore that P ( NP and P ( NP.

� These notes are taken with modifications from “Introduction to Algorithms” by  Cormen, Leiserson, Rivest, and Stein, “The Turing Omnibus” by Dewdney and Sipser’s “Introduction to the Theory of Computation”.
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