Data Structures and
Algorithms for Information
Processing

Lecture 13: Sorting II

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Outline

Brief review from last time
Radix sorting and indexing
Recursive sorting algorithms
Quicksort

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Sorting Demonstration

http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Intuitive Introduction

Main’ s slides from Chapter 12

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Insertion Sort

void insertionSort(int A[]) {
for (int i=1; i<A.length; i++)
for (int j=i; >0 && A[jI<A[j-11; F--)
swap (A[j],A[j-11);

e Worst case runs in O(n2), where n = A.length.
e Best case, A is sorted already, runs in O(n).

e Use if you re in a hurry to code it , and speed is
not an issue.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

What is the Average Disorder?

Theorem: The average disorder for a sequence of n
items is n(n-1)/4

Proof. Assume all permutations of array A equally
likely. If AR is the reverse of A, then disorder(A) +
disorder(AR) = n(n-1)/2 because A[i]<A[j] iff
AR[i]>AR[j]. Thus the average disorder over all
permutations is n(n-1)/4.

Corollary:. The average running time of any sorting
program that swaps only adjacent elements is O(n2).

Proof: It will have to do n(n-1)/4 swaps and may
waste time in other ways.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II

Information Processing

To better O(n?%) we must compare
non-adjacent elements

Shell Sort: Swap elements n/2, n/4, ... apart
Heap Sort: Swap Ali] with A[i/2]

QuickSort: Swap around “median”

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

How many leaves must there for a
sorting tree for n items?

af[0]<al[l]

SN

n!, the number of different permutations.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

So a tree with n! leaves has depth at least Ig nl.
Notice that depth = the maximum number of tests one
might have to perform.
Ig n! = 1g n(n-1)(n-2)...1
=Ilgn+Ign-1+Ign-2+ ..+ 1Ig1
=lgn+ ..+ Ig(n/2)
= (n/2) 1g(n/2)
>=(n/2)Ign-n/2
= Q(nlg n)

So any sort algorithm takes Q(n Ig n) comparisons.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Is there a way to sort without
using binary comparisons?

Ternary comparisons, K-way comparisons.

The basic Q(n log n) result will still be true, because
Q(log, x)= Q(log, X).

Useful speed-up heuristic: use your data
as an index of an array.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Consider sorting letters

int counts[26];
int j = 0;
for(int i=0; 1<26; i++) counts=0;
for (j=0; j<clist.length; j++)
count[clist[j]-"a]++;
J=0;
for(int i=0; i<26; i++)
while (count[i]-- > 0) clist[j++]=i+'a’;

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Sorting list of letters

int counts[26];

int j = 0;

for(int i=0,; i<26; i++) counts=0;

for (jJ=0; j<clist.length; j++)
count[clist[j]-"a]++;

j=0;

for(int i=0; i<26; i++)

while (count[i]-- > 0) clist[j++]=i+’a’;

if clist = “abbcabbdaf”
count ={3,4,1,1,0,1,0, ..., 0}

and new clist = “aaabbbbcdf”

Running time is O(26+clist.size()), i.e. linear!

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Why does this beat n log n?

e The operation count[clist[j]]1++ is like a
26-way test; the outcome depends directly on
the data.

e This is “cheating” because it won’ t work if the
data range grows from 26 to 232,

e Technique can still be useful — can break up

range into “buckets” and use mergesort on
each bucket

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort

A way to exploit the data-driven idea for large data
spaces.

Idea: Sort the numbers by their Jowest digit. Then
sort them by the next lowest digit, being careful to
break ties properly. Continue to highest digit.

45q97| 3480 09 109
2132| 9241 09 456
456| 8721 2132 1908
1908| 3%21 9r41, 2009
3456| 2132 3R97 2132
9241 6 56 3297

109| 3496 3456 3456
5789| 4%q97 3480 3480
3297| 3297 3621 3521
2009| 1908 4667 4567
8721 9 8721 5789
35 589 89 8721
3480, 2009 1908 9241

95-771: Datg Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort

e Each sort must be stable
The relative order of equal keys is preserved

e In this way, the work done for earlier bits is
not “undone”

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort

Informal Algorithm:

To sort items A[i] with value 0...232-1 (= INT_MAX)
e Create a table of 256 buckets.

e {For every A[i] put it in bucket A[i] mod 256.

e Take all the items from the buckets 0,..., 255 in a FIFO
manner, re-packing them into A.}

e Repeat using A[i]/256 mod 256

e Repeat using A[i]/2562 mod 256
e Repeat using A[i]/2563 mod 256
e This takes O(4*(256+A.length))

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

The Queues can be avoided by using counts.

vold RadixSort (int af[], int b[], int N) {
int 1, J, pass, count[M];
for (pass=0; pass < (w/m); pass++) {
for (3J=0; 7 < M; J++) count[]j] = O;
for (i=1; 1 <= N; 1i++)
countl[al[il] .bits(pass*m, m)]++;
for (3=1; 7 < M; J++)
count[j] = count[j-1] + count[]j];
for (i=N; 1 >= 1; 1i--)
blcount[al[i] .bits(pass*m,m)]—--] =

for (i=1;, 1 <= N; i++) al[l] = b[1i];

} 95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
} Information Processing

Radix Sort using Queues

const int BucketCount = 256;
vold RadixSort (vector<int> &A) {
vector<queue<int> > Table (BucketCount) ;
int passes = ceil (log (INT MAX) /log(BucketCount));
int power = 1;
for (int p=0; p<passes;pt+) {
int 1i;
for (1=0; 1i<A.size(); 1++) {
int item = A[i];
int bucket = (item/power) % BucketCount;

Table[bucket] .push (item) ;
}

i =0;
for (int b=0; b<BucketCount; b++)
while (!Table[b] .empty()) {
A[i++] = Table[b].front (), Table[b].pop():

}
power *= BucketCount;
b}

95-771: Data Structures

and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort

In general it takes time
O(Passes*(NBuckets+A.length))

where Passes= [log(INT_MAX)/
log(NBuckets)]|

It needs O(A.length) in extra space.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Idea of Merge Sort

e Divide elements to be sorted into two groups
of equal size

e Sort each half

e Merge the results using a simultaneous pass
through each

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II

Information Processing

Psuedocode for Merge Sort

void mergesort(int data[], int first, int n) {
if (n>1){
int N1 =n/2;
iIntn2 =n-ni;
mergesort(data, first, n1);
mergesort(data, first+n1, n2);
merge(data, first, n1, n2);

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Mergesort in Action

N\ N

2 4 6 1 3 6 2

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Mergesort in Action

5 2 4 6 1 3 6 2

NN N NS

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

The Merge Operation

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

4 | 5 |11 1| 6 |10 12
1
1 2‘4 5‘6 10‘11 12

Mergesort Performance

e The worst-case, average-case, and best-case
running time for mergesort are all O(n log n)

e The basic idea:

— by dividing in half we do O(log n) merges
— Each merge requires linear time

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

General Recursive Strategy
to Sort List L

If L has zero or one element, we’ re finished
Otherwise

— divide L into two smaller lists L1, L2

— recursively sort each of the smaller lists
- combine L1 and L2

So far have considered merge combination
method

Next we’ll consider “joining” the two lists

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Quicksort

e First devised by
the computer
scientist C.A.R.
Hoare

e One of the most
effective
algorithms in
practice, though
quadratic in the
worst case

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II

Information Processing

Quicksort

e Has two phases:

— partition phase, to break the array into two
pieces
- the sort phase, to recursively sort halves

e Most of the work goes into the partition phase

o After partitioning, the values in the left half

are less than the values in the right half

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II

Information Processing

The Pivot

What is the invariant?

pivot

pivot index

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Choosing a Pivot

The key question: “How do we choose the pivot item?”
Can affect performance dramatically
Ideally, we should choose to pivot around the median

Was once thought that finding the median costs as
much as sorting...But the median can be found in O(n)

A deterministic algorithm might simply choose the first
element as the pivot.

A non-deterministic algorithm might choose the pivot
element randomly. The worst case does not change.

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Partitioning

40‘20

10

80

60

50

30

100

90

70

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Partitioning

40

20

10

80

60‘50

30

100

90

70

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Partitioning

40‘20

10

30

60‘50

80

100

90

70

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Partitioning

40

20

10

30

60

50

80

100

90

70

95-771: Data Structures

and Algorithms for
Information Processing

Lecture 13: Sorting II

Partitioning

40 | 20| 10| 30| 7 | 50|60 | 80 |100

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Partitioning

40 | 20| 10| 30| 7 | 50 | 60 | 80 |100

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Partitioning

40 | 20| 10| 30| 7 | 50 | 60 | 80 |100

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Partitioning

20

10

30

40‘50

60

80

100

90

70

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Partitioning

20

10

30

40

50

60

80

100

90

70

pivotIndex

95-771: Data Structures

and Algorithms for
Information Processing

4

Lecture 13: Sorting II

Quicksort Implementation

int pivot = arr[pivot loc];
swap (arr[pivot loc], arr[0]);
int 1 = 1;
int r=n - 1;
while(l < r) {
// INVARIANT: all left of 1 <= pivot,
// and all right of r > pivot
while(l < r && arr[l] <= pivot) 1++;
while(r > 1 && arr[r] > pivot) r--;
if(l < r) {
swap (arr[r], arr[1l]);
1++;
r=--,
}

}
if (arr[l] <= pivot) swap(arr[0], arr[l])

else swap(arr[0], arr[l - 1]);
95-771: Data Structures

and Algorithms for
Information Processing

Lecture 13: Sorting II

Rough Analysis

e If we divide the list in about half each time, we
partition O(log n) times

e Finding the pivot index requires O(n) work

e S0, we should expect the algorithm to take
O(n log n) work if we find a good pivot

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Worst Case

When do we get a bad split?

If each value is larger than the pivot

This happens if the array is already sorted!
In this case runs in O(n?2) time

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Ideas for Choosing Pivot

Randomly choose an index

Take the median of the first 3 elements
Take the median of 3 random elements
Median of random 2n+1 elements...

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II

Information Processing

Heapsort

e Worst-case and average case O(n log n)

e Uses heap data structure, pulling off max and
re-heapifying

e [examples on the board]

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort Question

What does the following list like after the first
iteration of radix sort’ s outer loop?

class
leaks
every
other
refer
embed

array

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Radix Sort Question

What does the following list like after the first
iteration of radix sort’ s outer loop?

class embed
leaks other
every refer
other class
refer leaks
embed every
array array

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Mergesort Question

If we are using Mergesort, what will the
following array look like right before the last
merge?

355753265015 22212514112

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Mergesort Question

If we are using Mergesort, what will the
following array look like right before the last
merge?

355753265015 22212514112

W

1526 3550535721115 21 22 25

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Quicksort Question

If we are using Quicksort, what will the result
be if we pivot on 357

3557 532650152221 2514 11 2

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Quicksort Question

If we are using Quicksort, what will the result
be if we pivot on 357

3557 532650152221 2514 11 2

W

252 11 26 14 15 22 21 35 50 53 57

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Heapsort Question

Heapify the following list, placing the
maximum on top.

3557 532650152221 2514112

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Heapsort Question

Heapify the following list, placing the
maximum on top.

3557 532650152221 2514112

W

575053 2635152221 2514112

95-771: Data Structures
and Algorithms for Lecture 13: Sorting II
Information Processing

Heapsort Question

Beginning with the following array, what is the

result of running the

neapsort procedure (take

max put it on the end of the heap, re-heapify)

after four iterations?

575053 2635152221 2514 112

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

Heapsort Question

Beginning with the following array, what is the

result of running the

neapsort procedure (take

max put it on the end of the heap, re-heapify)

after four iterations?

575053 2635152221 2514 112

26 2522 21 14 152 11 35 50 53 57

95-771: Data Structures
and Algorithms for
Information Processing

Lecture 13: Sorting II

