
15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Introduction to Data
Structures

Lecture 12: Sorting

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Outline

• Correctness proof digression
• Consider various sorts, analyze
• Insertion, Selection, Merge, Radix
• Upper & Lower Bounds
• Indexing

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

What Does This Method
Compute?

Lecture 12: Sorting

int doubleTheNumber(int m) {
int n = m;
while(n > 1) {

if (n % 2 == 0) n = n / 2;
else n = 3 * n + 1;

}
return 2 * m;

}

A proof of
termination
is required.

Please call
my cell if
you can show
this either
way.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

The Jar Game

Lecture 12: Sorting

A jar contains n >= 1 marbles. Each is of
Color red or of blue. Also we have an
unlimited supply of red marbles.

Will the following algorithm terminate?

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

The Jar Game

Lecture 12: Sorting

while (# of marbles in the jar > 1) {
choose (any) two marbles from the jar;
if (the two marbles are of the same color)
{ toss them aside;
place a RED marble into the jar;

}
else {
toss the chosen RED marble aside;
place the chosen BLUE marble back
into the jar;

} }
http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Find A Loop Invarient
• Can we find a loop invariant that will

help us to prove the following theorem:

The last remaining ball will be blue if
the initial number of blue balls was odd
and red otherwise.

Lecture 12: Sorting

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Sorting Demonstration

http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Intuitive Introduction

Main’s slides from Chapter 12

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Insertion Sort

void insertionSort(int A[]) {
for(int i=1; i<A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

Consider each item once, insert into growing sorted
section.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Insertion Sort
void insertionSort(int A[]) {

for(int i=1; i<A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

• runs in O(n2), where n = A.length.

• If A is sorted already, runs in O(n).

• Use if you’re in a hurry to code it , and speed is
not an issue.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Proving Insertion Sort Correct

void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)

for(int j=i; j>0 && A[j]<A[j-1]; j--)
swap(A[j],A[j-1]);

}

What is the invariant?

0 i n

£

()[]A[u]A[t]iut0 £<<£"
i=1, it’s trivially true, When when i=n, array is sorted.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Now consider inner loop
void insertionSort(int A[]) {

for(int i=1; i < A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

()[] ()[]A[w]A[v]iwvjA[u]A[t]jut0 ££<£"Ù£<<£"

Trivially true when j=i, and implies outer loop
invariant when it exits.

0 ij n

£ £?

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)

for(int j=i; j>0 && A[j]<A[j-1]; j--)
swap(A[j],A[j-1]);

}

0 i n

£
j

£

y<x?
no

£ £

yes, then swap

x y

y x £

j-1
exit inner loop j--, continue loop

What happens inside inner loop?

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

What is the Average Time
for Insertion Sort?

• Running time is proportional to number of swaps.

• Each swap of adjacent items decreases disorder by
one unit where

disorder = number of i<j such that A[i]>A[j]

• Therefore running time is proportional to disorder
and average running time is proportional to average
disorder.

(Best is O(n), Worst is O(n2))

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Average disorder
Sequence disorder Reversed

Sequence
disorder

1234 0 4321 6

1243 1 3421 5

1324 1 4231 5

1342 2 2431 4

1423 2 3241 4

1432 3 2341 3

2134 1 4312 5

2143 2 3412 4

2314 2 4132 4

2413 3 3142 3

3124 2 4213 4

3214 3 4123 3

22 50

for n=4 Average disorder = 72/24 = 3

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

What is the Average Disorder?
Theorem: The average disorder for a sequence of n
items is n(n-1)/4

Proof: Assume all permutations of array A equally
likely. If AR is the reverse of A, then disorder(A) +
disorder(AR) = n(n-1)/2 because A[i]<A[j] iff
AR[i]>AR[j]. Thus the average disorder over all
permutations is n(n-1)/4. �

Corollary: The average running time of any sorting
program that swaps only adjacent elements is W (n2).

Proof: It will have to do n(n-1)/4 swaps and may
waste time in other ways. �

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

To better O(n2) we must
compare non-adjacent

elements
Shell Sort: Swap elements n/2, n/4, … apart

Heap Sort: Swap A[i] with A[i/2]

QuickSort: Swap around “median”

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Idea of Merge Sort
• Divide elements to be sorted into two

groups of equal size
• Sort each half
• Merge the results using a simultaneous

pass through each

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Psuedocode for Merge Sort
void mergesort(int data[], int first, int n) {
if (n > 1) {

int n1 = n/2;
int n2 = n - n1;
mergesort(data, first, n1);
mergesort(data, first+n1, n2);
merge(data, first, n1, n2);

}
}

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

How fast could a sort that uses
binary comparisons run?

Consider 4 numbers, a, b, c, d. Merge Sort
approach:

b£a&b£d£cc<a<b&c<d d<b£a&d£c

a<b?
y n

c<d? c<d?
y y nn

c<a? d<a? c<b? d<b?
y y nn y y nn

b£a&d£c

a<b&a£c<d

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

a<b?
y n

c<d? c<d?

c<a? d<a? c<b? d<b?

b£a&d£c

b£a&b£d£cd<b£a&d£cc<a<b&c<d

a<b£c<d

Ask only questions you don’t
know answers to.

b<c?
a<b&a£c<d

a<b & a£c<d & c£b

b<d?
a£c<d£ba£c£b<d

5 compares

4 compares

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

A different strategy, insertion
sorts, may get lucky.

a<b?
y n

b<c?

c<d?

a<b<c<d

3 compares

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

a<b?
y n

b<c?

c<d?

a<b<c<d

But it may be unlucky.

a<b & c£b

a<c?
c£a<b

b<d?
d£b & c£a<b

a<d?
d£a & c£a<b

c<d?
6 compares

d£c£a<b

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Consider all possible sorting trees.
How many leaves must a sorting tree have to

distinguish all
possible orderings of n items?

a[0]<a[1]

?

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

How many leaves must there for a
sorting tree for n items?

a[0]<a[1]

n!, the number of different permutations.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Theorem: A binary tree with K leaves must have
depth at least élog2 Kù. In other words, a BT with k
leaves and depth d has d >= élog2 Kù or K <= 2d

Proof: Prove by induction that a tree of depth d can
have at most, 2d leaves.
Base: for d=0, there is 1 leaf.
Suppose true for d, consider tree of depth d+1.

x y

BIH: x and y have at most 2d leaves so whole tree has at
most 2*2d = 2d+1 leaves.

Now the shortest trees with K leaves must be “perfect”
and their depth will be élog2 Kù

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

So a tree with n! leaves has depth at least lg n!.

Notice that depth = the maximum number of

tests one might have to perform.

lg n! = lg n(n-1)(n-2)…1

= lg n + lg n-1 + lg n-2 + … + lg 1

³ lg n + … + lg(n/2)

³ (n/2) lg(n/2)

³ (n/2) lg n - n/2

= W(n lg n)

So any sort algorithm takes W(n lg n)

comparisons.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Is there a way to sort without
using binary comparisons?

Ternary comparisons, K-way comparisons.
The basic W(n log n) result will still be true, because
W(log2 x)= W(logk x).

Useful speed-up heuristic: use your data
as an index of an array.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Consider sorting tray of
letters

int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts[i]=0;
for(j=0; j<tray.length; j++)

count[tray[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)
while(count[i]-- > 0) tray[j++]=i+’a’;

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Sorting tray of letters
int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts[i]=0;
for(j=0; j<tray.length; j++)

count[tray[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)

while(count[i]-- > 0) tray[j++]=i+’a’;

Running time is O(26+tray.size()), i.e. linear!

if tray = “abbcabbdaf”
count = {3,4,1,1,0,1,0, …, 0}

and new tray = “aaabbbbcdf”

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Why does this beat n log n?

• The operation count[tray[j]]++ is like
a 26-way test; the outcome depends
directly on the data.

• This is “cheating” because it won’t
work if the data range grows from 26 to
232.

• Technique can still be useful — can
break up range into “buckets” and use
mergesort on each bucket

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort
A way to exploit the data-driven idea for large data
spaces.

Idea: Sort the numbers by their lowest digit. Then
sort them by the next lowest digit, being careful to
break ties properly. Continue to highest digit.

4567 3480 1908 2009 109
2132 9241 109 109 456
456 8721 2009 2132 1908
1908 3521 8721 9241 2009
3456 2132 3521 3297 2132
9241 456 2132 456 3297
109 3456 9241 3456 3456
5789 4567 456 3480 3480
3297 3297 3456 3521 3521
2009 1908 4567 4567 4567
8721 109 3480 8721 5789
3521 5789 5789 5789 8721
3480 2009 3297 1908 9241

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort
• Each sort must be stable

The relative order of equal keys is
preserved

• In this way, the work done for earlier
bits is not “undone”

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort
Informal Algorithm:

To sort items A[i] with value 0…232-1 (= INT_MAX)

• Create a table of 256 buckets.

• {For every A[i] put it in bucket A[i] mod 256.

• Take all the items from the buckets 0,…, 255 in a FIFO
manner, re-packing them into A.}

• Repeat using A[i]/256 mod 256

• Repeat using A[i]/2562 mod 256

• Repeat using A[i]/2563 mod 256

• This takes O(4*(256+A.length))

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort using Counts
The Queues can be avoided by using counts:

Let N= number of elements in array a

Array a is indexed from 1 to N

Let w = the number of bits in a[i]

Let m = number of bits examined per
pass

Let M = 2^m patterns to count

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort using Counts

void RadixSort(int a[], int b[], int N) {
int i, j, pass, count[M];
for (pass=0; pass < (w/m); pass++) {

for (j=0; j < M; j++) count[j] = 0;
for (i=1; i <= N; i++)

count[a[i].bits(pass*m, m)]++;
for (j=1; j < M; j++)

count[j] = count[j-1] + count[j];
for (i=N; i >= 1; i--)

b[count[a[i].bits(pass*m,m)]--] = a[i];
for (i=1; i <= N; i++) a[i] = b[i];

}
}

The Queues can be avoided by using counts:

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort using Queues
const int BucketCount = 256;
void RadixSort(vector<int> &A) {
vector<queue<int> > Table(BucketCount);
int passes = ceil(log(INT_MAX)/log(BucketCount));
int power = 1;
for(int p=0; p<passes;p++) {

int i;
for(i=0; i<A.size(); i++) {

int item = A[i];
int bucket = (item/power) % BucketCount;
Table[bucket].push(item);

}
i =0;
for(int b=0; b<BucketCount; b++)

while(!Table[b].empty()) {
A[i++] = Table[b].front(); Table[b].pop();

}
power *= BucketCount;

}}

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Radix Sort
In general it takes time

O(Passes*(NBuckets+A.length))

where Passes=
élog(INT_MAX)/log(NBuckets)ù

Suppose we have n 4 digit numbers to sort and
1 bucket for each digit.

Passes = ceil(log10(9999)/log10(10)) = 4

O(4 * (10 + n))

It needs O(A.length) in extra space.

15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

Next Time
• The next topic will be Quicksort, a very

fast, practical, and widely used
algorithm

