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Outline

• Correctness proof digression
• Consider various sorts, analyze
• Insertion, Selection, Merge, Radix
• Upper & Lower Bounds
• Indexing
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What Does This Method 
Compute? 

Lecture 12: Sorting

int doubleTheNumber(int m) {
int n = m;
while(n > 1) {

if (n % 2 == 0) n = n / 2;
else n = 3 * n + 1;

}
return 2 * m;

}

A proof of
termination
is required.

Please call
my cell if 
you can show 
this either 
way.
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The Jar Game 
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A jar contains n >= 1 marbles. Each is of 
Color red or of blue. Also we have an
unlimited supply of red marbles.

Will the following algorithm terminate?

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html
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while (# of marbles in the jar > 1)  {
choose (any) two marbles from the jar;
if (the two marbles are of the same color)
{ toss them aside;          
place a RED marble into the jar;

}       
else {   
toss the chosen RED marble aside;
place the chosen BLUE marble back 
into the jar;       

}    } 
http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html
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Find A Loop Invarient
• Can we find a loop invariant that will

help us to prove the following theorem:

The last remaining ball will be blue if 
the initial number of blue balls was odd 
and red otherwise. 

Lecture 12: Sorting

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html
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Sorting Demonstration

http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html
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Intuitive Introduction

Main’s slides from Chapter 12
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Insertion Sort

void insertionSort(int A[]) {
for(int i=1; i<A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

Consider each item once, insert into growing sorted 
section.
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Insertion Sort
void insertionSort(int A[]) {

for(int i=1; i<A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

• runs in O(n2), where n = A.length.

• If A is sorted already, runs in O(n).

• Use if you’re in a hurry to code it , and speed is   
not an issue.
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Proving Insertion Sort Correct

void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)

for(int j=i; j>0 && A[j]<A[j-1]; j--)
swap(A[j],A[j-1]);

}

What is the invariant? 

0 i n

£

( )[ ]A[u]A[t]iut0 £<<£"
i=1, it’s trivially true, When when i=n, array is sorted.
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Now consider inner loop
void insertionSort(int A[]) {

for(int i=1; i < A.length; i++)
for(int j=i; j>0 && A[j]<A[j-1]; j--)

swap(A[j],A[j-1]);

}

( )[ ] ( )[ ]A[w]A[v]iwvjA[u]A[t]jut0 ££<£"Ù£<<£"

Trivially true when j=i,  and implies outer loop 
invariant when it exits.

0 ij n

£ £?
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void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)

for(int j=i; j>0 && A[j]<A[j-1]; j--)
swap(A[j],A[j-1]);

}

0 i n

£
j

£

y<x?
no

£ £

yes, then swap

x y

y x £

j-1
exit inner loop j--, continue loop

What happens inside inner loop?
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What is the Average Time 
for Insertion Sort?

• Running time is proportional to number of swaps.

• Each swap of adjacent items decreases disorder by 
one unit where

disorder = number of i<j such that A[i]>A[j]

• Therefore running time is proportional to disorder 
and average running time is proportional to average 
disorder.

( Best is O(n), Worst is O(n2))
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Average disorder
Sequence disorder Reversed

Sequence
disorder

1234 0 4321 6

1243 1 3421 5

1324 1 4231 5

1342 2 2431 4

1423 2 3241 4

1432 3 2341 3

2134 1 4312 5

2143 2 3412 4

2314 2 4132 4

2413 3 3142 3

3124 2 4213 4

3214 3 4123 3

22 50

for n=4 Average disorder = 72/24 = 3
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What is the Average Disorder?
Theorem: The average disorder for a sequence of n 
items is n(n-1)/4

Proof: Assume all permutations of array A equally 
likely. If AR is the reverse of A, then disorder(A) + 
disorder(AR) = n(n-1)/2 because A[i]<A[j] iff 
AR[i]>AR[j]. Thus the average disorder over all 
permutations is n(n-1)/4.  �

Corollary: The average running time of any sorting 
program that swaps only adjacent elements is W (n2).

Proof: It will have to do n(n-1)/4 swaps and may 
waste time in other ways.  �
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To better O(n2) we must 
compare non-adjacent 

elements
Shell Sort: Swap elements n/2, n/4, … apart 

Heap Sort: Swap A[i] with A[i/2]

QuickSort: Swap around “median”
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Idea of Merge Sort
• Divide elements to be sorted into two 

groups of equal size
• Sort each half
• Merge the results using a simultaneous 

pass through each
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Psuedocode for Merge Sort
void mergesort(int data[], int first, int n) {
if (n > 1) {

int n1 = n/2;
int n2 = n - n1;
mergesort(data, first, n1);
mergesort(data, first+n1, n2);
merge(data, first, n1, n2);

}
}
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How fast could a sort that uses 
binary comparisons run?

Consider 4 numbers, a, b, c, d. Merge Sort 
approach:

b£a&b£d£cc<a<b&c<d d<b£a&d£c

a<b?
y n

c<d? c<d?
y y nn

c<a? d<a? c<b? d<b?
y y nn y y nn

b£a&d£c

a<b&a£c<d
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a<b?
y n

c<d? c<d?

c<a? d<a? c<b? d<b?

b£a&d£c

b£a&b£d£cd<b£a&d£cc<a<b&c<d

a<b£c<d

Ask only questions you don’t 
know answers to.

b<c?
a<b&a£c<d

a<b & a£c<d & c£b

b<d?
a£c<d£ba£c£b<d

5 compares

4 compares
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A different strategy, insertion 
sorts, may get lucky.

a<b?
y n

b<c?

c<d?

a<b<c<d

3 compares
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a<b?
y n

b<c?

c<d?

a<b<c<d

But it may be unlucky.

a<b & c£b

a<c?
c£a<b

b<d?
d£b & c£a<b

a<d?
d£a & c£a<b

c<d?
6 compares

d£c£a<b
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Consider all possible sorting trees.
How many leaves must a sorting tree have to 

distinguish all
possible orderings of n items?

a[0]<a[1]

?
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How many leaves must there for a 
sorting tree for n items?

a[0]<a[1]

n!, the number of different permutations.
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Theorem: A binary tree with K leaves must have 
depth at least élog2 Kù. In other words, a BT with k 
leaves and depth d has d >= élog2 Kù or K <= 2d

Proof: Prove by induction that a tree of depth d can 
have at most, 2d leaves.
Base: for d=0, there is 1 leaf.
Suppose true for d, consider tree of depth d+1.

x y

BIH: x and y have at most 2d leaves so whole tree has at 
most 2*2d = 2d+1 leaves.

Now the shortest trees with K leaves must be “perfect”
and their depth will be  élog2 Kù



15-121: Introduction to Data Structures

Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 12: Sorting

So a tree with n! leaves has depth at least lg n!. 

Notice that depth = the maximum number of 

tests one might have to perform.

lg n! = lg n(n-1)(n-2)…1

= lg n + lg n-1 + lg n-2 + … + lg 1

³ lg n + … + lg(n/2)

³ (n/2) lg(n/2)

³ (n/2) lg n - n/2

= W(n lg n)

So any sort algorithm takes W(n lg n) 

comparisons.
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Is there a way to sort without 
using binary comparisons?

Ternary comparisons, K-way comparisons.
The basic W(n log n) result will still be true, because 
W(log2 x)= W(logk x).

Useful speed-up heuristic: use your data 
as an index of an array.
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Consider sorting tray of 
letters

int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts[i]=0;
for(j=0; j<tray.length; j++)

count[tray[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)
while(count[i]-- > 0) tray[j++]=i+’a’;
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Sorting tray of letters
int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts[i]=0;
for(j=0; j<tray.length; j++)

count[tray[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)

while(count[i]-- > 0) tray[j++]=i+’a’;

Running time is O(26+tray.size()), i.e. linear!

if tray = “abbcabbdaf”
count = {3,4,1,1,0,1,0, …, 0}

and new  tray = “aaabbbbcdf”
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Why does this beat n log n?

• The operation count[tray[j]]++ is like 
a 26-way test; the outcome depends 
directly on the data.

• This is “cheating” because it won’t 
work if the data range grows from 26 to 
232.

• Technique can still be useful — can 
break up range into “buckets” and use 
mergesort on each bucket
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Radix Sort
A way to exploit the data-driven idea for large data 
spaces.

Idea: Sort the numbers by their lowest digit. Then 
sort them by the next lowest digit, being careful to 
break ties properly. Continue to highest digit.

4567 3480 1908 2009 109
2132 9241 109 109 456
456 8721 2009 2132 1908
1908 3521 8721 9241 2009
3456 2132 3521 3297 2132
9241 456 2132 456 3297
109 3456 9241 3456 3456
5789 4567 456 3480 3480
3297 3297 3456 3521 3521
2009 1908 4567 4567 4567
8721 109 3480 8721 5789
3521 5789 5789 5789 8721
3480 2009 3297 1908 9241
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Radix Sort
• Each sort must be stable

The relative order of equal keys is 
preserved

• In this way, the work done for earlier 
bits is not “undone”
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Radix Sort
Informal Algorithm:

To sort items A[i] with value 0…232-1 (= INT_MAX)

• Create a table of 256 buckets.

• {For every A[i] put it in bucket A[i] mod 256.

• Take all the items from the buckets 0,…, 255 in a FIFO
manner, re-packing them into A.}

• Repeat using A[i]/256 mod 256

• Repeat using A[i]/2562 mod 256

• Repeat using A[i]/2563 mod 256

• This takes O(4*(256+A.length))
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Radix Sort using Counts
The Queues can be avoided by using counts:

Let N= number of elements in array a

Array a is indexed from 1 to N

Let w = the number of bits in a[i]

Let m = number of bits examined per 
pass

Let  M = 2^m patterns to count
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Radix Sort using Counts

void RadixSort(int a[], int b[], int N) {
int i, j, pass, count[M];
for (pass=0; pass < (w/m); pass++) {

for (j=0; j < M; j++) count[j] = 0;
for (i=1; i <= N; i++) 

count[a[i].bits(pass*m, m)]++;
for (j=1; j < M; j++)

count[j] = count[j-1] + count[j];
for (i=N; i >= 1; i--)

b[count[a[i].bits(pass*m,m)]--] = a[i];
for (i=1; i <= N; i++) a[i] = b[i];

}
}

The Queues can be avoided by using counts:
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Radix Sort using Queues
const int BucketCount = 256;
void RadixSort(vector<int> &A) {
vector<queue<int> > Table(BucketCount);
int passes = ceil(log(INT_MAX)/log(BucketCount));
int power = 1;
for(int p=0; p<passes;p++) {

int i;
for(i=0; i<A.size(); i++) {

int item = A[i];
int bucket = (item/power) % BucketCount;
Table[bucket].push(item);

}
i =0;
for(int b=0; b<BucketCount; b++)

while(!Table[b].empty()) {
A[i++] = Table[b].front(); Table[b].pop();

}
power *= BucketCount;

}}
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Radix Sort
In general it takes time

O( Passes*(NBuckets+A.length))

where Passes= 
élog(INT_MAX)/log(NBuckets)ù

Suppose we have n 4 digit numbers to sort and 
1 bucket for each digit.

Passes = ceil(log10(9999)/log10(10)) = 4

O(4 * ( 10 + n))

It needs O(A.length) in extra space.
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Next Time
• The next topic will be Quicksort, a very 

fast, practical, and widely used 
algorithm


