35.2  The traveling-salesman problem B 1027

algorithm returns a vertex cover whose size is at most twice the size of the maximal
matching A. By relating the size of the solution returned to the lower bound, we
obtain cur approximation ratio. We will use this methodology in later sections as
well, ‘

Exercises

35.1-1
Give an example of a graph for which APPROX-VERTEX-COVER always yields a
suboptimal solution.

- 35:1-2
Let A denote the set of edges that were picked in line 4 of APPROX-VERTEX-
COVER. Prove that the set A is a maximal matching in the graph G.

351-3 %

Professor Nixon proposes the following heuristic to solve the vertex-cover prob-
lem. Repeatedly sclect a vertex of highest degree, and remove all of its incident
edges. Give an example to show that the professor’s heuristic does not have an ap-
proximation ratio of 2, (Hint: Try a bipartite graph with vertices of uniform degree
on the left and vertices of varying degree on the right.)

35.1-4
Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in
linear time.

35.1-5

From the proof of Theorem 34,12, we know that the vertex-cover problem and the
NP-complete clique problem are complementary in the sense that an optimal vertex
cover is the complement of a maximum-size clique in the complement graph. Does
this relationship imply that there is a polynomial-time approximation algorithm
with a constant approximation ratio for the clique problem? Justify your answer.

352 The traveling-salesman problem

In the traveling-salesman problem introduced in Section 34.5.4, we are given a
complete undirected graph G = (V, E) that has a nonnegative integer cost ¢(u, v)
associated with each edge (u,v) € E, and we must find a hamiltonian cycle (a
tour) of G with minimum cost. As an extension of our notation, let ¢(A) denote
the total cost of the edges in the subset A C E:




c(A) = 2 c(u, v} .

(u,)eA

In many practical situations, it is always cheapest to go directly from a place u
to a place w; going by way of any intermediate stop v can’t be less expensive.
Putting it another way, cutting out an intermediate stop never increases the cost.
We formalize this notion by saying that the cost function ¢ satisfies the friangle
inequality if for all vertices u, v, w e V,

clu, w) <clu,v)+clv,w),

The triangle inequality is a natural one, and in many applications it is antomat-
ically satisfied. For example, if the vertices of the graph are points in the plane
and the cost of traveling between two vertices is the ordinary euclidean distance
between them, then the triangle inequality is satisfied. (There are many cost func-
tions other than euclidean distance that satisfy the triangle inequality.)

As Exercise 35.2-2 shows, the traveling-salesman problem is NP-complete even
if we require that the cost function satisfy the triangle inequality. Thus, it is unlikely
that we can find a polynomial-time algorithm for solving this problem exactly. We
therefore look instead for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the traveling-
salesman problem with the triangle inequality. In Section 35.2.2, we show that
without the triangle inequality, a polynomial-time approximation algorithm with a
constant approximation ratio does not exist unless P = NP.

35.2.1 The traveling-salesman problem with the triangle inequality

Applying the methodology of the previous section, we will first compute a struc-
ture—a minimum spanning tree—whose weight is a lower bound on the length of
an optimal traveling-salesman tour. We will then use the minimum spanning tree to
create a tour whose cost is no more than twice that of the minimum spanning tree’s
weight, as long as the cost function satisfies the triangle inequality, The following
algorithm implements this approach, calling the minimum-spanning-tree algorithm
MST-PRIM from Section 23.2 as a subroutine.

APPROX-TSP-TOUR(G, ¢)

1 select a vertex r € V[G] to be a “root” vertex
2 compute a minimum spanning tree T for G from root r
nsing MST-PRIM(G, ¢, #)
let L be the list of vertices visited in a preorder tree walk of T
return the hamiltonian cycle A that visits the vertices in the order L

oW




35.2 The traveling-salesman p?‘bblem 1029

\d N
e N
: PN
2. 7Y
O~ —;
it /
le ¢
(b} {©)
-
ne ° /J\
ce (d ,4%‘
1c- Ce\
. £ N
en £ @}
aly
We g
ng-
hat ©
ha
Figure 35.2 The operation of APPROX-TSP-TOUR, (a) The given set of points, which lie on
vertices of an integer grid. For example, f is one unit to the right and two units up from 4. The
ordinary euclidean distance is used as the cost function between two points. (b) A minimum span-
ning tree T of these points, as computed by MST-PRIM. Vertex a is the root vertex. The vertices
rac- happen to be labeled in such a way that they are added to the main tree by MST-PRIM in alpha-
i of betical order. (¢} A walk of T, starting at «. A full walk of the tree visits the vertices in the order
N a,b,e,b,h,b,a,d,e, f e, g, e d,a. Apreorder walk of T lists a vertex just when it is first encoun-
© ,0 tered, as indicated by the dot next to each vertex, yielding the ordering a, b, ¢, b, d, e, f, g. (d) A
ecs tour of the vertices obtained by visiting the vertices in the order given by the preorder walk., This is
ving the tour H returned by APPROX-TSP-TOUR, Its total cost is approximately 19.074. (e) An optimal
ithm tour H* for the given set of vertices. Iis total cost is approximately 14.715,

Recall from Section 12.1 that a preorder tree walk recursively visits every vertex
in the tree, listing a vertex when it is first encountered, before any of its children
are visited.

Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the
figure shows the given set of vertices, and part (b) shows the minimum spanning
tree T grown from root vertex @ by MST-PRIM. Part (c) shows how the vertices
are visited by a preorder walk of T, and part (d) displays the corresponding tour,




which is the tour retumed by APPROX-TSP-TOUR. Part (e) displays an optimal
tour, which is about 23% shorter.

By Exercise 23.2-2, even with a simple implementation of MST-PRIM, the run-
ning time of APPROX-TSP-TOUR is ®(V?). We now show that if the cost function
for an instance of the traveling-salesman problem satisfies the triangle inequality,
then APPROX-TSP-TOUR returns a tour whose cost is not more than twice the cost
of an optimal tour,

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the
traveling-salesman problem with the triangle inequality.

Proof We have already shown that APPROX-TSP-TOUR rums in polynomial
time.

Let * denote an optimal tour for the given set of vertices. Since we obtain a
spanning tree by deleting any edge from a tour, the weight of the minimum span-
ning tree T is a lower bound on the cost of an optimal tour, that is,

(T < c(H®) . ' (35.4)

A full walk of T lists the verfices when they are first visited and also whenever
they are retwned to after a visit to a subtree. Let us call this walk W. The full walk
of our example gives the order

a,b,c,b,h,b,a,d,e, f,e,g,e,d,a .

Since the full walk traverses every edge of T exactly twice, we have (extending our
definition of the cost ¢ in the natural manner to handle multisets of edges)

c(W) =2¢(T). (35.5)
Equations (35.4) and (35.5) imply that - -
c(W) < 2c(H"), (35.6)

and so the cost of W is within a factor of 2 of the cost of an optimal tour.

Unfortunately, W is generally not a tour, since it visits some vertices more than
once. By the triangle inequality, however, we can delete a visit to any vertex
from W and the cost does not increase. (If a vertex v is deleted from W between
visits to z and w, the resulting ordering specifies going directly from # to w.) By
repeatedly applying this operation, we can remove from W all but the first visit to
each vertex. In our example, this leaves the ordering

a,b,c,h,de, f,g.




352 The traveling-salesman problem 1031

This ordering is the same as that obtained by a preorder walk of the tree 7, Let H
be the cycle comresponding to this preorder walk. It is a hamiltonian cycle, since ev-
ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX-
TSP-ToUR. Since H is obtained by deleting vertices from the full walk W, we
have

c(H) < c(W). ' (35.7)
Combining inequalities (35.6) and (35.7) shows th%t c(H) < 2c(H*), which com-
pletes the proof. H

In spite of the nice approximation ratio provided by Theorem 35.2, APPROX-
TSP-TOUR is usually not the best practical choice for this problem. There are
other approximation algorithms that typically perform much better in practice. See
the references af the end of this chapter.

35.2.2 The general traveling-salesman problem

If we drop the assumption that the cost function ¢ satisfies the triangle inequality,
good approximate tours cannot be found in polynomial time unless P == NP.

Theorem 35.3
If P 5= NP, then for any constant p > 1, there is no polynomial-time approximation
algorithm with approximation ratio o for the general traveling-salesman problem.

Proof The proof is by contradiction. Suppose to the contrary that for some num-
" ber p > 1, there is a polynomial-time approximation algorithm A with approx-
imation ratio p. Without loss of generality, we assume that o is an integer, by
rounding it up if necessary. We shall then show how to use A to solve instances of
the hamiltonian-cycle problem (defined in Section 34.2) in polynomial time. Since
the hamiltonian-cycle problem is NP-complete, by Theorem 34.13, solving it in
polynomial time implies that P = NP, by Theorem 34.4.

Let G = (V, E) be an instance of the hamiltonian-cycle problem. We wish to
determine efficiently whether G contains a hamiltonian cycle by making use of
the hypothesized approximation algorithm A. We turn G into an instance of the
traveling-salesman problem as follows. Let G' = (V, E”) be the complete graph
on V' that is,

E'={u,v):u,veVanduuv}.
Assign an integer cost to each edge in E’ as follows:

1 if(u,v)ekE,

c(u,v) = {,oiV| +1 otherwise .




