15-121 Introduction to Data Structures Carnegie Mellon University

15-121 – Introduction to Data Structures
Homework #1
Due Tuesday, September 20, 2016 Midnight

Topics: Alternative Stack Implementations, the Factory Pattern, and Reverse Polish Notation
Many Hewlett-Packard calculators use a format known as Reverse Polish Notation (RPN) for inputting arithmetic expressions. These calculators use a stack to help perform the computations necessary to determine the result of an expression. Expressions are evaluated from left to right. If a number is encountered in the input then that number is simply pushed onto the calculator’s stack. If an operator is encountered (+,-,* , /, or ^), the appropriate number of operands are popped off of the stack, the operation is performed, and the result is pushed back on the stack. As an example, the expression “(3-2)/4” would be written in Reverse Polish Notation as “3 2 – 4 /”. Computation of the result would proceed as follows:

1. Examine 3, determine that it is a number, and push it on the stack.

2. Examine 2, determine that it is a number, and push it on the stack.

3. Examine -, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (2 and 3).

· Subtract the first from the second (3 – 2) and place the result, 1, on the stack.

4. Examine 4, determine that it is a number, push it on the stack.

5. Examine /, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (4 and 1)

· Divide the second by the first and push the result, 0.25, back on the stack.

6. The result of the expression is now the top value on the stack.

As an example, evaluation of the expression given above (3 2 – 4 /) will result in the following calls to the RPNCalc class:

1. number(3)

2. number(2)

3. subtract()

4. number(4)

5. divide()
Attached are javadoc specifications relating to this assignment. The first package (pkg15.pkg121project1) has specifications for RPNCalc.java and RPNParser.java. The second package (stackimplementations) has specifications for an abstract class called Stack.java, a factory class called StackFactory.java and three stack implementation classes (LinkedStack.java, StackShifter.java and StackWithTopPointer.java). We have discussed these three implementations in class.
The class RPNCalc.java will act like an RPN calculator. It will have two essential members – a TreeMap (which you may use from java.util) and a stack. The stack will be a stack of Java objects and, in this project, will have three different possible implementations. The TreeMap will be used to store variables in memory. Be sure to spend some time studying how Java TreeMaps behave.
The class RPNParser.java is used to interact with a user at the command line. We will assume that the user is friendly and never enters incorrect data. Thus, we do not have extensive error checking to do. The user always enters well-formed expressions in Reverse Polish Notation.

The abstract class (Stack.java) has incomplete methods. These need to be completed by classes that extend Stack. Your first task is to complete the methods in LinkedStack.java, StackShifter.java and StackWithTopPointer.java. Each of these classes will extend the Stack class and be a concrete classes. You need to code these from scratch – using only arrays and linked nodes. You may not use any Java libraries for help.
There is a factory class (StackFactory.java). This class is used to select one of the three implementations at runtime. We will make our selection randomly. It has a single method (getStack()) which is called by anyone needing an implementation of the Stack abstraction.

Here is an example execution of RPNParser.java. If a blank line is entered the program halts.
run:

Creating a LinkedStack

2 3 +

5.0

3 2 -

1.0

3 2 ^

9.0

2 3 + 3 2 ^ *

45.0

tax .08 =

0.08

netPay 40 20 * 40 20 * tax * - =

736.0

netPay

736.0

44.0

44.0

The type of stack created varies with each run. Here is another execution:

run:

Creating a slow shifter stack

hour 40 =

40.0

payRate 10 =

10.0

gross hour payRate * =

400.0

gross 100 +

500.0
To give you a solid start, here is the beginning of my main routine in RPNParser.java.
public static void main(String[] argv) throws IOException

 {

 BufferedReader input = new BufferedReader(

 new InputStreamReader(System.in));

 RPNCalc the_calc = new RPNCalc();

 while (true)

 {

 StringTokenizer strtok = null;

 // get a line from the user

 String line = input.readLine();

 strtok = new StringTokenizer(line," ");

 // If an empty line is entered then end the application

 if(!strtok.hasMoreTokens()) break;

 while (strtok.hasMoreTokens())

 {

 String token = strtok.nextToken();

 // It may be a float, a name or an operator

 try { // if it is a float then push it

 float f = (new Float(token)).floatValue();

 the_calc.number(new Float(f));

 }

 catch (NumberFormatException n)

 {
Hint: I did make good use of try/catch blocks. If the try throws a NumberFormatException, I can catch that and I know I have an operator or a variable name.
PAGE
2

