
VASP: Virtualization assisted Security Monitor for Cross-Platform
Protection

Min Zhu†, Miao Yu†, Mingyuan Xia§, Bingyu Li†, Peijie Yu†,
Shang Gao†, Zhengwei Qi†, Liang Liu‡, Ying Chen‡, Haibing Guan§

†School of Software §School of Electronic Information and Electrical Engineering
Shanghai Key Laboratory of Scalable Computing and Systems

Shanghai Jiao Tong University
‡ IBM Research China

†§ { carit, superymk, kenmark, justasmallfish, yupiwang, chillygs, qizhwei, hbguan } @ sjtu.edu.cn
‡ { liuliang yingch }@cn.ibm.com

ABSTRACT
Numerous operating systems have been designed to manage
and control system resources with largeness and complexity
features, so they need high security protection. However,
the security applications always can not provide adequate
protection due to the untrusted execution environment. Fur-
thermore, these security strategies cannot support a univer-
sal cross-platform system protection. This paper presents
VASP, a hypervisor based monitor which allows a trusted
execution environment to monitor various malicious behav-
iors in the operating system. This is achieved by taking ad-
vantage of x86 hardware virtualization and self-transparency
technology, and providing a unified security protection to op-
erating systems such as Linux and Windows, which can run
without any modification. Our design is targeted at estab-
lishing a security monitor which resides completely outside
of the target OS environment with a negligible overhead. Ac-
cording to the security analysis and performance experiment
result, our approach can effectively protect applications and
the kernel by the cost of only 0.9% average overhead in Win-
dows XP and 2.6% average overhead in Linux.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Virtualization technology, Software Protection

Keywords
cross-platform, hypervisor, security, hardware virtualization

1. INTRODUCTION
Virtualization was first applied to the operating system

(OS) as IBM System/370 Extended Architecture in 1970 [9]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

[6], utilizing virtual machine (VM) to enable binary support
for the legacy code. As time goes on, both commodity and
open source operating systems increasingly make full use
of virtualization capabilities of the hardware. For the pur-
pose of security, the operating system always needs other
applications’ help, such as anti-virus, code protection, anti-
debugging and so on. Though they are proved to be safe and
effective, most of these protections are established within
the operating system. As a result, the protection strategies
may have the same privilege level as operating system kernel
or even lower than that of the kernel, which can not guar-
antee them away from the attackers. This paper presents
VASP, a lightweight, transparent, cross-platform and high
performance security monitor, which enables unified secu-
rity protection inside the virtual machine monitor based on
hardware virtualization technology.

Successfully monitoring and protecting the operating sys-
tem to realize whether malicious code attacks when the sys-
tem is running poses several challenges. Firstly, the monitor
must have an isolated execution environment with the op-
erating system. It is not acceptable for the execution of the
malware to detect or attack the security monitor. Secondly,
it is necessary to support a unified security protection in dif-
ferent operating system architecture. Nowadays, operating
systems have various architecture, so the system protection
need adapt to the system features. Thirdly, the performance
overhead introduced by virtualization should be small. Each
additional protection will cause a decline in performance,
and significant performance degradation makes the original
system operation blocked.

VASP is established in the virtual machine monitor (VMM)
which is an effective environment to prevent from malicious
behaviors [4]. What’s more, taking advantage of hardware
virtualization technology, VASP possesses a higher privilege
level, named root mode, than the OS kernel’s to manage the
hardware resources. As a result, it executes in the isolated
and privileged environment to ensure that there is no impact
from other softwares.

VASP enables users to build the monitor not only in Win-
dows but also in Linux, and both of them are typical operat-
ing systems. In VASP project, we deploy that the hypervisor
is transparent to the existing operating system and doesn’t
care which architecture of operating system it runs on, as
long as the hardware supports virtualization technology.

There are a number of ways to build the protection, but
virtualization is always considered to cause high overhead.

VASP makes use of few hardware resources, only for proces-
sor and memory demand, and the effect is slight relative to
the traditional full virtualization. On the other hand, there
is no need to modify the original OS kernel.
To the best of our knowledge, this paper is the first to

address the issue of the universal security protection on dif-
ferent architecture of operating systems based on hardware
virtualization. As we will demonstrate, instead of relying
on operating system’s space resources, the virtual machine
monitor behaviors are safe and effective with the help of
hardware virtualization.
In this paper, we make the following contributions.

• We establish a lightweight security monitor with least
temporal and spatial overhead to protect operating
system as our experiment results revealed. And the
hypervisor is designed without any modification to the
protected OS.

• We construct a universal cross-platform security archi-
tecture. Both Windows and Linux operating systems
can be protected under our security platform.

• This architecture is easily extensible for application.
Our approach can be utilized in many different secu-
rity requirements with few changes and corresponding
extensions.

The rest of the paper is organized as follows. Section
2 presents the related work in this research field. Section
3 illustrates the design and implementation of our security
monitoring. Section 4 evaluates the performance test in two
different operating systems, Windows XP and Linux. At
last, we conclude the paper in Section 5.

2. RELATED WORK
Hardware virtualization has been applied to operating sys-

tems both commercially and in research for several years.
Intel VT and AMD SVM Technology make the hardware
suitable for virtualizaiton and accelerate the development of
it. VMware [12] [15] and KVM [7] both take advantage of
hardware virtualization, allowing their virtual machines to
work more quickly and smoothly on a single host. However,
VMware still use the full virtualization technology which
is used to virtualize most hardware resources, such as net-
works, I/O devices, hard disks and so on, except CPU and
memory resources nowadays. KVM is a linux built-in hy-
pervisor which has been combined with the linux kernel tree
form 2.6.20 kernel version. When the linux kernel loads the
special module, KVM, the whole kernel plays the role of
hypervisor itself. Though KVM is small, the whole hyper-
visor is large with the addition of the kernel which will be
entitled to occupy the same high privilege level with KVM,
which makes hypervisor at risk.
Xen [1] is another kind of hypervisor which uses paravir-

tualzation technology. The hypervisor also places a higher
privilege than the guest OS, which makes Xen hypervisor
directly access to the hardware instead of the general OS. In
Xen architecture, we can see that each guest OS is contained
in guest domain and there is a special guest domain, termed
domain0, which manages and controls the access from guest
virtual machine to system hardware. As a result, once the
domain0 is at risk by malicious codes, other guest domains
will also face security threat.

Blue Pill [10] is a root-kit based on x86 hardware virtual-
ization extensions like AMD-V and Intel VT-x. Its concept
is to trap a running instance of the operating system by
starting a thin hypervisor and virtualizing the rest of the
machine under it. The infected operating system would still
maintain its existing references to all devices and files. Our
approach is designed based on Blue Pill project and modifies
it to be used as an operating system security monitor ported
to Windows and Linux. There is an assumption that the re-
sistance to the attack similar to Blue Pill root-kit is not our
work, which needs to take advantage of nested virtualization
mentioned in Muli Ben-Yehuda’s paper [2].

Overshadow [5] which also can be implemented by VASP
provides protection of the privacy and integrity of sensitive
application data. Overshadow presents an application with
a normal view of its resources, but the OS kernel and other
programs with an encrypted view [5]. Overshadow has to in-
tercept all the possible entries of kernel, context switches and
hardware interrupts, which induces inevitable TCB growth
and unnecessary overhead comparatively.

BitVisor [11] is a thin hypervisor for enforcing I/O device
security. It uses a hypervisor architecture, called parapass-
through, designed to minimize the code size of hypervisors
by allowing most of the I/O access from the guest operat-
ing system (OS) to pass-through the hypervisor, while the
minimum access necessary to implement security function-
alities is completely mediated by the hypervisor. Although
this approach is effective for protecting system security, it
only aims at the security functionalities of I/O access.

Some previous researches, like Proxos [13] and iKernel
[14], provide a high secure execution environment and enable
secure code running in the separate VMs. Proxos allows ap-
plications to configure their trust in the OS by partitioning
the system call interfaces into trusted and untrusted com-
ponents [3], but needs code modification to both application
and kernel. For the same purpose, iKernel isolates the ma-
licious device drivers running on separate VMs to make the
operating system more secure and reliable. Focusing on the
design goal of making hypervisor based monitoring on ma-
licious behaviors handle some sensitive instructions, our ap-
proach also possesses the features of high performance and
little effect on the original OS kernel with the optimized
design.

3. DESIGN AND IMPLEMENTATION
VASP implements hypervisor based monitoring for popu-

lar operating systems, such as Windows XP and Linux, with
some challenges of no modification to OS, universal pro-
tection strategy, self-transparency and Multi-core Support.
Our approach is tailored from Blue Pill project as the base
for implementation, inheriting its features of lightweight,
reliability, easily extensibility and configurability. In this
section, we describe the architecture of VASP hypervisor
at first, then introduce the details of implementations, and
show two case studies at last.

3.1 VASP Architecture
Intercepting the malicious behavior with configurable func-

tion is the basic and key point to protect and monitor the
whole system. VASP leverages this mechanism to intercept
the sensitive behaviors, like CR registers change, debugging
interrupts, special memory access, etc., which common at-
tackers use to harm the operating system.

Figure 1: VASP Architecture: An overview of VASP
architecture and it consists of three layers.

Figure 1 provides an overview of VASP architecture. VASP
is divided into three layers: hardware platform layer, VASP
hypervisor layer and guest operating system layer.
Hardware Platform Layer. This layer is the platform

where the hypervisor is established on. This platform needs
to support hardware virtualization technology, such as Inte
VT-x and AMD SVM, though they have some differences in
hardware design. These differences, involving virtualization-
related instructions, checking platform, VMCS configura-
tions, etc., can be masked by platform-related codes to pro-
vide unique interfaces to the hypervisor.
VASP Hypervisor Layer. This layer is the core of the

whole platform. There is a set of interfaces exported to
the future developers, such as memory management inter-
face, trap register interface and debugging interface. Mem-
ory management interface is used to realize its own memory
management of VASP. Trap register interface supports the
extension usage of VASP and provides the configuration of
intercepting behavior. Debugging interface is used for dy-
namic analysis when developing the hypervisor. With the
help of these three interfaces, we also implement two ba-
sic services for the hypervisor to protect the guest: default
memory management service and execution control service.
This memory management service realizes the memory self-
transparency strategy for the self-protection of the hyper-
visor. Execution control service contains all the trap event
handlers, and it handles the corresponding event according
to the indicated #VMEXIT reason.
Guest Operating System Layer. This layer contains

the protected operating system, Windows XP or Linux. With
the hypervisor established, original operating system exe-
cutes in the guest virtual machine monitored by the hyper-
visor. VASP is realized to support only one guest machine
at one moment currently.

3.2 Implementation
Next, we will introduce the detailed implementation of

VASP, such as its control flow, memeory self-transparency
and Multi-core support.

3.2.1 VASP Control Flow
According to the VASP architecture described in the last

subsection, VASP hypervisor plays a role as virtual machine
monitor between the guest operating system and hardware
environment. There is a flow of control for handling a sen-

Unmodifie
d

Page Table

Virtual

Address Space

VASP

virtual memory

space

Physical

Address Space

pseudo

physical memory

space

VA

PA real

VASP

physical memory

space

VASPPage Table

VA

PA
real

Physical

Address Space

Figure 2: Translation with VASP Memory Strat-
egy: The different memory translation with mem-
ory self-transparency strategy between non-root and
root mode. The upper one is for guest OS, and the
lower one is for VASP hypervisor.

sitive system behavior interception, involving guest appli-
cation or guest kernel, hardware and the VASP hypervisor.
The trap occurs in step 1, and the control is transferred to
hardware with the generation of a #VMEXIT event, such
as cpuid instruction. In step 2, the hardware stores the
guest execution states in virtual machine control structure
(VMCS) and finds out the handler of all the traps by VMCS
which is configured when initializing VASP hypervisor. In
step 3, VASP hypervisor saves the contents of all applica-
tions or kernel registers at trap point, then selects the trap
handler routine to handle the corresponding behavior prop-
erly. After the trap handling, hypervisor passes the control
back to hardware by executing the #VMRESUME instruc-
tion and restoring the saved registers. In the last step, the
return instruction pointer (IP) and stack pointer (SP) regis-
ters are modified by hardware in accordance with the return
state stored in step 2, and hardware transfers the control to
the intercepted point finally.

3.2.2 Memory Self-Transparency
Our approach is in the form of a driver or module which

possesses the highest privilege to execute the special virtu-
alization instructions, so we need the corresponding APIs
of memory management to build the memory space of hy-
pervisor. As a result, the hypervisor can be accessed by
kernel, and it is vulnerable with no self-protection strategy.
To improve the security of VASP itself, the memory self-
transparency strategy is essential to conceal the hypervisor.
Figure 2 depicts our memory self-transparency strategy for
VASP hypervisor.

After the hypervisor is built, it applies for another page
of memory and clones the kernel page table to this allocated
memory space, which will be provided as the page table
when executing in the hypervisor. Next, we need a piece
of spare memory space, used as pseudo memory space of
hypervisor, and modify the physical address of hypervisor in
the original kernel page table to point to the physical address
of pseudo memory. As a result, the application or kernel
in the guest operating system can only access the physical
address of pseudo memory when using the virtual address
of hypervisor, but hypervisor can access its real physical
address using the same virtual address when it executes in
the root mode.

Figure 3: VASP I/O Monitoring Case: VASP inter-
cepts I/O input behavior and protects its data.

3.2.3 Multi-core Implementation
Multi-core processor becomes more and more popular in

the current computer world, and occupies most part of mar-
ketplace, so realizing the hypervisor to monitor the multi-
core system is significant and necessary. We use the affin-
ity APIs, like KeSetSystemAffinityThread(), to establish the
hypervisor in each core of processor and unify the memory
space of two hypervisor which can work in coordination with
each other in monitoring behaviors. Although the multi-
core virtualization in Linux operating system has not been
implemented yet, it is just a engineering work similar to im-
plementation of Windows. As a result, we use only one core
of processor to test the performance.

3.3 Case Study
In order to verify the efficiency and usability of VASP se-

curity platform, we show the two case studies of monitoring
the system with the help of VASP hypervisor. One is to
monitor the I/O resources, and the other is an example of
anti-debugging protection.

3.3.1 I/O monitoring
VASP also supports monitoring the guest machine on ac-

cessing some physical resources such as I/O related instruc-
tions. Taking the password input protection for an example,
the malicious applications always modify or steal the pass-
words through hooking some important kernel APIs of I/O
related when users are inputting them. Our protection goal
is: to intercept the I/O operations from the keyboard when
inputting user’s password, store them in a protected memory
space, and finally give the pseudo data to the I/O buffer.
Figure 3 illustrates the design and usage model of VASP

for I/O monitoring. The memory self-transparency strategy
is still an important module used to conceal the code and
data segment of hypersisor. By reconfiguring the virtual ma-
chine control structure of VASP, the hypervisor can intercept
each data input of keyboard device before it is transferred
to the guest OS. During the hypervisor handling the trap,
it will verify the data whether it is a password data for the
protected application and then copy it to the safe memory
space monitored by hypervisor. Furthermore, VASP will fill
old buffer with other pseudo data which can cheat the ma-
licious software to protect the application. At last, with a
#VMENTRY event the hypervisor transfers control to the
guest. When this application wants to catch this password

Guest OSApplication

VASP Hypervisor

Hardware Platform

Protection Filter

Intercept instructions

Anti-debug

Anti-Debugging Module

Sensitive Behavior Inteception

Critical Function Monitor

Anti-Debugging Action

Figure 4: VASP Anti-Debugging Case: VASP pre-
vents anti-debugging behavior

data, there will be another interception by hypervisor which
can give the right password to application. The details of
this case is not the key research in this paper.

3.3.2 Anti-debugging
Another case study is the anti-debugging protection, which

can be used to defend the malicious behaviors with the help
of debugging related technology. Debugging is a method
which usually facilitates the dynamic program analysis of
run-time application for software development. However, as
everything has two sides, debugging could also be adopted
by attackers. Our protection goal is: intercepting the de-
bugging related instructions, such as INT1 instruction and
INT3 instruction, and verifying the malicious behavior, then
making this debugging behavior invalid.

Figure 4 shows the design and implementation of VASP
used for anti-debugging. Besides the significant and nec-
essary memory self-transparency module, we will use the
additional anti-debugging module. The hypervisor first in-
tercepts the sensitive behavior including INT3, INT1 ex-
ceptions, CPUID instruction and CR3 conversion which are
the features of debugging behaviors. Then it will trace the
debugging routines in the system and verify whether debug-
ging is used by other illegal applications. If the result is
true, the hypervisor could stop this debugging behavior and
pass it to a normal execution flow. The detailed implemen-
tation is published as our previous work which shows the
anti-debugging protection only in Windows platform.

4. EVALUATION
In this section we present a thorough performance eval-

uation and analysis of VASP. We begin by benchmarking
VASP with macro benchmarks that represent real-life work-
loads. Next, we evaluate the overhead of virtualization as
measured by micro benchmarks which show micro behav-
ior effects. Most of our experiments are executed both in
Windows XP and Linux operating system with the similar
hardware environment.

4.1 Experiment Setup
We utilize both microbenchmarks and application bench-

marks to do the performance test with the desktop computer
hardware platform. Our setup consists of two different con-
figurations. One is configured with a dual-core Intel Core2
Duo E6320 and with 2GB DDR2 of memory for Windows

Figure 5: SPEC CINT 2006 Benchmarks for Win-
dows XP. It depicts the percentage of performance
overhead relative to the native Windows system,
and the number upon each column shows the sec-
onds of run time.

XP platform. And the other is configured with a single-core
Intel Core2 Duo E8400 and with 1GB DDR2 of memory
for Fedora 12 (Linux version 2.6.31) platform. Although the
hardware environment for each OS is different, our approach
shows the same trend of performance overhead. What’s
more, the distinction of memory size is due to the SPEC
requirement that each core need at least 1GB.

4.2 Application Benchmark
We have performed a set of experiments in order to evalu-

ate the overhead of the various operating system relative to
running on VASP platform. The SPEC CPU suite contains
a series of long-running computationally-intensive applica-
tions intended to measure the performance of a system’s
processor, memory system and compiler quality, but per-
forms little I/O related qualities.
Figure 5 presents the results of benchmarking VASP against

monitoring Windows XP from the SPEC CINT2006 suite.
The black bar shows the native performance before loading
VASP hypervisor as the base of this test. The gray one indi-
cates the real-life workload result after loading VASP rela-
tive to the native. Most of the results demonstrate that the
overhead of VASP protection is negligible and is increased
only about 0.9% in average, because VASP intervenes few
operating system behaviors which are configured sensitive
instructions and proceedings. Furthermore, the handling
process for each trap in the hypervisor is always very quickly.
But only bzip2 test shows a lower overhead than the native
system, and regrettably the reason of this phenomenon can
not be explained by us currently.
Another figure (Figure 6) illustrates the results of perfor-

mance test when VASP monitors Fedora Linux system from
the SPEC CINT2006 suite as well. The black bar and the
gray one still represent the same as what in the last figure.
The results show that running the hypervisor only brings in
a little overhead about 2.6% in average, even if it is based
on Linux. More overhead proportion than that in Windows
XP is due to the different design architecture, like process
scheduling management, memory management and so on.
But total time spent in the test is less than the time cost in
Windows, because the system processor is more powerful.

4.3 Microbenchmark
To more precisely measure the areas of overhead in Win-

dows and Linux operating system with VASP protection,

Figure 6: SPEC CINT 2006 Benchmarks for Fedora
12. It depicts the percentage of performance over-
head relative to the native Linux system, and the
number upon each column shows the seconds of run
time.

Before Loading After Loading

VASP VASP

Cycles 218 2573

Table 1: Microbenchmarks. Clock cycles of exe-
cution CPUID instruction before and after loading
VASP hypervisor.

we perform a number of smaller experiments targeting par-
ticular subsystems. We compute the CPU execution cycles
of CPUID instruction to measure the overhead of proces-
sor intercepting in Windows XP. On the other hand, we
use McVoy’s lmbench program [8] of version 3.0, as this
addresses many testing issues, to examine the overhead of
VASP protecting Linux system. We present tables for both
native Linux (Native) and loading VASP (VASP) results.

In Table 1 we show the results of microbenchmarks run-
ning in Windows XP. In this experiment, the benchmark
exhibits low performance on executing intercepted instruc-
tions on guest machine, nearly 11 times more cycles needed
to handle the interception and relevant events after loading
VASP. The reason is that trapping into hypervisor intro-
duces extra CPU cycles overhead due to accessing VMCS
region, so does invoking the proper callback function.

In the process microbenchmarks (Table 2), VASP exhibits
slower fork, exec and sh performance than native Linux’s
and others are very close. This is expected, since these op-
erations require large number of page table updates which
will cause a bit of traps during CR3 conversion. Table 3
shows context switch times between different numbers of
processes with different working set sizes. VASP incurs al-
most a twice larger overhead than native Linux in each test.
That is also because context switch accompanied by CR3
switch will be intercepted by hypervisor. The mmap la-

null null open slct sig sig fork exec sh
Config call I/O stat clos TCP inst hndl proc proc proc
Native 0.29 0.45 1.78 2.72 2.76 0.51 1.28 88.9 297 1188
VASP 0.31 0.46 1.80 2.76 2.77 0.53 1.28 95.4 323 1244

Table 2: lmbench: Processes - times in µs.

2p 2p 2p 8p 8p 16p 16p
Config 0K 16K 64K 16K 64K 16K 64K
Native 0.72 1.10 0.85 1.53 1.06 1.52 1.12
VASP 1.91 2.36 2.17 2.98 2.53 2.95 2.46

Table 3: lmbench: Context switching times in µs.

0K File 10K File Mmap Prot Page
Config Create Delete Create Delete Latency Fault Fault
Native 11.4 7.1611 18.3 12.7 298.0 0.354 0.65
VASP 11.5 7.1783 18.4 13.0 303.0 0.357 0.67

Table 4: lmbench:File & VM system latencies in µs.

tency and page fault latency results shown in Table 4 are
very close. Because VASP protection will not affect the file
system and the additional latency caused by hypervisor in-
terception is very small relative to the original overhead.

5. FUTURE WORK AND CONCLUSION
We have presented the architecture and design of VASP,

which hosts privilege to implement hardware virtualization
based hypervisor running transparently under the guest ma-
chine and supporting cross-platform protection to the guest
OS without any modification to the existing OS.

5.1 Future Work
We believe that VASP is useful and efficient to monitor

and protect the target system. After the initial release we
plan a number of extensions and improvements to VASP.
We will popularize this platform to a heterogeneous multi-
core system which supports a special designed guest OS to
protect other normal guest machines. What’s more, we can
extend our approach to realize more security applications,
besides I/O monitoring and Anti-debugging protection men-
tioned above. In addition, we reserve the memory manage-
ment interface, so the hypervisor can build its own memory
space and manage page table by itself, or add EPT support
for memory protection.

5.2 Conclusion
VASP provides an excellent platform based on hardware

virtualizaiton technology for the cross-platform security pro-
tection to common operating system, with the features of
lightweight, transparent and extension capability. VASP
supports to intercept the sensitive instruction and behav-
ior to judge whether they are harmful to operating system,
and implements memory self-transparency strategy to pro-
tect hypervisor itself. As our experimental results show in
Section 4, the performance overhead of VASP hypervisor is
practically equivalent to the performance of the native op-
erating system on both Windows and Linux platforms.

6. ACKNOWLEDGEMENT
This work is supported by National Natural Science Foun-

dation of China (Grant No.60773093, 60873209, 60970107),
the Key Program for Basic Research of Shanghai (Grant
No.09JC1407900, 09510701600, 10511500100), and IBM SUR
Funding and IBM Research-China JP Funding.

7. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, pages 164–177, 2003.

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The turtles project: Design and
implementation of nested virtualization. In USENIX
Symposium on Operating Systems Design and
Implementation, Vancouver, Canada, 2010.

[3] I. Burdonov, A. Kosachev, and P. Iakovenko.
Virtualizationbased separation of privilege: working
with sensitive data in untrusted environment. In In
Proceedings of the 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems,
2009.

[4] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and
J. Nazario. Towards an understanding of
anti-virtualization and anti-debugging behavior in
modern malware. In DSN, pages 177–186, 2008.

[5] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. S. Dwoskin, and
D. R. K. Ports. Overshadow: a virtualization-based
approach to retrofitting protection in commodity
operating systems. In ASPLOS, pages 2–13, 2008.

[6] P. H. Gum. System/370 extended architecture:
facilities for virtual machines. IBM Journal of
Research and Development., 27(6):530–544, 1983.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. Kvm: the linux virtual machine monitor.
In Proceedings of the Linux Symposium, 2007.

[8] L. W. McVoy and C. Staelin. lmbench: Portable tools
for performance analysis. In USENIX Annual
Technical Conference, pages 279–294, 1996.

[9] A. Padegs. System/370 extended architecture: design
considerations. IBM J. Res. Dev., 27(3):198–205, 1983.

[10] J. RUTKOWSKA. Subverting vista kernel for fun and
profit. In Blackhat, 2006.

[11] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai,
Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato. Bitvisor: a thin hypervisor for enforcing
i/o device security. In VEE, pages 121–130, 2009.

[12] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In USENIX Annual
Technical Conference,General Track, pages 1–14, 2001.

[13] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating
systems configurable. In OSDI, pages 279–292, 2006.

[14] P. Tan, E. M. Chan, P. Farivar, N. Mallick, J. C.
Carlyle, F. M. David, and R. H. Campbell. ikernel:
Isolating buggy and malicious device drivers using
hardware virtualization support. In In Proceedings of
the Third IEEE International Symposium on
Dependable, Autonomic and Secure Computing, 2007.

[15] C. A. Waldspurger. Memory resource management in
vmware esx server. In OSDI, 2002.

