Debugging Classification and Anti-Debugging Strategies

Shang Gao, Qian Lin, Mingyuan Xia, Miao Yu, Zhengwei Qi, Haibing Guan
Shanghai Jiao Tong University
Shanghai, P.R.China
{ chillygs, lingian, kenmark, superymk, gizhwei, hbguan } @ sjtu.edu.cn

Abstract—Debugging, albeit useful for software development,
is also a double-edge sword since it could also be exploited by
malicious attackers. This paper analyzes the prevailing debug-
gers and classifies them into 4 categories based on the debug-
ging mechanism. Furthermore, as an opposite, we list 13 typi-
cal anti-debugging strategies adopted in Windows. These me-
thods intercept specific execution points which expose the di-
agnostic behavior of debuggers.

Keywords - debugging, anti-debugging, software protection

l. INTRODUCTION

Debugging technique is a double-edge sword for soft-
ware industry. It is usually employed as a powerful tool in
software development to help the programmer find bugs or
deficiencies. Or it is used by security engineer to analyze
virus and malware. [2] However, hackers can adversely
make good use of debugging to reconstruct the source code,
which is also termed as reverse engineering. Hackers may
debug certain application on public computer equipped with
a generic debugger with stealth plug-ins. A hacker uses de-
bugger to set a breakpoint at password input function, look
up for correct buffer and wait for the debugger window to
reveal the real password. Similar scenario may be applied to
other private and sensitive account data acquirement.

Microsoft Windows implements series of APIs for de-
veloping custom debuggers for applications. It uses a call-
back method which allows the operating system to run the
program by single-step. Mining INT3 instruction is another
method for debuggers to pause and observe a process. Mal-
ware and some of the debuggers can also insert a structured
exception handler to the running applications. When the de-
bugged program is launched, it raises an exception and ex-
ecution halt. There are various debugging methods and we
propose a detail discussion in the next section. We classify
them by different levers of privilege and assume different
debug models.

As the requirement for software protection has gained
general attention in the digital world, a great variety of copy-
protection strategies of different forms have been developed
to prevent cracking, tracing and reverse engineering. Majori-
ty of these mechanisms provide a reasonable level of security
against static-only analysis. Current existing anti-debugging
methods can be sorted into two categories. One is checking
hardware or software debug registers for special value that
debuggers may use to place breakpoints on processes.

Another method is to detect user operation such as unex-
pected pause in execution.

The contribution of this paper is a theoretical one. We
analyze the prevailing debuggers and classify them into 4
categories based on the debugging mechanism. Furthermore,
as an opposite, we list 13 typical anti-debugging strategies
adopted in Windows. These methods intercept specific ex-
ecution points which expose the diagnostic behavior of de-
buggers. We believe that the cross-usage of these anti-
debugging strategies makes a sound way to defend attacks
based on debugging, i.e. software protection through anti-
debugging is available.

The rest of the paper is organized as follows. Section 2
analyzes the popular debuggers and makes the classification.
Section 3 describes the debugging mechanism in Windows
OS. Section 4 introduces thirteen typical anti-debugging
strategies adopted in Windows. We conclude the paper in
Section 5.

Il. PREVAILING DEBUGGER TYPES

In this section, we describe several typical debugging
models utilized in most debuggers to generalize the features
and requirements of debugging.

Debugging is the analysis of computer program which is
performed by executing programs built from that software
system on a real or virtual processor. Debugging medium
could be diverse [6]. We classify all prevailing debuggers
into four categories: user-mode debugger, kernel debugger,
system-level debugger and simulator debugger. This classifi-
cation stands on the difference in debugging mechanisms. As
the computer system has evolved to such a complex architec-
ture, debugger developers make use of every accessible re-
sources, both hardware and software, to implement their ef-
fective debugging mechanism.

A. User-mode debugger

The user-mode debugger deploys APIs, offered by the
operating system, to play the debugging tricks. When the
debugger process starting up, it attaches itself to the target
process or constructs debug environment by forking the de-
buggee process from inside. In order to trace the target, de-
bugger uses some wrapped APIs to set breakpoints in the
target process and analyze code. As long as the process hits
to the breakpoint, a breakpoint exception will be triggered.
After the exception returned, operating system kernel still

Operating System

| Visualization

Viewpoint
Mapper |

Controller

Debugger Core
] x 7 7
4 H H H
Execution Symbol Memory Tracin
,% Control [] Table [| Manipulation [T 9
Driver

| Source-level Debugger |

| Platform (Hardware and Operating System) |

Figure 1 Kernel Debugger Model.

takes over the control and keeps the target process suspend-
ing. Further, it packages the relevant context and communi-
cates with application debugger, then transfers the control
flow to the debugger for post-processing. Afterwards, with
respect to user's determination, the debugger will guild the
kernel how to deal with the target process, such as stepping,
resuming and canceling.

The representative debuggers of this category include
Phantom, OllyDbg and OllyICE.

B. Kernel debugger

Kernel debugger occupies more privileged level than us-
er-mode debugger to achieve more powerful debugging
ability. The main components usually stay in kernel space of
the operating system such as Microsoft Windows so that they
are entitled to exploit kernel resource to rule debugging pro-
cedure. WinDbg and KD are typical members in this class.

As shown in Figure 1, the kernel debugger model is di-
vided into several layers. Each layer furnishes different level
of abstraction of the debugging procedure. Details on each
layer are listed as following.

1) Source-level debugger

The starting point of the kernel debugger layered model
is the source-level debugger that executes on the target plat-
form. For the purpose of behaving as privileged as operating
system kernel, source-level debugger always resides in the
kernel space and holds the highest execution permission, i.e.
Ring 0 level of Intel CPU. As the ground layer of the debug-
ger, source-level debugger is of dependency, inherent with
instruction analysis and debugging control flow. Different
target architectures include or support different source-level
debuggers that allow extraction of runtime information over
proprietary interfaces. The driver layer unifies these source-
level debuggers as far as possible to provide various services
for debugging procedure.

2) Driver Components
Most of debugging functions and libraries exist as driver
components. Drivers generally implement only a narrow set
of the interfaces, restricting the capabilities that the debug-

ging system can offer to the higher levels. Common interfac-
es include execution control (starting, stopping, resetting,
and stepping), access to symbol data (memory addresses of
methods), and memory manipulation (scanning and writing).
Hardware-based debuggers also offer an interface, by default,
for acquiring and reading real-time trace data from the target.
For driver usually stays in kernel space, it share the common
privilege level with OS kernel. Citing the functionality of
execution control component as an example, it can respond
to the application run-control request from upper level, as
pausing the target process and switching the execution flow
to debugger space.

3) Viewpoint

Viewed from the topmost layer, the model offers the user
different viewpoints of the debugger. Now that applications
are becoming so complicate that bare breakpoint and step
forward tracing are not adequate for developers. When de-
bugging a program, user often expects more information
from different viewpoints, especially with object-oriented
techniques. A viewpoint defines a specific view of the sys-
tem and mediates between the target system and the visuali-
zation layer. The complete set of viewpoints offers insight to
all aspects of the running program.

4) Debugger Core

Between viewpoint and driver is the debugger core com-
posed of mapper and controller that bridge the layers. The
viewpoint uses the controller to control the system from the
model's viewpoint. Since source-level debugger has masked
the platform difference, debugger core is platform indepen-
dent except for some essential libraries and APIs. An execu-
tion step in a state chart corresponds to a complex sequence
of commands at the source-level. The mapper updates the
runtime information model that provides the basis for the
visualization with information from the source-level debug
drivers.

5) Visualization

Most current mainstream debugging engines provide
console-based command line interfaces. A well-designed
visualization interface plays an essential assistant role for
debugger user. Debugger front-ends are popular extensions
to debugger engines that provide IDE integration, program
animation and visualization features, which are implemented
on the visualization layer. Besides the interface design, the
capability of this layer mainly depends on viewpoint func-
tions supported by the beneath layer.

C. System-level debugger

System-level debugger is of operating system indepen-
dency. It is designed to run underneath operating system so
that the operating system is unaware of its presence. Unlike
user-mode debugger and kernel debugger, system-level de-
bugger exhibits a strong ability to suspend all operations in
the target operating system when instructed. The notable
delegate in this category is SoftICE. Due to its low-level
capabilities, SoftICE is frequently utilized as driver debug-

Operating System

Visualization -—{ SoftICE

—| T K
[Modified] |

Hardware Platform

Figure 2 System-level Debugger Model (SoftICE).

ging tool; also, it is popular as a software cracking tool. Sys-
er is another newcomer in this class.

Figure 2 presents the system-level debugger model, tak-
ing SoftICE as example. SoftICE replaces the original inter-
ruption disposal routines with its own version to obtain sys-
tem control power. During the installation of SoftICE, it
modifies the Interrupt Descriptor Table (IDT) and redirects
some interrupt handlers, such as “"INT 3h" (breakpoint ex-
ception) and “INT 31h" (8042 keyboard controller interrup-
tion), so that it could hook the relevant interruption or excep-
tion event for debugging usage. Most of its functionalities
are done through 1/O port manipulation (read/write), seldom
using APIs. The implementation of visualization component
is simply refreshing display mapping buffer in memory. Vi-
sualization interface will pop up if user presses the corres-
ponding hot key. Some external functions such as log may
need the kernel resource.

D. Simulator debugger

Figure 3 illustrates the model of simulator debugger. The
significant feature of this category is that the simulator man-
ager deploys simulation techniques, such as hardware emula-
tion and software virtualization, to build up virtual machine
container. The target applications or even operating systems
are present in such container and run normally. The contain-
ers are actually some memory blocks and provide
““hardware" resource via simulation. As one of the compo-
nent parts of the simulator, simulator debugger is convenient
to debug programs within the virtual machine container be-
cause it owns the even higher privilege level than kernel (in
the container). Bochs with internal debugger and ROR are
the representative simulator debuggers.

I1l. DEBUGGING MECHANISM IN WINDOWS

Being one of the most prevailing desktop operating sys-
tem, Microsoft Windows has been being widely used. Win-
dows abstracts its own debugging mechanism from the CPU
debug support facilities [7]. When exception occurred, CPU
preserves all registers, constructs the TrapFrame in kernel
stack and transfers the control flow to the corresponding trap
disposal routine. Instead of dealing with the exception them-
selves, most disposal routines call APl function Common-
DispatchException() to build up ExceptionRecord and Ex-
ceptionFrame to prepare for exception dispatch. The Excep-
tionRecord records the exception code, exception address

User User User
Space Space Space
Kernel Kernel Kernel
Space Space Space

Virtual Machine Virtual Machine Virtual Machine

f £ f

Debugger (Component) |

Simulator |

Platform (Hardware and Operating System) |

Figure 3 Simulator Debugger Model.

and some relevant parameters. Then, KiDispatchException()
will be invoked to dispatch the exception. KiDispatchExcep-
tion() is the core API for exception disposal in Windows,
managing exception dispatching.

Figure 4 shows the exception processing flow with Ki-
DispatchException(). Interruption may occur in kernel mode
or user mode, both of whose processing are similar except
for some detail. When the interrupt occurs in kernel mode, as
shown in Figure 4(a), the key disposal points are listed as
following:

e The debugger has two chances to take over the ex-
ception processing by calling API KiDebugRoutine().

e Between these two chances, kernel will call RtIDis-
patchException() to search Structured Exception
Handling (SEH) in kernel stack.

e As long as the exception is handled in one of the
three steps above, the TrapFrame will be configured
and the execution flow will return (using iret instruc-
tion) to interrupted point.

e Otherwise, if no handling can take over the excep-
tion, KeBugCheckEx() will be invoked to call forth
blue screen of death (BSOD). In other words, the
system will generate a fatal fault if the exception
lacks the corresponding handling.

When the interrupt happens in user mode, the corres-
ponding processing also offers the debugger two chances to
handle the exception, as shown in Figure 4(b). The key dis-
posal points are listed as following:

e The debugger exchanges debugging message though
debugger port.

e In the first chance, if the target process has a debug-
ger port, KiDebugRoutine() will send a message to it
and wait for a reply.

e Then RtIDispatchException() of user mode version
will search SEH in user stack. If the debugger han-
dles the exception, the target process continues ex-
ecution.

(a) Kernel Mode

[first chance]

[second chance]

e A\
[KiDispatchException()J— [KiDebugRoutine()]— RtIDispatchException() +—— [KiDebugRoutine()]— [KeBugCheckEx()]
\ J

(b) User Mode

O]
[KiDispatchException()J— [KiDebugRoutine() j—

(first chance)
Send message to
process debugger port

— [RtIDispatchException()

o |

-

\/\/ (
(second chance))

Send message to
process debugger port

-~

L ZwRaiseException()]

KeBugCheckEXx()

Figure 4 Exception processing flow with API KiDispatchException(). Interruption may occur in (a) kernel mode or (b) user mode.
Both exception disposal flow fall into KiDispatchException(), and the processing are similar. Debugging could branch off within
the procedure, and the debugger has two chances to take over the exception processing.

Otherwise, the ZwRaiseException() system service
will call KiDispatchException() a second time to
process the exception. In the second chance, KiDis-
patchException() checks the debugger port directly
to see whether there exists debugger to handling the
exception this time.

If the exception is sill unhandled within this routine,
as that of kernel mode, BSOD is its story end.

IV. ANTI-DEBUGGING STRATEGIES

Thirteen anti-debugging methods are selected involving
most of general anti-debugging tricks against debuggers on
Windows, and grouped into three categories.

A. API

The most straightforward way to detect the presence or
the operation of a debugger is to use Windows provided
functions, which can be either documented or undocumented
and exported in various .DLL and .SYS files.

Invoke IsDebuggerPresent(). It indicates whether
the calling process is being debugged by a user-
mode debugger.

Check remote debugger. CheckRemoteDebugger-
Present() is used to determine whether the specified
process is being debugged. It can indicate the de-
bugger resides in a separate and parallel process.
Test SeDebugPrivilege. A process will have full
control on CSRSS.EXE once it gets the SeDebug-
Privilege privilege, which will be inherited to its
child processes. If one process owns such privilege,
it is probably under debugging.

Check parent process. A user usually executes an
application by clicking the shortcut or by command-
line, so the parent process of the application should

be either EXPLORER.EXE or CMD.EXE on Win-
dows. Thus, if the parent process is something else,
the application is possibly running in a debugging
environment.

Find debugger window. A running debugger can be
found by iterating through all window handles.
However, this anti-debug trick can only point out the
existence of debugger program. It cannot indicate
whether the specified process is being debugged.
Detect CloseHandle() exception. Passing in an
invalid handle to the CloseHandle() function will
trigger an EXCEPTION_INVALID_HANDLE ex-
ception in the case of current process debugging.
However, this will not happen in normal execution,
which will return an error code as result.
OutputDebugsString()'s LastError. If the current
process is running under a debugger, calling GetLas-
tError() function next to OutputDebugString() func-
tion will get O as the return value, but it is not true
without a debugger.

B. Special structure

Another way to detect debugger is to traverse and ana-
lyze Windows kernel structure. According to Windows Sys-
tem Error Handling mechanisms, when a process is debug-
ging, certain structures are modified to enable dispatching
debug messages to the debugger.

Check BeingDebug flag in PEB. The BeingDebug
flag in PEB is set when the current process is under
debugging. Thus this flag can indicate the existence
of debugger.

Check debugger port. In Windows, the process de-
bug port is set to the Windows subsystem's general
function port when debugging the current process,

which ensures that related debug events route to the
process's debugger.

e Check debug object handle. Debug object plays the
same role as debug port so that checking debug ob-
ject handle can identify whether the current process
is debugging.

C. Exception

In the case that a process is debugging, the debugger will
overtake the exceptions of debuggee process. Furthermore,
the debugger is not likely to hand these exceptions back to
the debugging process. Thus, by building a well-designed
exception trap, a process is able to determine whether it is
debugging or not.

e Detect INT3 exception. INT3 instruction, some-
times referred to as a breakpoint exception, which
can cause a CPU trap to occur in the operating sys-
tem, provides a method for debuggers. If the process
is running within a debugger, the debugger captures
the INT3 interrupt and never hands it back. Thus,
this instruction flow change can be view as a flag of
debugging behavior.

e Detect Single step exception. A running process
can set TF in EFLAGS/RFLAGS register to enable
single step trap, which can be seen as a sign of de-
bugging.

o Detect INT2D exception. The trap handler for
“INT2D" constructs an EXCEPTION_RECORD
structure with an exception code of
STATUS _BREAKPOINT, and then hands it over to
the kernel debugger.

V. CONCLUSION

Debugging is widely used for runtime observation and
manipulation of application program. This method is useful
and helpful to software development, but it may also be
wicked if malicious code or attackers employ it. This paper
analyzes the prevailing debuggers and classifies them into 4
categories based on the debugging mechanism. Furthermore,
as a opposite, we list 13 typical anti-debugging strategies
adopted in Windows. These methods intercept specific ex-
ecution points which expose the diagnostic behavior of de-
buggers.

[1] Lee Byeongcheol, Hirzel Martin, Grimm Robert, and McKinley
Kathryn S, “Debug all your code: portable mixed-environment
debugging,” In OOPSLA °’09: Proceedings of the 24rd ACM
SIGPLAN conference on Object-oriented programming systems
languages and applications, New York, NY, USA, 2009. ACM.

[2] Michael N. Gagnon, Stephen Taylor, and Anup K. Ghosh, “Software
protection through anti-debugging,” IEEE Security and Privacy,
5(3):82-84, 2007.

[3] Philipp Graf and Klaus D. Muller-Glaser, “Gaining insight into
executable models during runtime: Architecture and mappings,” IEEE
Distributed Systems Online, 8(3):1-11, 2007.

[4] Kris Kaspersky, “Hacker Debugging Uncovered,” Independent Pub
Group, 2005.

[5] Samuel T. King, George W. Dunlap, and Peter M. Chen, “Debugging
operating systems with timetraveling virtual machines,” In ATC ’05:
USENIX 2005 Annual Technical Conference on Annual Technical
Conference, pages 1-15, Berkeley, CA, USA, 2005. USENIX
Association.

[6] M. Russinovich and D. Solomon, “Windows Internals, Fourth
Edition,” Microsoft Press, 2005.

[7]1 Chen Xu, Jonathon Andersen, Zhuoging Morley Mao, Michael Bailey,
and Jose Nazario, “Towards an understanding of anti-virtualization
and anti-debugging behavior in modern malware,” In DSN ’08: The
38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 177-186, 2008.

	Introduction
	Prevailing Debugger Types
	User-mode debugger
	Kernel debugger
	Source-level debugger
	Driver Components
	Viewpoint
	Debugger Core
	Visualization

	System-level debugger
	Simulator debugger

	Debugging Mechanism in Windows
	Anti-debugging Strategies
	API
	Special structure
	Exception

	Conclusion

