
Anti-debugging Framework Based on Hardware Virtualization Technology

Tengfei Yi, Aijun Zong, Miao Yu, Zhong Ren, Qian Lin, Zhengwei Qi
School of Software, Shanghai Jiao Tong University

{yitengfei,zongaijun,superymk,renzhong,linqian,qizhwei}@sjtu.edu.cn

Abstract

Anti-debug technique is a common security
protection mechanism, which is widely used in
commercial applications as the protector for
executable files. Although there’re many such
techniques at hand, they all have a common
disadvantage that the anti-debug protection cannot
guarantee its function. Because the code is running on
Ring level 0 or above, the virus application can still
manipulate according to the specific anti-debug
technique, thus achieving its purpose of obstructing the
anti-debugging process. In this paper, a hardware
virtualization technology based highly reliable anti-
debug framework called VMM (Virtual Machine
Monitor) is introduced. Since it runs below the Ring
level 0, theoretically every code which runs on this
level can be monitored. Experiment shows that under
its protection, major Windows debuggers like VC and
WinDBG fail to debug the target application, so our
purpose is initially achieved.

Index Terms—hardware virtualization; security;
anti-debug; VMM

1. Introduction

Nowadays, Windows systems are extensive used
around us. However, they can not provide sufficient
security and software protection because of the
architecture and hardware limitation. Consequently,
nearly all the commercial software needs to implement
its own additional protection module, raising the total
cost on software development.

Under this background, anti-debugging techniques,
as a strategy of protecting target application, have been
being taken in-depth research, generally based on
memory data difference, system difference, CPU
difference, etc.

However, the risk of attacking the target software
still exists for the following reasons:

First, the hardware architecture is defective, because
it make the code running in the privileged mode can
access to the whole system, while the code in the user
mode can only own a little of resource [1]. That means
once the malicious code or analyzing tools are running
in the privileged mode, no higher-mode code can be
used to stop it.

Second, there are more or less bugs and debugging
functions in Windows systems [2], which provide APIs
to see other processes’ address space as well. So, there
is hardly any way to stop commercial software to be
cracked.

Fortunately, many new approaches to anti-debugging
have appeared with the growing popularity of hardware
virtualization [3,4,5,6]. However, these approaches are
difficult to be adopted because of their low
performance and portability.

Unlike the priors, our design desires no code
modification of Windows systems or additional
hardware. Indeed, we make use of Intel VT to create a
transparent environment for Windows while keeping
the ability of monitoring the target application’s
execution and state. That is a highly reliable anti-debug
framework called VMM (Virtual Machine Monitor)
based on hardware virtualization technology.

Our work represents the following contributions:
First, by employing the hardware virtualization

technology, the in1 and int3 interrupts in the protected
application are specially treated, so that the debugger
cannot get the status information about the target
application.

Second, By employing the hardware virtualization
technology, the CR3 block, PCB block and a portion of
memory address field of the target application are
protected, so that the debugger can not get the
information about the target application’s memory
address.

The other parts of this paper are organized as
follows. Part 2 introduces the hardware virtualization
technology and then the system architecture. Part 3

introduces the hardware and software debugging
principle as well as anti-debug countermeasure. Part 4
talks about how to protect the CR3 block and PCB
block in the target application. Part 5 is the
experimentation on the theory formulated in Part 3 and
Part 4, and makes the conclusion.

2. Hardware virtualization and VMM

Nowadays virtualization technology is getting more
and more attention, Enterprise virtualization software,
such as VMware, Citrix and Parallels are warmly
welcomed by various server vendors, with its
applications thriving. However, besides the software
component, virtualization technology also requires the
hardware support from the bottom layer, since
hardware has played a fundamental role in this
technology. Chip vendors like AMD and Intel have
enhanced the support for virtualization in their next-
generation processors.

Virtualization technology is divided into software
virtualization technology and hardware virtualization
technology. Compared with software virtualization
technology, the hardware virtualization technology has
many advantages, which break many of the limits set
by the pure software virtualization solution.

Hardware virtualization CPU has integrated the
specially optimized instruction sets to control the
virtualization process. Through these instruction sets,
Virtual Machine Monitor (VMM) can improve its
performance very easily, thus achieving greater
enhancement in performance compared with the
software virtualization implementation. Because the
virtualization hardware offers a brand new architecture,
which supports the direct running of the operating
system on it, there’s no more need for the binary
conversion. Thus the related cost is reduced and the
VMM design gets greatly simplified. Furthermore, the
VMM can understand the normal code, so its
performance becomes more powerful [7].

Let’s take a detailed look into the hardware
virtualization technology. Because of the support of
CPU, VMM can run on higher level of permission than
the operating system. The system architecture is
illustrated in Figure 1:

Figure 1. System architecture
To support the hardware virtualization technology,

the CPU has integrated a series of virtual machine
instructions, through which the operations like opening
and closing the virtual machine is done very
conveniently.

In the time of running of the virtual machine, the
VMM wants to listen to certain events. In order to save
data on the spot, both the VMM and Guest OS need a
data structure for storage called VMCS control block.
The VMCS is an abstraction of Guest virtual machine.

Hardware virtualization is an abstract layer, which
separates the physical hardware from the operating
system, in a way that the virtual machine is insulated
from the host PC and other virtual machines, thus
offering higher resource efficiency as well as flexibility.

The VMM we have designed includes the
initialization module, virtualization CPU module and
VMMU module. Among them, the virtualization CPU
module is the core. It is in charge of the control register
for processor and state register for some special
registers. When Guest OS is running on the virtual
machine, it prepares for the necessary data structure
and code for creating and maintaining the complete
system status information, so as to trap VMM mode
from Guest status, or return to a certain Guest OS at
any time. It is noted that all the Guest events under the
control of VM Exit event processing module, no matter
the root cause be accessing critical resource or be
exception or interrupt, the function is to find the cause
of generating the VM Exit and turn to the security
monitor module of the Guest operating system for
further processing. This gives our paper sufficient
theoretical and experimental basis.

In a word, the VMM proposed in this paper has the
obvious characteristic of a layered structure, which is
also revised from BluePill project, where the anti-
detection part of VMM is deleted and is transplanted to
x86 platform to expand its application. Something
worth noticing is that the VMM is loaded onto the
Windows for function in a way of a driver, which is so-
called VMM driver. Although a typical VMM can

Hardware

VMM

Guest OS
(Windows in
this paper)

…

support multiple virtual machines, the current design
only supports one. No matter how many virtual
machines to support, the VMM offers a new approach
about software protection. It introduces an additional
protection layer but without any change to the existing
hardware and operating system.

3. Anti-debugging of Software and
hardware breakpoint

3.1. Software breakpoint and anti-debugging

X86 serious CPUs has been providing a special
instruction, INT 3, to support debugging from 8086. In
other words, this instruction can make CPU break to
debugger, helping debugger uses analyze the
breakpoints. When debugging, we can insert INT 3 into
anywhere a problem would appear, which can make
CPU suspends. So, INT 3 is also called breakpoint
instruction.

When we use a debugger such as VC6 and WinDBG
to set a breakpoint to a certain line of code, the
debugger will conserve the first byte of the instruction,
and use INT 3 instead(the machine code of INT 3 takes
only one byte).

When running to the INT 3 instruction, CPU will
jump to the exception handler to make the current
application debugged. After that, the exception handler
will resolve the breakpoint.

So, the mechanism of software debugging indicates
that the INT 3 instruction be shielded, and that we can
set the VMM to make the anti-debug come true [8].

3.2. Hardware breakpoint and anti-debugging

IA-32 CPU define 8 debug registers DR0-DR7, and
among them, DR0-DR3 are used to be designated
linear addresses of the breakpoints. When a application
implement to a linear address contained in DR0-DR3,
the INT 1 instruction will run, which is similar to the
mechanism of software debugging [8].

4. Target Process Protection

In fact, in the face of anti-debug technology, we
hope not only disable the breakpoints, but also protect
the target application from being accessed by other
processes, including the debuggers. We will not
distinguish the concept of process and application in
this paper, since a process is created when the
application is loaded by the OS.

Two important structures or registers need to be
considered: PCB and CR3 register.

PCB (Process Control Block) is one of the key
structures which hold information of a process on
Windows system. Thus OS can use this information to
manipulate process. PCB includes the following
contents:

(1)Process ID (Internal, External)
(2)Various Register
(3)Process Schedule Information (Process State,

Priority, Events)
(4)Process Control Information (Process Data

Address, Resource Manifest, Process Synchronizing,
Process Communication, Link Pointer)

The CR3 register stores the physical address points
to the current process’ page directory. When process
switches, OS reads the active process’ page directory
pointer into the CR3 register from its PCB [6], as
shown in Figure 2.

Figure 2. The role of CR3 and PCB
So, the best way to protect one process from being

accessed by the other, is to prohibit the target process’
PCB from being read, which was difficult to achieve
before. However, the level VMM runs below Ring
level 0 can make the Process protection come true.

When process A accesses process B, the former
requires the CR3 information stored in PCB of the
latter. The VMM should be configured to inspect
whether the PID of current visited process is identical
to that of process B. Only if they have the same value,
the access request will be permitted; otherwise, rejected.

5. EXPERIMENTS AND RESULTS

All experiments were conducted on a desktop
computer with a 1.83GHz Intel Core2 Duo processor

Memory

N
level
Page
Table

PCB

CR3

and 2GB RAM. Windows XP SP3 is selected as the
guest operating system.

5.1 Software breakpoint debugging

After entering the following codes in VC, we set a
breakpoint at the 3rd line.

Main()
{int i=1,j=2;
k=i+j;
…
}

The value of variable i and j were changed at single
step in which there was no VMM driver. However,
Variable k was not assigned in this whole work, which
means the breakpoint worked.

On the other hand, the value of k was assigned to 3
when the VMM driver was settled. From this, the
breakpoint did not work and the VMM driver made an
effect of anti-debugging.

The principle of hardware breakpoint debugging is
similar to the software.

5.2 process protecting

The VC was used to debug the applications as
follows:

(1)Started the calculator application and input a
string of numbers (e.g. 1234) for observing below.

(2)Started WinDBG and attached it to the calculator
application to debug. (chose File>Attach to a process…)

(3)Typed “x calc! g*” in the WinDBG command line
to list all the symbols starting with “g” in the calculator
application. Pay attention to the line which contains
gpszNum.
…
01028db0 calc! gpszNum = <no type information>
…

(4)Typed “dd calc! gpszNum l1” in the command
line and checked the contents of the following symbolic
address.
01028db0 000a6c00

(5)Continued checking the contents of 000a6c00.
(input command like “dd 000a6c88”)

…
(6)Installed the VMM driver and repeat the step (1)-

(5). When it ran to step 3, the output displayed 000000.
It should be noted that the reason why it displayed

000000 is several configures were set in VMM to
output 000000 when other applications accessed the
calculator application.

In conclusion, the designed framework in this paper
make breakpoint disabled assessment from one
application to another, including by using the
debuggers. We got the anticipative result of protecting
target application. In the same way, the anti-debugging
tech based on the hardware virtual machine that
protects the applications from viruses invading, is
proved more reliable than previous anti-debugging tech.

6. References

[1] Russinovich M.E., Microsoft Windows Internals, Fourth
Edition: Microsoft Windows Server 2003, Windows XP, and
Windows 2000, Microsoft Press, 2005.
[2] Nick L. Petroni and PMichael Hicks. “Automated
detection of persistent kernel control-flow attacks”,
Proceedings of the 14th Computer and communications
security, Oct. 2007, Alexandria, Virginia, USA.
[3] Igor Burdonov; Alexander Kosachev and Pavel
Iakovenko, “Virtualizationbased separation of privilege:
working with sensitive data in untrusted environment”,
Proceedings of the 1st EuroSys Workshop on Virtualization
Technology for Dependable Systems, Mar. 2009.
[4] Artem Dinaburg, Paul Royal, Monirul Sharif, Wenke Lee.
Ether, “Malware analysis via hardware virtualization
extensions”, Proceedings of the 15th ACM conference on
Computer and communications security, Oct. 2008.
[5] Payne, B.D., Carbone, M., Sharif, M., Wenke Lee and
Lares, “An Architecture for Secure Active Monitoring Using
Virtualization Security and Privacy”, 2008. SP 2008, IEEE
Symposium, 18- 22 May 2008, Page(s):233 - 247.
[6] Intel. Intel Trusted Execution Technology Architecture
Overview. September 2006.
[7] Gideon Gerzon, Intel Mobile Group, Intel VT Processor
Virtualization Extensions and Intel Trusted execution
Technology, 2007.
[8] Yinkui Zhang, Software Debugging, Electronic Industry
Publishing House, Beijing, 2008.

