
VGRIS: Virtualized GPU Resource Isolation and
Scheduling in Cloud Gaming

Miao Yu ∗, Chao Zhang,
Zhengwei Qi, Jianguo

Yao
School of Software, Shanghai

Jiao Tong University,
Shanghai, China

{superymk, kevin_zhang,
qizhwei,

jianguo.yao}@sjtu.edu.cn

Yin Wang
HP Labs, Palo Alto, USA
yin.wang@hp.com

Haibing Guan
Shanghai Key Laboratory of

Scalable Computing and
Systems, Shanghai Jiao Tong
University, Shanghai, China
hbguan@sjtu.edu.cn

ABSTRACT
Fueled by the maturity of virtualization technology for Graph-
ics Processing Unit (GPU), there is an increasing number of
data centers dedicated to GPU-related computation tasks
in cloud gaming. However, GPU resource sharing in these
applications is usually poor. This stems from the fact that
the typical cloud gaming service providers often allocate one
GPU exclusively for one game. To achieve the efficiency of
computational resource management, there is a demand for
cloud computing to employ the multi-task scheduling tech-
nologies to improve the utilization of GPU.
In this paper, we propose VGRIS, a resource manage-

ment framework for Virtualized GPU Resource Isolation
and Scheduling in cloud gaming. By leveraging the mature
GPU paravirtualization architecture, VGRIS resides in the
host through library API interception, while the guest OS
and the GPU computing applications remain unmodified.
In the proposed framework, we implemented three schedul-
ing algorithms in VGRIS for different objectives, i.e., Ser-
vice Level Agreement (SLA)-aware scheduling, proportional-
share scheduling, and hybrid scheduling that mixes the for-
mer two. By designing such a scheduling framework, it is
possible to handle different kinds of GPU computation tasks
for different purposes in cloud gaming. Our experimental
results show that each scheduling algorithm can achieve its
goals under various workloads.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques, measuring techniques

∗The first author’s current affiliation is Cylab, Carnegie Mel-
lon University. The contact email is superymk@cmu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$15.00.

Keywords
GPU, Resource management, Scheduling, Cloud gaming

1. INTRODUCTION
The cloud computing significantly reduces cost of capital

and equipment maintenance by allowing users to host their
softwares on the cloud under a simple pay-as-you-go. As a
cloud service, cloud gaming is a game service that executes
the game programs and renders the graphics on the server
side, while players stream the video through broadband con-
nection using thin clients. This gaming model has several
advantages. It allows easy access to games without owning
a console or high-end graphics cards or Graphics Processing
Unit (GPU)s. Game distribution and maintenance become
much easier.

Concurrently, virtualization technology is making a sig-
nificant impact on how resources are used and managed in a
cloud data center. Several virtualization solutions (VMware
products, Xen [1], VirtualBox) are getting more and more
mature in constructing a huge cloud computing center. As
virtualization technology has been successfully applied to a
variety of devices, GPU virtualization technology has de-
veloped dramatically in the past a few years. Due to the
powerful performance on floating-pointing arithmetic as well
as cost-efficiency, GPU virtualization has been widely stud-
ied, especially in the High Performance Computing (HPC)
domain. Several research work [29, 28, 13, 30, 9] lever-
ages GPU virtualization for general purpose computing on
GPU (GPGPU). Based on the interception of vendor specif-
ic library such as Nvidia CUDA, AMD Accelerated Parallel
Processing and OpenCL, the GPU resources are efficiently
shared in the virtualization environment. Besides, HPC ap-
plications running on systems including GViM [13], vCUD-
A [30], rCUDA [9], etc. has a competitive performance with
those running in a native, non-virtualized environment.

In addition to GPGPU, the other main application sce-
nario of the GPU is for graphics processing including gam-
ing, 3D rendering and so on. Techniques of GPU virtualiza-
tion for graphics processing such as VGA-passthrough [25]
and GPU paravirtualization [20, 7] are reaching their ma-
turity. For example, VMware player 4.0 achieves 95.6% of
the native performance using paravirtualization (3DMark06

with Windows 7 as both the guest and host), while VMware
Player 3.0 released four years ago achieved only 52.4%. Due
to these technological advances, there is an increasing num-
ber of data centers dedicated to GPU computing tasks such
as cloud gaming and video rendering. Taking cloud gam-
ing for instance, the platform renders games remotely and
streams the result over the network so that clients can play
high-end games without owning the latest hardware. Many
cloud gaming service providers such as OnLive 1 became
publicly known in the past four years. OnLive is currently
partnering with more than 90 publishers and servicing close
to 300 games online.
However, how a graphics card is shared among games run-

ning on top of the Virtual Machines (VM)s is not well s-
tudied. Resource sharing in existing virtualization solution-
s is often poor. For example, while OnLive runs multiple
instances of a game that requires very little or no GPU
computation, it allocates one GPU per instance for other
games [15]. Proprietary motherboards are also used to host
more GPU adapters in one machine. On the other hand,
game developers heavily optimize their products to meet the
capacity of mid-range hardware. Hence allocating a whole
graphics card to some game causes the waste of hardware
resources.
This paper proposes VGRIS, a scheduling framework for

Virtualized GPU Resource Isolation and Scheduling. V-
GRIS transparently enables different VMs in the cloud to
share a single GPU efficiently. Leveraging GPU paravirtu-
alization technology, VGRIS is a lightweight resource sched-
uler in the host. A challenge of resources management on
GPU is that graphics processing such as frame rendering is
executed in an asynchronous and non-preemptive manner.
Specifically, VGRIS adopts library API interception so as
not to care about the underlying scheduling. Different from
GViM, vCUDA and rCUDA, VGRIS intercepts the library
for graphics processing such as DirectX and OpenGL, in-
stead of the one for GPU programming. One major benefit
of the library API interception is that we only need to modi-
fy a few binary within the intercepted library. No other part
of the software stack on top of the physical machine needs to
be changed to embrace VGRIS. Moreover, VGRIS does not
need any source code or design information of the library in
order to perform such modification.
Similar as our previous storage scheduling system does [32],

we implement two scheduling policies which address the trade-
off between the Service Level Agreement (SLA) and the
throughput, based on VGRIS framework. More specifical-
ly, SLA-aware scheduling strives to achieve SLA require-
ments for each VM, which can benefit cloud gaming plat-
forms. However, the GPU may not be fully utilized under
this scheduling policy. Another policy, Proportional-share
scheduling, allocates GPU resources to each VM in propor-
tion to its given weight, which can benefit job prioritization
in rendering farms and the total throughput at the cost of
SLA. Furthermore, VGRIS introduces the hybrid schedul-
ing that guarantees minimum resources for SLA while pro-
portionally shares surplus resources among all VMs. This
third policy has better resource utilization than SLA-aware
scheduling and it prevents starvation that may occur with
proportional sharing.
Our experimental results show that all the three schedul-

1OnLive, Inc. OnLive. http://www.onlive.com/.

ing policies satisfy their design goals under various work-
loads. For example, applying SLA-aware scheduling, the
average Frames Per Second (FPS) of workloads increases by
65%. The percentage of frames with excessive latency drops
to 3.19%. In the meanwhile, the GPU performance overhead
incurred by VGRIS is limited to 3.66%.

The contributions of this paper are summarized as follows.

• We propose a GPU scheduling framework based on
the GPU paravirtualization architecture, which can be
applied to servers for various GPU computing tasks for
efficient resource management. Benefited from library
API interception, VGRIS is lightweight and requires
no source code level changes in the guest OS, the guest
game and the host graphic drivers.

• We implement three scheduling policies in the pro-
posed framework for different typical performance need-
s: high performance of SLA, proportional resource shar-
ing and performance and fairness trade-offs.

• We implement the VGRIS through real games and
benchmark programs to demonstrate the effectiveness
of our framework and scheduling policies.

• We conduct several experiments with various types of
workloads. The overhead of our framework is limited
to 3.66%.

The rest of the paper is organized as follows. Section 2
describes motivating experiments to show the poor perfor-
mance of the default scheduling mechanism for GPU. Sec-
tion 3 introduces the framework of VGRIS as well as the
design and implementation of the three scheduling policies
we integrate in VGRIS. Section 4 presents the experimental
results of the proposed VGRIS with real games and bench-
mark programs. Section 5 is the related work, and Section 6
concludes the paper with a discussion.

2. MOTIVATION
This section mainly describes some motivating experiments

to show the poor performance and low utilization of the de-
fault GPU resource scheduling as well as the analysis of the
problem. We conducted the experiments on the machine
with mid-range CPU and an ATI HD6750 graphics card.
Before analyzing the poor performance and low utilization
of running multiple VMs on a single graphics card, we first
briefly describe the standard 3D rendering and programming
model and then discuss how the original graphics library
schedules GPU resource.

2.1 GPU Computation Model
One of our objectives is to control the FPS of workloads,

and hence the GPU resources can be scheduled. Howev-
er, the real world games such as DiRT3, in fact, seem not
run at the same or a close FPS during the process of gam-
ing. The FPS may continuously vary with the change of
game scenes. Basically, the GPU processing as well as the
CPU computation determines the FPS. As shown in Fig-
ure 1, GPU computation for various applications, e.g., gam-
ing, rendering, stream processing, is usually processed in an
infinite loop [27]. Each loop determines exactly one frame.

First UploadComputeKernel uploads the computation pro-
gram to the GPU, and DeclareThreadGrid specifies the

UploadComputeKernel();
DeclareThreadGrid(&Threads);

While(1) {
CPUComputation();
// copy data from memory to GPU buffer
UploadData(&VGA_Buf, &Input_Buf);
// GPU computation
DispatchComputation(&Threads);
// send results back to memory
DownloadData(&VGA_Buf, &Output_Buf);

}

Figure 1: GPU Computation model.

number of threads for the computation. After the initial
setup, each iteration of the loop performs some tasks, e.g.,
drawing a frame for gaming and rendering arithmetic cal-
culations for general-purpose computation. There are four
stages. First some CPU computation prepares the data for
GPU, e.g., calculating objects in the upcoming frame ac-
cording to the game logic. The data is uploaded to the GPU
buffer next, and then the GPU performs the computation,
e.g., rendering, using its buffer contents. Finally, the calcu-
lation result is sent back to the main memory for the next
iteration or output to the screen. The GPU computation li-
brary depends on the application, e.g., Direct3D or OpenGL
for gaming and rendering, DirectCompute, OpenCL, or CU-
DA for general-purpose GPU computation. The detailed
API calls vary too, e.g., glutSwapBuffers() for OpenGL
and IDirect3DSwapChain9::Present() for Direct3D 9. S-
ince we mainly focus on the graphics processing of a specified
GPU, we evaluate VGRIS framework using Direct3D library
which is the most popular graphics processing library among
game vendors on the planet. The design principle applies to
other libraries and platforms as well.
Under the Direct3D architecture, graphics API calls are

asynchronous. Each application has its own Direct3D com-
mand queue, and a command is non-blocking unless the
queue is full. Direct3D runtime decides when to submit
the queue to the device driver. Using library API intercep-
tion, such Direct3D API invocation will firstly notify VGRIS
framework before executing the API. Under the framework,
we implement various policies for GPU resource isolation
and scheduling among multiple VMs. Since all Direct3D
APIs are processed at the host, Paravirtualization greatly
facilitates our design and implementation. The paravirtual-
ization technology will be further discussed in Section 3.1.
Therefore we implement VGRIS in the host and in the mean-
while, neither the guest application, the guest OS nor the
host graphics drivers need to be changed.

2.2 Inefficiency of Default GPU Sharing
We now present the experiments to show the potential

improvements of throughput in a shared GPU environmen-
t while guaranteeing SLA of each workload. To illustrate
the potential improvements of throughput, we first evaluate
the performance of the individual workloads on the platfor-
m with windows 7 as the host OS. We choose five popular
games listed on GameSpot 2 on November the 10th, 2011.
The version of the graphics library is Direct3D 9. Table 1
shows the performance results, in which the GPU usage is

2GameSpot. http://www.gamespot.com/.

Table 1: Game performance on iCore7 2600K + HD6750.

Game FPS GPU Usage CPU Usage

DiRT 3 67.14 56.14% 39.61%

Portal 2 212.70 94.77% 85.42%

Shogun 2 64.76 84.33% 29.48%

Call Of Duty 7 68.97 73.48% 69.09%

NBA 2012 104.57 69.50% 86.45%

calculated based on hardware counters. Usually, cloud gam-
ing requires the FPS rate in the range of 30 to 60 for s-
mooth user experience. The lower rate will make the game
unplayable while higher rate does not make a difference for
human eye. As we can see in the figure, all the workloads are
able to provide a smooth user experience. But running these
workloads individually results in waste of GPU and CPU re-
sources though the corresponding FPS is fast enough to pro-
vide a smooth user experience. For instance, the workload of
DiRT3 only occupies about half of the GPU utilization and
39.61% CPU utilization when providing a smooth FPS. The
rest of the GPU and CPU resources are sufficient enough
to play another game, even on our mid-range ATI HD6750
graphics card. Since cloud gaming service providers like On-
Live upgrade their CPUs and GPUs to the latest every six
months [15], running these games with dedicated GPUs will
inevitably cause unnecessary low GPU utilization.

Based on this observation, we then show the performance
results of running multiple VMs on the single ATI HD6750
graphics card, as shown in Figure 2. The experiment in-
volves in three workloads: DiRT3, 3DMarks05 and NBA2012.
DiRT3 and NBA2012 are two popular games while 3DMark-
s05 is a 3D benchmark that renders several game scenes and
measures the FPS. Each workload concurrently runs in a
separate VM which is configured with Windows 7 as the
guest OS supporting the Direct3D graphics library. In Fig-
ure 2a, DiRT3 has an average FPS of 31 while NBA2012
runs at around 90 FPS. Compared to their original perfor-
mance with the same game configuration, their FPS reduce
a little due to the GPU resources contention. However, from
115th sec. to 180th sec., the second game test of 3DMarks05
runs at a FPS below 30 FPS, which offers a rough user expe-
rience. Except for FPS, the user experience also depends on
the frame latency which defines the cost time of one frame.
Figure 2b illustrates the corresponding frame latency of the
second game test scene in 3DMark05 in Figure 2a. As we
can see, the latencies of more than 6.22% frames are beyond
33 ms. The maximum latency is 388.82 ms. The larger
frame latency is, the more difficult the user can play the
game.

One likely reason of the default poor resource scheduling
mechanism is the asynchronous and non-preemptive nature
of GPU process. For instance, the default GPU scheduling
mechanism in Direct3D runtime library tends to allocate re-
sources on a first-come first-serve manner, which results in
excessive FPS for low-end games and unplayable FPS for
GPU demanding games when they are running concurrent-
ly on separate VMs. Graphics APIs also typically work in
an asynchronous way to maximize hardware performance.
APIs such as Present in Direct3D immediately return when
they issue a GPU command and submit to the GPU. The
GPU maintains a command buffer for the coming request

0 30 60 90 120 150 180 210 240 270

30

60

90

120

150

3D applications execution time (sec.)

F
ra

m
es

 p
er

 s
ec

on
d

3DMark05
DiRT3
NBA2012

QoS Violation

Game Test 2 Game Test 3Game Test 1

(a) FPS of Three Workloads

0 2500 5000 7500 10000 12500 15000

20

40

60

80

100

Frame No.

F
ra

m
e

la
te

nc
y

(m
s)

Game Test 1 Game Test 3
Game
Test 2

(b) Frame Latency of 3DMark05

Figure 2: Default scheduling results in poor performance
under heavy contention.

from the user space. Therefore, if the underlying command
buffer is full, the 3D application has to be blocked for some
time. Take Direct3D applications for example. In a typical
3D application development, every 3D application creates a
unique Direct3D device to represent its own graphics con-
text. The Direct3D calls issued by an application is usually
converted into device-independent commands, batched in a
command queue within the application’s context. When the
command queue is full or at any appropriate time, the Direc-
t3D runtime submits the current device’s command queue
to the underlying GPU driver. The driver stores the coming
queue into its local command buffer for the GPU cores to
process asynchronously. There are commands still kept by
Direct3D runtime for a period of time until available room is
found in the command buffer at the driver side. Thus, if two
or more 3D applications run concurrently on a single graph-
ics card, the resources contention inevitably occurs. If one
3D application runs a little fast and submits its command
queue frequently to the underlying layer, it probably gets
more GPU resources. Meanwhile, another 3D application
hence suffers from severe starvation, causing its FPS low as
it is running. Besides, it is noteworthy that a 3D application
needs to recreate resources after its windows has been up-
dated. Hence, it is common that only one GPU-accelerated
3D application occupies the whole GPU for a period of time
regardless of how many cores or threads the GPU has.
Based on the aforementioned analysis, we focus on the

graphics runtime library. If we can intercept DirectX APIs,
especially the ones related to GPU rendering, we are able to
do some scheduling for all the running 3D applications. It

App

Guest GPU Driver
Guest Mem

Virtual GPU I/O Queue

GPU HostOps Dispatch

Guest GPU

Memory

Host GPU API/Driver

Physical GPU

G
u
e
s
t

H
o
s
t H
o
s
t

P
ro
c
e
s
s

Figure 3: GPU Paravirtualization Architecture.

also brings an additional benefit that no modification is re-
quired for the 3D application, the underlying driver and the
hypervisor. For instance, if a 3D application runs a little
fast, we can make it slower so that other 3D application-
s get more change to access the GPU and will not starve
any more. We are also able to assign each 3D application
a priority and hence a 3D application with high priority
is capable of getting more resources and responsive on the
GPU. Currently, we integrate three scheduling policies into
our VGRIS framework. One is for guaranteeing SLA, one is
for high throughput and the other mixes the former two to
balance the trade-off between SLA and throughput. Other
scheduling policies are applicable to the VGRIS framework
as well.

3. VGRIS ARCHITECTURE
This section mainly discusses the design and the imple-

mentation of the VGRIS as well as the three algorithms we
have incorporated in it. Before introducing VGRIS architec-
ture, we first present the necessary background of GPU par-
avirtualization since VGRIS leverages the technology. The
three algorithms address different requirements for different
GPU computing applications.

3.1 GPU Paravirtualization and VGRIS Frame-
work

Paravirtualization provides virtual machines a software in-
terface different from the underlying hardware. This inter-
face significantly reduces the overhead of operations which
are substantially more difficult to run in a virtual environ-
ment. The guest operating system must be explicitly ported
to exploit the new interfaces for better performance. For
commercial operating systems that cannot be modified, this
is often achieved by paravirtualization-aware device drivers.
Due to the complexity of GPU device drivers, hypervisors
that support GPU paravirtualization achieve near-native ef-
ficiency only recently.

Figure 3 shows the typical GPU paravirtualization archi-
tecture for type 2 (hosted) hypervisor [7]. Typically a GPU
rendering task issued by a guest Operating Systems (OS)
application is executed as follows. After the guest appli-
cation invokes a standard GPU rendering API, the guest
GPU computation library, e.g., OpenGL, Direct3D, Direct-
Compute, CUDA, prepares the corresponding GPU buffer
contents in main memory and issues the GPU command
packets. These packets are pushed into the virtual GPU I/O

queue, which are subsequently processed by the HostOps
Dispatch in the host. Finally, this dispatch layer sends the
commands to the device driver in an asynchronous manner.
Buffer contents in guest OS memory are transferred to the
GPU buffer using Direct Memory Access (DMA) through
this process. We choose Windows 7 x64 as the guest OS run-
ning on VMware player 4.0 since it is most compatible with
commercial games, especially high-end ones. Running 3D-
mark06 on guest OS with both Windows 7 x64 and Ubuntu
11.04 x64 hosts, the FPS are 95.5% and 62.9% of the native
performance, respectively. Therefore we use Windows 7 x64
as the host for all our experiments.
Figure 4 is the architecture of VGRIS within the paravir-

tualization framework shown in Figure 3, where modules
introduced by VGRIS are highlighted in grey. These mod-
ules are all inside the host. There is one agent for each
VM, which schedules GPU computation tasks and monitors
the performance. In addition, there is a centralized schedul-
ing controller that serves two purposes. First, it receives
commands from the administrator to decide which schedul-
ing algorithm to use. Second, under the hybrid scheduling
policy, it automatically selects between the SLA-aware and
proportional-share policy based on the performance feed-
back received from all agents. The content and frequency
of the performance report from each agent are specified by
the central controller too. Some scheduling algorithm does
not require any feedback at all. In our prototype imple-
mentation, each agent simply intercepts Direct3D API invo-
cations from GPU HostOps Dispatch for rescheduling. Its
performance monitoring function utilizes GPU performance
instrumentation methods. The centralized scheduling server
is implemented as an independent process.
Similar to our previous design [32], we implement three

representative scheduling policies for different optimization
goals. The brief introductions of the three policies are as
follows.

• SLA-aware scheduling allocates just enough GPU
resource to each VM to fulfill its SLA requirement.
However, the GPU resources may be not fully used
under this policy.

• Proportional-share scheduling allocates all GPU
resources to all running VMs in proportion to their
weights assigned by the administrator. Due to the mis-
take or thoughtlessness of the administrator, some VM
may not fulfill the SLA requirement.

• Hybrid scheduling with a compromise mixes the
above two schemes. It first allocates minimal amount
of resource to each VM so its SLA is satisfied, surplus
resource is then proportionally allocated to all VMs to
maximize GPU utilization.

3.2 Scheduling Policies
Currently, VGRIS mainly integrate three scheduling poli-

cies. Other scheduling algorithms are applicable to VGRIS
architecture as well.
SLA-aware Scheduling SLA requirements in cloud gam-

ing service providers try to guarantee a minimum FPS and a
maximum latency for smooth user experience. As Figure 2a
illustrates, the default GPU scheduling algorithm allocates
resources fairly under contention. As a result, even if the S-
LA requirement is the same for all VMs, less GPU demand-

Host

Host GPU API

GPU HostOps

Dispatch
Scheduling

Controller

VM 1

Game App.

Guest OS

3D API

3D API

Agent

Scheduler

...

Monitor

GPU HostOps

Dispatch

VM N

Game App.

Guest OS

3D API

3D API

Agent

Scheduler

Monitor

Figure 4: VGRIS Architecture.

ing ones may get more resources than necessary while GPU
demanding ones cannot meet the requirement. SLA-aware
scheduling is designed to address this issue. It allocates
just enough resource for each VM to guarantee its SLA. To
achieve this goal, we slow down less demanding applications
to free extra resources for more demanding applications. We
use the application of cloud gaming to illustrate this idea.
The solution can be extended to other applications.

For smooth and responsive gaming experience, the laten-
cy of each frame must be in the range. Maximum latency is
always implied by cloud providers’ SLA. Therefore we con-
sider the latency requirement as our SLA objective.

Computer games follow the same GPU computation mod-
el in Figure 1, where each iteration calculates and displays
exactly one frame. For example, Figure 5a is the pseu-
docode using Direct3D. Methods ComputeObjectsInFrame,
DrawPrimitive, and Present correspond to CPUComputation,
UploadData, and DispatchComputation in Figure 1, respec-
tively. In computer gaming, there is no need to send the
result back to main memory. Instead, the GPU outputs the
calculated frame through its external interfaces either to a
screen or the network (after hardware compression). Af-
ter the Present call returns, we have no direct control over
when the frame becomes visible. However, the extra delay
is negligible in the case with a local display. If the frame
is displayed remotely, we assume a fixed amount of network
delay. Therefore, we consider a frame latency as the time
duration in-between the returns of two consecutive Present
calls, illustrated in Figure 5b.

To stabilize the frame latency according to a given SLA,
we extend each frame by delaying its last call, Present. This
is achieved via inserting a Sleep call before Present. The
amount of delay should be equal to the desirable latency sub-
tracted by the computation time of ComputeObjectsInFrame,
DrawPrimitive, and Present altogether. While VGRIS mea-
sures the computation time of the former two operations, the
computation time of Present can only be predicted.

Fortunately we observe that the computation time of Present
is very stable for each game application running in a VM,
because it is mostly affected by the complexity of the scene,
which changes only gradually. Furthermore, since each agen-
t predicts the computation time based on its own historical

While(1) {
ComputeObjectsInFrame();
DrawPrimitive(&VGA_Buffer);
Sleep(calculated sleep time);
Present(&VGA_Buffer);

}

(a) Pseudocode under Direct3D

Frame Latency Frame Latency

TimeFrame N Frame N+1

Computing Objects

& Drawing Shapes
Sleep Present

(b) Frame Latency

Figure 5: SLA-aware Scheduling Approach.

0 10 20 30 40

1

2

3

4

5

6
x 10

−5

Present() execution time (ms)

P
ro

ba
bi

lit
y

de
ns

ity

Contention (Flush)

No Contention (No Flush)

Contention (No Flush)

Figure 6: Probability distribution of present time cost.

information only, GPU context switch [18] has little impact
on prediction accuracy of an individual agent. Therefore
our prototype implementation simply uses the average time
of the past twenty Present calls as the prediction for the
upcoming one.
We also observe that the computation time of Present

varies. When there is heavy contention, the average execu-
tion time of Present raises from 2.37 ms to 11.70 ms, as
shown in Figure 6. This is because the DirectX runtime
batches Direct3D commands for better efficiency. Hence,
heavy contention increases the possibility of full command
buffer, resulting in the execution time of Present less pre-
dictable. The Flush command can mitigate the problem
significantly. Figure 6 shows that the average computation
time of Present is reduced from 11.70 ms to 0.48 ms under
heavy contention. The Flush command induces extra CPU
computation cost. Since we mainly consider GPU bound
VMs, it is reasonable to spend a little extra CPU time for
more accurate prediction, and therefore more stable latency
of each frame. We insert Flush in each iteration immediate-
ly before Sleep so we can measure, instead of estimate, its
computation time.
Proportional-share Scheduling The SLA-aware schedul-

ing strives to meet SLA requirements, which may result in
low resource utilization when there are insufficient number-
s of VMs. For applications such as offline rendering and

general-purpose computation on the GPU, we may want to
fully utilize the resources while ensuring each VM gets a
fair amount of shares. Proportional sharing is a schedul-
ing mechanism that is very well suited for these application
scenarios.

Our proportional-share scheduling algorithm adopts the
Posterior Enforcement Reservation policy used in Time-
Graph [18], which queues and dispatches GPU commands
based on task priorities. First each VM i is assigned a share
si that represents the percentage of GPU resource it can
use in each period t. The shares of all VMs add up to one.
Budget ei is the amount of GPU time that VM i is entitled
for execution. This budget is decreased by the amount of
time consumed on the GPU, and is replenished by at most
tsi once every period t as follows

ei = min(tsi, ei + tsi). (1)

The proportional-share scheduling dispatches PresentAPI
invocation if the budget for the corresponding VM is greater
than zero, otherwise it postpones the dispatch. We set
t = 1 ms in our implementation, which is sufficiently small
to prevent long lags.

Hybrid Scheduling SLA-aware scheduling may result
in low GPU utilization with an insufficient number of VM-
s. On the other hand, proportional-share scheduling can
maximize utilization but inappropriate weights can lead to
starvation of some VM. Our hybrid scheduling mechanism
combines the benefits of the two by automatically choosing
the appropriate algorithm with calculated parameters. In
order to achieve this, we introduce a centralized scheduling
controller that monitors the performance of each VM and
coordinates all agents.

Algorithm 1 Hybrid scheduling algorithm. FPSthres is
the minimal acceptable FPS; GPUthres is the preferred
minimal overall GPU usage; Time is the maximum bear-
able duration for unsatisfied feedbacks.

1: while each second do
2: if CurrentAlgo = PropShare and

FPS < FPSthres for Time sec then
3: CurrentAlgo← SLAAware
4: else if CurrentAlgo = SLAAware and

GPUTotalUsage < GPUthres for Time sec then
5: CurrentAlgo← PropShare
6: CalcShareForAllVMs()
7: end if
8: end while

The scheduling controller collects the performance infor-
mation from each VM every second. It determines the ap-
propriate scheduling algorithm for all VMs based on us-
er pre-defined criteria settings. When initialized, hybrid
scheduling algorithm retrieves the threshold values from us-
er settings and employs proportional-share scheduling with
a fair share as the default algorithm. During runtime, any
reported status below the criteria for the wait duration will
lead to changing the scheduling algorithm among all agents.
For example, the administrator may indicate the wait dura-
tion is 5 seconds. If proportional-share scheduling is lever-
aged as the current scheduling algorithm for all VMs, hybrid
scheduling uses SLA-aware scheduling algorithm if and only
if some VM has a low FPS for five seconds. On the contrary,
the proportional-share scheduling algorithm is selected if the

current scheduling method is SLA-aware scheduling and the
physical GPU usage is below a certain criteria for 5 seconds.
The hybrid scheduling algorithm needs to determine the

proper share for each VM when switching to proportional-
share scheduling algorithm, as illustrated in Line 6 in Al-
gorithm 1. The proportional share for the i-th VM (si) is
achieved as follows:

si = ui +
(1−

∑n
i=1 ui)

n
. (2)

This formula approaches proportional sharing while guaran-
teeing SLA for each VM. ui means the GPU usage of the i-th
VM. It represents the minimum share of GPU resource need-
ed when switching to proportional-share scheduling. Mean-
while, (1 −

∑n
i=1 ui)/n represents the fairness division of

the abundant GPU resource to each VM. This fairly divi-
sion permits that every VM owns more GPU resource than
required to fulfill the SLA requirement in the current situa-
tion.

4. EXPERIMENTAL EVALUATIONS
We now provide a detailed quantitative evaluation of V-

GRIS. All the experiments are conducted with the same
workloads for the three scheduling policies. First, we eval-
uate SLA-aware scheduling in case of under-provision GPU
resource. Then, we evaluate proportional-share scheduling’s
ability in maximizing GPU resource usage. Thirdly, we e-
valuate the effectiveness of hybrid scheduling. At last, we
provide the micro- and macro-analysis to evaluate VGRIS’s
performance impact to guest legacy software.
The configurations of the testbed and VMs are derived

from the top 5 most popular games listed in Table 1. The
testbed is configured with i7-2600k 3.4GHz CPU, 16GB RAM,
and an ATI HD6750 graphics card. Each hosted VM owns d-
ual Cores and 2GB RAM. Windows 7 x64 is used as both the
host OS and guest OSes. All the games are running under
high graphic quality with 1280×720 resolution. To simplify
performance comparison, swap space and GPU-accelerated
windowing system are disabled on the host side.
We use two different types of workload and one benchmark

in the following experiments. The first workload group,
named Ideal Model Games, has almost fixed objects and
views and hence a stable FPS is maintained. Many strategy
games belong to this type. We choose PostProcess, Shad-
owVolume, Parallax and LocalDeformablePRT from Direc-
tX 9.0 SDK samples as the representations of this kind of
workload. The other workload group is the Reality Mod-
el Games, whose FPS keeps constant for a short time but
varies from minute to minute. Games of First Person Shoot-
er genre and Sports genre mainly constitute this group of
games. We pick DiRT 3, Portal 2, and NBA2012 as the
representative games. The 3DMark benchmarks (including
3DMark05 and 3DMark06) are also employed as the Reality
Model Games because they satisfy the features mentioned
above. 3DMark05 doesn’t fully employ GPU resource. It
sequentially runs three Game Tests (GT), in which GT1
doesn’t consume all the GPU resources to produce a high
FPS. GT2 and GT3 consume all the GPU resources, but the
GT2 produces below 55 FPS for more than 30% of running
time while the FPS of GT3 is below 70 FPS only within 5%
of running time. 3DMark06 maximizes the GPU resource
usage in all two game tests and two High Dynamic Range
Tests (HDRT).

0 30 60 90 120 150 180 210 240 270

5

10

15

20

25

30

35

40

3D applications execution time (sec.)

F
ra

m
es

 p
er

 s
ec

on
d

3DMark05
DiRT3
NBA2012

Game Test 1 Game Test 2 Game Test 3

QoS improve

(a) FPS of Three Workloads

0 2000 4000 6000 8000
0

20

40

60

80

100

Frame No.

F
ra

m
e

la
te

nc
y

(m
s)

Game Test 1 Game Test 2 Game Test 3

(b) Latency of 3DMark05

Figure 7: SLA-aware scheduling improves performance.

4.1 SLA-aware Scheduling Evaluation
We first evaluate SLA-aware scheduling provided by V-

GRIS. We evaluate the policy with three workloads con-
currently running in separate VMs and sharing one single
graphics card. Using the same configurations with the ex-
periments in Section 2, Figure 7 shows result improvements,
compared with Figure 2. In Figure 7a, the average FPS of
the GT2 rises 65.05% after SLA-aware scheduling. Also, the
percentage of frames of excessive latency drops to 3.19% in
Figure 7b, with the maximum value decreasing to 131.27 ms.
Insufficient GPU hardware capability indicates that it can-
not meet the FPS criteria (≥30 FPS) for all three games at
the same time in Figure 7a.

Next, we evaluate SLA-aware scheduling’s effectiveness in
controlling the FPS and GPU resource usage of the only
VM. PostProcess application is used in this experiment and
consumes 100% of GPU resource without control. The ini-
tially complete GPU resource usage is achieved by setting
the resolution at 1920× 1200 as well as enabling the Bloom
effect specifically in the PostProcess application. An initial
sleep time per frame of 300 ms is set by VGRIS which then
decreases the sleep time by 1 ms in each second. Figure 8a
depicts that sleep time (x) is approximately reciprocal with
FPS (y1) and GPU usage (y2), similar to frame latency.
The correlation result of the sleep time (x) and FPS (y1)
is y1 = 646.11x−0.927 with the correlation coefficient (R2)

50

100

150

200

F
ra

m
es

 p
er

 s
ec

on
d

Sleep time per frame (ms)
0 50 100 150 200 250 300

25

50

75

100

G
P

U
 u

sa
ge

 (
%

)

GPU usage

FPS

y
1

y
2

(a) FPS and GPU usage result for one VM

0 20 40 60 80
150

200

250

300

350

FPS of PostProcess

F
P

S
 o

f S
ha

do
w

V
ol

um
e

Value

Correlation Result

(b) FPS result for two VMs

Figure 8: Scheduling effectiveness on Ideal Model Games.

to be 0.9828. Meanwhile, the correlation result of the sleep
time (x) and GPU usage (y2) is y2 = 332.33x−0.887 with
R2 to be 0.9838. The reason is straightforward according
to the definition of FPS. Also, the loop-based GPU render-
ing model results that GPU resource usage shares the same
trend with FPS.
In order to evaluate the impact to other VMs’ FPS when

controlling one VM only, we execute multiple VMs concur-
rently. Based on the same configuration in the last experi-
ment, a new VM running ShadowVolume is introduced in.
Its resolution is also set at 1920 × 1200 to fully consume
GPU resource individually. As shown in Figure 8b, when
the FPS of PostProcess increases, the FPS of ShadowVol-
ume decreases in an approximately linear way. The corre-
lation result of FPS value satisfies y = −2.13x + 336.8 and
R2 equals 0.9981. This experiment proves that the amount
of GPU and CPU resource stripped from one VM can be
acquired by other VMs and hence VGRIS can effectively
control the GPU resource on multiple VMs.
Figure 9 depicts both actual and prediction of Present

API execution cost in two game models: Ideal Model Games
and Reality Model Games. The GPU resource is fully con-
sumed and we record the result for a 60-second period. Fig-
ure 9a shows that the proposed prediction approach achieves
0.4 ms error margin. When GPU resource competition oc-
curs, though the prediction error increases to -84.17 ms at
most, only 4.12% of the frames have the predicted Present

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Frame No. P
re

se
nt

()
 e

xe
cu

tio
n

tim
e

(m
s)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.6

−0.4

−0.2

0

0.2

Frame No.

P
re

di
ct

io
n

er
ro

r
(m

s)

(a) LocalDeformablePRT - No GPU Contention

0 1000 2000 3000 4000 5000 6000 7000 8000

20

40

60

80

100

Frame No.P
re

se
nt

()
 e

xe
cu

tio
n

tim
e

(m
s)

0 1000 2000 3000 4000 5000 6000 7000 8000
−100

−50

0

50

Frame No.

P
re

di
ct

io
n

er
ro

r
(m

s)

(b) LocalDeformablePRT - With GPU Contention

0 2000 4000 6000 8000 10000 12000 14000 16000

20

40

60

80

100

Frame No.P
re

se
nt

()
 e

xe
cu

tio
n

tim
e

(m
s)

0 2000 4000 6000 8000 10000 12000 14000 16000
−100

−50

0

50

Frame No.

P
re

di
ct

io
n

er
ro

r
(m

s)

(c) 3DMark05 - With GPU Contention

Figure 9: Errors of Present API execution cost prediction.

API execution costs more than 2 ms error margin (Predic-
tion Failures), as shown in Figure 9b. Meanwhile, even for
the Reality Model Games in contention case, the percentage
of prediction failures is 1.95% and the maximum prediction
error is -91.32 ms, as presented in Figure 9c. It is notewor-
thy that a 2 ms prediction error only results in an instant
decrease from 30 to 28.30 FPS or from 60 to 53.57 FPS. This
is acceptable in the frequent long-time gaming experience.

4.2 Proportional-share Scheduling Evaluation
We next demonstrate the effectiveness of proportional-

share scheduling in regulating GPU resource usage accord-
ing to user settings. Figure 10 shows the GPU resource
usage of Reality Model Games using different initial GPU
shares: (1) NBA2012 is set to use 30% GPU resource while
requiring 44.48% GPU resource individually. (2) Looped

0 40 80 120 160 200 240 280 320 360

10

20

30

40

50

60

3D applications execution time (sec.)

G
P

U
 r

es
ou

rc
e

us
ag

e
(%

)

3DMark05

NBA2012

Figure 10: Proportional-share scheduling evaluation result.

Table 2: Performance comparison of proportional-share
scheduling and SLA-aware scheduling.

SLA-Aware

Scheduling

Proportional-Share

Scheduling

FPS GPU Usage FPS GPU Usage

NBA2012 30.12 12.41% 79.16 30.12%

3DMark05 30.30 26.95% 61.76 50.30%

GT 1 in 3DMark05 is set to use 50% GPU resource while
requiring 70.82% GPU resource individually. Especially, we
measure the GPU usage discrepancy within each instance
in Figure 10 to evaluate the control accuracy. The results
show that the range is 13.75% to the average GPU usage
value for 3DMark05 and 8.31% for NBA2012. This result
proves that proportional-share scheduling successfully pro-
vides user specified GPU resource share. It even works for
Reality Model Games which owns the inherently dynamic
nature of complex scene switches and abruptly changing in
visible objects.
Furthermore, we compare the GPU resource usage of the

proportional-share and SLA-aware scheduling to evaluate
proportional-share policy’s ability in maximizing hardware
performance. Proportional-share scheduling uses the same
resource allocation with the former experiment while the F-
PS criteria of SLA-aware scheduling is set to be 30 FPS.
Table 2 depicts that proportional-share scheduling employs
more available GPU resource than SLA-aware scheduling
does. This is because SLA-aware scheduling limits FPS ac-
cording to the user indicated FPS criteria. Meanwhile, GPU
resource usage is direct proportion to the FPS for the same
game. Hence, SLA-aware scheduling doesn’t use GPU re-
source effectively due to its criteria based FPS limitation.

4.3 Hybrid Scheduling Evaluation
We now evaluate hybrid scheduling’s automatic determi-

nation of scheduling algorithms with proper parameters. Three
Reality Model Games are used to evaluate hybrid schedul-
ing’s effectiveness, including NBA2012, DiRT3, and 3DMark05.
First, we run the NBA2012 and DiRT3 games concurrent-
ly. After 28 seconds, we start 3DMark05’s GT3 which will
finish its execution in 87 seconds. Figure 11 illustrates the
selection of algorithms and the impacts to the FPS of run-
ning VMs. In this figure, α represents proportional-share

0 20 40 60 80 100 120

30

60

90

120

150

3D applications execution time (sec.)

F
ra

m
es

 p
er

 s
ec

on
d

DiRT3
NBA2012
3DMark05

β β βα α α α

Figure 11: Hybrid Scheduling Results.

scheduling and β stands for SLA-aware scheduling. First-
ly, hybrid scheduling employs proportional-share scheduling
algorithm and assigns full GPU resource for each VM since
both of their FPS satisfy the FPS criteria. At the time of 40
second, the VM running DiRT3 has not got sufficient GPU
resource to maintain its SLA for the most recent time which
is 5 seconds according to the administrator’s setting. Hence,
hybrid scheduling employs SLA-aware scheduling to release
the excessive GPU resources in other VMs. However, this
results in a low overall GPU usage and hybrid scheduling
switches back to proportional-share scheduling after dura-
tion. Because hybrid scheduling always fairly divides the
abundant GPU resource and assigns them to each VM, it
can be observed that VM’s FPS increases when switching
back to the proportional-share scheduling algorithm. In the
rest of Figure 11, the algorithm selection always follows the
above mechanism.

4.4 Performance Discussions
In order to evaluate VGRIS’s performance impact to lega-

cy applications and OSes, we first perform micro analysis
to illustrate the potential hot spot. PostProcess and 3D-
Mark06 GT1 are leveraged to fully utilize available GPU
resource. We only evaluate the execution cost of each part
in SLA-aware scheduling and proportional-share scheduling.
The hybrid scheduling is not included because there are only
trivial changes based on the other two scheduling method-
s and the performance impact can be ignored. Figure 12
shows the microbenchmark results. The execution time of
SLA-aware scheduling constitutes four parts, in which the
GPU command flush operations contribute the main per-
formance overhead. This is due to the design of current
Direct3D library and the implemented flush strategy in V-
GRIS prototype. It’s possible to achieve a better result by
adopting different flush strategies in the future.

Having no GPU Command Flush operation, proportional-
share scheduling contains three parts in its execution time.
For the same reason, the Present API execution time un-
surprisingly becomes the most expensive operation. It is
noteworthy that no aggressive flush of Direct3D command
buffer is added in proportional-share scheduling, because
proportional-share scheduling always assumes the existence
of over-provision GPU resource. In total, SLA-aware schedul-
ing algorithm incurs 6.74% overhead for PostProcess while

 0.001

 0.01

 0.1

 1

 10

 100

 1000

SLA-aware Proportional-share SLA-aware Proportional-share

E
xe

cu
tio

n
tim

e
(m

s)

Ideal Model Games Reality Model Games

GPU Command Flush
Present() Execution
Scheduler-Specific
GPU Usage Mesurement

Figure 12: Microbenchmark Results.

Table 3: Macrobenchmark Results.

Native

SLA-

aware

Scheduling

Proportional-

share

Scheduling

FPS FPS Overhead FPS Overhead

GT1 43.023 42.044 2.28% 42.221 1.86%

GT2 48.686 45.996 5.53% 48.284 0.83%

HDRT1 59.062 57.923 1.93% 57.700 2.31%

HDRT2 65.808 62.854 4.90% 65.984 -0.27%

24.01% for 3DMark06. The results for proportional-share
scheduling are 1.56% and 0.11%.
When considering the infrequent invocation of Present

API, the performance overhead is significantly decreased.
3DMark06 with default settings is used to evaluate VGRIS’s
performance overhead in application level. Table 3 shows the
evaluation results, proving VGRIS brings in 3.66% perfor-
mance overhead in average for SLA-aware scheduling while
1.18% for proportional-share scheduling. Thus, the schedul-
ing methods provided by VGRIS are demonstrated to incur
slight performance overhead. Moreover, VGRIS is even able
to provide the same SLA with that provided by commercial
cloud gaming services (e.g., OnLive). Our evaluation result
shows that VGRIS is able to run one DiRT3 and two Portal
2 instances concurrently with the FPS criteria set to be 60.
As a result, VGRIS is able to execute multiple game VMs
concurrently while ensuring acceptable SLA individually.

5. RELATED WORK
Virtualized resource management is an active area of re-

search over the past decade. Based on the general trend
of all related research works, we can broadly classify them
into three groups: 1)scheduling in virtualization, 2) GPU
scheduling, and 3) applications of GPU virtualization.
Scheduling in Virtualization: Previous works focus

on CPU and I/O scheduling including disk and network
resources. Credit, Simple Earliest Deadline First (SEDF),
Borrowed Virtual Time (BVT) [10] and vSlicer [34] are avail-
able CPU schedulers [6] for general purpose hypervisor like
Xen [1]. Achieving the ability of scheduling processor re-
source according to the indicated proportions, these method-

s can also be employed in the proportional-share scheduling
in VGRIS. BVT is optimized for latency sensitive applica-
tions by decreasing the corresponding job’s next schedule
time and borrowing time slices from its future processor us-
age. Credit scheduling achieves the same optimization by
boosting corresponding virtual CPU in the block state when
an external event arrives [6]. Besides, CPU schedulers for
real time guest OS control the expected latency by arranging
virtual CPU run queue in certain order [21, 35]. However,
these scheduling methods cannot be applied to manage GPU
resources to fulfill the SLA requirement. The reason is that
all of these scheduling approaches treat VM to be black box
and hence ignore guest applications’ SLA-related measure-
ments. In contrast, by effective library API interception on
host side, VGRIS can perform SLA-aware scheduling algo-
rithm without modifying guest software.

For the I/O resource scheduling in virtualization, prior
works mainly analyzed the scheduling methods of disk and
network resources. Similar to our approach, AVATAR [36]
is implemented to ensure the proportional-share scheduling
of storage resources and fulfill the service level objectives.
However, the dynamic change in GPU resource usage in cer-
tain kinds of GPU applications results that AVATAR pos-
sibly dissatisfies the SLA of GPU computation tasks. This
issue is identified to be one important problem and solved
by hybrid scheduling in VGRIS.

DVT [19] is primarily designed for network resource schedul-
ing. It provides differential resource scheduling and gradual
latency variation in case of workload capacity’s change to
support performance isolation for guest OS’s resource man-
agement mechanisms. Stillwell et al. [31] focus on scheduling
algorithms on distributed platforms. The algorithms can
allocate resources to competing services. Based on work-
load data supplied by Google, the algorithms provide good
performance. Compared with them, VGRIS provides both
proportional-share and SLA-aware scheduling by obtaining
guest application’s SLA measurements.

GPU Scheduling: Previous GPU resource scheduling
approaches mainly target native systems. For example, Phul-
l et al. [28] present a framework to predict and handle inter-
ference and schedule GPU resources in a time-share mod-
el. Kato et al. [17] address the priority inversion problems
of user GPU tasks in GPU-accelerated windowing systems.
Elliott et al. [12] have presented two methods for integrating
GPUs into soft real-time multiprocessor systems to improve
total system performance. Maeda et al. [23] develop an auto-
matic resource scheduling to accelerate stencil applications
on GPGPU Clusters. A task-based dynamic load-balancing
scheduling [4] is proposed for single- and multi-GPU system-
s. Ravi et al. [29] propose a framework that enable appli-
cations running within VMs to transparently share one or
more GPUs. Compared with them, VGRIS mainly focuses
on graphics processing including 3D rendering and gaming.
Both SLA of the 3D applications in the VMs and the overall
throughput are taken into account. TimeGraph [18] im-
plements a real-time GPU scheduler to isolate performance
for important GPU workloads. To achieve its design goal,
TimeGraph queues GPU command groups in the driver lay-
er and submits them according to user predefined settings as
well as GPU hardware measurements. TimeGraph cannot
guarantee SLA for all the VMs, especially for less important
workloads. Instead, our hybrid scheduling algorithm is used
to effectively provide both SLA and maximized the GPU

resource usage. Becchi et al. [3] add two features to improve
the sharing of GPUs: dynamic application-to-GPU binding
and virtual memory for GPUs. Aimed at different goals,
VGRIS can further employ this work to support load bal-
ancing and solve GPU memory constraint for applications.
GERM [2, 11] aims at providing fair GPU resource allo-

cation. Besides, fixed frame rate approaches like Vertical
Synchronization (V-Sync) 3 are designed for games to avoid
excessively use of hardware resource. Unfortunately, GERM
fails to consider SLA requirements while fixed frame rate ap-
proaches fail to consider using hardware resource effectively.
Due to fixed frame rate, both approaches are inflexible to
adjust resource utility on-the-fly.
Applications of GPU Virtualization: The rapid de-

velopment of GPU virtualization accelerates many new ap-
plications, especially in cloud gaming and general-purpose
GPU computing.
In cloud gaming, previous studies on cloud gaming plat-

form focus on streaming graphical content and decreasing
the required network bandwidth [5, 33, 26, 16]. Li et al. [22]
take cryo-electron microscopy 3D reconstruction as an ex-
ample to present how to exploit parallelism on both CPU
and GPU in a heterogeneous system. Different from them,
our approach is able to run multiple game VMs sharing with
GPU resource based on GPU Para-Virtualization (PV) tech-
nique.
In general-purpose GPU computing, vCUDA [30] intro-

duces GPU computing into virtualization execution envi-
ronment. It motivates our research in scheduling resources
for GPU computing. rCUDA [9] and Duato’s work [8] try to
decrease the power-consuming GPUs from high performance
clusters while preserving their 3D-acceleration capability to
remote nodes. Gupta et al. [14] propose Pegasus that uses
NVIDIA GPGPUs coupled with x86-based general purpose
host cores to manage combined platform resources. Based
on Pegasus, Merritt et al. [24] propose Shadowfax, a proto-
type of GPGPU Assemblies, improves GPGPU application
scalability as well as increases application throughput. How-
ever, none of these approaches has studied the managemen-
t of virtualized GPU resource isolation and scheduling to
achieve the computational efficiency in cloud gaming which
is the main focus of this paper. Comparing with them, our
approach tries to improve the SLA of GPU computation
on cloud platform and maximize the overall resource usage.
Additionally, VGRIS provides three representative schedul-
ing algorithms to meet multiple optimization goals in case
of under- and over-provisioned GPU resource.

6. CONCLUSION
We presented VGRIS, a Virtualized GPU Resource Isola-

tion and Scheduling framework for GPU-related computa-
tion tasks. By introducing an agent per VM and a central-
ized scheduling controller to the paravirtualization frame-
work, VGRIS achieves in-VM GPU resource measurements
and regulates the GPU resource usage. Moreover, we pro-
pose three representative scheduling algorithms: SLA-aware
scheduling allocates just enough GPU resources to fulfill
the SLA requirement; Proportional-share scheduling allo-
cates all GPU resources to all running VMs in proportion
to their weights; Hybrid scheduling provides a mixed so-
lution to meeting the SLA requirement while maximizing

3V-Sync. http://en.wikipedia.org/wiki/Vertical synchronization/.

the overall GPU resource usage. Using the cloud gaming
scenario as a case study, our evaluation demonstrates that
each scheduling algorithm enforces its goals under various
workloads. We plan to extend VGRIS to multiple physical
GPUs and multiple physical machine systems for data center
resource scheduling as our future work.

7. ACKNOWLEDGMENTS
Thanks for Jiewei Wu and Xi Chen’s contribution to this

project. We also thank for Yueqiang Cheng’s and Zheng
Zhang’s suggestions. Also, we appreciate the valuable com-
ments come from the reviewers. They help us in revis-
ing our work one step further. This work is supported by
the Program for PCSIRT and NCET of MOE, NSFC (No.
61073151, 61272101), 863 Program (No. 2011AA01A202,
2012AA010905), 973 Program (No. 2012CB723401), the
key program (No. 313035) of MOE, and International Co-
operation Program (No. 11530700500, 2011DFA10850), and
Shanghai Natural Science Foundation (No.12ZR1445700).

8. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.

Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of ACM Symposium on Operating Systems
Principles, SOSP, 2003.

[2] M. Bautin, A. Dwarakinath, and T. cker Chiueh.
Graphic engine resource management. In Proceedings
of Multimedia Computing and Networking, MMCN,
2008.

[3] M. Becchi, K. Sajjapongse, I. Graves, A. Procter,
V. Ravi, and S. Chakradhar. A virtual memory based
runtime to support multi-tenancy in clusters with
GPUs. In Proceedings of international symposium on
High-Performance Parallel and Distributed
Computing, HPDC, 2012.

[4] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao.
Dynamic load balancing on single- and multi-gpu
systems. In Proceedinigs of IEEE International
Symposium on Parallel Distributed Processing, IPDPS,
2010.

[5] L. Cheng, A. Bhushan, R. Pajarola, and M. E. Zarki.
Realtime 3D graphics streaming using MPEG-4. In
Proceedings of the nineteenth ACM symposium on
Operating systems principles, BroadWise, 2004.

[6] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison
of the three CPU schedulers in Xen. SIGMETRICS
Performance Evaluation Review, 35(2):42–51, 2007.

[7] M. Dowty and J. Sugerman. GPU virtualization on
VMware’s hosted I/O architecture. SIGOPS Operating
Systems Review, 43:73–82, 2009.

[8] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S.
Quintana-Ort́ı, and F. Silla. An efficient
implementation of GPU virtualization in high
performance clusters. In Proceedings of European
Conference on Parallel Processing, Euro-Par
Workshops, 2009.

[9] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S.
Quintana-Ort́ı. rCUDA: Reducing the number of
GPU-based accelerators in high performance clusters.
In Proceedings of the International Conference on High
Performance Computing and Simulation, HPCS, 2010.

[10] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In Proceedings
of the ACM Symposium on Operating Systems
Principles, SOSP, 1999.

[11] A. Dwarakinath. A fair-share scheduler for the
graphics processing unit. Master Thesis, 2008.

[12] G. A. Elliott and J. H. Anderson. Globally scheduled
real-time multiprocessor systems with GPUs.
Real-Time Systems, 48(1):34–74, 2012.

[13] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan. GViM:
Gpu-accelerated virtual machines. In Proceedings of
the ACM Workshop on System-level Virtualization for
High Performance Computing, HPCVirt, 2009.

[14] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and
P. Ranganathan. Pegasus: Coordinated scheduling for
virtualized accelerator-based systems. In Proceedings
of the 2011 USENIX conference on USENIX annual
technical conference, ATC, 2011.

[15] Joystiq. GDC09 interview: OnLive founder Steve
Perlman, continued. http:
//www.joystiq.com/2009/04/02/gdc09-interview-

onlive-founder-steve-perlman-continued/.

[16] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti,
H. David, J.-P. Laulajainen, R. Carmichael,
V. Poulopoulos, A. Laikari, P. H. J. Perälä, A. D.
Gloria, and C. Bouras. Platform for distributed 3D
gaming. Int. J. Computer Games Technology, 2009.

[17] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. R.
Rajkumar. Resource sharing in GPU-accelerated
windowing systems. In Proceedings of the 2011 17th
IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, 2011.

[18] S. Kato, K. Lakshmanan, R. Rajkumar, and
Y. Ishikawa. TimeGraph: GPU scheduling for
real-time multi-tasking environments. In Proceedings
of the 2011 USENIX conference on USENIX annual
technical conference, ATC, 2011.

[19] M. Kesavan, A. Gavrilovska, and K. Schwan.
Differential virtual time (DVT): rethinking I/O service
differentiation for virtual machines. In Proceedings of
the 1st ACM symposium on Cloud computing, SoCC,
2010.

[20] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. VMM-independent graphics acceleration.
In Proceedings of the International Conference on
Virtual Execution Environments, VEE, 2007.

[21] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh,
and S. Yajnik. Supporting soft real-time tasks in the
Xen hypervisor. In Proceedings of the 6th ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE, 2010.

[22] L. Li, X. Li, G. Tan, M. Chen, and P. Zhang.
Experience of parallelizing cryo-em 3D reconstruction
on a CPU-GPU heterogeneous system. In Proceedings
of the ACM International Symposium on High
Performance Distributed Computing, HPDC, 2011.

[23] K. Maeda, M. Murase, M. Doi, H. Komatsu, S. Noda,
and R. Himeno. Automatic resource scheduling with
latency hiding for parallel stencil applications on
GPGPU clusters. In Proceedinigs of IEEE

International Symposium on Parallel Distributed
Processing, IPDPS, 2012.

[24] A. M. Merritt, V. Gupta, A. Verma, A. Gavrilovska,
and K. Schwan. Shadowfax: scaling in heterogeneous
cluster systems via GPGPU assemblies. In Proceedings
of the 5th international workshop on Virtualization
technologies in distributed computing, VTDC, 2011.

[25] B. H. Ng, B. Lau, and A. Parkash. Direct access to
graphics card leveraging VT-d. Technical report,
University of Michigan, 2009.

[26] Y. Noimark and D. Cohen-Or. Streaming scenes to
MPEG-4 video-enabled devices. IEEE Computer
Graphics and Applications, 23(1):58–64, 2003.

[27] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879 –899, 2008.

[28] R. Phull, C.-H. Li, K. Rao, S. Cadambi, and S. T.
Chakradhar. Interference-driven resource management
for GPU-based heterogeneous clusters. In Proceedings
of the ACM International Symposium on High
Performance Distributed Computing, HPDC, 2012.

[29] V. T. Ravi, M. Becchi, G. Agrawal, and S. T.
Chakradhar. Supporting GPU sharing in cloud
environments with a transparent runtime
consolidation framework. In Proceedings of the ACM
International Symposium on High Performance
Distributed Computing, HPDC, 2011.

[30] L. Shi, H. Chen, and J. Sun. vCUDA: GPU
accelerated high performance computing in virtual
machines. In Proceedinigs of IEEE International
Symposium on Parallel Distributed Processing, IPDPS,
2009.

[31] M. Stillwell, F. Vivien, and H. Casanova. Virtual
machine resource allocation for service hosting on
heterogeneous distributed platforms. In Proceedinigs
of IEEE International Symposium on Parallel
Distributed Processing, IPDPS, 2012.

[32] Y. Wang and A. Merchant. Proportional-share
scheduling for distributed storage systems. In
Proccedings of the 5th conference on File and storage
technologies, FAST, 2007.

[33] D. D. Winter, P. Simoens, L. Deboosere, F. D. Turck,
J. Moreau, B. Dhoedt, and P. Demeester. A hybrid
thin-client protocol for multimedia streaming and
interactive gaming applications. In Proceedings of the
International Workshop on Network and Operating
Systems Support for Digital Audio and Video,
NOSSDAV, 2006.

[34] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R.
Kompella, and D. Xu. vSlicer: latency-aware virtual
machine scheduling via differentiated-frequency CPU
slicing. In Proceedings of the ACM International
Symposium on High Performance Distributed
Computing, HPDC, 2012.

[35] P. Yu, M. Xia, Q. Lin, M. Zhu, S. Gao, Z. Qi,
K. Chen, and H. Guan. Real-time enhancement for
Xen hypervisor. In Proceedings of Embedded and
Ubiquitous Computing, EUC, 2010.

[36] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. Trans. Storage,
2:283–308, 2006.

