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Abstract

Focusing on obtaining in-memory evidence, current live acquisition efforts
either fail to provide accurate native system physical memory acquisition
at the given time point or require suspending the machine and altering the
execution environment drastically. To address this issue, we propose Vis, a
light-weight virtualization approach to provide accurate retrieving of physical
memory content while preserving the execution of target native system. Our
experimental results indicate that Vis is capable of reliably retrieving an
accurate system image. Moreover, Vis accomplishes live acquisition within
97.09~105.86 seconds, which shows that Vis is much more efficient than
previous remote live acquisition tools that take hours and static acquisition
that takes days. In average, Vis incurs only 9.62% performance overhead to
the target system.
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1. Introduction

After forensic scopes and medias are determined, a typical computer
forensics scenario has three steps: acquisition, analyzing and reporting [47, 9].
Focusing on the stages of acquisition and analyzing, computer forensics pro-
poses two key challenges: how to obtain the complete system state and how
to analyze the retrieved image effectively [39]. Missing image of memory
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content leads to an incomplete or wrong investigation result, even with an
incomparable analyzing technology.

Transcending static acquisition strategies, live acquisition extends the
information gathering range of forensics examiner, i.e., involving with the
volatile data. Considering criminal evidence being stored on permanent 1/0
device only [10], most static acquisition tools, like Encase [21] and FTK [1],
clone disk offline to accurately obtain the evidence. Nevertheless, evidence
data existing in volatile memory without disk correspondence are totally
beyond the acquisition scope of static acquisition tools. To address such
issue, the requirement of live acquisition becomes essential. Live acquisition
tools can extract the volatile data in the memory of the target system without
blocking it. These data include process information [8], process list [23],
kernel objects [16] and raw memory content [4, 41], which may be leveraged
to record and reproduce the criminal scene.

Based on the architectural difference, previous software live acquisition
solutions can be divided into two categories. The first one is Virtualization
Introspection, which means the target system is wrapped in a Virtual Ma-
chine (VM) while the acquisition module exists in a hypervisor like Xen [5].
VIX tools [23], Ruo’s work [4], Srinivas’s work [29] and BodySnatcher [42] all
belong to this type. The second one is Non-Virtualization Introspection. It
is designed to obtain indicated volatile system state with a minimal environ-
ment impact. lain et al. [43] list several practical tools for different scenarios,
including Win32dd [37], KnTTools [19] and Fport [33]. Memoryze [30] is an-
other popular user process forensic tool of this type.

While owning the ability of unearthing tremendous volume of volatile
data, live acquisition also faces significant challenges and risks. The first
challenge is that previous virtualization based live acquisition methods alter
the system environment significantly [5, 42]. The reason comes from the
fact that many previous approaches required loading hypervisor prior to the
launching of operating system (OS) [4, 23, 29]. When employing this method
on a non-virtualized host, the forensic examiners more or less change the
system running environment. In the extreme case, rebooting even reinstalling
the whole system is required, thus causing a great loss of information from
volatile memory.

The second challenge raises from the fact that the system is not static [3].
Contents in physical memory change with the running processes, making
those previous In-OS live acquisition methods unable to guarantee the accu-
racy of the retrieved physical memory content at the given time point unless



suspending the machine. However, ideal suspending functionality would re-
quire hardware support [22]. Also, it is difficult to dump physical memory
accurately by manipulating all page tables via In-OS live acquisition tools,
because possible existence of hidden processes makes it tough to actively
trace all working page tables. As a result, practical In-OS live acquisition
tools, like Win32dd and Memoryze, never consider result accuracy as one of
their design goals.

This paper builds on our prior acquisition system, which is named Vis [35].
Our previous work presents the design and implementation of Vis, proves its
acquisition reliability and evaluates its performance in live acquisition sce-
narios. In this paper, we try to balance between Vis’s effectiveness and its ap-
plicability by introducing new idea about Synchronized Write and Asynchro-
nized Write. The experiment result shows that Vis dumps polluted content
with inappropriate buffer size. Besides, we propose optimization techniques
about minimizing Vis’s performance impact to the target OS and depict the
corresponding evaluation result. In addition, more related work and more
detailed evaluation to Win32dd are included.

The evaluation result shows that even under high pollution rate during
the acquisition period, Vis can still ensure the accuracy while preserving the
target system execution. Vis is able to retrieve an accurate system image
in 105.86 seconds comparing with a range of 17~76 seconds for Win32dd,
18 minutes for Hypersleuth on a 1Gbps network. Meanwhile, it only incurs
9.62% performance overhead to existing applications. These results prove
that Vis owns practical value in real world application.

The rest of the paper is organized as follows. Section 2 presents Vis’s
design model and assumptions. Section 3 provides the implementation details
and related discussions, while Section 4 evaluates Vis through experiments.
We survey related work in Section 5, then illustrate the future work and
conclude in Section 6.

2. Design

We propose two key techniques termed Late- Virtualization and Virtual-
Snapshot, to fulfill the design requirement of Vis.

2.1. Late-Virtualization Approach

Inspired by NewBluePill Project [26], we propose Late-Virtualization
technique to insert a light-weight hypervisor after the target OS is started up.



Also, it keeps hypervisor functioning without suspending the target system.
Late-Virtualization leverages the wide support of hardware virtualization on
commercial x86 processors to fulfill the design goal. In current prototype,
Vis employs Intel VT-x technology [25].

Virtualization technique offers hardware emulation and usually provides
one or more isolated execution environment on the same physical machine.
It is composed of one hypervisor and one or more hosted VMs. It has three
essential characteristics: Fidelity, Performance and Safety [2]. With these
perspectives, software executes identically in the VM to its execution on
native hardware, along with more or less performance overheads. Besides
providing the required resource sharing functionality, hypervisor can also be
leveraged in security approaches for its interposition capability [44, 28, 13].

Intel VT-x separates the CPU execution into two modes: VMX root mode
and VMX non-root mode. At any time point, CPU runs in only one of the
two modes. Software running in hypervisor can supervise guest machine
execution by pre-defining the interesting event in Virtual Machine Control
Structure( VMCS) which contains VM and hypervisor execution environment
data. After that, any sensitive instruction executed in a guest VM is inter-
rupted by a VMEXIT event and trapped to the hypervisor. The control flow
never returns back unless hypervisor finishes handling the event and then
explicitly resumes running the guest machine.

A typical hypervisor launching consists of three steps. First, the VMX
root-mode is enabled. Second, the CPU is configured to execute the hypervi-
sor in root-mode. Third, the guests are booted in non-root mode. It worths
noting that each core can run at most one hypervisor at any time in current
VT-x implementation. Thus we always assume Vis is started from commer-
cial OS on non-virtualized environment. We do not consider the recursive
virtualization situation due to the lack of hardware virtualization support
inside guest virtual machine. Vis theoretically works on fully nested virtual-
ization environment. Since Intel VT-x allows to startup a hypervisor at any
time, we change the third step to continue running the virtualized native
system in order to delay launching hypervisor.

Figure 1 depicts how the native system environment changes after load-
ing/unloading Vis. During the loading phase, Late-Virtualization builds the
required virtualization environment and wraps the target OS into VM on the
fly. Loaded as an OS driver, Vis shares the same usage model with many ex-
isting forensic tools listed in [43] and requires memory by invoking standard
OS APIs. One potential problem is that in order to load the acquisition tool
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Figure 1: The Overview of Late-Virtualization Architecture.

itself, certain memory space is needed and thus there is a potential of jeopar-
dizing evidences in freed memory space. However, most of modern computer
architectures require programs to be loaded into physical memory before exe-
cuting. Vis minimizes its memory usage as other In-OS live acquisition tools
do. Also, considering the accurate volatile information gathered from the
remaining huge amount of memory, this little memory content modification
within Vis installation is acceptable. After all, no zero invasive solution for
a posteriori forensic analysis exists [31].

One fundamental assumption of Vis is the need for a trustworthy hyper-
visor. This is shared by many previous research efforts [17, 27, 38]. Even
for late-launched hypervisors, previous studies also make the same assump-
tion [31, 42]. Specifically, NewBluePill project [26] discusses how to resist
attacks from guest OS by constructing private page table and shadowing con-
trol register accesses. Besides, [31] mentions that the hypervisor code can be
attested before loading by employing Trusted Platform Module (TPM) [45].
Adopting these security approaches in Vis only requires more engineering ef-
fort, lengthens the time needed during loading and incurs slight performance
overhead at runtime. In brief, after starting up from commercial OS, Vis
assumes the hypervisor is safe enough for live acquisition.

2.2. Virtual-Snapshot Approach

Virtual-Snapshot is used to accurately capture system state without sus-
pending the target system’s normal execution. The first group of system state
is the register contents. Based on Late-Virtualization technology, Virtual-
Snapshot is able to obtain an accurate dump of the register contents by
nature. The reason is that during each trap to hypervisor, the control flow
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Figure 2: Nested Paging Mechanism. This figure describes how GVA is translated
into MPA. G means that the corresponding TLB entry stores GVA to MPA translation,
while H means that the TLB entry is used for translating GPA into MPA. RWX stands
for read, write and execute permissions on specific memory region.

will be interrupted by hardware to automatically record the contents of reg-
isters in VMCS. In addition, Late-Virtualization stores the ignored register
contents in its own data space as the complement of system state. In this
way, Virtual-Snapshot only needs to save these information in the indicated
file when performing the live acquisition task.

Unfortunately, it is not the same situation for obtaining the physical
memory content. Two challenges are identified in accurately dumping the
physical memory content. First, Virtual-Snapshot should be able to identify
which part of physical memory content is newly generated and point out what
the original content in that location is. Second, the large size of physical
memory requires a long time to acquire all the content. Supposing the target
system owns 2GB physical memory, it takes more than 20 seconds to obtain a
complete memory dump and output it to the local disk at 100MB/s transfer
speed. Previous live acquisition approaches need to suspend the machine in
order to ensure the result’s accuracy. Hence, the required long suspending
time makes them inappropriate in stealthy live acquisition occasion.

The first problem is solved by Nested Paging mechanism in Virtual-
Snapshot. Figure 2 shows how Nested Paging mechanism translates arbi-
trary Guest Virtual Address (GVA) into corresponding Machine Physical
Address (MPA). In traditional virtualization, Nested Paging mechanism is
employed to host multiple VMs on the same physical machine. As a result,
a two-level translation mechanism is needed to ensure the compatibility with
legacy OSes. Since modern hardware virtualization tries to eliminate the
guest OS sense of the underlying hypervisor [18, 34|, the first level address
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Figure 3: Virtual-Snapshot Approach. Comparing with modification to normal pages,
a different control flow is executed when modifying write locked pages.

translation, which turns GVA to Guest Physical Address (GPA), still employs
the original guest OS page table pointed by CR3 register as the traditional
way does. At the same time, the second level address translation, which uses
Nested Page Table (NPT) to translate GPA into MPA, is pointed by Nested
Page Table Pointer. It is worth noting that Shadow Page Table (SPT), the
traditional software Nested Paging approach which uses another sets of page
tables to achieve GVA to MPA translation, can also be employed by Virtual-
Snapshot in the case that hardware assisted nested paging is unsupported on
legacy hardware.

In order to monitor the modification on the whole range of target system’s
physical memory, Virtual-Snapshot first creates an identical mapping from
GPA to MPA on the second level address translation. After that, Virtual-
Snapshot actively queries guest OS for its valid physical memory range by
examining kernel data objects. This is because certain amount of system
memory address space is reserved for existing I/O devices, e.g., graphic card,
network card, etc. In addition, on x64 architecture the valid physical address
space is far more tremendous than the maximum supported memory capacity
currently. Hence, distinguishing physical memory range from I/O memory
range and unallocated memory range helps build the acquisition range in
Vis.

After obtaining the knowledge of a clear physical memory scope within
Vis startup, Virtual-Snapshot revokes write permission on the whole guest
physical memory range when acquisition command is issued from Vis client.



As shown in Figure 3(a), achieved by manipulating the second level NPT,
revoking the write permission on guest OS physical memory page forces any
subsequent writing to this page to generate nested page fault before changing
any single bit within it. Then, hardware automatically traps to Vis hypervi-
sor to handle it accordingly with hardware generated guest fault frame, which
includes the address of the modifying page, the allowed permission as well
as the desired permission. The pre-registered nested paging access violation
handler in Vis hypervisor flushes the data cache in order to get persistent
view of memory, dumps the content of the trapped page, removes write lock
from the trapped page by regranting the write permission, and then resumes
guest machine running from the trapped instruction. Since the guest ma-
chine resumes from writing to the same guest physical page and this time no
write lock is put on the same page, the write operation succeeds without in-
terrupting the original information flow, as shown in Figure 3(b). In this way,
Virtual-Snapshot obtains the original content of the guest physical page be-
ing modified, while keeping the guest OS and application’s information flow,
even in the case that Vis is orthogonal to the guest machine.

The second problem is solved by an amortized manner of Virtual-Snapshot.
According to our investigation, only a small portion of guest physical pages
are modified on each processor during a single instruction execution. Hence,
it is sufficient for Vis to dump only the changing pages in order to obtain a
complete original content of guest physical memory. Dumping the remaining
part of guest physical pages is deferred until either their modification or the
end of acquisition if their content is never changed. Similar ideas were also
suggested by HyperSleuth [31]. Unfortunately, comparing with our approach,
HyperSleuth suffered from degenerated performance because it ignores the
memory access continuity in its algorithm. Vis improves its acquisition per-
formance by dumping multiple continuous physical memory pages per trap.
As a result, by lengthening the necessary acquisition time, Vis does not re-
quire to suspend the target system. Furthermore, the acquisition incurred
overhead is slight because Virtual-Snapshot dumps small portion of critical
pages first and large part of remaining pages later in little pieces.

3. Implementation

We have implemented a prototype of Vis and applied it to live acquisition
of Windows 7 x86 system. Currently, Vis leverages Intel VT technology [25]
to provide the necessary hardware virtualization functionality. The Late-



Virtualization is implemented by directly using virtual machine extension to
build the underlying hypervisor. For Virtual-Snapshot, we employ Intel’s
Extended Page Table (EPT) technology [25] (We refer EPT to Extended
Page Table instead of the corresponding technology in the following), feasi-
ble for CPUs produced after 2008 with Nehalem micro architecture, to enable
hardware assisted paging. Vis has 5962 Source Lines of Code (SLOC), involv-
ing 871 SLOC for Virtual-Snapshot and 5091 SLOC for Late-Virtualization
technique.

During Vis’s implementation, it is necessary to balance between Vis’s
effectiveness and its applicability. There are two groups of alternative deci-
sions: Restoring Timer Stamp Counter (TSC) vs. Non-Restoring TSC and
Synchronized Write vs. Asynchronized Write.

3.1. Restoring TSC vs. Non-Restoring TSC

The alternative choice between Restoring TSC and Non-Restoring TSC
comes from the fact that TSC, which increments its value by 1 atomically
after every clock tick, keeps updating itself by hardware even in hypervisor
execution. In this case, memory write instruction on write locked guest
physical page will update TSC thousands of times. Comparing with its
execution in the original target system, it incurs a latency of tens of clock
ticks. According to our observation, it takes 196,505 clock ticks to handle
a single nested paging access violation and perform corresponding dumping
task. Vis hypervisor utilizes 5% to 7% overall CPU time when performing
live acquisition. Subsequently, this side effect can potentially, though never
observed, change the target system’s control flow, e.g., causing timeout on
waitable locks.

The solution is to record TSC value during every trap to Vis hypervisor
(denoted as #VMEXIT) and later restore TSC just before resuming to guest
machine (denoted as #VMRESUME). Also, since #VMEXIT and #VM-
RESUME events cost constant clock ticks to accomplish, Vis hypervisor can
adjust backwards the T'SC value to mask the corresponding overhead. How-
ever, there is one notable pitfall. Although the target system has difficulties
in sensing Vis hypervisor existence by checking TSC for instruction execu-
tion latency, it is possible to detect Vis acquisition action via external timers,
i.e., quartz clock. According to our experience, a 8~12 seconds latency from
external time is observed after finishing a complete Vis live acquisition.



3.2. Synchronized Write vs. Asynchronized Write

Another alternative choice, Synchronized Write vs. Asynchronized Write,
comes from the need to balance the reliability, performance and the required
engineering effort. Previous work [11] concerns that OS file system drivers
and disk drivers are unreliable in live acquisition for the reason of possible
contamination caused by malicious code. However, a considerable amount
of live acquisition tools do not provide their own utility drivers, for exam-
ple, Win32dd and FAUdd. One benefit is that it can reduce the required
engineering effort, and another one is that it can decrease the memory usage
to minimize the influence brought in by live acquisition tools to the target
system. In Vis implementation, there are two methods available to output
the dumped target system’s physical memory content to disk. The first one
is Synchronized Write, which means writing to result file immediately via
static-linked drivers during each nested page access violation; the second one
is Asynchronized Write, with the meaning of buffering the original content
during each trap to Vis hypervisor, then reusing existing OS drivers and
delegating the output task to OS worker thread.

Both of them have advantages and disadvantages. The biggest advantage
of Synchronized Write is that it can produce a more reliable target system’s
physical memory image. Since no buffer space is needed, Vis primary mem-
ory usage is for holding its code and EPT. Therefore, Vis requires a little
more memory than other live acquisition tools [43], which is acceptable ac-
cording to our assumption. Synchronized Write has several disadvantages.
Since disk operation is involved during hypervisor execution, it downgrades
the target system’s performance and raises the Vis hypervisor CPU time dur-
ing acquisition, leading to a much higher possibility of causing timeout on
the target system’s waitable locks. Besides, a significant engineering effort
is needed to implement the necessary drivers, though it has no impact on
Vis design. Moreover, it is notable that Synchronized Write via OS legacy
drivers is sometimes unattainable for Vis due to OS design. According to
our experience, some of the trapped guest memory write operations occur at
a higher interrupt request level than that is required for disk operation on
Windows 7 and always results in a Blue Screen of Death.

On the contrary, Asynchronized Write frees Vis from implementing its
own required drivers and incurs lower performance impact to the target sys-
tem via OS I/O scheduling. The biggest disadvantage is that the acquisition
result is of less reliability; and the required buffer memory is usually large,
depending on the characteristics of workload. Since applying Asynchronized
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Write incurs no design modification as we described before, the current Vis
implementation employs Asynchronized Write as its output technique. And
Vis uses only local disk to store acquisition result. Meanwhile, 1GB out of
2GB physical memory is reserved for buffering. How to reduce the buffer
memory size and to ensure the accuracy of obtaining origin buffer content is
left for future work.

Moreover, both Synchronized Write and Asynchronized Write need to
address certain implementation issues to achieve Vis functionality. Firstly,
some guest physical memory pages are never changed since the target OS
startup, e.g., most of the OS code pages. Relying on the dumping operations
in the access violation handler, Vis can not obtain the content in these pages.
To solve this problem, Virtual-Snapshot is configured to dump the remaining
pages in an amortized manner when other guest machine event handlers in
Vis is triggered. In Vis current prototype, Virtual-Snapshot also dumps the
remaining pages from low page frame number when the target OS tries to
write CR3 register, which is a frequent operation on multitasking OS on
x86/x64 architecture. Secondly, whenever nested paging access violation
occurs, it is required to set the write permission to the corresponding page
before resuming the guest machine. Otherwise it will cause infinite trapping.
Hence, the buffer memory needed by the access violation handler is identified
as Critical Buffer Space, and a Non Critical Buffer Percentage (NCBY%) is
needed to avoid too much buffer memory used by the dumping operations
performed in other handlers. NCB% is defined as the most percentage of
buffer memory to be used by the dumping operations in other handlers.
Generally, more pages dumped within a single trap or less critical buffer
space reserved for dumping operation in the access violation handler leads
to a possible violation of Vis acquisition accuracy.

3.3. Vis Optimization

We propose three optimization techniques in the current prototype. The
first one shortens the acquisition time. We notice that it is unnecessary to
limit Vis from dumping one page per trap. The acquisition accuracy is still
guaranteed even if multiple pages are obtained at once, which also shortened
the acquisition time. The reason is that obtaining multiple pages at once will
reduce the total trap times. Hence, less overhead is incurred on the context
switches between hypervisor and VM. Also, a larger 1/O buffer is needed
when dumping several pages per trap is enabled. The I/O performance im-
proves greatly when 1/O buffer increases within a certain range, resulting in
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decreased Vis acquisition time in advance. Though shortening Vis acquisi-
tion time a lot, this optimization may cause that Vis hypervisor spends more
time on handling a single trap. Generally, the more pages dumped during
each trap, the shorter the time is required to accomplish live acquisition, and
the higher the possibility is to incur side effect to the target system. We
experiment dumping 8, 16, 32, 64 pages within single trap. In Section 4, we
will evaluate the effectiveness and performance under these conditions.

The second optimization decreases Vis startup time. During Vis loading,
Virtual-Snapshot needs to build EPT, the four level page table, with identical
mapping from GPA to MPA. In the earlier version of Vis, building identical
mapping is done with a one-by-one page frame mapping. Hence, it always
needs to traverse the same EPT structures and set different entries on the
last level of EPT. As a result, Vis requires about 8 seconds to construct
the EPT to finish the mapping task. This optimization batches every 512
mappings within a single operation. Thus, it significantly reduced the times
of walking EPT. In the current Vis prototype, the loading time of current
Vis prototype is imperceptible.

The third optimization is that we create the idle state for Vis. Vis stays
in the idle state and transits to acquisition state if and only if the acquisition
command is issued from Vis client. After the acquisition is accomplished,
Vis transits to the idle state again. In idle state, Vis does not intercept any
write attempt to guest physical memory though EPT is still enabled. Hence,
no single bit in guest physical memory is dumped and outputted to local disk
and the performance impact to the target machine is minimized.

4. Evaluation

The current Vis implementation realizes its design goals described in ear-
lier sections on Windows 7. All experiments are conducted on a Dell Optiplex
980MT host with a 3.2GHz Intel i5-650 processor, 2GB RAM and a gigabit
ethernet card. We use the uniprocessor x86 version of Windows 7 in our
experiments. In this section, we first analytically examine the accurate live
acquisition guarantees provided by Vis. Then we present its overall perfor-
mance as well as the performance impact on the target system.

4.1. Effectiveness Evaluation

We compare the acquisition accuracy evaluation of Vis with another two
commonly studied live forensic tools, as shown in Figure 4. The experiment

12



=-Memoryze win32dd =*Vis
30000 b
25000 /
20000
15000 /
10000 /
5000 /

-

0 L 4 4 4 4 4
x T x T x T x T x T x

100 200 400 800 1600 2500
Pollution Rate (pages per second)

Missing Pages

Figure 4: Accuracy evaluation. Different page pollution rate is tested for 2GB memory
dumping in each test. Missing Pages means the number of the obtained pages containing
polluted content.

methodology is that we load the acquisition process first, and then manually
start pollution process immediately after beginning acquisition. The pol-
lution process allocates and fills memory with unique content that will be
nonexistent if not polluting. As Figure 4 shows that, even in the situation
that the pollution process allocates and pollutes memory at the rate of 2500
pages per second for 20 seconds, no single polluted page is dumped by Vis
with the target running. On the contrary, though Win32dd tool finishes its
dumping physical memory task in 17 seconds and Memoryze, 18 seconds,
they recorded 71.62% and 56.96% polluted pages in the result file respec-
tively. In comparison, Vis can retrieve physical memory image and assure its
accuracy in theory.

To the best of our knowledge, Vis is the first system that is able to pro-
vide accurate live acquisition while the target native system keeps running.
This guarantee is achieved by Late-Virtualization’s isolation and introspec-
tion characteristics as well as Virtual-Snapshot’s amortized obtaining man-
ner. With hardware virtualization support, Vis always obtains the target
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system’s original content before any subsequent modification.

4.2. Overall Performance

In order to evaluate Vis overall performance in acquisition state, a series
of experiments are conducted under different configurations, including the
number of pages dumped in each trap, NCB% and Restoring/Non-Restoring
TSC.

Vis shows different overall performance under various configurations, as
shown in Table 1. In these experiments, Vis’s performance under each con-
figuration is tested for 5 times, then the average value is recorded as the
final result. After analyzing Table 1 thoroughly, we can see that it firstly
shows Vis can accurately obtain the original memory content in the target
system by dumping 8 pages in each trap and being configured with NCB%
= 60%. Secondly, with the same number of pages dumped in each trap, Vis
acquisition time decreases when the NCBY% raises. However, the result is not
available when Vis is configured with NCB% = 0%. With this configura-
tion, Vis can not obtain the content in those never changed pages because no
buffer space can be used outside Vis’s access violation handler. Hence, Vis
requires 97.09~105.86 seconds for accurate acquisition, in the case of dump-
ing 8 pages per trap with NCB% varies from 20% to 60%. Thirdly, with the
same NCB%, Vis decreases its acquisition time by increasing the number of
pages dumped per trap, which proves the claim that the more pages obtained
per trap, the less time is needed in Vis acquisition. Also, the trend of Miss-
ing Pages proves that dumping more pages per trap or configuring a higher
NCB% leads to Vis acquisition accuracy violation, as described in Section 3.

From the experiment results, we also observed two noteworthy symp-
toms. The first symptom is that Vis has a smaller Missing Pages number
with NCB% = 60% than that with NCB% = 40% under the configuration
of dumping 32 pages per trap, as shown in Table 1. Also, Table 2 shows the
recorded Missing Pages results have a wide range under the same configu-
ration. It is normal because non-deterministic events such as interruptions
lead to various amount of modification to the target system’s code and data
portions. All the modifying pages are required to be dumped before overwrit-
ing their original content. As a result, a large amount of modification pages
exhaust critical buffer space more easily, leading to acquisition accuracy vi-
olation. Another reason is that NCB% is defined as the most percentage
of buffer space which can be used except the access violation handler. It is
possible for the access violation handler to take any proportion of the buffer
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Pages Dumped Per Trap

s | 1.6 | 32 | &
NCB% = 0%
Time (s) N/A N/A N/A N/A
Missing pages N/A N/A N/A N/A
Disk write (KB/s) N/A N/A N/A N/A
NCB% = 20%
Time (s) 105.86 77.90 66.92 55.06
Missing pages 0 5650 29402 63089
Disk write (KB/s) || 19101.9 | 25959.6 | 30217.3 | 36728.6
NCB% = 40%
Time (s) 101.05 76.08 62.60 51.87
Missing pages 0 10228 35327 61343
Disk write (KB/s) || 20011.9 | 26579.3 | 32305.6 | 38986.0
NCB% = 60%
Time (s) 97.09 72.57 58.76 49.07
Missing pages 0 14185 33242 59526
Disk write (KB/s) || 20829.0 | 27864.0 | 34412.3 | 41210.6
NCB% = 80%
Time (s) 90.20 69.00 53.63 44.75
Missing pages 599 18377 39028 65202
Disk write (KB/s) || 22420.1 | 29307.3 | 37705.2 | 45193.0
NCB% = 100%
Time (s) 85.47 63.86 51.57 42.01
Missing pages 5364 21974 38133 72508
Disk write (KB/s) || 23658.7 | 31665.2 | 39214.3 | 48136.3

Table 1: Vis’s Overall Performance. This figure compares Vis overall performance
under different configurations when enabling Non-Restoring TSC. It is noteworthy that
the result is not available when NCB% = 0%.
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Pages Dumped Per Trap
s | 16 | 32 | 64
| Average || 338.62% | 143.83% | 52.58% | 18.15% |

Table 2: The Ratio of Range to Average of Missing Pages. We calculate the ratio
of range to average of missing pages under different configurations. Then, we record the
average value of every data column as the final result.

Speed Mode Buf. Size | Time | CPU | Disk Write
(KB) (s) Util. (KB/s)
Normal 4 76 | 46.18% 26607.95
Fast 64 18 19.59% 112344.67
Sonic 512 17 6.00% 118953.18
Hyper Sonic 1024 17 5.36% 118953.18

Table 3: Win32dd Performance. When smaller than 512KB, the I/O disk buffer is the
major effect to the disk write thoughput.

space, since the access violation handler always has a higher priority in using
Vis’s buffer space.

The second symptom is that the ranges of Missing Pages become smaller
in average when Vis dumps more pages per trap, as shown in Table 2. The
reason comes from both the memory layout and its space locality on Windows
7. Because kernel code and data always start from the low physical address
space in Windows 7 x86 version. The kernel memory is more likely to be
dumped in Vis’s guest CR3 write handler. As a result, the impact caused by
non-deterministic events is minimized and the Missing Pages result is more
stable among different runs.

We also compare Vis and Win32dd acquisition performance. Table 3
shows the Win32dd acquisition performance under 4 speed modes, which
only leads to different 1/O buffer size according to the technology support of
Win32dd. The elapsed time we recorded is directly obtained from Win32dd
acquisition report, while the average CPU utilization is retrieved by means
of Windows Management Instrumentation (WMI) [36]. The Win32dd ac-
quisition performance evaluation shows that it takes 17~76 seconds for a
complete live acquisition and the more 1/O buffer space, the less acquisi-
tion time as well as CPU utilization is needed. Also, the result shows that
the performance improvement is imperceptible when the 1/O buffer space is
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Pages Dumped Per Trap

s | 16 | 32 | 64
0% N/A | N/A | N/A | N/A
20% 884s | 543 s | 6.44s | 4.91s
40% 723s | 586s | 5.14s | 3.91s
60% 727s | 524s | 510s | 3.95s
80% 582s | 441s | 4.08s | 2.45s
100% 560s | 4.29s | 3.60s | 3.48 s

NCB%

Table 4: Decreased Acquisition Time (seconds) by Enabling Restoring TSC.

larger than 512KB due to hardware limitation. With the same experiment
methodology, Vis evaluation result shows that it incurs 4.74% to 6.48% CPU
utilization in average under different NCB% when dumping 16 pages per
trap. Considering the acquisition time with this configuration shown in Ta-
ble 1, it can be calculated that Vis results in 20.5% to 23.1% CPU utilization
without amortizing I/O operations in theory, suggesting Vis main acquisition
performance impact is caused by I/O operations when comparing this result
with Win32dd CPU utilization in fast mode. In addition, though taking
39.3%~471.1% more time than Win32dd to accomplish live acquisition, Vis
is applicable when comparing its acquisition with that of real world static
forensic tools, which needs hours or even days to obtain a complete dump
result.

After enabling Restoring TSC configuration in Vis, it shows a decrease
in acquisition time in all situations, as shown in Table 4. In average, the
acquisition time is decreased by 7.30% compared with that configured Non-
Restoring TSC. Besides, Table 4 shows that the more pages dumped per
trap, the smaller the difference in acquisition time between Restoring/Non-
Restoring T'SC. This is obvious since the more pages dumped per trap, the
less traps are needed for a complete acquisition to the same target system.
Since the total I/O operation takes a constant time for the same target sys-
tem, less traps decrease the total time spent on context switch between guest
machine and Vis hypervisor. It is worth mentioning that this acquisition time
difference only reflects querying system time by means of reading local TSC.
Restoring TSC has no effect on external timer, as described in Section 3.
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H On Acquisition ‘ Idle
Scenario 1: Read CR3
#VMEXIT world switch 966 T
Read CR3 value 316 179
#VMResume world switch 1355 760
Scenario 2: Write CR3
#VMEXIT world switch 966 548
Write CR3 value 113 113
Handle dumping 214934 N/A
#VMResume world switch 1355 760
Scenario 3: Handle EPT Violation
#VMEXIT world switch 919 N/A
Clone origin page contents 36232 N/A
Reset EPT entry 157112 N/A
#VMResume world switch 2243 N/A

Table 5: Vis Micro Analysis. This figure shows the needed clock ticks in handling
Read/Write CR3 and EPT violation happens in the target system.

4.8. Performance Impact

Micro Analysis Table 5 presents the micro analysis that measures the
overhead of handling Reading/Writing CR3 and handling EPT violations,
both including acquisition state and idle state. In these experiments, Vis is
configured to dump 8 pages per trap with NCB% = 20%. We perform a com-
plete live acquisition as well as keep Vis in idle state for the same time length.
Hence, the Guest Read CR3 scenario has happened for hundreds of times,
and the other scenarios have happened for tens of thousands of times. Then,
the average is recorded as the final result. In Table 5, #VMEXIT World
Switch means the total clock ticks spent on hardware context switch and
delegating event to the proper handler; #VMResume World Switch means
the total clock ticks needed for both necessary cleaning work and hardware
resuming VM. In these experiments, all the benchmarks exhibit low overhead
in context switch between the target system and Vis. Besides, there is no
EPT violation handling in Vis idle state because write attempt interception
is disabled in idle state.

During Vis acquisition, the Handle Dumping value item takes the most
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clock ticks in Table 5. The reason is that it includes both the Clone Origin
Page Contents and Reset EPT Entry functionality, as well as other functions
to check whether its own buffer space is exhausted. Reset EPT Entry takes
the second most clock ticks, indicating that it is possible to improve Vis
acquisition performance by adopting better EPT entry resetting algorithm
(e.g., 8 entries batching resetting) or waiting for EPT technology to become
more mature. Moreover, the more mature EPT technology becomes, the
more performance improvement for Vis in idle state gains, especially for the
practical scenarios that Vis needs to stay in idle state for a long time before
acquisition starts.

Application Macrobenchmark In the former subsection, we have
evaluated and analyzed Vis performance in acquisition state. For a complete
performance evaluation, we also measure Vis in idle state runtime overhead
to the target system. We execute CPU-intensive, I/O-intensive benchmarks
with Vis. For CPU-intensive applications, we use the SPECint 2006 suite.
For I/O-intensive applications, we select IOMeter !, netperf ? and Apache
web server.

For IOMeter, we perform sequential read (sread), sequential write (swrite),
random read (rread) and random write (rwrite) with 512KB buffer. For
netperf, we use the Vis running system as the netperf server, and run both
TCP_STREAM (net_tcp) and UDP_STREAM (net_udp) benchmarks to eval-
uate network performance. The Apache web server (httpd) is also deployed
on the Vis running system, hosting the test website with 8 random files, the
size of which varies from 4KB to 16MB. Http_load ? is a flexible program that
parallel performs HT'TP requests and can do operations on the requested files
to verify their safe arrival. Hence, http_load tool is used in Apache web server
benchmark to parallel perform maximum 120 transactions with 120 seconds
duration.

The SPECint benchmark result is presented in Table 6. Most of the
SPEC benchmarks show less than 6% performance overhead. However, there
are three benchmarks with over 10%, and one of them, MCF benchmark,

with about 50% overhead. According to our investigation, this overhead is
caused by the high EPT Translation Look-aside Buffer (TLB) Miss frequency

http://www.iometer.org/
Zhttp://www.netperf.org/
3http://www.acme.com/software/http_load/
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ltem Overhead (%)
No Restoring TSC ‘ Restoring TSC

perlbench 4.74% 4.51%
bzip2 3.03% 3.20%
gee 14.16% 13.57%
mcf 50.38% 50.38%
gobmk 0.22% 0.45%
hmmer 0.24% 0.24%
sjeng 6.13% 6.32%
libquantum 6.34% 6.34%
h264ref 1.91% 1.91%
omnetpp 15.30% 15.85%
astar 8.39% 8.60%
xalancbmk 7.46% 7.84%

Table 6: Vis Performance Impact - SPECint Benchmarks.

during MCF running. On the one hand, arc_t type is 32 bytes long and
nr_group variable is always set to 870 at runtime. When executing the for-
statement shown in Figure 5, the arc value increments 870 times 32 bytes in
each for-loop. This leads to a poor space localization, which causes higher
probability in occupying EPT TLB due to the fact that TLB is shared by both
Nested Paging and traditional paging in current implementation of hardware
virtualization. On the other hand, every EPT TLB Miss costs the guest
machine a maximum 14 times of memory access overhead to complete the
nested address translation on x86 platform. This is calculated according to
the following facts: traditional page table has two level paging structures,
while EPT has four on x86 platform. Hence, the TLB Miss overhead will be
greatly amplified when EPT is introduced in.

It is noteworthy that similar approaches seem to be able to detect the
presence of hypervisor. Hence, they can choose to erase certain memory
content afterwards. However, by employing the Blue Chicken anti-detecting
strategy proposed in NewBluePill project, Vis hypervisor can notice the un-
natural trap frequency by intercepting the reading T'SC instruction and re-
turn the fake TSC value. As a result, Vis remains hidden from the target
system.
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Overhead
Benchmark No Restori
o Hestorig Restoring TSC
TSC

sread 0.45% 0.04%

SWT1 71 .
[OMoter swrite 0.71% 0.78%

rread 0.10% 0.13%

rwrite 0.78% 0.91%

t_t -2.09 -2.10

Netperf net-eb % %

net_udp -0.01% 0.03%
Hitpd | throughput | 0.30% |  -0.03%

Table 7: Vis Performance Impact - I/O Benchmarks.

165 for( ; arc < stop_arcs; arc += nr_group )

166 {

167 if ( arc->ident > BASIC )

168 {

169 /* red_cost = bea_compute_red_cost (arc); x*/
170 red_cost = arc->cost

- arc->tail->potential
+ arc->head->potential;

178 }
179 }

Figure 5: A For-Statement in MCF Source Code. This for-statement is the hottest
spot of TLB miss in MCF benchmark. It originally exists in the source code of pbeampp.c

The I/O benchmark results prove that the overhead brought in by Vis is
imperceptible, as shown in Table 7. In theory, Vis with Restoring TSC en-
abled should have a better performance than that with Non-Restoring TSC
configuration. However, the measurement error and the low number of times
trapping to Vis leads to opposite results recorded in portion of 1/O bench-
marks. In average, Vis in idle state incurs 9.62% performance impact to the
target system when Non-Restoring TSC configuration is activated, compared
t0 9.00% when enabling Restoring TSC. At last, the network throughput re-
sult shows the network throughput is increased by 1% in average after Vis is
loaded, no matter Restoring T'SC or Non-Restoring TSC is adopted. We are
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still investigating on it.

5. Related Work

Live acquisition has been studied for several years. Previous live acquisi-
tion approaches can be divided into two categories: Software Acquisition and
Hardware Acquisition. As introduced in Section 1, in the field of software
acquisition, prior approaches include both Virtualization Introspection and
In-OS State Fetching. Leveraging Xen to construct isolated introspection
environment, VIX tools [23] and Srinivas’s work [29] are examples of Vir-
tualization Introspection. Xen developers even propose an on-going project
with Copy-on-Write technique to obtain VM state [15]. By running in the
Dom0, both of them have no modification to guest system during acquisi-
tion in theory. However, all Xen based forensic tools are inapplicable when
performing live acquisition on native system, since they bring in a significant
environment impact to the target system, including a different hardware in-
terface from that of native devices and modification on Interrupt Descriptor
Table (IDT), Global Descriptor Table (GDT) and the Master Boot Record
(MBR) on disk. As a result, they need to reinstall the target native OS
and reboot the physical machine after the Xen based live forensic tools are
deployed. Vis solves these problems by encapsulating the native system into
a single virtual machine after the target OS starts up. Also, shadowing is
needed to conceal necessary modification and present their original values to
the target system. Ruo’s work [4] is another Xen based live forensic tool,
which incurs additional environment impact to the target system because it
uses guest modules for acquisition.

Another example of Virtualization Introspection is employing process
based virtual machine. VMWare Workstation [46] is one representative hy-
pervisor in this type. It provides a means of taking a snapshot of the state
of the virtual machine, which includes the whole physical memory content.
However, it shares the same problem with those Xen based forensics tools.
VMWare Workstation needs to suspend the target system during acquisition
and provide a different hardware interface to VMs. In short, this technique
does not address imaging of the host machine, either.

BodySnatcher [42] uses OS driver to load hypervisor on the fly, which is
quite similar to our Late-Virtualization technology. And it uses a built-in
acquisition OS to obtain the target system’s volatile memory content. The
most critical problem of BodySnatcher is that in order to dump accurately, it
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needs to suspend the target system during acquisition, thus being ineffective
if the target OS has a requirement of 24/7 availability. Another problem
is that, BodySnatcher’s current implementation exposes its modification in
order to keep the target system running and capable of handling critical
events in hypervisor. Vis solved the first problem by Virtual-Snapshot, with
nested paging and amortized acquisition method, Vis can accurately obtain
the target system physical memory content without suspending the target
system. Vis has never run into the second problem, because there is no need
to modify the target system’s IDT during Vis’s lifetime.

For traditional In-OS live acquisition tools, many of them exist in user
level only, e.g., Memoryze [30] and GNU dd *. Meanwhile, some of In-OS live
acquisition tools are loaded as kernel module. All the acquisition commands
are issued from their user level client consoles. Win32dd [37] belongs to this
type. The biggest problem for these approaches is that they fail to assure
the accuracy of the obtained target system’s physical memory content. In
Vis, this problem is solved by Virtual-Snapshot. Another feasible accurate
live acquisition method is to leverage the crash dump facility on modern
commercial OSes. This function has been long provided for debugging sup-
port. For example, by proper configuration, Windows can generate memory
dumps under certain events, e.g., “magic” keystrokes and hardware/soft-
ware failures. When a failure occurs, OS dumping facility provides necessary
information to correct or avoid the error. Kdump [20] provides this function-
ality by loading a crash dump specific kernel on Linux system. Sun, AIX
and HP’s UNIX hardware platforms use firmware to achieve crash dumping
when coming across special key sequences [14]. However, it is impossible to
continue running the target OS or application after a crash dump. Also,
the accuracy of the acquisition result is dubious because rootkits probably
hook critical functions in either crash dump modules or filesystem drivers to
conceal important evidences. Finally, alternating the configuration of crash
dump facilities requires rebooting machine on some commercial OSes, for
example, Windows. As a result, Vis surpasses the approach of employing
crash dump facility in live acquisition in both effectiveness and applicable-
ness. Meanwhile, the evaluation result also shows that Vis can be leveraged
in debuggers.

Previous work also proposes hardware acquisition methods to be an alter-

‘http://www.gnu.org/software/software.html
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native method in live acquisition. Currently, these methods rely on accessing
the target system’s main memory through the use of Direct Memory Access
(DMA). To achieve this goal, Carrier’s work [12] proposes an acquisition
specific PCI card which disables CPU and performs DMA operation to ob-
tain the target system’s volatile memory content. Also, Boileau’s work [7]
and Martin’s work[32] employ firewire protocol to perform DMA operations.
This approach seems to have the capability of accurate dumping. However,
Rutkowska’s work [40] proves that it is probable to present a different mem-
ory view to DMA based acquisition devices through configuring Memory
Mapped 1/0 features on emerging chipsets. Hence, the obtained volatile
memory content is quite different from the real content present to CPU. Vis
does not have this problem because the hardware virtualization technology
ensures that hypervisor has a broader view than guest machine. Thus, Vis
can access all the target system content within its own context.

6. Future Work and Conclusion

Though Vis is proved to be practical in real world scenarios, some mean-
ingful extensions are still needed to strengthen its capability. The first ex-
tension is attestation of the acquisition result in Vis. Attesting the obtained
result ensures its integrity and this is required in live forensic’s reporting
step. The second extension is permitting result to be outputted to non-local
disk, for example, removable media or remote systems. With this feature,
it is possible to include accurate dumping disk contents into Vis function-
ality, even allowing live cloning among native systems. The third extension
is to protect Vis from being detected, and attacked by malware (like kernel
rootkits). At last, we will put effort in retrieving the peripheral states of the
target system.

Besides, we would also like to extend Vis to support more platforms.
Firstly, we’d like to evaluate the chance of adopting Vis on ARM architecture.
It is largely employed by smartphones and supports virtualization in recent
years [24]. Secondly, Vis can also be used in the cloud environment in case of
supporting recursive virtualization [6]. As a result, live forensic will benefit
from Vis in advance for making the subsequent analysis much easier.

We have presented Vis, a light-weight virtualization approach to provide
accurate retrieving of native system state while the target system keeps run-
ning. Vis achieves its goal via two key techniques of Late-Virtualization and
Virtual-Snapshot. Late-Virtualization is used to provide an isolated run-
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ning environment for live acquisition tools after the target OS is started up.
Virtual-Snapshot is employed to accurately obtain the target system’s phys-
ical memory content at the given time point. It avoids suspending the target
system during main memory content acquisition by adopting the amortized
manner in acquisition. A proof-of-concept prototype has been developed to
obtain physical memory content on Windows 7. The evaluation result demon-
strates that Vis can reliably provide the intended accurate live acquisition
with small performance overhead.
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