
Information Flow Control for Dynamic Reactive Systems

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

McKenna McCall

B.S., Computer Science, Kansas State University
B.S., Mathematics, Kansas State University

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May, 2023

c© McKenna McCall, 2023
All rights reserved.

iii

For my daughter, Joan, who has made this journey immeasurably more fulfilling and fun.

iv

Thesis Committee

Limin Jia, Carnegie Mellon University, Chair

Lujo Bauer, Carnegie Mellon University

Matt Fredrikson, Carnegie Mellon University

Stephen Chong, Harvard University

v

Acknowledgements

I feel very lucky to have many sources of mentorship and support during my PhD, but my advisor, Limin

has been central to it all. Words cannot express how grateful I am for the support I have received for all

these years. No matter what challenge I have faced (professional, personal, or pandemic-related), I have

felt like I have someone I can go to. You are truly an inspiring mentor and I hope that I can use my career

to offer guidance to others the way you have done for me.

Thank you to the rest of my committee for your feedback and support, as well as the many other

incredible mentors who have helped me get here: Randy Wewer for an early introduction to propositional

logic, and Mary Lathrop for encouraging me to be more ambitious in my academics. I also want to thank

Dr Jessy Changstrom, who is the first person to suggest I try computer science, and Dr Jeremy LeCrone,

whose classes both helped me learn how to write proofs and realize how much I enjoy writing them.

I am also incredibly thankful for my friends. Thank you to Sabrina Kunkel for introducing me to

my favorite YouTube video essayist (among many other excellent recommendations) and for being an

amazing listener in general. To my oldest friend, Anna Confer, you probably do not realize how much

your friendship helped me get to where I am now. And an enormous thanks to my brothers and friends,

Noah and Josh, for always having the best video game and streaming recommendations on-hand.

A very special thank you to Claire Le Goues and Adam Brady for being the parents of my daughter’s

first best friend and some of the most generous and welcoming people I have had the pleasure of knowing.

From hosting our little pandemic preschool to inviting us to (several!) family gatherings, you not only

helped my family weather the pandemic, but you also taught this first-generation college student more

about what an academic career might look like than any workshop ever could. I am so grateful for your

friendship and looking forward to many future playdates.

None of this would have been possible without the support from my family. To my husband, Mike,

thank you for moving across the country and joining me on this adventure. Thank you for being the first

person to encourage any and all of my ambitions, making me coffee, having the best taste in movies, and

helping make everything work. Joan, thank you for sharing your delightful sense of humor and rainbow

drawings with me. I am so proud and thankful to call myself your mother.

Finally, I am thankful for the funding that has afforded me all the incredible opportunities I have

had over the last several years. The work in this thesis was supported in part by the CyLab Presidential

Fellowship at Carnegie Mellon University and by the National Science Foundation via grants CNS1704542

and CNS1320470.

vi

Abstract

It is common for reactive systems like web services to collect personal information and/or perform sen-

sitive tasks, making information flow control (IFC) in these applications particularly important. Most

existing work on IFC in reactive systems does not address the unique capabilities an attacker has in a

dynamic setting (like using a script to simulate a user event, or creating a new HTML element), or else en-

force strict noninterference which is too restrictive to be practical. Moreover, standard security definitions

do not always translate cleanly to reactive settings. In this thesis, we revisit information flow control con-

cepts like confidentiality, integrity, declassification, and endorsement from the perspective of a dynamic

reactive system.

We identify new ways dynamic features can leak information via declassification and propose two

strategies for mitigating these risks. The first is an extension of Secure Multi-execution (SME) that treats

dynamic features specially so that they do not influence declassification. The second combines SME and

taint tracking to keep track of attacker influence within SME executions. We develop a new notion of

“attacker influence” which has all the advantages of a knowledge-based definition, making it an intuitive

and precise way to reason about security. Robust declassification follows naturally from this new security

condition because we treat declassifications as trusted behaviors in our noninterference definition. Finally,

we balance the tradeoff between security and performance by developing a flexible framework which

allows the seamless composition of multi-execution and taint tracking techniques. This means that event

handlers from different sources can be treated differently from each other, for example, according to

their relative levels of trustworthiness or complexity. We find that composition can not only balance

the security and performance tradeoffs of different techniques, but some compositions actually achieve

stronger security guarantees compared to using one technique alone.

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Reactive Systems . 3

2.2 IFC Policies and Noninterference . 4

2.3 Dynamic IFC Enforcement . 6

2.4 Declassification . 8

2.5 (Knowledge-based) Security Definitions . 9

2.6 Robust Declassification and Nonmalleable IFC . 11

3 Robust Declassification via Special Treatment for Dynamic Features 13

3.1 Overview . 13

3.2 Dynamic Features Leak Information . 14

3.3 Dynamic Reactive Programs . 17

3.4 Extended SME for Dynamic Features . 24

3.5 Discussion . 31

3.6 Summary . 32

4 Robust Declassification via Limiting Attacker Influence 33

4.1 Overview . 33

4.2 Motivating Examples . 34

4.3 SME with Dynamic Features . 38

4.4 Declassification . 44

4.5 Endorsement . 51

4.6 Security . 53

4.7 Discussion . 67

vii

CONTENTS viii

4.8 Summary . 68

5 Compositional IFC for Reactive Systems 69

5.1 Overview . 69

5.2 Motivating Example . 70

5.3 Compositional Enforcement Framework . 73

5.4 Security and Weak Secrecy . 84

5.5 Discussion . 92

5.6 Summary . 92

6 Discussion and Future Work 93

6.1 Alternatives to IFC . 93

6.2 More Realistic Web Models . 93

6.3 Applications to Other Reactive Settings . 95

6.4 Extending our Compositional Framework . 95

A Supporting Materials for Chapter 3 97

A.1 Additional Definitions . 97

A.2 Soundness Proofs . 101

A.3 Robust Declassification Proofs . 106

A.4 Precision Proofs . 116

B Supporting Materials for Chapter 4 122

B.1 Additional Definitions . 122

B.2 Proofs . 131

C Supporting Materials for Chapter 5 150

C.1 Additional Definitions . 150

C.2 Complete Semantics . 152

C.3 Security Definitions . 175

C.4 Proofs . 188

Bibliography 235

List of Figures

2.1 Example reactive system. 3

2.2 Comparison of SME and Faceted Execution. Inputs and outputs are shown with solid arrows

while the dashed arrow in the Faceted Execution diagram represents a split/join in the execu-

tion context. 7

3.1 The high execution receives the real keypress, so generates only one button with id idi. The

low execution receives the default value, so generates all n buttons. 17

3.2 Operational Semantics of Commands . 19

3.3 Operational Semantics for Event Loop . 20

3.4 Constructs for Defining Security Policies . 21

3.5 The high execution receives all inputs, unchanged. The low execution receives L inputs and

released H inputs through the release module. Note that the release module throws out the

H∆ inputs so that they do not interfere with the declassification policy. 25

3.6 Operational Semantic Rules for Single Execution . 25

3.7 SME Input Rules . 26

3.8 SME Output Rules . 26

3.9 Projection of Traces . 27

4.1 Example of dynamic features causing leaks. The dv case guarantees that the attacker copy will

have a matching button (colored light blue) to capture the declassified event and leak the secret. 34

4.2 Information is allowed to flow in the direction of the arrows. The attacker can influence

Untrusted executions to add page elements or event handlers to try to manipulate declassi-

fication directly within an execution (blue case) or indirectly between executions (orange case). 36

4.3 Syntax for processing inputs and outputs. 38

4.4 Top-level SME rules for processing inputs and outputs, and looking up event handlers 40

4.5 Mid-level rules for processing the event queue . 42

ix

List of Figures x

4.6 Rules for running event handers . 43

4.7 Additional rules for running event handers . 44

4.8 Updated input rule for declassification. We highlight the noteworthy changes to the existing

input rule using red text. 45

4.9 SME model for enforcing confidentiality and integrity information flow policies, including

declassification. A secret and trusted event (mouse click) would be shared with (S, T) and

(S, U) executions, and would only be shared with (P, U) and (P, T) executions if permitted by

the declassification policy. 45

4.10 Modified input rules for robust declassification. Noteworthy changes are shown in red text. . . 48

4.11 Additional rule changes for robust declassification. Noteworthy changes are shown in red. . . . 49

4.12 Insecure example from Section 4.2 with robustness checks. The labels tell us the trustworthiness

of the source of the page elements and event handlers, depicted here as small white labels on

each page element. 50

4.13 Update input rule for endorsement. We highlight the noteworthy changes to the existing input

rule using red text. 52

4.14 Modified input rules for transparent endorsement. Noteworthy changes are shown in red. . . . 54

4.15 Additional rule changes for transparent endorsement. Noteworthy changes are shown in red

text. 55

4.16 The observation (p = c) or behavior (p = i) of a trace at l (only declassification shown) 56

4.17 The states above and below the dotted line are behaviorally equivalent at T even though there

are different products in the (P, U) and (S, U) states. 61

4.18 New rule for the behavior of a trace for robust declassification 62

4.19 Additional rules for the observation (p = c) or behavior (p = i) of a trace at l to account for

endorsement, downgrading, and the creation of a new page element. 64

4.20 Helper functions for trace observation and behavior for endorsement and downgrading. 65

5.1 Syntax for the compositional framework . 73

5.2 Semantics for processing inputs (user events). 74

5.3 Semantics for performing outputs (communications on channels). 74

5.4 Reactive system described in Chapter 2.1. 76

5.5 Semantics for managing the event handler queue. 78

5.6 Selected command semantics . 79

5.7 Storage syntax . 79

List of Figures xi

5.8 Event handler storage syntax for the DOM . 80

5.9 Example configuration . 83

5.10 Rules for projecting execution traces to L . 85

5.11 Comparison of Progress-insensitive security (top) and Weak Security (bottom) proofs. Given

T1 ≈L T2, where T1 takes a step to , we want to show that T2 can take equivalent steps , and

that trace equivalence maintains state equivalence . 89

A.1 Projection of actions . 97

A.2 Projection of traces . 97

A.3 Declassified input trace . 99

B.1 Rules for the observation of an SME store, single store, and event handler map at l (when

p = c) and behavior of an SME store at l (when p = i). 123

B.2 Rules for the observation (when p = c) or behavior (when p = i) of a configuration stack at l . 123

B.3 Trace projection for output and dynamic behaviors . 125

B.4 Trace projection for inputs . 126

B.5 Helper functions for trace projection for input rules . 127

B.6 Helper functions for trace projection for input rules . 127

C.1 Event handler lookup semantics . 153

C.2 Event handler lookup helper functions . 154

C.3 Additional rules for processing the event handler queue for SME and MF 155

C.4 Event handler semantics . 156

C.5 Additional event handler semantics for MF . 156

C.6 Variable assignment semantics . 158

C.7 Expression semantics . 159

C.8 Variable lookup rules . 161

C.9 Shared Unstructured EH storage command semantics . 162

C.10 Shared Tree-structured EH storage command semantics . 162

C.11 Rules for looking up a node in the unstructured EH storage . 163

C.12 Rules for updating the attribute of a node in the unstructured EH storage 164

C.13 Rules for triggering an event in the unstructured EH storage . 165

C.14 Rules for creating a new node in the unstructured EH storage . 166

C.15 Rules for registering a new event handler in the unstructured EH storage 167

List of Figures xii

C.16 Rules for looking up the address of a node in the tree-structured EH storage 167

C.17 Rules for looking up a node in the tree-structured EH storage . 168

C.18 Rules for updating the attribute of a node in the tree-structured EH storage 168

C.19 Rules for triggering the event handler in the tree-structured EH storage 169

C.20 Rules for adding a child to a node in the tree-structured EH storage 170

C.21 Rules for adding a sibling to a node in the tree-structured EH storage 171

C.22 Rules for registering an event handler to a node in the tree-structured EH storage 171

C.23 Rules for navigating the tree-structured SMS EH storage . 173

C.24 Rules for accessing the attribute of node in the tree-structured EH storage 173

C.25 Rules for returning the number children a node in the tree-structured EH storage has 174

C.26 Modified EH semantics for weak secrecy . 176

C.27 Updated event handler API semantics for weak secrecy . 177

C.28 Rules for configuration stack and event queue equivalence . 177

C.29 Low projection of a local variable store. The rules for the global variable store are the same. . . 178

C.30 Event handler store projection for unstructured event handler stores 179

C.31 Value projection for unstructured EH stores . 180

C.32 Value projection for tree-structured EH stores . 180

C.33 Node projection for an unstructured EH store . 182

C.34 Node projection for a tree-structured EH store . 183

C.35 Event handler map projection . 183

C.36 Command and EH queue projection rules . 184

C.37 Projection of Traces to L Observation . 185

List of Tables

4.1 Knowledge definitions. Knowledge and progress knowledge are for defining a knowledge-

based progress-insensitive noninterference. Release knowledge and transparent knowledge

account for what is leaked to the attacker through declassification and the addition of a page

element/event handler capable of transparent endorsement (respectively). Complete defini-

tions may be found in Appendix B.1. 55

4.2 Influence definitions. Influence and progress influence are for defining an influence-based

progress-insensitive noninterference. Robust influence is for defining robust declassification.

Complete definitions may be found in Appendix B.1. 60

4.3 Additional knowledge and influence conditions for defining transparent endorsement. Com-

plete definitions may be found in Appendix B.1. 66

5.1 Conversion between standard, tainted, and faceted values. 82

5.2 Requirements for Progress-Insensitive Security and Weak Secrecy. The requirements for both

are similar, except that Weak Secrecy does not use requirements T3 or EH3 and the Progress-

Insensitive Security requirements E1, V1, and EH1 use strong equivalence while the Weak

Secrecy requirements WE1, WV1, and WEH1 use standard equivalence. 88

xiii

Chapter 1

Introduction

Online services for banking, social media, email, and shopping are becoming unavoidable, and these

services typically require access to the user’s personal information such as their phone number, location,

or credit card details. These applications often include code from heterogeneous and untrusted sources

and could potentially leak the users’ sensitive data to an adversary. Attackers have been known to steal

sensitive user data [51], sometimes via third-party scripts, which have been observed indiscriminately

collecting data from web forms, including personal information like email addresses and passwords [86].

Information flow control (IFC) is a promising technique to ensure that applications do not leak sensitive

data. Information flow policies (such as, “clicks are secret and should not be leaked to public advertisers”)

specify which information flows are allowed. Information flow policies may be enforced statically [78, 37,

94, 50] (at compile-time), dynamically [13, 14, 15, 38, 79] (at runtime), or via hybrid techniques [56, 75, 40,

65, 8] combining both. The canonical IFC security property is noninterference [43] which says that secret

inputs should not influence more public outputs. The simplest form of noninterference says that public

outputs (which can be used with the least restriction) should never be influenced by secret inputs (which

is the data whose use is most restricted).

Many runtime mechanisms have been developed for enforcing information flow control (IFC) poli-

cies [35, 22, 88, 24, 41, 52, 20, 21]. Some prior work enforces strict noninterference [5, 73, 35, 20, 42, 45, 82],

which is often too inflexible to be practical. Supporting principled declassification, which allows sensitive

information to be leaked while maintaining an otherwise provably secure system, is important for many

useful web services like website analytics. For instance, if a company wants to know which of their prod-

ucts are being clicked (but not purchased), they may want to track some of their customers’ interactions

on their site by using third-party analytics scripts. Declassification can ensure that these third parties will

have access to the information they need (e.g., which products are clicked), without releasing everything.

1

CHAPTER 1. INTRODUCTION 2

Prior work that allows declassification by web scripts (typically modeled as a reactive system [28]) ei-

ther did not prove formal properties about declassification [22, 24], or used a simplified model that is miss-

ing some dynamic JavaScript features that could be leveraged by an attacker to leak information [91, 12].

Online applications often include code from several (potentially untrusted) sources and update content

dynamically. By not modeling dynamic features, researchers may miss ways that an attacker might lever-

age dynamic content to leak sensitive information [38]. This is especially problematic in the presence of

declassification which may interact with dynamic features to leak more than intended [66, 101, 31].

Most IFC approaches from prior work use the same enforcement mechanism for all components in

an application. Broadly, these can be classified as multi-execution approaches [38, 15, 17], or taint tracking

approaches [13, 14, 95, 84]. Multi-execution approaches run code multiple times and ensure that the code

executing at a particular level only outputs data at the same security level, replacing sensitive data from

higher security levels with “default” values. Taint tracking approaches annotate data with labels to indicate

its security level and can suppress outgoing sensitive data to publicly observable channels or abort the

execution altogether to prevent leaks. These approaches differ in performance, how much they alter the

semantics of safe programs, and the relative strength of their security guarantees. Given the heterogene-

ity of applications, a compositional enforcement mechanism where different components execute under

different IFC enforcement mechanisms could offer an attractive solution to the tradeoffs of each approach.

In this thesis, we address these gaps by presenting two techniques for securely incorporating dynamic

features into reactive systems. In Chapter 3, we present a monitor that treats dynamic features specially

so that they cannot influence declassification. Next in Chapter 4, we will look at how traditional IFC

techniques can be used to track attacker influence to ensure the dynamic features are not used by the

attacker to leak more information than intended. Finally, we develop a compositional framework in

Chapter 5 where different event handlers may be protected by different IFC techniques, and likewise, the

resources shared between event handlers may be protected by different IFC techniques than the event

handlers themselves. This is especially useful for scripts on a webpage, which may come from different

sources and benefit from being treated differently. We also incorporate the techniques from Chapter 3 into

the framework to handle declassification.

Thesis statement: IFC monitors can enforce information flow policies in reactive systems. Monitors can prevent

attackers from leveraging dynamic behaviors in these systems to leak information via declassification by never allow-

ing events from dynamic features to be declassified or by restricting attacker influence. Composition can balance the

tradeoffs of two approaches to IFC, multi-execution and taint tracking, improving the security guarantees of taint

tracking and the run-time overhead of multi-execution.

Chapter 2

Background and Related Work

This chapter describes relevant background and prior work. We review work on reactive systems in

Section 2.1, IFC security properties in Section 2.2, and dynamic IFC techniques in Section 2.3. Then, in

Section 2.4 we describe the type of declassification used in this thesis, background on knowledge-based

security conditions in Section 2.5, and, finally, robust declassification and nonmalleable IFC in Section 2.6.

2.1 Reactive Systems

Reactive systems have been used to model event-driven programs [28, 20, 52, 68], such as scripts on

webpages. In the reactive model, a program is a set of event handlers which are executed when a corre-

sponding event is triggered.

We describe a simple reactive system modeling a webpage as shown in Figure 2.1. First, a user input

triggers an event (step 1 in the Figure) which causes corresponding event handlers (EH) to run. Event

Figure 2.1: Example reactive system.

3

CHAPTER 2. BACKGROUND AND RELATED WORK 4

handlers may be stored in a tree (such as the DOM on a webpage) or a simpler data structure, like an

unordered list. Event handlers wait in a queue (step 2) to be run. The runtime manages a single-threaded

event loop to run all the event handlers in the queue. The runtime also keeps track of the system state

which is producer (while an event handler is running) or consumer (when an event handler finishes). While

an event handler is running (3), it may trigger new events, register new event handlers, or generate page

elements by interacting with the event handler storage. These dynamic features (event handlers triggering

other event handlers, registering event handlers, or creating page elements) are an important part of our

reactive model. An event handler may also interact with other types of storage (like cookies or bookmarks)

that persist after the event handler finishes (4). A new event is processed when all event handlers have

finished running.

This model is an abstraction of the single-threaded main event loop from the JavaScript engine in

browsers. Such reactive programs have been used to model the way that browsers and IFC mechanisms

interact with scripts [74, 25], but prior work typically does not involve security-relevant dynamic features

like dynamically-generated page elements. For the rest of this thesis, we use an extended version of this

model to explore how IFC policies can be enforced even in the presence of dynamic features. We also use

this model to explore how the tradeoffs of different IFC techniques might be balanced by composition.

2.2 IFC Policies and Noninterference

IFC policies specify which information flows are permitted in an application and may be about data

confidentiality (which protects secret information from unauthorized access) or data integrity (which

protects trusted data from unauthorized modification). Typically, this involves assigning information flow

security labels to components of the application (which may include memory locations, data, events, or

principals) and arranging the labels into a lattice [36] which determines the allowed information flows.

There has also been work on policy inference (e.g., [92]) which requires fewer annotations than traditional

policies. The simplest 2-point security lattice has the labels L (for Low confidentiality or public data)

and H (for High confidentiality or private data) and partial order L v H. Here v can be interpreted as

“flows-to”, so L v H means that L data is allowed to flow to H, but not the other way around.

The canonical IFC security property is noninterference [43], which, in this setting, says that inputs at

some security level l should only influence outputs at security level l′ if the input is more public than the

output: l v l′. For the simple 2-point security lattice, noninterference says L inputs may influence L or

H outputs, but H inputs may only influence H outputs. If a program were to output an H input to an L

channel, it would not satisfy noninterference. These kinds of information flows are called explicit leaks.

CHAPTER 2. BACKGROUND AND RELATED WORK 5

It is also possible to leak information implicitly. For instance, the following program branches on a

secret, which can leak information based on the observable differences between the branches:

if h == 42 then l := k

It is useful to define other variants of noninterference to compare IFC techniques which do (or do not)

protect against various leaks. Approaches which only prevent explicit leaks and permit implicit leaks like

the one above satisfy weak or explicit secrecy. Volpano [95] originally defined weak secrecy to formalize

data-dependent flows as opposed to the stronger property of noninterference. Schoepe et al. [84] gener-

alize this property as a knowledge-based property, explicit secrecy, to adapt to different semantics used by

different languages.

The while loop in the following program may cause the system to diverge, another source of leakage:

while(h) { ... }; outputL(l)

If the loop condition h is itself a secret, whether the system eventually sends the output leaks something

about h. If the output is received, h must have eventually evaluated to false. Otherwise, h must have been

true. The example above satisfies progress-insensitive noninterference, which allows secret input events to

determine whether the system makes progress and eventually produce another public output. Progress-

sensitive [9, 64, 49] noninterference, meanwhile, does not permit such leaks. Even if these programs do

not cause the system to diverge, using a secret value as a loop condition may mean that the loop executes

a different number of times, leading to different execution times, depending on the secret. Like progress

leaks, there are variants of noninterference allowing (timing-insensitive) or disallowing (timing-sensitive [1,

78]) such leaks. In Chapter 5, we compose multiple IFC techniques and define two security conditions

to compare the relative security guarantees of different compositions: one based on progress-insensitive

noninterference (the stronger guarantee), and one based on weak secrecy (the weaker guarantee).

Composition of information flow properties has been studied in the setting of event-based systems [58,

61]. McCullough, further, defined the property of restrictiveness for security of systems [63] based on what

a user can infer about sensitive data, which is composable. Zakinthinos and Lee [98] showed important

results about the composition of generalized noninterference, which was earlier proven to be not fully

compositional [62]. Rafnsson and Sabelfeld [71] explore the composition of PINI and progress-sensitive

noninterference in the context of interactive programs. Similar to existing work, we explore the compo-

sition of information flow security properties across various types of mechanisms for event handlers and

shared storage. Because event handling and accesses to shared storage are not symmetric, we stipulate

requirements on each component and how components interact but cannot directly compose them as

homogeneously defined secure components.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.3 Dynamic IFC Enforcement

Much work has been done on information flow control enforcement in JavaScript [48, 46, 47, 53, 34,

15, 39, 51]. Because of the dynamic nature of JavaScript, all these approaches use runtime enforcement

mechanisms to enforce information flow control. Several projects have developed tools for enforcing

information flow control on web scripts by modifying browser components [22, 88, 23, 35, 91, 24, 15, 33].

Methods used by these projects include taint tracking, compartmentalization, and secure multi-execution.

In this section, we describe specific IFC enforcement techniques which we broadly categorize into multi-

execution techniques and taint tracking techniques.

We illustrate different enforcement mechanisms developed to enforce noninterference for reactive sys-

tems via an example event handler:

onKeyPress(k) { if k == 42 then l := k }

For this example, we use a two-point security lattice with labels Low and High and partial order L v H,

meaning that information may flow from Low to High, but not from High to Low. Assume that initially

l = 0. The event handler runs for keypress events and the identity of the keypress (which key was pressed)

is passed as a parameter. The occurrence of the keypress events is public (L), while the parameter k, is

secret (H). This means an attacker is allowed to learn that a key was pressed but not which key.

Multi-execution Secure multi-execution was introduced as an IFC mechanism for JavaScript on web

pages [38, 35], enforcing noninterference by running multiple copies of the event handlers at each security

level the event is visible at. Each performs only the outputs at matching security levels, skipping the rest.

Inputs which are not visible at the given security level are replaced with default values. When a key is

pressed in the example above, the execution at the H level reads the value of the key press k (the H input)

and assigns 42 to the H copy of l if k 7→ 42. In the L execution, the H input k is replaced with the default

value, say 0, so the branch is never taken. Thus, at the end of the L execution, l remains unchanged in the

L store, irrespective of the value of k.

Faceted execution [15] is a similar multi-execution technique, whose relationship to SME has been

studied [26]. This technique simulates the multiple executions of SME while avoiding unnecessary redun-

dancy by creating facets of a value only when the value contains a secret, e.g., v = 〈vh|vl〉 where vh is

the value of v observable at H and vl is the value of v observable at L1. The execution splits only when

necessary, such as when branching on a faceted value. Like SME, the L outputs are suppressed in the H

copy and H outputs are suppressed in the L copy. After evaluating the branch, the split executions join

1The original faceted values [15] have the conditional format 〈k ? v : v′〉, where those that can observe principal k’s private data
see v and others observe v′.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

(a) SME

(b) Faceted Execution

Figure 2.2: Comparison of SME and Faceted Execution. Inputs and outputs are shown with solid arrows
while the dashed arrow in the Faceted Execution diagram represents a split/join in the execution context.

and continue normally as one. Multi-execution techniques typically satisfy strong security guarantees.

See Figure 2.2 for an illustration of the two techniques.

In the above example, l 7→ 0 initially and is observable at all levels. If the secret input k is 42, l is

assigned the faceted value l = 〈42|0〉, meaning H observers see 42, while L observers see l’s original

value. If the event handler then output l, the label on the channel receiving the output would determine

which value to send: 42 if the channel is H, 0 if the channel is L.

SME has been extended to be more precise to ensure SME does not alter the order of the outputs com-

pared to the original program [99]. Later work on faceted execution discusses its extension to applications

where the policy is specified separately from the code [17, 97], and how to deal with exceptions [16]. Later

work combines SME and faceted execution [83] (and an optimization [4]) and proposes “generalized”

multiple facets [69] to balance the security and performance tradeoffs of the two multi-execution tech-

niques (in the first two cases), consider a more general security lattice (in the last case), and each achieves

stronger (termination-sensitive) security guarantees than offered by traditional faceted execution. Ngo et

al. [70] show that a perfectly sound and precise monitor satisfying termination-insensitive noninterfer-

ence cannot exist and argue that multi-execution techniques actually satisfy indirect termination-sensitive

noninterference. Later, Algehed and Flanagan [3] proved the impossibility of building a transparent and

efficient black-box runtime monitor using SME.

Taint tracking Taint tracking approaches carry and propagate taint via security labels along with data.

Taint tracking techniques are prone to implicit leaks. In the example, suppose l 7→ 0L initially, where L is

the label of l. If k 7→ 42H , then l 7→ 42H at the end. Otherwise, the branch is not taken, and l remains 0L.

Since the value of l depends on the branch condition, the branch condition is leaked implicitly through l.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Since the behavior within a branch depends on the branch condition, the branch condition is leaked

implicitly through behaviors within the branches. To secure taint tracking against implicit leaks, some

approaches maintain a program context (pc) which keeps track of the context of the control flow decisions.

These approaches abort the execution when assigning to public variables in secret contexts [13]. These

approaches based on no-sensitive-upgrade (NSU) (or later permissive upgrade [14]) satisfy termination-

insensitive noninterference. NSU semantics can be conservative and risk aborting the execution even

when nothing is leaked. Some other approaches choose not to use NSU semantics, having even weaker

security guarantees in favor of avoiding unexpected interruptions to the execution. For this reason, and to

have different security properties to use when comparing compositions in Chapter 5, this thesis focuses

on techniques which do not abort or diverge [95, 84].

2.4 Declassification

Many of the monitors described above enforce a strict noninterference, where secret inputs are never al-

lowed to influence public outputs. But this is often too restrictive to be practical. For instance, an online

shop might want to do analytics to learn which products users are clicking on most, or a bank might want

to know a user’s location to help authenticate them. Declassification [81] offers a principled way to release

some information while maintaining an otherwise provably secure system.

Several IFC approaches for browsers have been proposed that build on existing IFC techniques to

allow information to be declassified. Some work uses declassification labels [22] or privileges [88] to

specify exceptions to information flow policies. WebPol policies [24] allow the host of a website to specify

which page elements and user-generated events can be declassified to which domains. Mash-IF [57] allows

user-specified declassification and proposes a technique for analyzing scripts to generate declassification

rules (if the user consents to the information flow).

To allow scripts that depend on approximated or aggregated secret values (e.g., analytical scripts)

to run correctly in SME, Vanhoef et al. proposed stateful declassification policies [91]. In their system,

a projection function specifies what information from a secret event can be declassified. In addition,

a stateful release function maintains the aggregate information about all secret events seen so far for

eventual declassification (e.g., total number of clicks). Example stateful policies include whether the user

pressed a specific shortcut key can be released, the average of the coordinates of mouse clicks can be

released, and after the user clicks on the “AGREE” button, the GPS reading can be released.

Other work has identified techniques for declassification in SME. One model treats declassifications

as non-blocking outputs from a secret execution to a more-public execution [72]. Declassification in SME

CHAPTER 2. BACKGROUND AND RELATED WORK 9

typically assumes that the program can handle both the real and declassified inputs, but these assumptions

may not always be realistic since a program may not be aware of the context its running in (or that it is

running in SME at all). Asymmetric SME [29] addresses this by running different copies of the program

at each security level, ensuring that the copy that receives declassified values can adapt to these inputs.

In this thesis, we use stateful declassification based on Vanhoef et al. [91] and assume that multi-

execution techniques run the same code.

2.5 (Knowledge-based) Security Definitions

An intuitive way to reason about information flows is to focus on the knowledge that an attacker gains

by observing public data. In the reactive setting, an attacker can observe public inputs (i.e., events) and

public outputs (i.e., behaviors generated by event handlers). The attacker’s knowledge is the set of all

possible inputs that could have produced the public outputs they observed. As the attacker makes more

observations, they learn more information which makes them more confident about the possible secret

inputs. Knowledge-based security conditions have been used in a variety of settings. Balliu [18] highlight

the usefulness of a knowledge-based condition in interactive/reactive and nondeterministic settings (like

the one we consider here) and explore the relationship between trace-based and knowledge-based security

conditions. Other work defines a knowledge-based security condition for dynamic policies [7, 2] (our

progress knowledge is based on some of this work [7]). There are also knowledge-based explicit secrecy

security conditions [84].

For explanatory purposes, we write T to denote an execution trace and τ to denote input/output

sequences. The secrets in reactive systems are sequences of user inputs. Let us write T ≈L T′ to denote

that two traces are observationally equivalent at the level L. Informally, an attacker’s knowledge, written

K(T, σ0), is the set of possible input sequences that could produce an output trace that is observationally

equivalent at L to T from the initial configuration σ0.

We define in(T) and out(T) to be the input and output actions in T, respectively. We denote runs(σ0)

as the set of execution traces starting from the initial state σ0.

K(T, σ0) = {τi | ∃T′ ∈ runs(σ0), T ≈L T′, τi = in(T′)}

The security property that we are interested in enforcing says that interacting with the system does not

reveal anything about the user’s secret inputs to the attacker. It is defined as follows:

Definition 1 (Security). We say a configuration σ0 is secure against attackers at level L, if for all traces τ, action

α, s.t. τ · α ∈ runs(σ0), K(τ, σ0) ⊆� K(τ · α, σ0).

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Here, S1 ⊆� S2 means that every element in S1 is a prefix of an element in S2; traces in S2 may be

longer because α might be an input event. This property is weaker than standard noninterference, which

requires that a low observer know nothing about the high inputs and that the knowledge set includes all

possible secret user inputs. However, this is too restrictive, as our program is not input-total: events must

be associated with existing elements, reducing the number of possible inputs.

We illustrate Definition 1 through an example. Consider a webpage with an image (img) containing

the numbers “1” through “8”. Whether the user clicks the image (img.click(v)) is public but where the user

clicks on the image (i.e., the value of v) is secret. Assume the attacker knows the program and that the

image displays the numbers 1 through 8. This means the attacker knows that img.click(9) is not a possible

input. We allow the attacker to know this type of information, even though it means they have learned

something about the secret. After the user clicks 2 on the image, the attacker’s knowledge is that the user

might have clicked on any number between 1 and 8:

K([img.click(2)], σ0,P) = {[img.click(1)], ..., [img.click(8)]}

If the program later output v (which contains the number the user clicked) in response to a different event

(id.Ev()), then the attacker’s knowledge after receiving the output would be:

K([img.click(2), id.Ev()], σ0,P) = {[img.click(2), id.Ev()]}

Then, some of the shorter traces in the older knowledge set (before the output is received) are not prefixes

of traces in the new set (after the output is received):

{[img.click(1)], · · · , [img.click(8)]} 6⊆� {[img.click(2), id.Ev()]}

The program is not secure using our definition.

Knowledge-based security with declassification For a program to satisfy noninterference, the attacker

should not be able to refine their knowledge about the secret inputs throughout the program’s execution,

but this definition does not allow for controlled leaks of private information through declassification.

Instead, we use a gradual release property [11] which ensures that the attacker’s knowledge is not refined,

outside of what is permitted (i.e., what is released) by the declassification policy.

The gradual release property has been applied to systems that allow flexible declassification. For

instance, Banerjee et al. proposed expressive declassification policies defined by agreements of initial state

written as flowspecs, which specify precisely how much information may be revealed about confidential

variables [19]. They also present a type system for enforcing knowledge-based security, which is defined

CHAPTER 2. BACKGROUND AND RELATED WORK 11

as a conditional gradual release property. Askarov and Chong [7] also present a definition of knowledge

which reasons about initial configurations. Like us, they refine it to progress knowledge which restricts the

set of configurations to those that can produce another observable event.

A weaker form of noninterference that allows implicit leaks is weak secrecy [95] or explicit secrecy [84].

Weak secrecy only allows information leaks through branch predicates. Consider the program:

if h = 0 then l := 1 else l := 0; output(L, l)

The program above satisfies weak secrecy, as it can be re-written as a secure program without “high”

branches: l := 1; output(L, l) and l := 0; output(L, l). Because both programs are secure, the original program

satisfies weak secrecy.

Other work [10] proposes a notion of integrity that is the dual to the knowledge-based condition for

confidentiality called “attacker impact” and explores the relationship between integrity and confiden-

tiality as “attacker control”. While attacker knowledge is the set of inputs leading to the same public

observations, attacker impact is the set of attacks (which are blocks of attacker-controlled code) leading

to the same trusted events. If an attacker does not have influence over trusted events, their impact is not

refined throughout execution; that is, each attack is equally powerless. Meanwhile, attacker control is

the set of attacks with a similar influence on knowledge. Then a system satisfies robust declassification

if the attacker’s release control (i.e., the set of possible attacks resulting in any declassification) is smaller

than the attacker’s control after a declassification (i.e., the set of possible attacks resulting in a particular

declassification). If an attacker has influence over declassification, then different attacks would lead to

different declassifications and the attacker’s control would be refined when the system makes a particular

declassification. In Chapter 4, we define attacker influence, which is similar to attacker impact and con-

trol, but rather than tying attacker influence to knowledge, we show that robust declassification follows

directly from the security condition for integrity when we treat declassification as a trusted action which

should not be influenced by the attacker.

2.6 Robust Declassification and Nonmalleable IFC

In general, a system which does not allow active attackers (i.e., ones who influence the system in some

way) to leak more than passive attackers (i.e., ones who do not influence the system) through declassifi-

cation is called robust [101, 32, 31]. The concept of robust declassification was introduced by Zdancewic

et al. to ensure low integrity attackers cannot manipulate declassification operations [101]. Later work

develops a type system for enforcing robust declassification and qualified robustness [66] to account for

CHAPTER 2. BACKGROUND AND RELATED WORK 12

endorsement (which is the integrity dual to declassification for confidentiality). Similar to robust declas-

sification, transparent endorsement [31] says that a principal can only supply data for endorsement if the

data is observable to them. Otherwise, they could use data without ever actually being granted access to

it.

Our robust declassification condition in Chapter 4 is based on qualified robustness and we also prove a

qualified version of transparent endorsement which accounts for declassification. In Chapter 3, we do not

have an explicit integrity label for attackers. Instead, we assume scripts have low integrity and therefore

actions performed by scripts are considered to have low integrity.

Chapter 3

Robust Declassification via Special Treatment for

Dynamic Features

In this chapter, we describe a technique for robust declassification where we treat events from dynamic

features (which may have been added by an attacker) specially, so they do not influence declassification. 1

3.1 Overview

One of the challenges of IFC is declassification, which allows sensitive information to be intentionally

released while maintaining an otherwise provably secure system. Principled declassification is particularly

important online, as many useful scripts, such as web analytics services, only work when they are allowed

to access some sensitive data. For example, a company may be interested in knowing where their website

is most popular, so the script will need to access visitor locations. Prior work that allows declassification

by web scripts either did not prove formal properties about declassification [22, 24], or used a simplified

model that is missing some dynamic JavaScript features that could leak information [91].

Ignoring dynamic features of scripts—such as user action simulation, new DOM element generation,

and new event handler registration—is problematic because they can be used to leak information, espe-

cially when they interfere with trusted declassification operations. For instance, consider a declassification

policy that allows a user’s GPS location to be sent to a server only after the user clicks on the “AGREE”

button. If the IFC mechanism does not distinguish between a user-generated click and a script-simulated

click, the user’s GPS location will be leaked to the server without user consent, which is a violation of

the policy. This is an example of a lack of robust declassification [66], in which an active attacker can abuse

declassification components and trick the system into leaking more information than intended. Another

1This chapter is based on published work [60].

13

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 14

dynamic feature of scripts that may leak information is DOM element generation. A script may change

which fields are present on a page based on a secret value. Since a user can only trigger events for

elements which are present on the page, observing which events are triggered will leak information.

To reason about declassification precisely, we appeal to the concept of gradual release [11], which allows

us to say a system is secure if the attacker’s knowledge remains constant outside of declassification and to

quantify over released information at declassification points.

We aim to provably secure sensitive user information in the browser context, while maintaining the

flexibility of declassification, even in the presence of active attackers—those who can simulate user actions,

generate new DOM elements, and register new event handlers. Few papers have examined this problem

before. Our key insight is that script-generated events and objects need to be prevented from affecting the

declassification mechanism.

This chapter makes the following contributions: We show through examples that naïvely including

dynamic components to otherwise secure models introduces information leaks. We extend prior work

on secure multi-execution (SME) with declassification [91] and design new SME rules that treat script-

generated content specially to ensure that declassification policies cannot be manipulated by them. Instead

of trace-based definitions, we use a knowledge-based progress-insensitive definition of security and prove

that our enforcement mechanism is sound. This way, the properties of our system can be described by

changes in an attacker’s knowledge—a natural way to model what an attacker learns by observing a

system. We prove that our enforcement mechanism is precise (does not alter the semantics of “good”

programs) and has robust declassification.

The rest of this chapter is organized as follows. We present examples where dynamic features interfere

with declassification in Section 3.2. In Section 3.3, we introduce our dynamic reactive program model

and introduce declassification. Our SME system and its formal properties are presented in Section 3.4.

We discuss specific aspects of our system in Section 3.5. Detailed definitions, lemmas, and proofs can be

found in Appendix A.

3.2 Dynamic Features Leak Information

We illustrate potential security problems caused by interactions between dynamic features of scripts and

declassification and motivate our multi-DOM model.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 15

3.2.1 Scripts Interfering with Declassification

One of the drawbacks of the reactive programming model from the prior work discussed in Chapter 2.1 is

that it is overly simplified and omits many security-relevant dynamic features. The dynamic features that

we focus on are user event simulation, new DOM element generation, and new event handler registration.

We chose these features because of the clear risk they pose to IFC. We leave modeling event bubbling,

preemptive events, and DOM element removal to future work. Next we show how these features interfere

with declassification if not treated carefully.

Script-simulated events First, in the presence of script-simulated events, the implementation of declas-

sification policies needs to consider the provenance of events. In particular, events generated by scripts

should not affect when and what information is declassified. Consider the following scenario in which the

declassification policy allows the release of the average coordinates of every two clicks. A script simulates

a click at a constant location l once the user clicks on the webpage. The script knows l and the average of

l and the location of the user’s click, from which computing the coordinates of the user’s click is trivial.

Consider another declassification policy that allows the release of a GPS reading after the user clicks

on a button authorizing it. Scripts can simulate a click on that button to cause the information to be

released. These examples show that declassification policies should not be affected by script operations.

Allowing untrusted and potentially attacker-controlled scripts to decide what is declassified violates the

principle of robust declassification [101], which requires that an active attacker cannot learn more than a

passive attacker. An active attacker not only observes the system behavior but can also modify it. The

enforcement mechanism must distinguish between events triggered by the user and events triggered by

scripts to ensure robust declassification.

Dynamically-generated elements Dynamically-generated elements can create channels that leak informa-

tion if their creation depends on a secret. Consider the policy: button click events are visible to public

scripts and keypress events are secret and not visible to public scripts. Consider the following script. For

now, assume secret stores the code of the key that user has pressed and that new(id, t, e) generates a new

object of type t identified by id with attributes e, and addEh(id, onClick{c}) registers an event handler with

body c for click events from the object identified by id.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 16

case secret of

| 1⇒ new(id1, Button, e); addEh(id1, onClick{c1})

· · ·

| n⇒ new(idn, Button, e); addEh(idn, onClick{cn})

where ci = output attacker.com i.

Here, depending on the value of secret, a different button will be generated with a distinct event

handler. The user only sees one button, which depends on the value of secret; if they pressed key i, (i.e.,

secret = i), the user sees a button with the ID idi. Once the user clicks on the button with ID idi, the onClick

event handler associated with that button will be triggered, sending the value i to the attacker. Thus, the

attacker will receive the value of secret, revealing which key the user pressed.

Extending SME If we naïvely extend the stateful declassification mechanisms for SME to handle these

new features, we may be too restrictive and risk altering the semantics of legitimate programs, making it

less practical; or we may not be restrictive enough, making it vulnerable to exploitation by attackers. In

FlowFox [35] (Firefox with SME support), all DOM APIs are labeled as low, which means that the high

execution cannot add new elements to the DOM since low outputs are suppressed from the high execution.

This is very restrictive, as websites frequently use JavaScript to modify parts of the page based on private

user data. For example, a page may highlight a password field which is too weak on a registration page.

The password field is secret, so the high execution needs to modify the DOM to highlight the field. Since

this output is suppressed, the DOM will not be updated and the user will not see the field change.

To remove this restriction, we give each execution its own copy of the DOM. However, if we freely

allow the high execution to add elements then the leak in the second example can still be exploited. The

low execution receives a default value (denoted dv) instead of secret, so the attacker adds the following:

| dv⇒ new(id1, Button, e); addEh(id1, onClick{c1});

· · ·

new(idn, Button, e); addEh(idn, onClick{cn})

The high execution has a copy of this script which knows the real value of secret. It generates a single

button for the user whose ID depends on the value of secret, like before. But this time, the low execution

executes the branch for the default value, generating n buttons, one for each possible value of secret.

The resulting view for each execution is shown in Figure 3.1. The user never sees the buttons from the

low execution and the attacker does not see which button was generated for the user, but when the

attacker.com

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 17

Figure 3.1: The high execution receives the real keypress, so generates only one button with id idi. The
low execution receives the default value, so generates all n buttons.

declassification policy releases the button click event, the low execution is guaranteed to have a matching

button to capture the event since every possible button is present. The value of secret is leaked to the

attacker just as before. In Section 3.4, we show how to stop leaks through dynamically generated elements.

Next, we show informally that this example violates a knowledge-based security property.

3.3 Dynamic Reactive Programs

To design an IFC enforcement mechanism which prevents leaks due to dynamic features, we need to

design a language model that includes those features. We first present the syntax and semantics of our

dynamic reactive programs. We then introduce security relevant constructs. Finally, we explain stateful

declassification and extend both the language and security definitions to accommodate declassification.

3.3.1 Syntax

The syntax of our language is shown below. We write Ev to denote events such as click and mouseover.

Event handlers, denoted eh, always have names of the form onEv, where Ev is the name of the event.

One difference between our model and prior work [28] is that we make explicit the object that events are

associated with. For instance, b1.click(v) corresponds to the user clicking on a button with the identifier b1.

The body of an event handler is a command c. We allow event handlers to trigger other events, generate

new objects, and register event handlers. It is common for scripts to generate new DOM elements and

simulate events.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 18

Event: Ev ::= ...

Event handler: eh ::= onEv(x){c}

Command: c ::= skip | c1; c2 | x := e | if e then c1 else c2 |while e do c | output ch e

| trigger id.Ev(e) | new(id, t, e) | addEh(id, eh)

Event handler map M ::= · |M, Ev 7→ {eh1, · · · , ehk}

State σ ::= · | σ, x 7→ v | id 7→ (v, M)

Command c includes the following actions: output ch e evaluates e and sends the result to URL ch,

trigger id.Ev(e) allows the script to simulate an event Ev with parameter e associated with an object iden-

tified by id, new(id, t, e) generates a new object identified as id of type t (e.g., button, form) with attributes

e, and addEh(id, eh) registers a new event handler eh to the object id. We allow multiple event handlers

to be registered per event. We write M to denote a mapping from an event to the set of registered event

handlers for this event. We define the system state, σ, to be a mapping from variables to values and named

objects to tuples, which model the attributes and event maps associated with the objects. For instance,

a button b1 can be associated with several mouse events, each of which could have multiple registered

event handlers. Because new objects and event handlers can be added at run time, we do not have a fixed

program. Instead, given a state σ, we can view all the event handlers in σ as the program of σ.

3.3.2 Operational Semantics

To define the operational semantics for our language, we first introduce a few runtime constructs.

Events E ::= · | E, id.Ev(v)

Non-silent actions a ::= id.Ev(v) | ch(v)

Actions α ::= a | •

Execution state s ::= P |C | LC

Configurations κ ::= σ, c, s, E

Action traces τ ::= · | τ α

Execution traces t ::= κ | κ α−→ t

We write E to denote the set of events generated by the event handlers. As we discussed in Section 3.2,

these events cannot be mixed with user input events. Therefore, we collect them in a separate context

and process them once they are generated. We write a to denote input and output actions, • to denote

silent actions, and α to denote all actions. An action trace, denoted τ is a sequence of actions. To model

single-threaded execution, the runtime semantics keeps track of the execution state: producer, denoted P,

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 19

σ, c α−→ σ′, c′, E

σ, skip; c •−→ σ, c, ·
skip

σ, c1
α−→ σ′, c′1, E

σ, c1; c2
α−→ σ′, c′1; c2, E

seq

JeKσ = v

σ, x := e •−→ σ[x 7→ v], skip, ·
assign

JeKσ = true
σ, if e then c1 else c2

•−→ σ, c1, ·
if-true

JeKσ = false
σ, if e then c1 else c2

•−→ σ, c2, ·
if-false

JeKσ = true
σ, while e do c •−→ σ, c; while e do c , ·

while-true

JeKσ = false
σ, while e do c •−→ σ, skip, ·

while-false

JeKσ = v

σ, output ch e
ch(v)−→ σ, skip, ·

output
JeKσ = v

σ, trigger id.Ev(e) •−→ σ, skip, id.Ev(v)
event-trigger

JeKσ = v

σ, new(id, t, e) •−→ σ[id 7→ (v, ·)], skip, ·
new

ε = ε′, ev 7→ EH
σ = σ′, id 7→ (v, ε) eh = onEv(x){c} σ1 = σ′, id 7→ (v, (ε′, ev 7→ EH ∪ {eh}))

σ, addEh(id, eh) •−→ σ1, skip, ·
add-eh

Figure 3.2: Operational Semantics of Commands

consumer, denoted C, and local consumer, denoted LC. The system is in producer state when an event

handler is executing. The system is in consumer state when it is ready to process user inputs (i.e., no

event handler is executing and no script generated events are left to be processed). The system is in local

consumer state when it is ready to process script-generated events (i.e., no event handler is executing and

some script-generated events still need to be processed).

We define two sets of small-step operational semantics: one for commands from event handlers for

a single event and the other for managing the event loop of consumer and producer state. We write

σ, c α−→ σ′, c′, E to denote the execution rules of a command c under the store σ, which returns an

updated store σ′, a new command c′, and a list of events E generated while evaluating c. The outer-level

rules manage the event loop and are of the form: σ, c, s, E α−→ σ′, c′, s′, E′, where σ, c, and E have the same

meaning as before and s is the state of the event loop (consumer, producer, or local consumer).

Most of the rules in Figure 3.2 are straightforward. Expression semantics are standard, so we omit

those rules. We summarize the ones responsible for the dynamic features we aim to model. Rule output

evaluates e under the store σ and sends the result to the URL ch. Rule event-trigger evaluates e under

the store σ and passes the result as a parameter to the event ev associated with the object identified by id.

This event is added to the event queue. Rule new adds a new object to the store of type t and identified

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 20

κ
α−→ κ′

σ, skip, P, · •−→ σ, skip, C, ·
PtoC

E 6= ·
σ, skip, P, E •−→ σ, skip, LC, E

PtoLC

σ(id.ev(v)) = c

σ, skip, C, · id.Ev(v)−→ σ, c, P, ·
CtoP-Usr-Input

CtoP-Script-Input

σ(id.ev(v)) = c

σ, skip, LC, (id.Ev(v), E) •−→ σ, c, P, E

σ, c α−→ σ′, c′, E′

σ, c, P, E α−→ σ′, c′, P, (E, E′)
P

Figure 3.3: Operational Semantics for Event Loop

by id. The attributes are determined by evaluating e under the store σ. No event handlers are associated

with an object when it is created. Rule add-eh looks up an object id in the store σ and adds the event

handler eh to its set of registered event handlers.

We summarize the operational semantic rules for event loops in Figure 3.3. Rule PtoC says that if there

are no more commands to execute or events to process and the execution is in producer state, then it is

ready to process user inputs and switches to consumer state. Note that this is the only rule for switching

to consumer state, ensuring that no user input is processed until all events are processed. Rule PtoLC

says that if there are no commands left to execute, but there are events to process, and the execution is

in the producer state, then it is ready to process script generated events and switches to local consumer

state. Rule CtoP-Usr-Input receives a user-initiated event ev associated with object id and parameters v.

The execution switches to producer state, the body of the event handler c is looked up in the store σ and

is executed next. Rule CtoP-Script-Input begins with the execution in local consumer state, indicating

that there are script-generated events to process. The execution switches to producer state and the body

of the event on the front of the queue, c, is looked up in the store, σ, to be executed next. Finally, rule P is

responsible for executing individual commands. It takes one step in the command operational semantics

and updates the store, command, and event queue, remaining in the producer state.

3.3.3 Security Policies

Before introducing declassification policies, we define our security lattice. Figure 3.4 summarizes all the

constructs needed for defining security policies.

We assume a simple security lattice that has two labels H and L and a partial order L v H. As shown

in our motivating examples, events associated with dynamically-generated objects should not influence

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 21

Security label: ` ::= H |H∆ | L
Initial IDs: Γ ::= · | Γ, id
Label map: ml : (eventName + chName)→ arg→ Lab
Policy context: P ::= (Γ, ml)
Command: c ::= · · · | x := declassify(ι, e)
Declassification function: D : (state× event)→ (state× release option× event option)
Release module: R ::= (ρ,D)
Released value: r ::= none | some(ι, v)
Release channel: d ::= · | d, (ι, v)

Figure 3.4: Constructs for Defining Security Policies

declassification. To enforce this, we augment our security labels with another label: H∆ for events that are

associated with such objects. These events should not be observable by low observers, nor should they be

subject to declassification. In the security lattice, we treat H∆ the same as label H. Since we do not allow

dynamically generated objects to have any effect on low outputs, it is possible that we will change the

behavior of otherwise benign programs. This effects how we reason about the precision of our enforcement

mechanism, which says that the semantics of good programs should not be altered. See Section 3.4.3 for

information about our precision theorem and Section 3.5 for further discussion.

We use a label context P to map events and network outputs to their security labels. The label context

needs to map events associated with dynamically added objects correctly, therefore, we split the label

mapping into two parts: Γ which records all the object IDs that are in the initial configuration (IDs of

elements that the attacker knows for sure exist by reading the program), and ml which is a function that

takes an event name and the argument of the event as input and returns the corresponding security label.

In other words, ml decides the label of events and network outputs. For events, ml uses the event type

and event argument alone, not the ID of the object that the event is associated with. For network outputs,

ml takes as input the channel name and the value to be sent to that channel as arguments. We can decide

the security label of a non-silent action given a label context P . The judgment P ` a : ` means that a

non-silent action a has security label ` with regard to the label context P . It is defined as follows:

id /∈ Γ

(Γ, ml) ` id.Ev(v) : H∆

id ∈ Γ ml(Ev, v) = `

(Γ, ml) ` id.Ev(v) : `

ml(ch, v) = `

(Γ, ml) ` ch(v) : `

To decide the label of an event id.Ev(v), we first check whether id is in Γ. If it is not, the label for this

event is H∆. Otherwise, we apply ml: ml(Ev, v). Instead of using the judgment, we write P(a) to denote

the security label of a given P . For instance, a label context P with Γ = {button0}, ml(click, _) = H means

that initially there is only button0 on the page, and all click events are H. Then, if we use this label context

P in the example in Section 3.2, we have P(button0.click(v)) = H and P(id1.click(v)) = H∆.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 22

3.3.4 Declassification

Many useful scripts, such as Google Analytics, are not secure using the strict definition of noninterference,

as they are designed to collect some private information about user actions. Therefore, we need to extend

our model to include declassification.

We add a declassification command, where ι is the identifier of the declassification. We assume that

each declassification command in a program has a unique location ι. Intuitively, declassification com-

mands are used to wrap expressions that compute aggregates of secrets (e.g., max, min, average, total

number of events, etc.). For instance, to track how much content a user reads on a page, a script may want

to know how many times the space key is pressed. Each time the space key is pressed, the event handler

for the key press event increments a global variable numPress. When the user navigates away from the

page, the unload event handler will be triggered, which contains the following command to access the

number of times that the user pressed the space bar: x := declassify(ι, numPress).

Generalizing ideas from [91], we define operational declassification policies. We write R to denote

such policies. R is a pair of a state ρ and a function D. D takes as input an event and the state ρ and

returns a tuple containing the value to be released (r), an event to be released, and the new state. The

value to be released can either be none, indicating nothing is to be released, or some(ι, v), indicating value

v is to be released to declassification location ι.

We call R an operational policy because it specifies how declassification should work but does not

provide a declarative specification as to precisely what is released. One could imagine defining a speci-

fication similar to a flow spec, specified in [19], where a formula over two traces is used to specify the

declassification policy. Then, static analysis is needed to check that the operational policies satisfy the

declarative specification. We leave declarative policy specification to future work.

The run-time state is augmented by a channel d for communicating declassified values. d contains

mappings of a declassification location to a value. We define the update(d, r) and read(d, ι) operations

to update the value in d and read the released value from d, respectively. When r is none, the update

operation just returns d unchanged.

We augment the operational semantics to handle declassification. We add the release channel d to the

left of the arrow for all the local execution rules in Figure 3.2. We also add the following Declassify rule

to the local execution rules. It reads from the declassification channel d the value that ι is mapped to and

assigns it to x. Here, e is not evaluated, as the release policy module is supposed to evaluate e on the

scripts’ behalf, which we explain further towards the end of this section.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 23

d, σ, c α−→ σ′, c′, E

read(d, ι) = v

d, σ, x := declassify(ι, e) •−→ σ[x 7→ v], skip, ·
declassify

We also add the release channel d to the left of the rules governing local script input and output; that

include all the rules in Figure 3.3, except the CToP-User-Input rule. The resulting set of rules may be

found in Section 3.4, Figure 3.6 (they will be re-used for defining SME rules in that section).

The remaining rules, summarized below, use a new judgment P ` R, d, κ
α−→ R′, d′, κ′. These rules

are the new outer-most level input/output rules.

P ` R, d, κ
α−→ R′, d′, κ′

σ(id.ev(v)) = c P(id.Ev(v)) ∈ {L, H∆}

P ` R, d, σ, skip, C, · id.Ev(v)−→ R, d, σ, c, P, ·
In-L

σ(id.ev(v)) = c P(id.Ev(v)) = H R = (ρ,D) D(id.ev(v)) = (r, _, ρ′) d′ = update(d, r)

P ` R, d, σ, skip, C, · id.Ev(v)−→ (ρ′,D), d′, σ, c, P, ·
In-H

d, κ
α−→ κ′

P ` R, d, κ
α−→ R, d, κ′

Out

Our release function is only applied to events that are labeled H. Therefore, the runtime state includes

the label context P . The purpose of the additional rules is to compute aggregates of secret inputs using

the release module, which produces the release value. Rule In-L applies when the input event is not

declassified because it is either a low input (labeled L) or is not supposed to be declassified because it

may leak information (labeled H∆). If the input event is labeled H, rule In-H applies. The declassification

function D is applied to the current state of the release module and the input event, and returns a new

state and a release value r. The declassification channel d is updated to the new release value. Note that

update will not change d if r is none. Finally, rule Out applies when the system is in producer or local

consumer state. It makes use of the rules in Figure 3.3.

For our example policy which releases the total number of space key presses, the state ρ can be the

number of space key presses so far and the declassification function increments ρ by 1 if the input event is

a space bar key press event. The analytical script’s event handler for key press computes its own version

in the global variable numPress. In Section 3.4.3, we formally define a compatibility condition to make sure

that the release policy is true to the declassified expressions (i.e., it computes what e evaluates to). In this

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 24

example, d should be the same as the value of numPress when the number of key presses is released. This

way, the high execution does not need the declassify primitive and the low execution relies on the release

module to compute declassified values.

3.4 Extended SME for Dynamic Features

In this section, we explain how to extend secure multi-execution rules to constrain dynamic features so

they cannot be leveraged by attackers to leak information. The key idea here is that all inputs related to

dynamically generated elements should be separated from the release module. We define security for our

dynamic reactive programs as a conditional gradual release property and prove that our rules are sound.

Finally, we prove the precision and robust declassification theorems for our system. Detailed proofs and

supporting definitions may be found in Appendix A.

3.4.1 SME with Declassification

We write Σ to denote the secure multi-execution configuration. Σ is composed of the release policy R, the

declassification channel d, and two execution configurations κL and κH executing at security levels L and

H, respectively.

SME Configuration Σ ::= R, d; κL; κH

SME Execution Traces T ::= Σ |Σ α
=⇒ T

We write P ` Σ α
=⇒ Σ′ to denote the small step operational semantics for SME, which consists of rules

that coordinate between the high and low executions. We write T to denote the execution traces of SME,

which is a sequence of transitions.

Summaries of the SME rules are shown in Figure 3.7 and 3.8 and handle user inputs and outputs,

respectively. If the input event’s label is H, it is subject to declassification. We need to apply the release

policy to the event to update the state of the release module, update the declassification channel, and

compute the projected event that the low execution is allowed to see (if any). Rule SmeI-NR1 states that

if the low execution is not allowed to see the input event (the projected event is emp), then low execution

stays in the consumer state, and event handlers associated with this input event are scheduled to run in

only the high execution. Rule SmeI-R applies when the H input event is projected to eL. In this case, both

the high and low execution move to producer state and start executing the event handlers for the events

that they see.

Rule SmeI-NR2 applies when the input event’s label is H∆, indicating that this input potentially inter-

feres with the release policies. Therefore, the release module remains the same and the low execution stays

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 25

Figure 3.5: The high execution receives all inputs, unchanged. The low execution receives L inputs and
released H inputs through the release module. Note that the release module throws out the H∆ inputs so
that they do not interfere with the declassification policy.

in consumer state. The last input rule SmeI-L states that when the input event is labeled L, both execu-

tions see the same input and execute event handlers matching that event. A depiction of the relationship

between H and H∆ labels and declassification may be found in Figure 3.5.

The output rules make use of consumer and producer states, which are defined as follows.

producer(κ) iff ∃σ, c, E s.t. κ = (σ, c, P, E)

consumer(κ) iff ∃σ s.t. κ = (σ, skip, C, ·)

The output rules make sure that (1) the execution that is not in consumer state runs using single execution

rules (shown in Figure 3.6), (2) the low execution runs first, (3) outputs produced by an execution with the

same label are allowed and (4) outputs produced by an execution with a different label are suppressed.

d, κ
α−→ κ′

E 6= ·
d, σ, skip, P, E •−→ σ, skip, LC, E

PtoLC
d, σ, skip, P, · •−→ σ, skip, C, ·

PtoC

σ(id.ev(v)) = c

d, σ, skip, LC, (id.Ev(v), E) •−→ σ, c, P, E
LCtoP

d, σ, c α−→ σ′, c′, E′

d, σ, c, P, E α−→ σ′, c′, P, (E, E′)
P

Figure 3.6: Operational Semantic Rules for Single Execution

Notice that we use H∆ to label all events that are related to elements that are not in the initial configu-

ration so that these events will not be mistakenly passed to the release module for declassification. Going

back to our examples in Section 3.2, this means that the click event of newly generated buttons will not be

released to the low execution, even though the declassification function maps all click events to L. Thus,

we effectively protect the integrity of the declassification policy, since the events that are fed to R are not

influenced by the attacker. Moreover, the simulated click on the “agree to share GPS location” button will

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 26

P ` Σ α
=⇒ Σ′

P(id.Ev(v)) = H D(ρ, id.Ev(v)) = (r, emp, ρ′) d′ = update(d, r) σH(id.Ev(v)) = cH

P ` (ρ,D), d; σL, skip, C, ·; σH , skip, C, · id.Ev(v)
=⇒ (ρ′,D), d′; σL, skip, C, ·; σH , cH , P, ·

SmeI-NR1

P(id.Ev(v)) = H∆ σH(id.Ev(v)) = cH

P ` R, d; σL, skip, C, ·; σH , skip, C, · id.Ev(v)
=⇒ R, d; σL, skip, C, ·; σH , cH , P, ·

SmeI-NR2

P(id.Ev(v)) = H
D(ρ, id.Ev(v)) = (r, eL, ρ′) d′ = update(d, r) σL(eL) = cL σH(id.Ev(v)) = cH

P ` (ρ,D), d; σL, skip, C, ·; σH , skip, C, · id.Ev(v)
=⇒ (ρ′,D), d′; σL, cL, P, ·; σH , cH , P, ·

SmeI-R

P(id.Ev(v)) = L σL(id.Ev(v)) = cL σH(id.Ev(v)) = cH

P ` R, d; σL, skip, C, ·; σH , skip, C, · id.Ev(v)
=⇒ R, d; σL, cL, P, ·; σH , cH , P, ·

SmeI-L

Figure 3.7: SME Input Rules

P ` Σ α
=⇒ Σ′

¬consumer(κL) producer(κH) d, κL
α−→ κ′L P(α) = L

P ` R, d; κL; κH
α

=⇒ R, d; κ′L; κH
SmeO-LL

¬consumer(κL) producer(κH) d, κL
α−→ κ′L P(α) = H or α = •

P ` R, d; κL; κH
•

=⇒ R, d; κ′L; κH
SmeO-LH

¬consumer(κH) consumer(κL) d, κH
α−→ κ′H P(α) = H

P ` R, d; κL; κH
α

=⇒ R, d; κL; κ′H
SmeO-HH

¬consumer(κH) consumer(κL) d, κH
α−→ κ′H P(α) = L or α = •

P ` R, d; κL; κH
•

=⇒ R, d; κL; κ′H
SmeO-HL

Figure 3.8: SME Output Rules

also not be given to the release module. This event will be placed in the local event queue, E, and will not

affect the declassification state, so the GPS location will not be leaked.

3.4.2 Soundness

In Section 2.5, we informally discussed knowledge and security based on an initial configuration σ0. Here,

we define these terms based on execution traces, T, for SME. First, we define iruns(σ0,P ,R) to be the set

of SME execution traces starting from the initial state Σ0 = (d0,R; (σ0, skip, C, ·); (σ−0 , skip, C, ·)), where

σ−0 denotes the same store as σ0 with all the declassification commands removed and d0 as the default

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 27

T ⇓PL = τ

(·) ⇓PL = ·
T′ ∈ runs(Σ′,R′,P) Σ 6≈L Σ′ α ∈ in(T)

(P ` Σ α
=⇒ T′) ⇓PL = RP (α) :: T′ ⇓PL

T′ ∈ runs(Σ′,R′,P) Σ 6≈L Σ′ α 6∈ in(T)
(P ` Σ α

=⇒ T′) ⇓PL = α :: T′ ⇓PL

T′ ∈ runs(Σ′,R′,P) Σ ≈L Σ′

(P ` Σ α
=⇒ T′) ⇓PL = T′ ⇓PL

Figure 3.9: Projection of Traces

declassification channel that maps all possible declassification location ι to a default value. We call Σ0 an

initial SME configuration from σ0.

The knowledge of an attacker, K(T, σ0,P ,R) is the set of possible input traces that could produce an

execution trace that is observationally equivalent to T.

Definition 2 (Attacker Knowledge). An attacker’s knowledge after observing trace T beginning from state σ0

with policy context P and release module R denoted K(T, σ0,P ,R) is defined as the set of traces τi s.t. ∃T′ ∈

iruns(σ0,P ,R) with T ≈PL T′ and τi = in(T′)

To determine when two execution traces are observationally equivalent, we must first determine when

two configurations are observationally equivalent and define the observation of a trace.

We consider two SME configurations, Σ1 = R1, d1; κL1; κH1 and Σ2 = R2, d2; κL2; κH2, observationally

equivalent whenever their low executions are in the same state and they are affected by declassification

equivalently (R1 = R2, d1 = d2, and κL1 = κL2). It follows that the observation at the level L of a

trace, T, under the label context P , denoted T ⇓PL , is the sequence of inputs and outputs that results in

some change in the low execution or declassification policy. Examining our SME rules reveals that this

observation is the declassified high inputs, the low inputs, and the low outputs. Formally, T ⇓PL is defined

in Figure 3.9. Here :: denotes concatenation, and runs(Σ,R,P) is the set of execution traces beginning

from Σ with release policy R and label context P .

We define our security property for SME, which states that the attacker cannot gain more knowledge

about secret user inputs as the system runs, except for what has been released. Formally:

Definition 3 (Security). A configuration σ0 is secure w.r.t. the label context P and release policy R against

attackers at level L, if for all traces T, actions α, and configurations Σ s.t. (T α
=⇒ Σ) ∈ iruns(σ0,P ,R), K(T α

=⇒

Σ, σ0,P ,R) ⊇� K(T, σ0,P ,R)

Definition 3 is progress sensitive. For instance, if a confidential value determines whether the execution

reaches a consumer state, then it is not secure under this definition. The attacker can refine her knowledge

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 28

about the confidential value based on whether the system is making progress to process inputs. Our

SME rules are not secure by Definition 3. To prove this statement for our rules, we want to show that

all the shorter traces in K(T, σ0,P ,R) are prefixes of longer traces in K(T α
=⇒ Σ, σ0,P ,R). Consider the

situation where α is an input event. If the shorter trace is currently processing an event handler containing

an infinite loop, it will never return to a consumer state to accept input. Therefore, this trace is not a prefix

of a longer trace in K(T α
=⇒ Σ, σ0,P ,R).

Instead, we consider progress-insensitive security. We define a trace which makes progress as:

prog(T,P) iff T = P ` Σ0 =⇒∗ Σ and ∃T′ s.t. T′ = P ` Σ =⇒∗ ΣC and consumer(ΣC)

And we limit our set of knowledge to the traces that make progress.

Definition 4 (Progress Knowledge). An attacker’s knowledge after observing T beginning from state σ0 with pol-

icy context P , release moduleR, when they know the system will continue to make progress, denotedKp(T, σ0,P ,R)

is defined as the set of traces τi s.t. ∃T′ ∈ iruns(σ0,P ,R) with T ≈PL T′, τi = in(T′), and prog(T′,P)}

Then, we can update our definition of security to be progress-insensitive by limiting the shorter trace

to those capable of making progress.

Definition 5 (Progress Insensitive Security). A configuration σ0 is secure w.r.t. the label context P and release

policy R against an attacker at level L, if for all traces T, actions α, and configurations Σ s.t. (T α
=⇒ Σ) ∈

iruns(σ0,P ,R), K(T α
=⇒ Σ, σ0,P ,R) ⊇� Kp(T, σ0,P ,R)

We prove that our SME rules are sound, formally:

Theorem 6 (Soundness). ∀P ,R, σ0, s.t. σ0 is secure w.r.t. the label context P and release policy R against an

attacker at level L.

As stated previously, to prove this statement, we want to show that all the shorter traces inK(T, σ0,P ,R)

are a prefix of a longer trace in K(T α
=⇒ Σ, σ0,P ,R). This is to say, any shorter trace can be expanded to

an execution which is observationally equivalent to P ` T α
=⇒ Σ. If α is not observable (e.g., high output),

the shorter trace is already observationally equivalent to P ` T α
=⇒ Σ. Otherwise, we need to show that

the shorter trace can take an equivalent step. This is the intuition behind the following lemma:

Lemma 7 (Strong One-step). If T1 = P ` Σ1
α

=⇒ Σ′1 with Σ1 6≈L Σ′1, Σ1 ≈L Σ2, and prog(Σ2,P) then ∃Σ′2, τ

s.t. T2 = P ` Σ2 =⇒∗ Σ′2 with T1 ≈PL T2 and Σ′1 ≈L Σ′2

In addition to α being observable, this lemma requires that the two traces be in equivalent states before

the step. This follows from an additional lemma:

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 29

Lemma 8 (Equivalent Traces give Equivalent States). If T1 = P ` Σ1 =⇒∗ Σ′1 and T2 = P ` Σ2 =⇒∗ Σ′2

with Σ1 ≈L Σ2 and T1 ≈PL T2, then Σ′1 ≈L Σ′2.

Lemma 7 is proven by examining each case of E :: P ` Σ1
α

=⇒ Σ′1, where α is observable, and showing

that the second trace can take an equivalent step. Lemma 8 is proven by induction over the length of the

trace T1.

3.4.3 Precision

One desirable property of SME is precision, which states that the semantics of good programs should not

be altered. Good programs are those that are compatible with the declassification policies and do not leak

information outside of what is released by declassification. The formal definitions of compatibility and no

leak outside declassification are very similar to those in prior work [91].

Definition 9 (Compatibility). We say that a state σ is compatible with a release policy R and label context P ,

when for all τ P ` d0,R; κ
τ
−→∗ d′,R′; κ′ iff κ

τ
−→∗ κ′ where d0 is the initial release channel, κ = (σ, skip, C, ·).

We use the judgement κ −→∗ κ′ to denote program execution without SME. Definition 9 confirms that

the release function computes the same declassified values as the script would if it ran without SME. We

say that a script does not leak outside of declassification if release policies that affect the inputs the same

way always produce the same outputs. If the outputs differed, it must be the case that the secret inputs

influenced the outputs, outside of what was declassified. We write τ|P` to denote the projection of an

action sequence to label ` under the label context P , and R∗P (τ) to denote repeatedly applying R to each

input event in τ with label context P .

Definition 10 (No Leak Outside Declassification). We say that a state σ is has no leak outside declassification,

if for all label context P , release policies R, R′, R1, R′1 and traces τi1, τi2, s.t. R∗P (τi1) = R
′∗
P (τi2), for all τ1 and

τ2 P ` t1 = d0,R; κ −→∗ d′,R1; κ′ and P ` t2 = d0,R′; κ −→∗ d′,R′1; κ′, and in(t1) = τi1, in(t2) = τi2, it is

the case that out(t1)|PL = out(t2)|PL .

We say that an execution trace is a complete run if it starts and finishes in consumer state.

T is a complete run iff P ` T = Σ =⇒∗ Σ′ and consumer(Σ) and consumer(Σ′)

We prove the following precision theorem. Similar to prior work on SME, our precision theorem

concerns observations at each security level.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 30

Theorem 11 (Precision). For all P , R, σ and κ1, κ1 = (σ, skip, C, ·), σ is compatible with P and R, and does not

leak outside declassification, then for all complete runs T and t s.t. P ` T = Σ1 =⇒∗ Σ2, t = κ1 −→∗ κ2, and

Σ1 = d,R; κ1; κ1, and in(T) = in(t) imply out(T)|PH = out(t)|PH and out(T)|PL = out(t)|PL .

One interesting observation here is that this precision theorem is fairly weak as it requires both the

SME and single execution traces exist. In Section 3.5, we show that programs are not precise using a

stronger definition due to dynamic features.

3.4.4 Robust Declassification

Robust declassification requires that active attackers cannot learn more than passive attackers. We say that

σ2 contains more active components than σ1 (σ1 <A σ2) if it contains more script-generated event handlers

and objects but is otherwise the same.

For our robustness theorem, we consider an interleaving of inputs to σ1 with additional inputs (corre-

sponding to the additional components, denoted τ∆) as the input to σ2. We formally define an interleaving

of two traces as follows:

τ1 ./ · = τ1

τ1 = τ′1 :: τ′′1 τ2 = α :: τ′2

τ1 ./ τ2 = τ′1 :: α :: (τ′′1 ./ τ′2)

We also define the following relation for A and B, sets of traces:

A ⊆� B iff ∀τ ∈ A, ∃τ′, τ∆ with τ′ ∈ B, and τ ./ τ∆ = τ′

Because the additional inputs to σ2 are from script-generated components, all these inputs have the

label H∆. We denote this formally as dom(τ∆) ∩ Γ = ∅, meaning that the objects associated with inputs

from dom were added to the system. We define the domain of a set of inputs:

τ = τ′ :: α

dom(τ) = dom(α) ∪ dom(τ′)

α = id.ev(v)

dom(α) = {id}

α = ch(v)

dom(α) = { }

One caveat is that we need to account for non-progress behavior (divergent in non-consumer state)

introduced by the additional event handlers in σ2. We consider an execution trace divergent if it never

reaches a consumer state.

Theorem 12 (Robust Declassification). ∀σ1, σ2,P ,R s.t. σ1 <A σ2, and ∀T1 ∈ iruns(σ1,P ,R) s.t. T1 is a

complete run, ∀T2 ∈ iruns(σ2,P ,R) s.t. T2 is a complete run, with τi = in(T1), in(T2) = τi ./ τ∆, dom(τ∆)∩ Γ =

∅, K(T1, σ1,P ,R) ⊆� K(T2, σ2,P ,R) or σ2 diverges.

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 31

We prove this by defining a simulation relation between the configurations in T1 and T2. As mentioned

earlier, the additional input to T2 will not affect the state of the release module and can only be processed

by the high execution. Therefore, after processing these inputs, the configurations in T2 still relate to the

same configurations in T1.

Allowing active attackers to cause the system to enter a state where it cannot receive inputs is consistent

with our progress-insensitive definition of the attacker’s knowledge, which allows the system to leak

information through whether it makes progress.

Going back to our example in Section 3.2, we can instantiate σ2 as the configuration including the

event handler with the problematic branching statement, and σ1 as this configuration minus this event

handler. The additional events will be id2.click(v). If id2.click(v) were given to the low execution, then the

knowledge of the active attacker refines that of the passive one, as it knows the previous input must be

2. However, because the button with ID id2 was added to the system, the event is not given to the low

execution, so the active attacker learns no more than the passive one. Robust declassification ensures that

this is always the case. The attacker that generates objects and registers event handlers learns no more

than the attacker who merely watches the system run.

3.5 Discussion

Precision Our precision theorem is weak in the sense that we require the program leak no information

outside of what is released by declassification. Consider a program that generates new elements and

event handlers (denoted ∆σ), which output to low channels when triggered. If all the events associated

with these new items are otherwise low events, then this is a benign program since there is no secret

involved. However, it does not satisfy the no leak outside of declassification condition. The reason is that the

events associated with ∆σ are given the H∆ label by our system and are expected to have no effects on

low outputs, which is not the case here. Our SME rules will suppress legitimate low outputs from this

program, as a result. However, SME cannot do much better because the run-time has no way of knowing

whether ∆σ depends on secrets or not.

Integrity and Endorsement Dual to confidentiality is integrity, whose non-interference property states

that untrusted (low integrity) data cannot affect trusted (high integrity) data. Considering integrity in

our system would provide an opportunity for more fine-grained declassification policies. For instance,

instead of preventing any script-generated input from affecting declassification, the trustworthiness (i.e.,

integrity) of the source could be considered. User inputs (high integrity) should be allowed to influence

CHAPTER 3. ROBUST DECLASSIFICATION VIA SPECIAL TREATMENT FOR DYNAMIC FEATURES 32

declassification policies whereas scripts (low integrity) should not. This connection between robust de-

classification and integrity has been studied [66, 101, 31]. In the next Chapter, we explore how to extend

our model to include integrity.

3.6 Summary

In this chapter, we investigated how dynamic features of JavaScript can be used to leak information

by abusing declassification policies. We designed new SME rules to enforce strict separation between

dynamically generated components and the declassification module. To state security properties in the

presence of declassification policies, we use a knowledge-based progress-insensitive definition of security

and prove that our enforcement mechanism is sound. We also prove precision and robust declassification

properties of our SME rules.

Chapter 4

Robust Declassification via Limiting Attacker

Influence

In this chapter we describe a technique for robust declassification where we keep track of which elements

were added by untrusted code and prevent events associated with those elements from being declassified.

4.1 Overview

In the previous chapter, we showed that the dynamic features on webpages (including adding new page

elements to the DOM or registering new event handlers) can leak sensitive information. The problem

was that an untrusted party with the ability to add code to the page (such as via a third-party script)

could leverage dynamic features to influence when declassification happens. The solution presented there

ensures that an attacker cannot influence declassification via dynamic elements by disallowing events

from dynamic features from being declassified. However, while this technique is provably secure, it risks

altering the behavior of secure programs involving dynamic features and could prevent declassification

in the benign example we describe above.

In this chapter, we develop a more fine-grained technique for protecting dynamic features from leaking

secrets due to declassification by keeping track of the attacker’s influence on the page and only preventing

declassification when it involves code which is not trusted by the user. This chapter makes the following

contributions: We present an example to show that preventing declassification for all dynamic elements

is too restrictive to be practical in some situations (Section 4.2.2). We highlight leaks due to interac-

tions between executions which can arise even if the user trusts the copy of the page they are interacting

with (Section 4.2.3). This is different from the example in Section 3.2 where the user is interacting with

attacker-controlled code directly. In Section 4.3 we present SME semantics based on the ones described

33

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 34

onKeypress(secret) :
case secret :
| 1 : new(b1);

addEH(b1, onClick{outputP(1)});
· · ·
| n : new(bn);

addEH(bn, onClick{outputP(n)});
| dv :new(b1);

addEH(b1, onClick{outputP(1)});
· · ·
new(bn);
addEH(bn, onClick{outputP(n)});

(a) Event handler added by the attacker.

(P)

(S)b1

bi

bi

bn
…

…

(b) Resulting attacker view (P) and user view (S) of the
page.

Figure 4.1: Example of dynamic features causing leaks. The dv case guarantees that the attacker copy will
have a matching button (colored light blue) to capture the declassified event and leak the secret.

in the previous chapter and in Section 4.4 we extend the model to incorporate techniques from [101] to

achieve a more permissive security monitor—without sacrificing security. This new monitor composes

taint tracking with SME. Tracking the trustworthiness of page elements and their event handlers allows

us to prevent attacker-controlled code from influencing declassification, without entirely sacrificing the

ability to perform declassification in untrusted executions. We present novel security conditions where

robust declassification naturally follows from our influence-based noninterference property (Section 4.6).

In this chapter, we focus on robust declassification for ease of understanding, but the same techniques can

be used to show transparent endorsement [31].

4.2 Motivating Examples

In Chapter 3, we show that an attacker can leak additional information when events from dynamically

generated elements are declassified. We review an example of the leaks due to dynamically generated

features and the proposed solution from Section 3.3.

4.2.1 Leaks when declassifying dynamic elements

Consider a 2-point security lattice with elements - {P, S} where P v S, and a web page with a policy that

declassifies click events and occurrences of keypress events (but which key was pressed should remain

secret). The P copy of the page is visible to the attacker and receives only the public (or declassified)

events, while the S copy is visible to the user and receives all the events. Suppose the attacker registers the

event handler shown in Figures 4.1a which runs whenever a key is pressed and adds a different button

to the page, depending on which key was pressed (which key was pressed is stored in secret). If the user

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 35

presses key i on their keyboard, this event handler would add button bi in the S copy of the page based

on the actual value of the secret. The P copy of the page receives the event with a default value dv to hide

which key was pressed, so the event handler adds all possible buttons to the page. When the user clicks on

bi on their view of the page (the S copy), it is also declassified to the P copy, which is guaranteed to have a

matching button to capture the event. The onClick event handler executes the statement output(P, i). Since

outputs to P channels are allowed in the P execution, this leaks which key was pressed to the attacker.

To prevent this unintended leak, we used an additional label S∆ for dynamically added secrets and

restrict declassification to only those secrets that are labeled S, i.e., events dispatched on elements labeled

S∆ are never declassified to P. Accordingly, in the previous example, the button bi added in the S copy

is labeled S∆; hence, the mouse-click on bi is not declassified to P, thereby preventing the attacker from

learning which key was pressed. However, while this solution prevents unintentional leaks, it can be too

restrictive to be practical, as we show below.

4.2.2 Restrictiveness of technique from Chapter 3

Consider a situation where an online shop wants to know which of their products are receiving the

most attention (but not necessarily purchased). They use JavaScript to dynamically display products

on their site depending on what the user has searched for. To measure product popularity, they use a

third-party analytics library to track which products users are clicking on their site. Because they do not

want the third-party library to have access to all of the user’s private information, they treat the script

as Public, meaning they can only communicate with the analytics service via Public channels through

Public SME executions. To give the analytics library access to the relevant click information, the shop

employs a declassification policy where the coordinates of individual clicks are Secret, but which product

is clicked may be declassified to the analytics library. With the solution described above, everything

dynamically loaded on the page (even ones not controlled by the attacker) are labeled S∆ and excluded

from declassification, and thus, the online shop will not be able to perform their analytics unless the shop

gives them unrestricted access to Secret information, which is antithetical to the goals of IFC.

The reason the earlier example (Figure 4.1b) leaked more than intended is that the attacker leveraged

the declassification policy to leak information by adding buttons to the page. Meanwhile, the products

added to the web page described above are added by the shop itself. The underlying problem is not

the dynamic page elements, but their source. Instead of disallowing any dynamic features to influence

declassification, an intuitive fix would simply restrict the attacker’s influence. This involves protecting the

integrity of the data, which is dual to confidentiality.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 36

(P,U)

(P,T)

(S,U)

(S,T)bsecret

bsecret

bdv

bdv
b1 bn…b2

bAgree

bAgree

b1 bn…b2

bAgree

bAgree

within.news.com

within.news.com

within.news.com

within.news.com

between.news.com

between.news.com

between.news.com

between.news.com

Figure 4.2: Information is allowed to flow in the direction of the arrows. The attacker can influence
Untrusted executions to add page elements or event handlers to try to manipulate declassification directly
within an execution (blue case) or indirectly between executions (orange case).

4.2.3 Tracking integrity in SME

Consider a simple 4-point security lattice with 2 confidentiality labels (Public and Secret) and 2 integrity

labels (Trusted and Untrusted). Information is allowed to flow from Public to Secret, as well as Trusted

to Untrusted. Then the complete security lattice is a diamond with (P, T) at the bottom, (S, U) at the top,

and the other labels (P, U) and (S, T) in between. SME can be used to enforce information flow policies

drawn from this lattice by running one execution for each of these 4 security levels as shown in Figure 4.2.

In this model, the attacker, and other Untrusted parties, like ad.com, are only able to add code to the

Untrusted executions, while Trusted parties (like news.com in our examples) may add code to any of the

executions. In our examples, the (P, U) execution can communicate with the attacker via ad.com and the

user is shown the (S, U) version of the webpage.

In the following examples, we show that attackers have influence over the decision to declassify

whether the user interacts directly with their code (similar to the leaks via Dynamically generated elements

from Chapter 3.2) or indirectly, when a declassification triggers their code in another execution. We will

return to these examples in later sections as well.

Leaks within an execution Suppose a user visits a webpage (within.news.com) which explains that it

will share their account preferences with advertisers (ad.com), but only if they click the “Agree” button

(identified in the code as bAgree) to consent. When the page loads, ad.com adds a large bAgree button at the

top of the page with the text “Click me!”, as in Figure 4.2, where the buttons coming from ad.com are light

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 37

blue and the ones from within.news.com are dark blue. A curious user may click the button, not realizing

it will share their settings. We call this a leak within an execution because the user is interacting directly

with attacker-controlled code. This is similar to the example from Section 3.2 where the attacker adds

elements to the page the user is interacting with directly.

Leaks between executions Consider another webpage (between.news.com) which has a policy that key-

press events are Secret, but clicks may be declassified from Secret to Public. news.com installs an event

handler which adds a different button to the page, depending on which key the user presses (similar to

onKeypress in Figure 4.1, without the dv case). Meanwhile, ad.com adds all the possible buttons to the page

and registers an event handler which is triggered by a click to send them a message, telling them which

button was clicked (similar to the dv case from the onKeypress event handler in Figure 4.1). The resulting

page is shown in Figure 4.2, where the dark orange buttons were added by news.com and the light orange

buttons were added by ad.com. Note that because news.com is Trusted, the dark orange buttons are added

to all the copies of the webpage, including the Untrusted ones.

Like the leak from Section 3.2, if the user clicks the bsecret button on the (S, U) page, the event will

be declassified to the (P, U) execution, which is guaranteed to have a matching button to capture the

event and leak the keypress to the attacker. We call this a leak between executions because the user is

interacting with code added by the host page which triggers attacker-controlled code in another execution.

This example highlights that it is not enough to only look at the page the user is interacting with, we also

need to consider the executions capturing the declassified events.

To prevent the attacker from influencing declassification, one approach would be to extend the solu-

tion from Chapter 3 to apply to events originating from dynamic elements in Untrusted executions (which

might include attacker-controlled code), as well as events being released to dynamic elements in Untrusted

executions. But as we described above, this would also prevent innocent declassifications, like the online

shop in the previous example. Likewise, it would not be enough to simply prevent the user from inter-

acting directly with attacker-controlled code by showing them the (S, T) copy of the page instead of the

(S, U) copy, because this would still be susceptible to the leaks between executions.

To prevent these leaks without sacrificing functionality, we introduce a taint-tracking technique in Sec-

tion 4.4.2 which attaches labels to page elements (and their event handlers) that reflect the trustworthiness

of the source of the code. We check that the user trusts the code they are interacting with directly to

decide if a declassification should be triggered (preventing leaks within executions), as well as the code in

other executions to decide whether they should receive the event (preventing leaks between executions).

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 38

Security lattice: L ::= Lc ×Li
Security property: p ::= c | i
Confidentiality/integrity label: lp ∈ Lp
Program counter: pc ∈ L

Event: Ev ::= click | keyPress | ...
Event handler: eh ::= onEv(x){c}
Security policy: P
SME Traces: T ::= K | P ` T

αl=⇒ K
SME configuration: K ::= Σ; ks

SME state: Σ ::= · |Σ, pc 7→ σG
pc

Shared state: σG ::= σg, σEH

Shared variable state: σg ::= · | σg, x 7→ v
Shared EH state: σEH ::= · | σEH, id 7→ (v, M)
EH map: M ::= · |M, Ev 7→ EH
Event handler set: EH ::= { } |EH∪ {eh}

Configuration stack: ks ::= · | (κ, pc) :: ks
Actions: α ::= id.Ev(v) | ch(v) | •
Event queue: E ::= · | E, (id.Ev(v), pc)

Figure 4.3: Syntax for processing inputs and outputs.

4.3 SME with Dynamic Features

Before we introduce our taint tracking technique for robust declassification, we describe SME semantics

for reactive systems with dynamic features (without declassification). Our semantics are flexible enough

to work with any security lattice with any number of confidentiality and integrity labels. Similar to Chap-

ter 3, we organize our SME semantics into three levels: the top-most level is responsible for processing

inputs and outputs, looking up event handlers, and switching between executions. The mid-level manages

the execution state and event handler queue for a particular execution. The lowest level runs the current

event handler. While the semantics in Chapter 3 use a simple 2-point security lattice, the semantics here

are general enough for any security lattice. In this section, we describe the syntax and semantics for each

level of semantics, referring to our running examples from Section 4.2.3.

4.3.1 I/O Processing and EH Lookup

Here we describe the syntax and semantics for processing inputs and outputs, looking up event handlers,

and switching between executions with SME. The syntax related to our input/output semantics is shown

in Figure 4.3.

In this chapter, we discuss both confidentiality and integrity. These properties are considered dual to

each other, and we leverage this duality in later sections to simplify our semantics and security conditions.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 39

We parameterize our semantics on the security property, p, where p = c refers to confidentiality and p = i

for integrity. We have both confidentiality labels, lc ∈ Lc, which tell us how much privilege is needed

to access data, and integrity labels, li ∈ Li, which tells us how trusted a component is. We say that

information may flow from (lc, li) to (l′c, l′i) if l′c has privilege to see data from lc (lc v l′c) and l′i trusts

data from li (li v l′i). Our example from before used a simple security lattice with Lc = {P, S} and

Li = {T, U} for P v S and T v U, but our rules are general enough to accommodate more complex

(finite) lattices.1 The program counter pc tells us what context we are executing an event handler in and

is a pair of confidentiality and integrity labels.

Events in our reactive system are associated with elements given by unique identifiers id. Event han-

dlers of the form onEv(x){c} run command c with argument x when the system receives event Ev (such

as a click or a keypress). The security label (lc, li) of an event is determined by the security policy P .

An execution trace T is zero or more steps of the top-level I/O semantics. An SME configuration K is a

snapshot of the system including the SME state Σ and the configuration stack ks.

Σ keeps track of the shared state for each execution, which persists between event handlers; each

security level pc = (lc, li) has its own store σG
(lc ,li)

which is the variable storage σg and event handler

storage σEH (i.e., the DOM) for each execution. The event handler storage maps identifiers id to attributes

v and event handler maps M, which maps events Ev to their respective event handlers eh1, ..., ehn. This

model allows each execution to have its own copy of the DOM, whose contents may vary in privilege and

trust (see Section 4.7 for a discussion about other possible DOM models). Each execution runs its event

handlers separately, beginning at the top of the configuration stack ks. Each element of the configuration

stack determines what event handler to run, given by configuration κ, and in which execution, given by

the security level pc. We describe the individual configurations, κ, in more detail in the next section.

As the system runs, it may react to/emit various actions, α. In the reactive setting, the system waits

until it receives an input which is an event triggering (zero or more) event handlers which may produce

some outputs. In our case, inputs include user interactions id.Ev(v) which are events Ev associated with

an element id (possibly) carrying some argument (e.g., which key is pressed for a keyPress event or the

location of a click). Outputs are given by values sent along a channel ch. The other actions are silent •.

The operational semantics for processing inputs and outputs, looking up event handlers, and switching

between executions is shown in Figure 4.4. Rule In receives an event Ev for page element id with parameter

v from the principal with privilege and trustworthiness given by pc. The security policy tells us the label

on the event is pc′. We run the event handlers associated with the event in each execution with enough

1Prior work describes an extension of SME which can operate on infinite lattice [3]. Instead of running the program at every
security level in the lattice, they only run the program at the security levels which are relevant to the input data and outputs
produced by the code. We leave exploring a similar technique for our approach to future work.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 40

P ` K
(α,pc)
=⇒ K′

P(id.Ev(v)) = pc′ E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks

P ` Σ; · (id.Ev(v),pc)
=⇒ Σ; ks

In

producer(κ) Σ, κ
ch(v)−→pc Σ′, ks′ α = ch(v) if P(ch) = pc α = • otherwise

P ` Σ; (κ, pc) :: ks
(α,pc)
=⇒ Σ′; ks′ :: ks

Out

producer(κ) Σ, κ
α−→pc Σ′, ks′ α 6= ch(v)

P ` Σ; (κ, pc) :: ks
(α,pc)
=⇒ Σ′; ks′ :: ks

Out-Silent

consumer(κ)

P ` Σ; (κ, pc) :: ks
(•,pc)
=⇒ Σ; ks

Out-Next

Σ, E ks

Σ(pc) = (_, σEH) σEH(pc)(id.Ev(v)) = c
κ = ·, c, P, · Σ, E ks

Σ, (id.Ev(v), pc) :: E (κ, pc) :: ks
lookup

Σ, · ·
lookup-empty

Figure 4.4: Top-level SME rules for processing inputs and outputs, and looking up event handlers

privilege to see the event and who trust the event, i.e., at all executions at or above pct pc′ in the security

lattice. For the simple 4-point security lattice described above, the top (most restricted) label on the

lattice is (S, U), meaning that Secret and Untrusted events will run in the executions which have enough

privilege to see the event and trust the event, which is only the (S, U) copy. Meanwhile, Secret Trusted

events will be trusted by both Trusted and Untrusted executions, so will run in both (S, U) and (S, T)

executions. Finally, every execution has enough privilege to see Public events, and every execution trusts

Trusted events, so an event labeled (P, T) will run in every execution. The lookup semantics (Σ, E ks)

looks up the event handlers in Σ and constructs a configuration for each execution in E, resulting in ks.

The output rules run the event handlers one at a time. When an event handler is running, the config-

uration at the top of the stack is in producer state, producer(κ). Rule Out handles outputs produced by

the event handler. An execution performs outputs to channels only if the label on the channel matches

the execution context, i.e., P(ch(v)) = pc. Otherwise, the output is suppressed. Rule Out-Silent handles

steps which do not produce outputs. When the event handler finishes running, the configuration at the

top of the stack is in consumer state, consumer(κ), and rule Out-Next pops the configuration off the stack

to run the next event handler. The execution state is managed by the mid-level semantics, described next.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 41

Example Recall our example of leaks within an execution from Section 4.2.3. We assume the security

policy is that click events are considered secret and trusted, P(_.Click(_)) = (S, T)2 and page load events

are public and trusted, P(_.load(_)) = (P, T). The user is interacting with the (S, U) copy of the page and

the attacker who serves ads from ad.com is listening on (P, U) channels.

Initially, before any events have been triggered, we assume that the SME state is well-formed, meaning

that source of the code (li) loaded to each execution (l′i) is trusted (li v l′i). The attacker-controlled code

from ad.com only appears in Untrusted executions, while the code from Trusted news.com will appear in

all the executions. For our example, we also assume that ad.com registers an onLoadU function to add the

“Click me!” button (from Figure 4.2), and news.com registers onLoadT to add the “Agree” button.

Then, the initial SME configuration is K0 = Σ0; ks0 where ks0 runs body.load for each execution (ks0 will

be described in more detail in the next section) in the following SME state:

Σ0 = (S, U) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT}),

(P, U) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT}),

(S, T) 7→ body 7→ (_, load 7→ {onLoadT}),

(P, T) 7→ body 7→ (_, load 7→ {onLoadT}),

Next, the (S, U) execution runs the onLoadU event handler. Since the action performed by this step of

the computation is not an output to a channel (α 6= ch(v)) rule Out-Silent makes a step from K0 to some

new configuration K1: K0
(•,(S,U))
=⇒ K1. The new configuration K1 now has a new button in the (S, U) copy

of the store and the other copies remain unchanged:

Σ1 = (S, U) 7→ body 7→ (...), bAgree 7→ (“Click me!”, ·)

(P, U) 7→ body 7→ (...)

(S, T) 7→ body 7→ (...)

(P, T) 7→ body 7→ (...)

The same process will repeat to add the “Click me!” button to the (P, U) store and the “Agree” button to

the other executions. Now that the event handlers have finished running, rule Out-Next pops the event

handler from ks and the system waits for user input.

Suppose the attacker also installed an event handler in the (S, U) and (P, U) executions which directly

sends them the user’s account preferences. Since they are listening on a (P, U) channel, the rule out would

suppress the output from the (S, U) execution which knows the real preferences (since P(ch) 6= (S, U)).

The same rule would allow the output from the (P, U) execution, which would not have access to the real

preferences (it would instead output a default value dv).
2Not to be confused with the isTrusted property distinguishing events which come from a user from events which were generated

by an event handler (see [96]).

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 42

Σ, κ
α−→pc Σ′, ks

Σ, σ, skip, P, · •−→pc Σ, ((σ, skip, C, ·), pc)
PtoC

E = (id.Ev(v), pc) :: E′ Σ, E ks

Σ, σ, skip, P, E •−→pc
Σ, ((σ, skip, C, ·), pc) :: ks

PtoLC

Σ, σ, c α−→pc Σ′, σ′, c′, E′

Σ, σ, c, P, E α−→pc Σ′, ((σ′, c′, P, (E, E′)), pc)
P

Figure 4.5: Mid-level rules for processing the event queue

4.3.2 Execution State and EH Queue

The syntax for the mid-level semantics is shown below.

Single config: κ ::= σv, c, s, E

Execution state: s ::= P |C

A single configuration κ is a snapshot of one execution, including the local variables σv (which are

only accessible to the event handler currently running), the current command c being executed, the exe-

cution state s of the event handler, and the event queue E. The execution state is either P for producer

(meaning an event handler is running) or C for consumer (meaning the event handlers have finished and

the execution is ready to process a new event). Here, the event queue, E, is a list of the events triggered

by other event handlers. The events will run in the same execution, so the pc on each event in the queue

will match the current execution context.

The semantics for managing the event handler queue and execution state are shown in Figure 4.5.

Rule PtoC handles the case where an event handler has finished running (c = skip) and no other event

handlers have been triggered (E = ·). In this case, the execution state is changed to C for consumer state.

On the other hand, if an event handler has triggered other event handlers to run (E 6= ·), rule PtoLC will

additionally look up the event handlers in E and return these event handlers in ks. Finally, rule P runs an

event handler using the event handler semantics, described below.

Example The top-level I/O rules use the execution state to decide whether they should continue running

the event handler (rules Out and Out-Silent) or pop the event handler off ks to run the next event handler,

if one exists (rule Out-Next), or wait for another input (rule In) if one does not. From the leaks between

executions example in Section 4.2.3, before the user presses a key on their keyboard or clicks the button,

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 43

Σ, σ, c α−→pc Σ′, σ′, c′, E

Σ, σ, skip; c •−→pc Σ, σ, c, ·
skip

Σ, σ, c1
α−→pc Σ′, σ′, c′1, E

Σ, σ, c1; c2
α−→pc Σ′, σ′, c′1; c2, E

seq

JeKpc
σ,Σ = v Σ(pc) = (σg, _) x 6∈ σg

Σ, σ, x := e •−→pc Σ, σ[x 7→ v], skip, ·
assign-l

JeKpc
σ,Σ = v Σ(pc) = (σg, σEH) x ∈ σg Σ′ = Σ[pc 7→ (σg[x 7→ v], σEH)]

Σ, σ, x := e •−→pc Σ′, σ, skip, ·
assign-g

JeKpc
σ,Σ = v Σ(pc) = (σg, σEH) σEH(id) = (_, M) Σ′ = Σ[pc 7→ (σg, σEH[id 7→ (v, M)])]

Σ, σ, id := e •−→pc Σ′, σ, skip, ·
update

JeKpc
σ,Σ = b c = c1 if b = true c = c2 if b = false

Σ, σ, if e then c1 else c2
•−→pc Σ, σ, c, ·

if

JeKpc
σ,Σ = b c′ = c; while e do c if b = true c′ = skip if b = false

Σ, σ, while e do c •−→pc Σ, σ, c′, ·
while

Figure 4.6: Rules for running event handers

the system is in Consumer state, waiting for user interaction (ks = ·). When the user clicks the secret button,

the input rule In looks up the event handler for secret.Click() and the rule lookup sets the execution state

to Producer. The rule P in the mid-level semantics run the event handler to completion and then PtoC

switches the execution state back to Consumer state.

4.3.3 Individual Event Handlers

The syntax relevant to running individual event handlers is summarized below.

Expression: e ::= x | v | id | uop e | e1 bop e2

Command: c ::= skip | c1; c2 | x := e | id := e |while e do c | if e then c1 else c2

| output ch e | new(id, e) | addEh(id, eh) | trigger id.Ev(e)

Expressions include variables, values (integers and booleans), page element identifiers, id, unary, and

binary operators. Commands are mostly standard and include outputs to channels output ch e and dy-

namic behaviors. new(id, e) adds a new page element with attribute e, addEh(id, eh) registers a new event

handler eh to a page element given by id, and trigger id.Ev(e) triggers an event handler for event Ev

associated with page element id, passing argument e.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 44

Σ, σ, c α−→pc Σ′, σ′, c′, E

JeKpc
σ,Σ = v

Σ, σ, output ch e
ch(v)−→pc Σ, σ, skip, ·

output
JeKpc

σ,Σ = v E = (id.Ev(v), pc)

Σ, σ, trigger id.Ev(e) •−→pc Σ, σ, skip, E
trigger

JeKpc
σ,Σ = v Σ(pc) = (σg, σEH) id 6∈ σEH Σ′ = Σ[pc 7→ (σg, σEH[id 7→ (v, ·)])]

Σ, σ, new(id, e)
new(id)−→ pc Σ′, σ, skip, ·

new

Σ(pc) = (σg, σEH)
σEH(id) = (v, M) M′ = M(Ev) ∪ eh Σ′ = Σ[pc 7→ (σg, σEH[id 7→ (v, M′)])]

Σ, σ, addEh(id, Ev, eh)
new(id,eh)−→ pc Σ′, σ, skip, ·

add-eh

Figure 4.7: Additional rules for running event handers

We show the event handler operational semantics in Figures 4.6 and 4.7. The rules in Figure 4.6 are

mostly standard. We evaluate expressions with JeKpc
σ,Σ where pc tells us which copy of the shared storage

to access in Σ and σ is the store local to the current event handler. Rule assign-l handles the case where

we are updating the event handler store, while assign-g handles the case where we are updating the

(persistent) shared storage. We assume that the set of shared variables are static throughout the execution

so we can determine which store to modify by checking if the variable is in the shared store. Rule update

updates attributes of the DOM.

Candidate outputs are produced by rule output, and the I/O semantics decide whether the output is

permitted or not. The other rules are for handling dynamic elements, including triggering event handlers

(rule trigger), generating new page elements (rule new), and registering a new event handler (rule add-

eh). In each of these rules, we interact with the copy of the global storage which matches the current

execution context. Event handlers run in the same context they were triggered in, denoted by pc. New

page elements must have a unique identifier, id 6∈ σEH, and are initialized with the given attribute and no

event handlers, M = ·. When registering a new event handler, the existing event handlers associated with

the event are looked up in the event handler map, M(Ev). The event handler map is updated to include

the original event handlers plus the new one, M[Ev 7→ M(Ev) ∪ eh].

4.4 Declassification

The semantics presented in the previous section enforce a strict noninterference, where information from

secret events can never flow to more public outputs. We extend the syntax and semantics from Section 4.3

to include declassification.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 45

P ,D ` K
(α,pc)
=⇒ K′

P(id.Ev(v)) = pc′ E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′)
(R′, Ed) = declassify(D,R, Σ, (id.Ev(v), pc), pc′) Σ, E :: Ed ks

P ,D ` R; Σ; · (id.Ev(v),pc)
=⇒ R′; Σ; ks

In

declassify(D,R, Σ, (id.Ev(v), pc), pc′) = (R′, E)

D((id.Ev(v), pc), pc′, ρ) = (ρ′, vd, Ed) d′ = update(d, vd)

declassify(D, (ρ, d), Σ, (id.Ev(v), pc), pc′) = ((ρ′, d′), Ed)
declassify

Figure 4.8: Updated input rule for declassification. We highlight the noteworthy changes to the existing
input rule using red text.

(P,U)

(S,T)

(S,U)

(P,T)

(S,T) ()

Figure 4.9: SME model for enforcing confidentiality and integrity information flow policies, including de-
classification. A secret and trusted event (mouse click) would be shared with (S, T) and (S, U) executions,
and would only be shared with (P, U) and (P, T) executions if permitted by the declassification policy.

4.4.1 Declassification Syntax and Semantics

We use stateful declassification, similar to prior work [91] and Chapter 3. A stateful policy is one that

may involve the system state when deciding whether to declassify. Here, we describe the syntax for

declassification, which is shown below.

Declassification policy: D

Declassification module: R ::= (ρ, d)

Declassification state: ρ ::= · | ρ, (id1.Ev1, n1)

Declassification channel: d ::= (ι1, v1), · · · , (ιn, vn)

The declassification policy is given by D. Given an event and the current state, as well as informa-

tion from the security policy, P , D updates the current state and decides whether the event should be

declassified. The declassification module R keeps track of the current state for making decisions about

declassification as well as channels for event handlers to access released values. A declassification state

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 46

ρ keeps track of relevant state conditions, for example, whether a particular button has been clicked, the

number of key presses, or the aggregate location of clicks. Here, for simplicity, ρ simply counts how many

times an event has been seen. The declassification channel d associates locations ι (such as a line number

in the code) with the released value accessible by that location.

The relationship between the declassification module and SME executions is shown in Figure 4.9.

Incoming events are shared with the executions with enough privilege who trust the input, like before.

For example, if the security policy says that mouse clicks are Secret and Trusted, then the (S, T) and (S, U)

executions receive the event as-is. Now, events may also be shared with executions with less privilege, as

determined by the declassification policy. For the example in Figure 4.9, this means that (P, U) and (P, T)

receive the event released by the declassification module (if any). Note that the declassified events may

differ between executions, for instance, a policy might release the coordinates of the mouse click to some

executions and replace the coordinates with a default value for other executions.

Updating the semantics from Section 4.3 is straightforward. The judgement for the I/O semantics is

updated to include D and R:
P ,D ` R; Σ; ks

αl=⇒ R′; Σ′; ks′

A declassification function (declassify), shown in Figure 4.8 is added to the input rule. It uses the declas-

sification policy D and the label on the event pc′ (which comes from the security policy) to determine

whether the new event (id.Ev(v), pc) should be released to run event handlers in additional execution

contexts Ed, whether the system state ρ should be updated, and what values should be updated on the

declassification channel d (if any). Note that declassification will only change the integrity of an event to

ensure the executions which trust the event receive the declassified event; it will never make the event

more trusted (more on endorsement in the next Section).

Example Recall the example of leaks within an execution from Section 4.2.3, where the security policy

says that clicks are (S, T), and the declassification policy says that the user’s preferences may be declassi-

fied from S to P when bAgree is clicked.

When the user clicks bAgree in the (S, U) execution, In will share the event with all the executions with

enough privilege and who trust the user (just (S, U)), but we also use declassify(D,R, Σ, (bAgree.Click(),

(S, U)), (S, T)) to determine whether the event should be declassified to additional executions:

D((bAgree.Click(), (S, U)), (S, T), (bAgree.click, n)) = ((bAgree.Click, n + 1), loc, ·)

This indicates that the state ρ has been updated to reflect that one more click has been seen (n becomes

n + 1), the user’s location should be released on the declassification channel (loc), and the click event

should not be released to any additional executions.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 47

For the example of leaks between executions, the security policy says that button clicks and keypresses

are both (S, T), but now, the declassification policy says that button clicks may be released from S to P.

When the user clicks bsecret, rule In runs the event as-is in the (S, U) execution and declassifies the event

as follows:

D((bsecret.click(), (S, T)), (S, T), (bsecret.click, m)) = ((bsecret.click, m + 1), none, (bsecret.click(), (P, U)))

Here, ρ is updated to reflect the click, nothing is updated on the declassification channel (none), and

the click event is released to the P executions who trust the event. That is, the event is released to all

executions with label li s.t. li trusts the event l′i (determined by the security policy) and the source of the

event l′′i (formally, l′i t l′′i @ li). Here, this is just (bsecret.Click(), (P, U)). The result is that the onClick event

handler will run in both the (S, U) and (P, U) executions. Rule Out will suppress the output from the

(S, U) execution, but the same rule will permit the output from the (P, U) execution, which is guaranteed

to have a matching button to capture the event.

4.4.2 Robust Declassification

In the presence of an active attacker who may have control over some of the code, we need to ensure that

they do not control what/whether data is declassified [101]. As we show in the example in Section 4.2.3,

SME ensures that each execution only receives data they have the privilege to access (and is only influ-

enced by code they trust). Now, for the declassifications to be robust against attacker influence, we also

need to ensure that the source of the event li trusts the code l′i on the same execution they are interacting

with (l′i v li). Additionally, we need to check that the source of the event trusts the code which added

the page element in the other execution receiving the declassified event. From the example in the previous

section: By declassifying an event from the attacker-controlled button (in the former case), or letting the

attacker add elements to capture declassified events (in the latter case), more information is leaked than

the declassification policy intends.

In this section, we compose taint tracking with the SME semantics presented in the previous section to

also keep track of the source of the page elements in each execution. First, we modify the event handler

storage σEH so that page elements and event handlers have labels l ∈ Li indicating the trustworthiness of

their source:
EH state: σEH ::= · | σEH, id 7→ (v, M)l

EH map: M ::= · | Ev 7→ {ehl1
1 , ..., ehln

n }

The labels on the page elements are independent of the labels on the event handlers. A Trusted source

may add a page element, which an Untrusted source later registers an event handler to, or vice versa. We

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 48

do assume that the source of the code li is trusted by the execution pc, i.e., li v pc ↓i, where pc ↓i is the

integrity label in pc. This means that Untrusted sources cannot add code to Trusted executions. Therefore,

the labels on page elements/event handlers li are related to the execution context pc in the same way.

The input rules prevent leaks within executions by using the labels in σEH to decide whether to proceed

with a declassification. In order to declassify, the source of the event must trust the source of the page

element. We use the shorthand labelOf(σEH(id)) to represent the label on the element identified by id in

σEH. Then, an event from a user at security level pc associated with a page element given by id in σEH is

allowed to be declassified when the following holds: labelOf(σEH(id)) v pc ↓i. If this condition holds, rule

In-Release attempts to declassify the event. Otherwise, rule In-No-Release only runs the event in the

executions which have enough privilege to see the event and who trust the user.

P ,D ` K
(α,pc)
=⇒ K′

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) v pc ↓i E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′)
(R′, Ed) = declassify(D,R, Σ, (id.Ev(v), pc), pc′) Σ, E ks pc ↓i, r ` Σ, Ed ksd

P ,D ` R; Σ; · (id.Ev(v),pc)
=⇒ R′; Σ; ks :: ksd

In-Release

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) 6v pc ↓i E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks

P ,D ` R; Σ; · (id.Ev(v),pc)
=⇒ R′; Σ; ks

In-NoRelease

Figure 4.10: Modified input rules for robust declassification. Noteworthy changes are shown in red text.

We use the declassification function from Section 4.4.1 to prevent leaks between executions. The updated

declassification rules are in Figures 4.10 and 4.11. In addition to looking up the declassified event(s) and

the execution(s) they will run in, robust throws out executions where the source of the event does not trust

the source of the page element. Rule robust handles the case where the source of the code is trusted (the

event is sent to the execution), and rule not-robust handles the case where it is not (the execution does

not receive the event). Then, the lookup semantics (judgement l, r ` Σ, E ks) ensure only trusted event

handlers run. We define (eh, l′) ↓l as eh when l′ v l and · otherwise. When there is at least one event

handler the user trusts (Σ(pc)(id.Ev(v)) ↓l= c), rule lookup-R adds the trusted event handlers to ks and

attaches a label Σ(pc) t Σ(pc)(id.Ev(v)) reflecting the source of the code. When there are no trusted event

handlers (Σ(pc)(id.Ev(v)) ↓l= ·), rule lookup-notR moves to the next execution receiving the declassified

event. The rules adding a new page element (new) or event handler (add-eh) are responsible for assigning

the labels in the event handler store, where lsrc is the label from rule lookup-R.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 49

declassify(D,R, Σ, (id.Ev(v), pc), pcEv) = (R′, E)

D((id.Ev(v), pc), pc′, ρ) = (ρ′, vd, Ed) d′ = update(d, vd) E = robust(Σ, Ed, pc ↓i)

declassify(D, (ρ, d), Σ, (id.Ev(v), pc), pc′) = ((ρ′, d′), E)
declassify

robust(Σ, E, pcEv) = E′

Σ(pc) = (_, σEH) labelOf(σEH(id)) v l
robust(Σ, ((id.Ev(v), pc) :: E), l) = (id.Ev(v), pc) :: robust(Σ, E, l)

robust

Σ(pc) = (_, σEH) labelOf(σEH(id)) 6v l
robust(Σ, ((id.Ev(v), pc) :: E), l) = robust(Σ, E, l)

notR
robust(Σ, ·), l) = ·

empR

pc, r ` Σ, E ks

Σ(pc) = (_, σEH) σEH(id.Ev(v)) ↓l= c
pc′ = labelOf(σEH(id)) t labelOf((σEH(id))(Ev)) κ = ·, c, P, · l, r ` Σ, E ks

l, r ` Σ, (id.Ev(v), pc) :: E (κ, pc′, pc) :: ks
lookup-R

Σ(pc) = (_, σEH) σEH(id.Ev(v)) ↓l= ·
l, r ` Σ, E ks

l, r ` Σ, (id.Ev(v), pc) :: E ks
lookup-notR

l, r ` Σ, · ·
lookup-empR

lsrc, d ` Σ, σ, c α−→pc Σ′, σ′, c′, E

JeKpc
σ,Σ = v Σ(pc) = (σg, σEH) id 6∈ σEH Σ′ = Σ[pc 7→ (σg, σEH[id 7→ (v, ·)lsrc])]

lsrc, d `Σ, σ, new(id, e) •−→pc Σ′, σ, skip, ·
new

Σ(pc) = (σg, σEH)

σEH(id) = (v, M)lid M′ = M[Ev 7→ M(Ev) ∪ ehlsrc] Σ′ = Σ[pc 7→ (σg, σEH[id 7→ (v, M′)lid])]

lsrc, d `Σ, σ, addEh(id, Ev, eh) •−→pc Σ′, σ, skip, ·
add-eh

Figure 4.11: Additional rule changes for robust declassification. Noteworthy changes are shown in red.

Example Recall the examples from Section 4.2.3. Like before, we assume that the initial SME state is

well-formed, meaning that the page elements and event handlers are trusted by the execution context

they appear in. With our new labels, we can make this more precise: execution (lc, li) should trust the

page elements and their event handlers, from source l′i , l′i v li.

For our example of leaks within an execution, there are three event handlers. onLoadU is added by the

attacker via ad.com, who is Untrusted, and onLoadT is added by the host via news.com, who is Trusted.

These event handlers are associated with the body of the page, which we treat as Trusted. Recall that we

assume that the source of the code is trusted by the execution, meaning code from ad.com only runs in the

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 50

(P,U)

(P,T)

(S,U)

(S,T)bsecret

bsecret

bdv

bdv
b1 bn…b2

bAgree

bAgree

b1 bn…b2

U U U

U U U

T

T

T

T

T

T

bAgree
U

bAgree
U

within.news.com

within.news.com

within.news.com

within.news.com

between.news.com

between.news.com

between.news.com

between.news.com

Figure 4.12: Insecure example from Section 4.2 with robustness checks. The labels tell us the trustworthi-
ness of the source of the page elements and event handlers, depicted here as small white labels on each
page element.

Untrusted executions and code from news.com runs in both Untrusted and Trusted executions. Then, the

initial SME state with integrity labels is:

Σ0 = (S, U) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT})T

(P, U) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT})T

(S, T) 7→ body 7→ (_, load 7→ {onLoadT})T

(P, T) 7→ body 7→ (_, load 7→ {onLoadT})T

Now, when the onLoadU event handler runs, the execution knows the code came from an Untrusted

source because of the label U. When the event handler adds the “Click me!” button, rule new uses the

label on the page element T and event handler U to determine the trustworthiness of the new button

T tU = U. The state after adding the “Click me!” button to the (S, U) execution is:

Σ1 = (S, U) 7→ body 7→ (...)T , bAgree 7→ (“Click me!”, { })U

(P, U) 7→ body 7→ (...)T

(S, T) 7→ body 7→ (...)T

(P, T) 7→ body 7→ (...)T

Figure 4.12 shows the resulting page after all the buttons are loaded, including their labels. When the

user clicks the “Click me!” button on the (S, U) copy of the page, the input rules will use the label on the

button to determine if the declassification is allowed. The user is treated as a Trusted source of events, so

because U 6v T, rule In-No-Release prevents the event from being declassified and the attacker does not

learn the user’s location.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 51

For our example of leaks between executions, the host installs an onKeypress event handler to some

field which adds a different button to the page depending on what the user types, and the attacker adds

all possible buttons to the page. After the user presses a key, the SME store has one Trusted button per

execution, and several Untrusted buttons in the Untrusted executions:

Σ0 = (S, U) 7→ bsecret 7→ (...)T , b1 7→ (...)U , ..., bn 7→ (...)U

(P, U) 7→ bdv 7→ (...)T , b1 7→ (...)U , ..., bn 7→ (...)U

(S, T) 7→ bsecret 7→ (...)T

(P, T) 7→ bdv 7→ (...)T

When the user clicks the bsecret button on the (S, U) copy of the page, rule In-Release attempts to

declassify the event to the (P, U) execution since the button is Trusted. Next, the robust rules use the labels

on the button capturing the event to determine if the (P, U) execution should receive the declassified event.

In this case, the button bi capturing the event was added by the attacker. Since U 6v T, rule not-robust

skips the (P, U) execution and the attacker does not learn which key the user pressed.

4.5 Endorsement

Declassification allows us to make exceptions to strict confidentiality policies. The dual condition for

integrity is called endorsement. Declassification and endorsement are more generally called downgrading.

Prior work shows that, like declassification, attackers can use endorsement to launder secrets unless the

endorsement is transparent [31]. The focus of our work is robust declassification, but in this section

we briefly describe how endorsement can be added to our model. We define transparent endorsement

for our reactive system and, finally, show that we can use similar techniques from Section 4.4 to make

endorsements transparent.

4.5.1 Endorsement Syntax and Semantics

Similar to declassification, we define a stateful endorsement. For example, a stateful endorsement policy

might be that before an event can be endorsed, some software attestation process needs to happen for

the event handler generating the event. For instance, every n times we run the event handler, we need to

compare the hash of the event handler against what is stored in the browser to make sure we are running

the correct code. The number of times we have run the event handler is maintained by the endorsement

state. The syntax for both stateful declassification and endorsement is shown below.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 52

P ,D ` K
(α,pc)
=⇒ K′

P(id.Ev(v)) = pc′

E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) declassifyD(R, Σ, α, pc′) = (R′, Ed)
(S ′, Ee) = endorse(E ,S , Σ, (id.Ev(v), pc), pc′) Σ, E :: Ed :: Ee ks

P , E ` R,S ; Σ; · (id.Ev(v),pc)
=⇒ R′,S ′; Σ; ks

In

endorse(E ,S , Σ, (id.Ev(v), pc)) = (S ′, E)

E((id.Ev(v), pc), pc′, ρ) = (ρ′, ve, Ee) d′ = update(d, ve)

endorse(E , (ρ, d), Σ, (id.Ev(v), pc), pc′) = ((ρ′, d′), Ee)
endorse

Figure 4.13: Update input rule for endorsement. We highlight the noteworthy changes to the existing
input rule using red text.

Declassification function: D

Endorsement function: E

Declassification module: R ::= (ρd, dd)

Endorsement module: S ::= (ρe, de)

Downgrade state: ρ ::= · | ρ, (id1.Ev1, n1)

Downgrade channels: d ::= (ι1, v1), · · · , (ιn, vn)

The endorsement policy is given by E . Given an event and the current state, as well as information

from the security policy, P , E updates the current state and decides whether the event should be endorsed.

Note that endorsement will only change the confidentiality of an event to ensure the executions which

have enough privilege to see the event receive the endorsed event; it will never make the event more public.

The endorsement module S keeps track of the current state for making decisions about endorsement as

well as channels for event handlers to access endorsed values. The endorsement state ρ counts how many

times an event has been seen, and the endorsement channel d associates locations ι (such as a line number

in the code) with the sanitized value accessible by that location.

The judgement for the I/O semantics is updated to include E and S :

P ,D, E ` R,S ; Σ; ks
αl=⇒ R′,S ′; Σ′; ks′

An endorsement function (endorse), shown in Figure 4.13 is added to the input rule. It uses the endorse-

ment policy E to determine whether the new event should be endorsed to run event handlers in additional

execution contexts Ee, whether the system state ρ should be updated, and what values should be updated

on the endorsement channel d (if any).

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 53

4.5.2 Transparent Endorsement

The dual condition to robust declassification is transparent endorsement. Similar to the requirement that

the source of the event trusts the code they are interacting with before declassification, we want to ensure

that the source of the event has enough privilege to interact with the page element before endorsement.

Without transparent endorsement, prior work demonstrates that the attacker can leverage endorsement to

launder secrets or even fool a password checker [31]. For the endorsements to be transparent, we ensure

that the source of the event lc has enough privilege to interact with the code l′c on the same execution

(l′c v lc). Additionally, we check that the source of the event has enough privilege to interact with the code

in the other execution receiving the endorsed event. We modify the event handler storage σEH to track

both confidentiality and integrity labels:

EH state: σEH ::= · | σEH, id 7→ (v, M)pc

EH map: M ::= · | Ev 7→ {ehpc1
1 , ..., ehpcn

n }

Using the same strategy as Section 4.4.2, we compose taint tracking with the SME semantics to also

keep track of the secrecy level of the page elements in each execution. The updated input rules are shown

in Figure 4.14. We use the integrity label on page elements labelOf(σEH(id)) ↓i to decide whether the

declassification would be robust within the execution (when the page element is trusted by the source of

the event: labelOf(σEH(id)) ↓iv pc ↓i), and the confidentiality label labelOf(σEH(id)) ↓c to decide whether

the endorsement would be transparent within the execution (when the source of the event has enough

privilege to see the page element: labelOf(σEH(id)) ↓cv pc ↓c). Rule In-Release handles the case where

declassification is possible (but not endorsement), which is performed by declassify, like in the previous

Section. Rule In-Sanitize handles the case where endorsement is possible (but not declassification), which

is performed by endorse, and rule In handles the case where neither are possible. When both declassi-

fication and endorsement are possible, rule In-Downgrade uses downgrade to decide which additional

executions should receive the event. Note that downgrade does not modify R or S , it simply combines the

results of D and E .

4.6 Security

To prove that our SME semantics from Sections 4.3 and 4.4 are secure, in this section we present three

security conditions. First, a knowledge-based progress-insensitive noninterference with declassification

(Section 4.6.1) which ensures that the attacker’s knowledge of the secret inputs is not refined as the

system runs outside of what is declassified (and the fact that the system makes progress). Second, we

describe a novel influence-based progress-insensitive noninterference (Section 4.6.2) which is the integrity

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 54

P ,D, E ` K
(α,pc)
=⇒ K′

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) ↓i 6v pc ↓i labelOf(σEH(id)) ↓c 6v pc ↓c

E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks

P ,D, E ` R,S ; Σ; · (id.Ev(v),pc)
=⇒ R,S ; Σ; ks

In

α = (id.Ev(v), pc) P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) ↓iv pc ↓i labelOf(σEH(id)) ↓c 6v pc ↓c

E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks
declassify(D,R, Σ, α, pc′) = (R′, Ed) pc, r ` Σ, Ed ksd

P ,D, E ` R,S ; Σ; · α
=⇒ R′,S ; Σ; ks :: ksd

In-Release

α = (id.Ev(v), pc) P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) ↓i 6v pc ↓i labelOf(σEH(id)) ↓cv pc ↓c

E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks
endorse(E ,S , Σ, α, pc′) = (S ′, Ee) pc, t ` Σ, Ee kse

P ,D, E ` R,S ; Σ; · α
=⇒ R,S ′; Σ; ks :: kse

In-Sanitize

α = (id.Ev(v), pc) P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH)

labelOf(σEH(id)) ↓iv pc ↓i labelOf(σEH(id)) ↓cv pc ↓c

E = ((id.Ev(v), pc′′) | pc′′ ∈ L s.t. pct pc′ v pc′′) Σ, E ks
declassify(D,R, Σ, α, pc′) = (R′, Ed) pc, r ` Σ, Ed ksd

endorse(E ,S , Σ, α, pc′) = (S ′, Ee) pc, t ` Σ, Ee kse
downgrade(D, E ,R,S , Σ, α, pc′) = Ed,e pc, rt ` Σ, Ed,e ksd,e

P ,D, E ` R,S ; Σ; · α
=⇒ R′,S ′; Σ; ks :: ksd :: kse :: ksd,e

In-Downgrade

Figure 4.14: Modified input rules for transparent endorsement. Noteworthy changes are shown in red.

dual to the knowledge-based security condition to demonstrate that our SME semantics do not allow the

attacker to influence the more trusted components of the system (except the fact that the system makes

progress). Finally, we show if we treat declassification as a trusted behavior, the influence-based security

condition may be extended so that robust declassification follows.

4.6.1 Knowledge-based security (confidentiality)

We measure the knowledge of an observer by keeping track of what they believe the inputs might have

been after observing the system run. Knowledge-based security conditions are convenient because they

allow us to be precise about what information (if any) is leaked. In this section, we will informally define

several knowledge conditions (summarized in Table 4.1) and our knowledge-based progress-insensitive

noninterference. Proofs may be found in Appendix B.2.

For someone with enough privilege to observe data up to label l, their knowledge is the set of all

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 55

endorse(E ,S , Σ, (id.Ev(v), pc), pcEv) = (S ′, E)

E((id.Ev(v), pc), pc′, ρ) = (ρ′, ve, Ee) d′ = update(d, ve) E = transparent(Σ, Ee, pc ↓c)

endorse(E , (ρ, d), Σ, (id.Ev(v), pc), pc′) = ((ρ′, d′), E)
endorse

transparent(Σ, E, pcEv) = E′

Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓cv l
transparent(Σ, ((id.Ev(v), pc) :: E), l) = (id.Ev(v), pc) :: transparent(Σ, E, l)

transparent

Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓c 6v l
transparent(Σ, ((id.Ev(v), pc) :: E), l) = transparent(Σ, E, l)

notT
transparent(Σ, ·, l) = ·

empT

pc, t ` Σ, E ks

Σ(pc) = (_, σEH) σEH(id.Ev(v)) ↓l= c
pc′ = labelOf(σEH(id)) t labelOf((σEH(id))(Ev)) κ = ·, c, P, · l, r ` Σ, E ks

l, r ` Σ, (id.Ev(v), pc) :: E (κ, pc′, pc) :: ks
lookup-T

Σ(pc) = (_, σEH) σEH(id.Ev(v)) ↓l= · l, t ` Σ, E ks
l, t ` Σ, (id.Ev(v), pc) :: E ks

lookup-notT
l, t ` Σ, · ·

lookup-empT

Figure 4.15: Additional rule changes for transparent endorsement. Noteworthy changes are shown in red
text.

Knowledge K(T, Σ0,R,S ,P , l) = All possible inputs producing the same
{τ | ∃T′ ∈ runs(Σ0,R,S ,P), observations

T ≈c
l T′, τ = in(T′)}

Progress Kp(T, Σ0,R,S ,P , l) = All possible inputs producing the same
Knowledge {τ | ∃T′ ∈ runs(Σ0,R,S ,P), observations and accept another input: prog(T′)

T ≈c
l T′, τ = in(T′), prog(T′)} holds if T′ can reach the consumer state

Release Krp(T
α

=⇒ K, Σ0,R,S ,P , l) = All possible inputs producing the same
Knowledge {τ | ∃T′ ∈ runs(Σ0,R,S ,P), observations, accept another input, and release the

T ≈c
l T′, τ = in(T′), prog(T′), same event: releaseT(T′, α) holds if T′ can be

releaseT(T′, α))} extended to release the same event α

Table 4.1: Knowledge definitions. Knowledge and progress knowledge are for defining a knowledge-
based progress-insensitive noninterference. Release knowledge and transparent knowledge account for
what is leaked to the attacker through declassification and the addition of a page element/event handler
capable of transparent endorsement (respectively). Complete definitions may be found in Appendix B.1.

possible inputs which might have produced the observations they made. Knowledge can also be thought

of as a measure of uncertainty. As the attacker learns more, they will become more confident about the

inputs received by the system and the knowledge set will become smaller (i.e., the attacker has become

more certain about what the inputs might have been). We define the knowledge of an observer with

privilege l ∈ Lc:

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 56

T ↓p
l = τ

P ,D, E ` K ↓p
l = ·

TP-Base

pc ↓pv l α 6∈ {id.Ev(v), ch(v)}

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓p

l = α :: T′ ↓p
l

TP-Out1

pc ↓pv l ∨ P(ch) ↓pv l

(P ,D, E ` K
(ch(v),pc)
=⇒ T′) ↓p

l = ch(v) :: T′ ↓p
l

TP-Out2
pc ↓p 6v l ↓p P(ch) ↓p 6v l

(P ,D, E ` K
(ch(v),pc)
=⇒ T′) ↓p

l = T′ ↓p
l

TP-Out-S1

α 6∈ {id.Ev(v), ch(v)} pc ↓p 6v l

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓p

l = T′ ↓p
l

TP-Out-S2

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓i 6v pc ↓i

labelOf(σEH(id)) ↓c 6v pc ↓c τ = id.Ev(v) if pc′ ↓p tpc ↓pv l τ = · otherwise

(P ,D, E ` _, _; Σ; _
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓iv pc ↓i

labelOf(σEH(id)) ↓c 6v pc ↓c τ = trRelease(D,R, Σ, (id.Ev(v), pc), pc′)

(P ,D, E ` R, _; Σ; _
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In-R

trRelease(D,R, Σ, (id.Ev(v), pc), pc′) = τ

(R′, E) = declassify(D,R, Σ, (id.Ev(v), pc), pc′) pc, r ` Σ, E ks R 6= R′ or ks ↓p
l 6= ·

trRelease(D,R, Σ, (id.Ev(v), pc), pc′) = rls(id.Ev(v),R′, E ↓p
l)

TP-rls

(R, E) = declassify(D,R, Σ, (id.Ev(v), pc), pc′)
pc, r ` Σ, E ks ks ↓p

l = · pc ↓p tpc′ ↓pv l
trRelease(D,R, Σ, (id.Ev(v), pc), pc′) = (id.Ev(v), pc)

TP-rIn

(R, E) = declassify(D,R, Σ, (id.Ev(v), pc), pc′)
pc, r ` Σ, E ks ks ↓p

l = · pc ↓p tpc′ ↓p 6v l
trRelease(D,R, Σ, (id.Ev(v), pc), pc′) = ·

TP-rEmp

Figure 4.16: The observation (p = c) or behavior (p = i) of a trace at l (only declassification shown)

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 57

Definition 13 (Attacker Knowledge at l). An attacker’s knowledge with privilege l ∈ Lc after observing trace T

beginning from state σ0 with security policy P and declassification policy R denoted K(T, Σ0,R,S ,P , l) is defined

as {τ | ∃T′ ∈ runs(Σ0,R,S ,P), T ≈c
l T′, τ = in(T′)

Reading this backward: the knowledge of an observer with privilege l is the set of all inputs from

execution traces T′ (τ = in(T′)) that are observationally equivalent at l to T (T ≈c
l T′) and start from the

same initial state with the same security and declassification policies (T′ ∈ runs(Σ0,R,S ,P)). For now,

we define an input as a user-generated event (id.Ev(v)). We say that two runs are observationally equivalent

at l T ≈c
l T′ if they look the same to an observer with privilege l (i.e., they make the same outputs on any

l-visible channel and the l-visible executions behave the same) T ↓c
l= T′ ↓c

l . To define the observation of a

trace, we need some additional syntax:

Actions: α ::= id.Ev(v) | ch(v) | •

Sequence of actions : τ ::= · | τ :: α | τ :: rls(id.Ev(v),R, E)

A sequence of actions is the result of an observation and include inputs, outputs, silent actions, and

declassifications rls(...). The rules for the observation of a trace are shown in Figure 4.16. Note that T ↓p
l

is parameterized by p, where p = c is for confidentiality security and T ↓c
l is the observation of a trace

at l, and p = i will be for integrity security (to be defined in the next section) and T ↓i
l is the behavior

of a trace at l. A parametric equivalence definition makes proving security for both confidentiality and

integrity more efficient since, for the most part, the observation and behavior of a trace is the same, except

where noted below.

The observation of an output is ch(v) if the output is made on an observable channel P(ch) ↓pv l or

by an observable execution pc ↓pv l (rule TP-Out2), otherwise the output is skipped (rule TP-Out-S1).

Inputs are observable if the security policy and source is observable (rule TP-In), and declassifications are

observable if they are successful (rule TP-In-R via trRelease). Other actions are observable if they happen

in an observable execution (rules TP-Out1); otherwise, they are skipped (rule TP-Out-S2).

A knowledge-based progress-sensitive noninterference says that an attacker should not be able to

refine their knowledge of the secret inputs by watching the system run:

K(T, Σ0,R,S ,P , l) ⊆� K(T =⇒ K, Σ0,R,S ,P , l)

We write A ⊆� B to mean that each element of A is a prefix of an element in B (since the last step of

T =⇒ K may be an input). When the system takes a step (T =⇒ K), the attacker’s knowledge should

not be refined; they should be equally uncertain about the possible secret inputs before and after the step.

Because we run event handlers in a single-threaded loop, it is possible for an event handler to get “stuck”

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 58

in an infinite loop, which could leak something to the attacker if the loop condition is secret. Therefore, we

will permit this leak and prove progress-insensitive noninterference instead. We define progress knowledge

as the set of traces producing the same outputs and making enough progress to accept another input.

Then, a knowledge-based progress-insensitive security condition would be:

Kp(T, Σ0,R,S ,P , l) ⊆� K(T =⇒ K, Σ0,R,S ,P , l)

When the system takes a step, the attacker’s knowledge should not be refined outside of what is leaked

by the system making progress. While this definition captures progress leaks, it does not hold if an event

is declassified. For example, if a user’s click on bHat is declassified for website analytics, the attacker’s

knowledge would be refined to include only the traces involving the click on bHat. This leak is permitted by

the declassification policy, but the definition above would consider it insecure. Therefore, we define release

knowledge as the set of traces producing the same outputs, making progress, and releasing the same event.

Requiring the trace to produce the same declassification ensures that the attacker learns no more than

what is explicitly declassified. Our definition for knowledge-based progress-insensitive noninterference

(PINI) with declassification says that, outside of declassification, the attacker should not learn anything

by watching the system take a step (outside of what they learn by the fact that the system has made

progress) and when something is declassified, the attacker should only learn what is declassified. We say

releaseA(T =⇒ K) if (last(T) =⇒ K) ↓c
l= rls(...), where last(T) is the last state in T. That is, releaseA(T =⇒

K) means something was declassified in the last step.

Definition 14 (Knowledge-based PINI w/ Declassification). A system satisfies progress-insensitive noninter-

ference (PINI), outside of what is declassified, against l-observers for l ∈ Lc iff given any initial global store Σ0,

security policy P , and declassification policy R, it is the case that for all traces T, actions α, and configurations K

s.t. (T α
=⇒ K) ∈ runs(Σ0,R,S ,P), then, the following holds

• If releaseA(T α
=⇒ K): K(T α

=⇒ K, Σ0,R,S ,P , l) ⊇� Krp(T, Σ0,R,S ,P , α, l)

• Otherwise: K(T α
=⇒ K, Σ0,R,S ,P , l) ⊇� Kp(T, Σ0,R,S ,P , l)

Example Recall our example of leaks between executions from Section 4.2.3 where the security policy

is that keypress events should be Secret, but clicks may be declassified from Secret to Public. The host

adds a different button to the page depending on what the user types, and the attacker adds all possible

keypress buttons b1, ..., bn. They also register an onClick event handler to the buttons which output 1, ..., n

(respectively) on a (P, U) channel.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 59

When the user presses a key on their keyboard, the attacker is not sure which key the user pressed.

Their knowledge at this point includes all possible keypresses:

K(K, Σ0,R,S ,P , P) = { f .keyPress(1), ..., f .keyPress(n)}

The keypress triggers the onKeypress event handler which adds a different button to the user’s page,

depending on which key they pressed. Suppose the attacker also registered a Click event handler to bsecret

to directly leak the user’s keypress through a (P, U) channel. If the output were allowed, the attacker

would be able to eliminate all the traces where the user pressed a different key because they could not

have produced the output they received:

K(K ch(i)
=⇒ K′, Σ0,R,S ,P , P) = { f .keyPress(1), ..., f .keyPress(secret) :: bsecret.Click(_), ..., f .keyPress(n)}

Since the attacker’s knowledge is refined by the observation, our knowledge-based security condition

would correctly identify this output as insecure:

K(K ch(i)
=⇒ K′, ...) 6⊇ K(K, ...)

In reality, the SME monitor would prevent the output from the (S, U) execution to the (P, U) channel.

The user’s click would not be able to directly leak their keypress to the attacker, but it could be declassified

to the (P, U) execution. Since the attacker added all possible buttons b1, ..., bn, they are guaranteed to

trigger the leaky output and learn which key the user pressed. Because the releaseA condition allows the

attacker’s knowledge to be refined by declassifications, our security condition for confidentiality does not

catch this leak. Next, we describe our security condition for integrity and how this condition can be used

to describe both progress-insensitive noninterference as well as robust declassification.

4.6.2 Influence-based security (integrity)

We measure the attacker’s ability to change the behavior of the system with a dual condition to attacker

knowledge called attacker influence. In this section, we explain the intuition behind attacker influence

(based on attacker power from prior work [10]). Then, we describe our influence definitions (summarized

in Table 4.2), including robust influence which captures what is leaked by adding an element to the page

that is capable of robust declassification.

At a high level, an attacker’s influence is the set of all untrusted inputs which might have produced

the same behaviors. The attacks included in the influence set have the same relative ability to influence the

system’s behavior. If the attacker has no influence over the system, then the set should include all possible

attacks: all the attacks are equally powerless. As the system runs, if the attacker’s influence is refined, it

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 60

Influence I(T, Σ0,R,S ,P , l) = All possible inputs producing the same trusted
{τ | ∃T′ ∈ runs(Σ0,S ,R,P), actions

T ≈i
l T′, τ = in(T′)}

Progress Ip(T, Σ0,R,S ,P , l) = All possible inputs producing the same trusted
Influence {τ | ∃T′ ∈ runs(Σ0,S ,R,P), actions and accept another input: prog(T′) holds if

T ≈i
l T′, τ = in(T′), prog(T′)} T′ can reach the consumer state

Robust Irp(T
α

=⇒ K, Σ0,R,S ,P , l) = All possible inputs producing the same trusted
Influence {τ | ∃T′ ∈ runs(Σ0,R,S ,P), actions, accept another input, and capable of the same

T ≈i
l T′, τ = in(T′), prog(T′), robust declassifications: robustT(T′, α) holds if T′ can

robustT(T′, α))} be extended to create the same trusted page event α

Table 4.2: Influence definitions. Influence and progress influence are for defining an influence-based
progress-insensitive noninterference. Robust influence is for defining robust declassification. Complete
definitions may be found in Appendix B.1.

indicates that some attack(s) must be more powerful than the others because the ones eliminated could

not have led to the observed behavior. We define the influence of an attacker over behaviors at l (for

l ∈ Li) below:

Definition 15 (Attacker Influence over l). An attacker’s influence over behaviors at l ∈ Li in T beginning from

state σ0 with security policy P and endorsement policy S denoted I(T, Σ0,R,S ,P , l) is defined as {τ | ∃T′ ∈

runs(Σ0,R,S ,P), T ≈i
l T′, τ = in(T′)}

Reading this backward: the influence of an attacker over behaviors at l is the set of all τ which are

inputs from execution traces T′ (τ = in(T′)) that are behaviorally equivalent at l to T (T ≈i
l T′) and start from

the same initial state with the same security and declassification policies (T′ ∈ runs(Σ0,R,S ,P)). We say

that two runs are behaviorally equivalent at l if they produce the same l-trusted actions (i.e., they make the

same outputs on any l-trusted channel and the l-trusted executions behave the same). Recall that T ↓p
l in

Figure 4.16 is parameterized by p and applies to both observational equivalence (in the previous section)

and behavioral equivalence.

Then, an influence-based progress-sensitive noninterference says that the attacker’s influence over a

system should never be refined:

I(T, Σ0,R,S ,P , l) ⊆� I(T =⇒ K, Σ0,R,S ,P , l)

Similar to the way that a loop condition could leak something secret to an attacker, a loop condition could

allow the attacker to control whether the system makes progress. We define progress influence as the set

of traces producing the same behaviors and making enough progress to accept another input. Then, an

influence-based progress-insensitive security condition would be:

Ip(T, Σ0,R,S ,P , l) ⊆� I(T =⇒ K, Σ0,R,S ,P , l)

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 61

(P,U)

(S,U)

(P,T)

(S,T)

Figure 4.17: The states above and below the dotted line are behaviorally equivalent at T even though there
are different products in the (P, U) and (S, U) states.

When the system takes a step, the attacker’s influence should not be refined, outside of what control they

have over whether the system makes progress.

4.6.3 Influence-based security with robust declassification

In addition to showing that the attacker does not have influence over trusted behaviors, we also want to

show that the attacker does not influence declassification. In this section, we show that we can define

robust declassification by extending our influence-based security condition.

Initially, we try to naïvely include declassification in behavioral equivalence. We model an active at-

tacker by treating the addition of a page element or event handler (new(id, pc), new(id, eh, pc)) as an input.

A system is robust if any of these attacks (i.e., an untrusted source adding new page elements or event han-

dlers) have equivalent power. That is, when a new declassification happens, we will know the attacker’s

code influenced the declassification if the set of attacks without the new page element/event handler could

not have led to the same declassification.

But it turns out that this is leads to false positives. Consider the online shop described in Section 4.2.

The buttons are all loaded by the Trusted host, so they can safely influence declassification: the declassi-

fications in this example are robust. The issue is that behavioral equivalence at T only guarantees that the

Trusted executions behave the same. See the example of two equivalent traces in Figure 4.17. The (S, T)

execution has the same products in both traces, as does the (P, T) shop, but even among two equivalent

runs, the (S, U) and (P, U) executions may have different products. When the user clicks the hat in the

(S, U) execution, the click is declassified. But it is not possible to produce the same declassification in

the equivalent state because there is no hat for the user to click on. This makes it appear as though the

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 62

α ∈ {new(id, lsrc), new(id, eh, lid, lsrc)} pc ↓i 6v l
τ = r(id, pc) if lsrc v pc ↓i τ = r(id, eh, pc) if lsrc t lid v pc ↓i τ = · otherwise

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓i

l= τ :: T′ ↓i
l

TP-NewI

Figure 4.18: New rule for the behavior of a trace for robust declassification

attacker had some influence over the declassification, even though the declassification is actually robust

against their influence.

To make these benign influence refinements concrete, we introduce robust influence for when trusted

page elements are created. Robust influence is the set of traces producing the same elements, making

progress, and capable of producing the same robust declassifications in the untrusted executions. This is

similar to release knowledge from Section 4.6.1. We say robustA(T) if (last(T) =⇒ K) ↓i= r(...), where

last(T) is the last state in T. That is, robustA(T =⇒ K) means something capable of robust declassification

was added to an Untrusted execution.

To model an active attacker’s ability to add code to the page, we emit an action for dynamically-

generated elements and event handlers. new(id, pc) is a new page element identified by id to the execution

at security level pc, while new(id, eh, pc) is a new event handler eh registered to the element identified by id

in the execution at security level pc. Sequences of actions also include the page elements/event handlers

which are capable of robust declassification r(...).

Actions: α ::= id.Ev(v) | ch(v) | new(id, pc) | new(id, eh, pc) | •

Sequence of actions : τ ::= · | τ :: α | τ :: rls(id.Ev(v),R, E) | τ :: r(id, pc) | τ :: r(id, eh, pc)

We modify the behavior of a trace as shown in Figure 4.18. When a new page element is created or

event handler is registered, this is not considered an observable action unless it is capable of a robust

declassification (rule TP-NewI).

Definition 16 (Influence-based PINI w/ Robust Declassification). A system satisfies progress-insensitive non-

interference (PINI) with robust declassification for behaviors at l ∈ Li iff given any initial global store Σ0, security

policy P , and declassification policy R, it is the case that for all traces T, actions α, and configurations K s.t.

(T α
=⇒ K) ∈ runs(Σ0,R,S ,P), then, the following holds

• If robustA(T α
=⇒ K): I(T α

=⇒ K, Σ0,R,S ,P , l) ⊇� Irp(T, Σ0,R,S ,P , α, l)

• Otherwise: I(T α
=⇒ K, Σ0,R,S ,P , l) ⊇� Ip(T, Σ0,R,S ,P , l)

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 63

Example To illustrate how this new definition is sufficient for defining robust declassification, we return

to the examples from Section 4.2. In the example of a leak within an execution, the Untrusted attacker

registers the event handler onLoadU and the Trusted host registers onLoadT to add buttons to the page.

After the page finishes loading, we know that the Trusted “Agree” button, bAgree, must have been

dynamically loaded because all the behaviorally equivalent Trusted executions have run onLoadT . On the

other hand, we are not sure whether the Untrusted “Click me!” button, was added because the Untrusted

pages are equivalent whether or not onLoadU has run. At this point, the attacks where the “Click me!”

button has been added are equally as powerful as the attacks without it:3

I(K, Σ0,R,S ,P , T) = {new(b)T , new(b)U :: new(b)T , ...}

If the system allowed the click on the Untrusted bAgree to be declassified, it would mean there must

be a “Click me!” button on the (S, U) copy of the page. Therefore, the only viable attack leading to this

behavior are the ones including the Untrusted bAgree button:

I(T bAtk=⇒ K,R,S ,P , T) = {new(b)T , new(b)U :: new(b)T :: bU .Click(), ...}

Because I(T bAtk=⇒ K,R,S ,P , T) 6⊇� Ip(T,R,S ,P , T), the attacker must have had influence over the

declassification, so it is not robust.

The example of a leak between executions is similar. Here, the Trusted host adds a different button to

the page depending on which key the user pressed and the Untrusted attacker adds all possible buttons.

After the user presses a key on their keyboard, we know that there is one button on the (S, T) page

(based on the actual secret value) and another button on the (U, T) page (based on the default value

dv) because all of the behaviorally equivalent Trusted executions have run the Trusted event handler in

response to the user’s keypress. We also know that the (S, U) and (P, U) copies of the page must include

bsecret and bdv (respectively) because those buttons are capable of robust declassification since they were

added by the host. On the other hand, we are not sure whether the attacker has added their buttons,

because the Untrusted pages are equivalent with or without those buttons:4

I(K, Σ0,R,S ,P , l) = {new(bsecret) :: new(bdv), new(bsecret) :: new(bdv) :: new(b1)
U :: ... :: new(bn)

U , ...}

Now, when the user’s click on bsecret in the (S, U) page is declassified to the matching button bi in the

(P, U) page, we know there must be a bi button on the (P, U) copy of the page to capture the event. Then,

the only viable attack is the one where bi has been added to the page:

I(K, Σ0,R,S ,P , l) = {new(bsecret) :: new(bdv), new(bsecret) :: new(bdv) :: new(b1)
U :: ... :: new(bn)

U , ...}
3For brevity, we write new(b)T instead of new(bAgree, (S, T)) and new(bAgree, (P, T)), and likewise for new(b)U for the Untrusted

executions.
4For brevity, we write new(bsecret) to mean that the button was added in all executions.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 64

T ↓p
l = τ

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓i 6v pc ↓i

labelOf(σEH(id)) ↓cv pc ↓c τ = trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′)

(P ,D, E ` _,S ; Σ; _
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In-E

P(id.Ev(v)) = pc′ Σ(pc) = (_, σEH) labelOf(σEH(id)) ↓iv pc ↓i

labelOf(σEH(id)) ↓cv pc ↓c τ = trDownrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′)

(P ,D, E ` R,S ; Σ; _
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In-D

α ∈ {new(id, lsrc), new(id, eh, lid, lsrc)} pc ↓c 6v l
τ = t(id, pc) ifg lsrc v pc ↓c τ = t(id, eh, pc) if lid t lsrc v pc ↓c τ = · otherwise

(P ,D, E ,` K
(α,pc)
=⇒ T′) ↓c

l= τ :: T′ ↓c
l

TP-New-C

α ∈ {new(id, lsrc), new(id, eh, lid, lsrc)}
pc ↓i 6v l τ = r(id, pc) if lsrc v pc ↓i τ = r(id, eh, pc) if lid t lsrc v pc ↓i τ = · otherwise

(P ,D, E ,` K
(α,pc)
=⇒ T′) ↓i

l= τ :: T′ ↓i
l

TP-New-I

Figure 4.19: Additional rules for the observation (p = c) or behavior (p = i) of a trace at l to account for
endorsement, downgrading, and the creation of a new page element.

Since the attacker’s influence has been refined we know this example is not robust either.

Finally, consider the secure web shop where the host adds products to the page and declassifies click

counts so that a (P, U) library can do analytics for them. All the elements are added by the Trusted

host, so the events from these elements can be declassified safely. From the robustA case in Definition 16,

the attacker’s influence can be refined by the addition of these elements to include only the traces that

load the same products on the web store. Since the element is Trusted, this refinement does not impact

security, but does ensure that the Trusted page elements in the Untrusted executions stay synchronized

in equivalent traces. Our security condition correctly identifies this as robust.

4.6.4 Knowledge-based security with transparent endorsement

The same way we define robust declassification by including declassifications in our definition for the

behavior of a trace, we can define transparent endorsement by including endorsements in our definition

for the observation of a trace. We define new actions for when we observe the behavior of a trace.

For endorsements, we use sntz(id.Ev(v),S , E), and when an input is both declassified and endorsed, the

observation/behavior is down(id.Ev(v),R,S , Ed, Ee, E). We also add actions to reflect the creation of page

elements/event handlers whose events are safe to endorse t(...). We show the relevant rules for the

observation/behavior of a trace (with endorsement/downgrading) in Figure 4.18.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 65

trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′) = τ

(R′, E) = endorse(E ,S , Σ, (id.Ev(v), pc), pc′) pc, t ` Σ, E ks R 6= R′ or ks ↓p
l 6= ·

trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′) = sntz(id.Ev(v),S ′, E ↓p
l)

TP-sntz

(R, E) = endorse(E ,S , Σ, (id.Ev(v), pc), pc′) pc, t ` Σ, E ks ks ↓p
l = · pc ↓p tpc′ ↓pv l

trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′) = (id.Ev(v), pc)
TP-sIn

(R, E) = endorse(E ,S , Σ, (id.Ev(v), pc), pc′)
pc, t ` Σ, E ks ks ↓p

l = · pc ↓p tpc′ ↓p 6v l
trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′) = ·

TP-sEmp

trDowngrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) = τ

τd = trRelease(D,R, Σ, (id.Ev(v), pc), pc′)
τe = trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′) E = downgrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′)

rt ` Σ, E ks τd = rls(...) ∧ τe = sntz(...) or ks 6= ·
trDowngrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) = down(id.Ev(v), τd, τe, E ↓p

l)
TP-down

τd = trRelease(D,R, Σ, (id.Ev(v), pc), pc′) τe = trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′)
E = downgrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) rt ` Σ, E ks

ks = · τ = τd if τd = rls(...) ∧ τe 6= sntz(...) τ = τe if τe = sntz(...) ∧ τd 6= rls(...)
trDowngrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) = τ

TP-dIn

τd = trRelease(D,R, Σ, (id.Ev(v), pc), pc′) τe = trSanitize(E ,S , Σ, (id.Ev(v), pc), pc′)
E = downgrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) rt ` Σ, E ks ks = ·

τd 6= rls(...) τe 6= sntz(...) τ = (id.Ev(v), pc) if pc ↓p tpc′ ↓pv l τ = · otherwise
trDowngrade(D, E ,R,S , Σ, (id.Ev(v), pc), pc′) = τ

TP-dEmp

Figure 4.20: Helper functions for trace observation and behavior for endorsement and downgrading.

Actions: α ::= id.Ev(v) | ch(v) | new(id, pc) | new(id, eh, pc) | •

Sequence of actions : τ ::= · | τ :: α | τ :: rls(id.Ev(v),R, E) | τ :: sntz(id.Ev(v),S , E)

| τ :: down(id.Ev(v),R,S , Ed, Ee, E) | τ :: r(id, pc) | τ :: r(id, eh, pc)

| τ :: t(id, pc) | τ :: t(id, eh, pc)

Rule TP-In-E handles endorsement using the trSanitize helper function and is similar to the one for

declassification (rule TP-In-R). Rule TP-In-D handles the case where the input is eligible for both declassi-

fication and endorsement. The helper function trDowngrade returns down(...) if the input resulted in both

a declassification and endorsement, which is true if trRelease = rls(...) and trSanitize = sntz(...), or if the

lookup function results in at least one event handler. If the input resulted in only a declassification or

endorsement, the trDowngrade returns rls(...) or sntz(...), respectively.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 66

Transparent Ktp(T
α

=⇒ K, Σ0,R,S ,P , l) = All possible inputs producing the same public
Knowledge {τ | ∃T′ ∈ runs(Σ0,R,S ,P), actions, accept another input, and capable of the

T ≈c
l T′, τ = in(T′), prog(T′), same transparent endorsements: transparentT(T′, α)

transparentT(T′, α))} holds if T′ can be extended to create the same
public page event α

Sanitization Iep(T
α

=⇒ K, Σ0,R,S ,P , l) = All possible inputs producing the same trusted
Influence {τ | ∃T′ ∈ runs(Σ0,R,S ,P), actions, accept another input, and endorse the same

T ≈c
l T′, τ = in(T′), prog(T′), event: sanitizeT(T′, α) holds if T′ can be extended to

sanitizeT(T′, α))} endorse the same event α

Table 4.3: Additional knowledge and influence conditions for defining transparent endorsement. Com-
plete definitions may be found in Appendix B.1.

In Table 4.3, we add a new knowledge condition to account for the information gained by the attacker

when a new page element or event handler is added which is capable of transparent endorsement (dual

condition to robust influence in Table 4.2) and an integrity condition to account for the additional influence

from endorsement (dual condition to release knowledge in Table 4.1).

Finally, we extend our security definitions to include endorsement. Definition 17 is a new influence-

based progress-insensitive noninterference (PINI) with endorsement and robust declassification. It is the

same as Definition 16, except that there is a new condition for endorsed events. The last step was an

endorsement at l, sntzA(T =⇒ K, l), if the behavior at l the last step of the trace was an endorsement

(T =⇒ K) ↓i
l∈ {sntz(...), down(...)}. In this case, the additional influence the attacker has should be

restricted to the influence gained by the endorsement. This is similar to the releaseA condition in Defini-

tion 14. Otherwise, the definition does not change.

Definition 17 (Influence-based PINI w/ Endorsement, Robustness). A system satisfies progress-insensitive

noninterference with robust declassification for behaviors at l ∈ Li iff given any initial global store Σ0, security

policy P , and declassification policy R, it is the case that for all traces T, actions α, and configurations K s.t.

(T α
=⇒ K) ∈ runs(Σ0,R,S ,P), then, the following holds

• If sntzA(last(T) αl=⇒ K, l): I(T αl=⇒ K, Σ0,R,S ,P , l) ⊇� Iep(T, Σ0,R,S ,P , αl , l)

• If robustA(T α
=⇒ K, l): I(T α

=⇒ K, Σ0,R,S ,P , l) ⊇� Irp(T, Σ0,R,S ,P , α, l)

• Otherwise: I(T α
=⇒ K, Σ0,R,S ,P , l) ⊇� Ip(T, Σ0,R,S ,P , l)

Definition 18 is a new knowledge-based progress-insensitive noninterference (PINI) with declassifica-

tion and transparent endorsement. It is the same as Definition 14, except that there is a new condition for

the information leaked due to the existence of page elements/event handlers capable of transparent en-

dorsement, similar to the robustA condition from Definition 16. We also add downgrade actions down(...)

to releaseA so that downgrades are also considered declassifications.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 67

Definition 18 (Knowledge-based PINI w/ Declassification, Transparency). A system satisfies progress-insensitive

noninterference, outside of what is declassified, against l-observers for l ∈ Lc iff given any initial global store Σ0,

security policy P , and declassification policy R, it is the case that for all traces T, actions α, and configurations K

s.t. (T α
=⇒ K) ∈ runs(Σ0,R,S ,P), then, the following holds

• If releaseA(T α
=⇒ K): K(T α

=⇒ K, Σ0,R,S ,P , l) ⊇� Krp(T, Σ0,R,S ,P , α, l)

• If trnsprntA(last(T) αl=⇒ K, l): K(T αl=⇒ K, Σ0,R,S ,P , l) ⊇� Ktp(T, Σ0,R,S ,P , αl , l)

• Otherwise: K(T α
=⇒ K, Σ0,R,S ,P , l) ⊇� Kp(T, Σ0,R,S ,P , l)

4.6.5 Metatheory

We prove that our enforcement mechanism is sound. Formally:

Theorem 19 (Soundness). ∀P ,D, E , Σ0, the SME state Σ0 satisfies knowledge-based progress-insensitive nonin-

terference with declassification and transparent endorsement at lc and influence-based progress-insensitive nonin-

terference with endorsement and robust declassification at li w.r.t. the security policy P , declassification policy D,

endorsement policy E

Proofs may be found in Appendix B.2. Robust declassification follows from influence-based progress-

insensitive noninterference. If we treat declassifications as trusted and prove that untrusted sources cannot

influence trusted behaviors, then it must be the case that the declassifications are robust.

Corollary 20 (Robust Declassification). ∀P ,D, E , Σ0 s.t. Σ0 satisfies influence-based progress-insensitive non-

interference with endorsement and robust declassification at li w.r.t. the security policy P , declassification policy D,

and endorsement policy E , then an attacker at l′i ∈ Li with li @ l′i has no influence over whether the user’s events at

li are declassified (except for what is endorsed).

Similarly, transparent endorsement follows from Definition 18.

4.7 Discussion

(Transparent) endorsement and qualified robustness The focus of this work is robust declassification,

but like our “influence-based” security condition is the integrity dual of “knowledge-based” security

conditions for confidentiality, (transparent) endorsement is the integrity dual of (robust) declassification.

Here, we define a stateful endorsement dual to our stateful robust declassification but have not explored

how it might be used. In future work, we will investigate how transparent endorsement might be useful.

CHAPTER 4. ROBUST DECLASSIFICATION VIA LIMITING ATTACKER INFLUENCE 68

It is important to note that because an event associated with an attacker-controlled page element might

be endorsed, we are actually proving a qualified robustness condition [67] (and qualified transparency) which

says that the attacker does not have influence over declassifications, outside of what has been endorsed

(and we do not endorse what the attacker does not have privilege to see, outside of what has been

declassified). This does not otherwise change our security conditions because sanitized influence (and

release knowledge) already capture this.

4.7.1 Alternative DOM models

In our model, each execution has its own copy of the DOM, similar to Chapter 3 and prior work [26, 30].

Another option would be to have a single DOM [35, 91]. In these models, the security policy would

determine which API calls would succeed and which would be replaced with a default value. It would

be challenging to have the same dynamic feature flexibility in the first model, and in the next chapter, we

show that a single tainted DOM is susceptible to implicit leaks, so here we opted for multiple DOMs.

4.8 Summary

In this chapter, we developed a monitor which combines SME and taint tracking that allows us to prevent

untrusted parties from influencing declassification. This monitor is more fine-grained than the one de-

scribed in Chapter 3 and permits the benign declassifications involving trusted dynamic features—without

sacrificing security. We prove progress-insensitive noninterference for both confidentiality and integrity

using knowledge-based and influence-based security conditions, respectively. Finally, we show that robust

declassification follows from our novel influence-based security condition when we treat declassifications

as trusted behaviors in our noninterference definition.

Chapter 5

Compositional IFC for Reactive Systems

In this chapter we present a compositional framework for using different IFC techniques for different

components in our reactive model from previous chapters. 1

5.1 Overview

Previous chapters use SME to enforce information flow policies, but many runtime mechanisms have been

developed for enforcing information flow control (IFC) policies [35, 22, 88, 24, 41, 52, 20, 21]. Broadly, these

approaches can be classified into multi-execution approaches [38, 15, 17], and taint tracking approaches [13, 14,

95, 84].

Multi-execution-based approaches, like secure multi-execution (SME) [38], and faceted execution (MF) [15],

execute code multiple times at different security levels. These ensure that the code executing at a particular

level only outputs data at the same security level and replace sensitive data from higher security levels

with “default” values. Taint tracking approaches (TT) annotate data with labels to indicate its security

level and can suppress outgoing sensitive data to publicly observable channels to prevent leaks. These

approaches differ in performance, how much they alter the semantics of safe programs (transparency),

and the relative strength of their security guarantees.

Shared storage in reactive systems allow the same data to be accessed by different event handlers (e.g.,

cookies) and organizes the event handlers themselves (e.g., the DOM). These applications often include

code from heterogeneous and untrusted sources and could potentially leak the users’ sensitive data to an

adversary. Most IFC approaches use the same enforcement mechanism for all components in an appli-

cation. Given the heterogeneity of applications, a compositional enforcement mechanism where different

1This chapter is based on published work [59].

69

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 70

components execute under different IFC enforcement mechanisms could offer an attractive solution to the

tradeoffs of each approach.

In this chapter, we motivate the usefulness of composition (Section 5.2), build a framework for com-

posing different IFC enforcement mechanisms, and compare the security guarantees of different compo-

sitions. One of the challenges is to build a unified framework so that different styles of enforcement (taint

tracking-based and multi-execution-based) can interact smoothly and two distinct elements of reactive

systems (event handlers and shared storage) can interface nicely. To do so, our formalism identifies the

common elements between all techniques, as well as the interfaces between the event handler execution

component and the shared storage components and converts values between mechanisms securely.

As we show in Section 5.3, the compositional semantics are cleanly separated into a top-level com-

ponent to trigger event handlers and a low-level component that executes individual event handlers and

interacts with shared storage. In Section 5.4, we review knowledge-based security properties from previ-

ous chapters. We also define a weaker security condition which extends prior work on weak and explicit

secrecy [95, 84] that permits the attacker to additionally learn what is implicitly leaked by taint tracking.

We propose a set of security requirements that describe what is required by each system component and

could be used to securely extend our framework with additional enforcement mechanisms in the future.

Contributions We develop a framework to enable the flexible composition of dynamic IFC enforcement

mechanisms for reactive programs with provable security guarantees and model a simple web environ-

ment. We use a knowledge-based security condition to compare the relative security of different com-

positions. We extend prior work on weak secrecy to reason about implicit flows of information due to

control flow decisions within as well as between event handlers and show that the overall security of a

composed system may depend more on the security of the data structures shared between event handlers

than the security of the event handler execution. Detailed definitions, lemmas, and proofs can be found

in Appendix C.

5.2 Motivating Example

We demonstrate the usefulness of composing enforcement mechanisms via a web example in which event

handlers run under different enforcement mechanisms.

Consider a website with a sign-up form including username and password fields and a submit button.

There is also a third-party password strength-checking script which registers an event handler to the

password field for the onInput event. The event handler is triggered whenever the user changes the

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 71

1 onClick() {
2 if (strength > 5) {
3 p = pwdNode.value;
4 u = unameNode.value;
5 output (H, u+p); }};

Listing 5.1: Event handler to send username and password to host server

1 onInput(e) {
2 p = e.target.value; /∗ get password value ∗/
3 if (p.match(/[0−9]/)) { strength+=1; }
4 if (p.match(/[A−Z]/)) { strength+=4; }
5 ...
6 output (L, p); }; /∗ Explicit leak ∗/

Listing 5.2: Third-party event handler to check password strength; “strength” is a global variable

password. It checks the password strength based on some algorithm (e.g., count the character classes of

the password) and writes a numeric representation of the strength to a global variable strength (illustrated

in Listing 5.2). The main page registers (among others) an event handler for the onClick event associated

with the submit button (as shown in Listing 5.1). This event handler reads the global variable strength,

and either allows the form submission (if the strength reaches a certain threshold) or displays a pop-up

suggesting adding character classes, such as numbers and symbols.

The third-party script should compute the strength of the password locally without sending it on the

network. A malicious script might try to send the password to their servers (line 6). The output command

models sending a message to the third-party site. Let us see how taint tracking and multi-execution would

enforce IFC in this scenario, and why composing them might be desirable.

Taint-tracking enforcement Suppose we execute the event handlers with a taint tracking enforcement

mechanism. NSU would terminate the execution of the entire page if any script attempts to assign to a

public variable in a secret branch. This effectively opens all pages to denial-of-service attacks, so we do

not use NSU here (more discussion can be found in Section 5.5). Let’s consider naive taint tracking [41]

without NSU, instead. If the third-party checker tries to directly leak the password on line 6 in Listing 5.2,

the output will be suppressed because the output requires the value’s label to be lower than or equal to

that of the channel, which does not hold.

A well-known limitation of naive taint tracking without NSU is that it allows the script to leak in-

formation via implicit flows [13]. Listing 5.3 is adapted from a classic example of implicit leaks. Here,

the variable detected_a is only tainted if the first character is ‘a’. In this case, the assignment on line 8

is not executed as the branch is not taken. As a result, present_a remains true (and labeled L). On the

other hand, if the first character is not ‘a’, the assignment on line 6 will not be taken. Then, the condition

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 72

1 onInputLeak(e) {
2 p1 = e.target.value.charAt[0];
3 present_a = true; /∗ labeled L ∗/
4 detected_a = false; /∗ labeled L ∗/
5 if (p1 = ’a’) {
6 detected_a = true;} /∗ tainted H if p1 is ’a’ ∗/
7 if (!detected_a) {
8 present_a = false;} /∗ still labeled L if p1 is ’a’ ∗/
9 output (L, present_a) };

Listing 5.3: Malicious third-party event handler

on line 8 will branch on an L value and therefore, present_a remains L and the value updated to false.

Finally, the output on line 9 will successfully notify the attacker whether the first character is ‘a’. We can

expand the program to test the password character-by-character for every ASCII symbol and thus leak the

entire password [9]. Thus, taint tracking has weaker security guarantees, which we later formalize using

weak secrecy [95, 84], that allows attackers to learn which H branches are taken and which L variables are

upgraded to H. Because we allow branch conditions to be leaked, anyway, we simplify our semantics by

not upgrading the pc when branching on secrets.

Multi-execution enforcement To prevent the above-mentioned leaks, we can instead execute the event

handlers using a multi-execution mechanism like SME [38]. The event handlers would then execute twice:

once for the secret and once for the public level, where the secret execution would allow only H outputs

while the public execution would allow only L outputs. The secret execution would see the actual value of

the password, but the public execution would get a default value instead. If the script sends the password

on an L channel (line 6 in Listing 5.2), the public execution would send the default value instead of the

actual password, while the secret execution would skip the output altogether. This also prevents the

implicit leaks shown in Listing 5.3. Although SME securely computes accurate information, it runs the

event handlers multiple times and stores multiple copies of data, which is resource intensive.

Composing taint-tracking and multi-execution In this example, a desirable approach would be to exe-

cute the third-party script and store the global variable strength using a multi-execution approach so that

it can correctly compute the strength of the password without compromising its secrecy. Meanwhile the

event handlers on the main page could execute with a taint tracking mechanism as they do not purposely

exploit implicit leaks and will be more performant than a multi-execution approach. In this example,

for the main page event handlers to access precise information, the event handler will run in the H con-

text to access the H copy of strength. Composition allows us to balance good security for the untrusted

third-party scripts with good performance for the more trustworthy first-party scripts.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 73

Execution contexts:
Compositional label set: L ::= {·, L, H}
Compositional program counter: pc ∈ L
Security label: l ∈ {L, H}
Security policy: P
Declassification policy: D
Declassification module: R
Declassification channel: d
Global storage enforcement ID set: G ::= GEH,Gg
Global storage enforcement ID: G ∈ {SMS, FS, TS}
EH enforcement ID: V ∈ {SME, MF, TT}

Program syntax:

Value: v ::= n | b | dv
Expression: e ::= x | v | uop e | e1 bop e2 | ehAPIe(...)
Command: c ::= skip | c1; c2 |while e do c | x := e | id := e | if e then c1 else c2 | x := declassify(ι, e)

| output ch e | ehAPIc(...)
Runtime configurations:

Global state: σ(GEH,Gg) ::= σ
GEH
EH , σ

Gg
g

Local state: σV

Execution state: s ::= P |C
Events: E ::= · | E, (id.Ev(v), l)
Configuration: κV ::= σV , c, s, E
Configuration stack: ks ::= · | (V ; κV ; pc) :: ks
Compositional config.: KG ::= R, d; σG; ks
Actions: α ::= in | ch(v) | •

Figure 5.1: Syntax for the compositional framework

Another interesting composition question arising from this example is whether it is necessary to store

shared variables (e.g., strength) twice as done with SME and MF or is it sufficient to merely taint the

variables and execute the script with SME? In this example, when onInput runs, the L copy runs first and

sets the imprecise value for strength based on the default value for the password. The H copy runs next

and sets the precise value for strength based on the real password with label H, as it is written from the

H execution context. Is this secure? We take the first steps to explore different ways of storing data and

executing scripts (Section 5.3), as well as what type of security each composition achieves (Section 5.4).

5.3 Compositional Enforcement Framework

One of our observations is that the semantics of reactive programs necessitate a high-level event handling

loop that processes inputs and outputs, leading to the high-level semantics of dynamic IFC enforcement

for these programs behaving similarly, regardless of the mechanism (e.g., SME or taint tracking). We

design a framework that is flexible enough to incorporate all of the dynamic enforcement techniques

described in Chapter 2.3. We review the components from the reactive system (Chapter 2.1), each of which

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 74

G,P ` K α
=⇒ K′

P(id.Ev(v)) = H
D(ρ, id.Ev(v)) = (r, emp, ρ′) d′ = update(d, r) G,P , σ ` ·; lookupEHAll(id.ev(v)) H ks

G,P ` (ρ,D), d; σ; · id.Ev(v)
=⇒ (ρ′,D), d′; σ; ks

In-High

P(id.Ev(v)) = H∆ G,P , σ ` ·; lookupEHAll(id.ev(v)) H ks

G,P ` R, d; σ; · id.Ev(v)
=⇒ R, d; σ; ks

In-High∆

P(id.Ev(v)) = H D(ρ, id.Ev(v)) = (r, v′, ρ′) v′ 6= v d′ = update(d, r)
G,P , σ ` ·; lookupEHAt(id.ev(v′)) L ks G,P , σ ` ks; lookupEHAt(id.ev(v)) H ks′

G,P ` (ρ,D), d; σ; · id.Ev(v)
=⇒ (ρ′,D), d′; σ; ks′

In-ReleaseDiff

P(id.Ev(v)) = H
D(ρ, id.Ev(v)) = (r, v, ρ′) d′ = update(d, r) G,P , σ ` ·; lookupEHAll(id.ev(v)) · ks

G,P ` (ρ,D), d; σ; · id.Ev(v)
=⇒ (ρ′,D), d′; σ; ks

In-ReleaseSame

P(id.Ev(v)) = L G,P , σ ` ·; lookupEHAll(id.ev(v)) · ks

G,P ` R, d; σ; · id.Ev(v)
=⇒ R, d; σ; ks

In-Low

Figure 5.2: Semantics for processing inputs (user events).

G,P ` K α
=⇒ K′

producer(κ)

G,P ,V , d ` σ, κ
ch(v)−→pc σ′, ks′ outConditionV (P , ch(v), pc) αl = output(P , ch(v), pc)

G,P ` R, d; σ; ((V ; κ; pc) :: ks)
αl=⇒ R, d; σ′, ks′ :: ks

Out

producer(κ) G,P ,V , d ` σ, κ
ch(v)−→pc σ′, ks′ ¬outConditionV (P , ch(v), pc)

G,P ` R, d; σ; ((V ; κ; pc) :: ks)
(•,pc)
=⇒ R, d; σ′, ks′ :: ks

Out-Skip

producer(κ) G,P ,V , d ` σ, κ
α−→pc σ′, ks′ α 6= ch(v)

G,P ` R, d; σ; ((V ; κ; pc) :: ks)
(α,pc)
=⇒ R, d; σ′, ks′ :: ks

Out-Other

consumer(κ)

G,P ` R, d; σ; ((V ; κ; pc) :: ks)
(•,pc)
=⇒ R, d; σ, ks

Out-Next

Figure 5.3: Semantics for performing outputs (communications on channels).

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 75

has its own semantics (Section 5.3.2). The topmost level of semantics is responsible for processing inputs

and outputs and looking up event handlers. The next level manages the event handler queue, and another

level describes how individual event handlers are run, according to the selected enforcement mechanism.

Finally, the lowest level semantics are described in Section 5.3.3 determines how event handlers interact

with shared storage (such as the DOM).

5.3.1 Syntax

The syntax for our compositional enforcement framework is shown in Figure 5.1. We organize our security

labels, l, in a three-point security lattice which is the standard two-point security lattice with an additional

label ‘·’. At a high-level, · means “no (pc) context” and is neither public nor private, so we put it at the

bottom of the security lattice. This is used by MF to differentiate a standard execution from one which

has split into an L and H copy. The program context label indicates the context under which the event

handlers execute, denoted as pc.

Like previous chapters, the policy context P keeps track of the labels assigned to input events and

output channels except here it also decides which event handlers run with which enforcement mechanism.

For example, P might mark the onInput event for the password field as secret (H), output channels that

belong to an attacker as public (L), and the enforcement of the onClick event handler to be TT and the

third-party onInputCk event handler to be SME. We use the same stateful declassification as Chapters 3

and 4. We discuss considerations for making such decisions in Section 5.5. The enforcement for an

event handler is denoted V . We include SME (secure multi-execution), MF (faceted execution), and TT (a

simple version of taint tracking without NSU semantics). The enforcement for the global store is denoted

G = (GEH,Gg) where GEH tells us how the event handler storage is enforced, and Gg tells us how the

shared variables are stored. This permits more flexibility for the event handlers to be stored differently

from the variables. Our shared storage techniques reflect our event handler enforcement: SMS (secure

multi-storage maintains a separate copy of the store for each security level), FS (faceted storage maintains

multiple copies only when necessary), and TS (tainted storage tracks labels for each item in the store).

Values include integers (n), booleans (b), and a pre-determined default value dv, which is used to

replace the public copy of private data in multi-execution [44]. Each value type can have a distinct default

value; for simplicity we use a single default value. Commands and expressions are mostly standard in our

framework. The event handler APIs ehAPIe (e.g., look up a DOM node’s attribute) and ehAPIc (e.g., create

a new child node in the DOM) interact with the event handler store, and id := e updates the attributes in

the event handler store.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 76

Figure 5.4: Reactive system described in Chapter 2.1.

A single configuration κ contains a local store for storing local script variables, σV (whose structure is

determined by the enforcement mechanism V), the command (event handler) being executed, the state of

the execution (either Producer (P) or Consumer (C)), and a list of events triggered by that event handler,

E. The compositional configuration KG is a snapshot of the current system state. It maintains the global

store σG and the configuration stack, ks. The global store includes variables shared between scripts and

event handler storage. The structure of the global store depends on the enforcement mechanism. Each

element of the configuration stack includes one of the event handlers pending execution in κ, as well

as the enforcement mechanism it should run under, V , and the context in which it should run, pc. The

enforcement (V) used for each event handler in the stack is determined by P and may be different for

different events. Actions emitted by the execution, α, include user-generated input events, outputs on

channels and silent actions, denoted •.

5.3.2 Framework Semantics

The illustration from Chapter 2.1 is shown here in Figure 5.4 for easy reference. We organize our semantics

into several layers to match the components of a reactive system including: (1) input/output processing

and event handler lookup, (2) processing the event handler queue, (3) running individual event handlers,

and (4) interactions with shared storage.

Input/Output, EH Lookup The top-most level for our compositional framework processes user input

events and outputs to channels. These rules govern how inputs trigger event handlers and how outputs

are processed and use the judgement G,P ` K α
=⇒ K′, meaning the compositional configuration K can

step to K′ given input α or producing output α under the compositional enforcement G and label context

P . Input rules are shown in Figure 5.2 and output rules in Figure 5.3.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 77

Regardless of how the event handlers or global variables are stored, or how the policy determines to

enforce IFC on individual event handlers, the logic for looking up event handlers is the same. In each case,

the label context, P , tells us whether the event is secret (H) or public (L) and the declassification policy

D tells us whether we should declassify. The EH lookup semantics, given by the judgement G,P , σ `

ks; lookupEH(...) pc ks′ return the stack of event handlers to run.

The label of an input event id.Ev(v) is given by the policy P . For secret events which are not declas-

sified (rules In-High and In-High∆), all event handlers visible to H are run in the H context by using

lookupEHAll with pc = H to build ks. When the input is a public event (rule In-Low), all event handlers

are run in whatever context they are visible in by using the · pc for the lookup. When the event is de-

classified, the process of looking up event handlers depends on whether the released event receives the

same argument as the original event. If the argument is the same (e.g., for policy “keypresses may be

declassified, including which key was pressed”), event handler lookup is the same as for public events

(rule In-ReleaseSame). If the argument is different (e.g., for policy “keypresses may be declassified, but

which key was pressed should remain secret”), the event handlers with label H are looked up with the

original argument, and event handlers with label L are looked up with the released argument.2

Similar to the input rules, the output rules shown in Figure 5.3 are the same regardless of the enforce-

ment mechanism or event handler storage. The mid-level semantics are of the form: G,P ,V ` σG
1 , κ

α−→pc

σG
2 , ks and run a single event handler κ with the given enforcement mechanism V and produce some output

α. producer(κ) and consumer(κ) tell us whether the execution state of κ is producer or consumer (respec-

tively). When an event handler is currently running, the system is in producer state (Out, Out-Skip, and

Out-Other) and when the event handler has finished, the system is in consumer state (Out-Next) and

the current event handler can be popped off ks. outV (...) determines if an output should be allowed (Out)

or suppressed (Out-Skip) which is determined by whether the value being output is visible to the channel

receiving the output and varies depending on the enforcement mechanism (V). If the system is emitting a

silent action (anything which is not an output to a channel), rule Out-Other applies.

EH Queue The mid-level semantics control the execution state (P for Producer, when an event handler is

running, C for consumer, when it has finished) and adds event handlers for locally-triggered events (i.e.,

not triggered by a user) to the resulting configuration stack. After an event handler finishes running, these

semantics check for any locally-triggered events. If there are some, their corresponding event handlers

are added to ks. Finally, the current event handler enters consumer state to tell Out-Next to run the next

event handler. The rules are shown in Figure 5.5 and are similar to the ones from Chapters 3 and 4.

2Note that event handlers with label · are returned for lookupEHAt for both pc = L and pc = H.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 78

G,P ,V , d
 σG, κV
α−→pc σG

2 , ks

E 6= · G,P ,V , σG ` (V ; (σ, skip, C, ·); pc); lookupEHs(E) pc ks

G,P ,V , d ` σG, σ, skip, P, E •−→pc σG, ks
LC

G,P ,V , d ` σG, σ, skip, P, · •−→pc σG, (V ; (σ, skip, C, ·); pc)
PtoC

G,V , d
 σG
1 , σ1, cstd

1
α−→pc σG

2 , σ2, cstd
2 , E2

G,P ,V , d ` σG
1 , σ1, cstd

1 , P, E1
α−→pc σG

2 , (V ; (σ2, cstd
2 , P, (E1, E2)); pc)

P

Figure 5.5: Semantics for managing the event handler queue.

Running EHs The lower-level semantic rules for evaluating individual event handlers are triggered

by the mid-level semantics in the “producer” state. These rules are mostly standard and enforcement-

independent, except for interactions with the store. The rules in Figure 5.6 highlight the way our frame-

work handles these differences. assign-g performs an assignment to a global variable while assign-d

performs an assignment to an attribute in the event handler storage. Expressions are evaluated using the

judgment G,V , σG, σV ` e ⇓pc v. This also ensures v is in the format expected by the enforcement when

different mechanisms are composed. For instance, to convert a tainted value (v, H) to a value used by

SME, we check that the label on the value is visible to the execution. The L execution would receive the

default value dv instead of something tainted (v, H), while the H execution would receive the real value.

This is reminiscent of the way SME replaces secret inputs with dv for the L execution. More discussion on

conversion can be found in Section 5.3.3.

The assignment is performed using enforcement-specific helper functions. assignG(...) assigns global

variables or event handler attributes, depending on whether a variable or node id is passed as an argument.

The pc ensures that the assignments are performed securely (i.e., in the correct copy of the store, facet, or

with the correct label, depending on the type of enforcement).

5.3.3 Shared storage

Event handlers may interact with each other through shared storage. To introduce the storage techniques,

we describe the syntax for both variable and event handler storage (using the DOM as a case study) and

describe their semantics at a high-level, then we explain how shared storage with one type of enforce-

ment may be composed with an event handler running with a different type of enforcement. Finally, we

illustrate these interactions by returning to our example from Section 5.2.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 79

G,V
 σG
1 , σV1 , c1

α−→pc σG
2 , σV2 , c2, E

G,V , σG
1 , σV1 ` e ⇓pc v x ∈ σG

1 assignG(σ
G
1 , pc, x, v) = σG

2

G,V
 σG
1 , σV1 , x := e •−→pc σG

2 , σV1 , skip, ·
assign-G

G,V , σG
1 , σV1 ` e ⇓pc v x 6∈ σG

1 assignV (σV1 , pc, x, v) = σV2

G,V
 σG
1 , σV1 , x := e •−→pc σG

1 , σV2 , skip, ·
assign-L

G,V , σG, σV ` e ⇓pc v

G,V , d
 σG, σV , output ch e
ch(v)−→pc σG, σV , skip, ·

output

Figure 5.6: Selected command semantics

Shared Storage

Shared storage: σ(GEH,Gg) ::= σ
Gg
g , σ

GEH
EH

SME/SMS Variable Storage

Single store: σpc ::= · | x 7→ v
SME/SMS Storage: σSME, σSMS

g ::= σH , σL

MF/FS Variable Storage

Faceted value: vMF, vFS ::= v | 〈vH |vL〉 | 〈·|v〉 | 〈v|·〉
MF Storage: σMF ::= · | σMF, x 7→ vMF

FS Storage: σFS
g ::= · | σFS

g , x 7→ vFS

TT/TS Variable Storage

Labeled value: vTT, vTS ::= (v, l)
TT Storage: σTT ::= · | σTT, x 7→ vTT

TS Storage: σTS
g ::= · | σTS

g , x 7→ vTS

Figure 5.7: Storage syntax

Variable storage syntax We refer to shared storage techniques using similar terms as the enforcement

mechanisms for code execution: secure multi-storage, SMS, stores each item multiple times (once per

security level), faceted storage, FS, stores multiple copies only when necessary, and tainted storage, TS,

tracks labels for every item in the store. Storage syntax is shown in Figure 5.7. For SME/SMS, variables

are stored twice: once at each security level. Observers at H will interact with the H copy of the store (σH)

and observers at L with interact with the L copy of the store (σL). For MF/FS, variables are also stored

twice, but only when the value depends on a secret. A faceted value such as 〈vH |vL〉 depends on a secret.

H observers will interact with the H facet (vH) and L observers interact with the L facet (vL). Empty facets

(such as the L facet of 〈v|·〉) are treated as a default value and arise when a variable has been initialized in

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 80

EH Storage:

EH map: M ::= · |M, Ev 7→ {(eh1, l1), ..., (ehn, ln)}
Unstructured SMS DOM:

Single store: σpc ::= · | id 7→ (v, M)
DOM: σSMS

EH ::= σH , σL

Unstructured FS DOM:

DOM: σFS
EH ::= · | σFS, id 7→ (vFS, M)

Unstructured TS DOM:

DOM: σTS
EH ::= · | σTS, id 7→ (vTS, M, l)

DOM addresses:
Location: loc ∈ Address
Address: a ::= loc |NULL
Root address: art ::= loc
Address list: A ::= · | A, a

Tree-structured SMS DOM:
Node: φSMS ::= (id, v, M, ap, A)
Single store: σpc ::= art 7→ φSMS | σpc, loc 7→ φSMS

DOM: σSMS
EH ::= σH , σL

Tree-structured FS DOM:
Faceted address: aFS ::= a | 〈aH |aL〉 | 〈·|a〉 | 〈a|·〉
Faceted address list: AFS ::= · | aFS :: AFS

Node: φFS ::= (id, vFS, M, aFS
p , AFS)

DOM: σFS
EH ::= art 7→ φFS | σFS, loc 7→ φFS

Figure 5.8: Event handler storage syntax for the DOM

one context (L or H) but not the other.3 Finally, for TT/TS, values have an accompanying label to reflect

whether they have been influenced by a secret (label H) or not (label L).

EH storage syntax Event handler storage associates events with the appropriate event handlers. The

DOM is one type of event handler storage, which links event handlers to elements on a webpage. We

explain how to model event handler storage in our framework by considering both an unstructured DOM,

where nodes are organized as an unordered list (similar to the simple DOM model from Chapters 3 and 4),

which is useful for reactive systems like OS processes, as well as a more traditional tree-structure [76],

which is useful for modeling the DOM. For brevity, we refer both the unstructured and tree-structured

event handler storage as the “DOM.” The syntax for both structures are shown in Figure 5.8.

In the unstructured DOM, elements are identified by a unique identifier (id) and contain both an

attribute (whose structure is determined by the type of enforcement, to be described next) and an event

handler map (M), which maps events (Ev) to a list of event handlers (eh) and the context they were

3Note that empty facets are important not only for security, but also for precision: if a variable is initialized in the L context but
not the H context, it would not leak anything to store v instead of 〈·|v〉, but it would be less precise.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 81

registered in (l). M is the same for all enforcement mechanisms, except that event handlers in FS may

have any label in L (“·” means the event handler can be triggered by either L- or H-labeled events) but

SMS and TS event handlers may only be labeled L or H.

Similar to variable storage, the unstructured SMS DOM has two copies. H observers interact with the

H copy of the DOM and likewise for L observers. Attributes are standard values (v), including integers

and booleans. Initially, the H and L copies of the DOM will be identical. As events are triggered, new

elements may be added to the DOM, event handlers registered, or attributes updated in one or both

copies. The unstructured FS DOM is a single structure whose attributes are duplicated when they have

been influenced by secrets. Here, attributes are standard when the value does not depend on a secret (v)

or faceted values when the value appears different to H observers than L observers (〈vH |vL〉). Initially, all

the attributes are standard values in the FS DOM. A DOM element which has been added in only the H

context will have an attribute with an empty L facet (i.e., 〈v|·〉) and likewise for the H facet of an element

added in only the L context. The TS DOM will associate labels with both attributes ((v, l)) and DOM

elements ((vTS, M, l)). The label on the element reflects the context the element was created in, while the

label on the attribute reflects whether the attribute has been influenced by a secret (l = H) or not (l = L).

In the tree-structured [76] DOM, each element on the page has a matching DOM node (φ) which is

stored by reference (loc). Nodes have a unique identifier (id), an attribute, and an event handler map, like

in the unstructured DOM. They also contain a pointer to their parent (ap), and a list of pointers to their

children (A) (if any). The root of the DOM is at art. The node at this address cannot be replaced with

another node, but its attribute may be updated and children can be added to it. Since we later prove that

compositions involving the unstructured TS DOM only satisfy weak secrecy, we only formalize the more

complex tree-structured DOM for SMS and FS.

The tree-structured SMS DOM has two copies and behaves similarly to the unstructured SMS DOM.

The tree-structured FS DOM supports faceted attributes, as well as a faceted parent pointer (aFS) and list

of faceted pointers to children (AFS). Because nodes are uniquely identified by their ID, a node may have

a faceted parent pointer, for instance, if a node is created as a child of φH in the H context and then a

node with the same ID is created as a child of φL in the L context. A node might have a faceted pointer in

its list of children if a child is added in the H context, but not the L context. In this case, if the child is at

address a, the node would have 〈a|·〉 in its list of children.

Storage composition Since different event handlers running with different enforcement mechanisms

may interact through shared storage, values may need to be “converted” from the format for one enforce-

ment mechanism (i.e., a standard, faceted, or labeled value) to another. When converting data, we follow

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 82

Destination and pc
SME, SMS MF, FS TT, TS
· L H · L H · L H

So
ur

ce
vstd vstd vstd vstd vstd 〈·|vstd〉 〈vstd|·〉 (vstd, L) (vstd, L) (vstd, H)
〈vH |vL〉 〈vH |vL〉 vL vH 〈vH |vL〉 vL vH 〈vH |vL〉 (vL, L) (vH , H)
〈v|·〉 〈v|·〉 dv v 〈v|·〉 dv v 〈v|·〉 (dv, L) (v, H)
〈·|v〉 〈·|v〉 v dv 〈·|v〉 v dv 〈·|v〉 (v, L) (dv, H)
(v, L) − v v v v v − (v, L) (v, H)
(v, H) − dv v 〈v|dv〉 dv v − (v, H) (v, H)

Table 5.1: Conversion between standard, tainted, and faceted values.

three high-level guidelines to ensure the composition is secure:

1. The pc context determines which copy to access in multi-storage. If a value is coming from SMS or

FS, there may be two copies to pick from. When the context (i.e., the pc) is H, we access the H copy, and

likewise for L. If the value does not exist in that copy of the store (in the case of SMS) or is an empty facet

(in the case of FS), we use a default value.

2. The pc context and destination determine whether to replace a labeled value with a default value. If the

value is coming from TS, we need to decide if we take the actual value or use a default value. If the context

is H, we take the real value without leaking any information. If the context is L and the destination is a

multi-storage (SMS, FS) or multi-execution (SME, MF) technique, we replace tainted values (with label H)

with a default value since the L copy of the store/execution should never be influenced by a secret. On

the other hand, if the destination is TS or TT, we use the original, tainted value, and propagate the taint

through the resulting label.

3. The destination and pc context determines the ultimate format. Multi-storage and multi-execution

techniques use the context to determine which copy of the store/which facet to update. For taint tracking

techniques, the context is also used to determine the final label on the data (e.g., public data is labeled

H if it is computed in the H context). Consider a public event handler running with SME. It would run

first in the L context and then in the H context. The L execution would interact with the L copy of store

secured with SMS, or with the L facets for a store secured with FS. The H execution would interact with

the H copy (respectively, H facets). On the other hand, if the store is secured with TS, any changes made

by the L execution would be labeled L and ultimately be overwritten by the H execution (which would

have label H). A table summarizing how data is converted for every combination of enforcement is shown

in Table 5.1.

Examples We describe how the example from Section 5.2 works in our framework, using the config-

uration in Figure 5.9. For illustrative purposes, we describe both SMS and TS shared storage with an

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 83

TS Shared storage
σg = strength 7→ (40, H),

username 7→ (“bob”, L)
σEH = (idp 7→ ((“aKUd?mdu5GHa&l7gHJ5”, H), input 7→ {(onInput(x){cin}, L)}, L)),

(idb 7→ (_, click 7→ {(onClick(){cclk}, L)}, H))
SMS Shared storage
σg,L = strength 7→ dv,

username 7→“bob”
σEH,L = (idp 7→7→ (dv, input 7→ {(onInput(x){cin}, L)})),

(idb 7→ (_, ·))
σg,H = strength 7→ 40,

username 7→“bob”
σEH,H = (idp 7→ (“aKUd?mdu5GHa&l7gHJ5”, input 7→ {(onInput(x){cin}, H)}),

(idb 7→ (_, click 7→ {(onClick(){cclk}, H)}))

Configuration stack
ks = (SME, ((p1 7→ dv[0], presenta 7→ false, detecteda 7→ false), [idp/x]cin, P, ·), L)

:: (SME, ((p1 7→ “a”, presenta 7→ true, detecteda 7→ true), [idp/x]cin, P, ·), H)
:: (TT, ((p 7→ (“aKUd?mdu5GHa&l7gHJ5”, H), u 7→ (“bob”, L)), cclk, P, ·), H)

Figure 5.9: Example configuration

unstructured DOM.

For TS storage, everything maps to a value and a label, including both variables and attributes and

elements in the DOM. SMS involves an H and L copy of both the shared variables and DOM. The onInput

event handler is public, so it exists in both the H and L copies of the SMS event handler storage and is

labeled L in the TS storage. The contents of the field idp are secret, so for SMS, the contents are replaced

with a default value in the L copy of the DOM, and for TS the contents are labeled H. The onClick event is

secret, so it is only registered in the H copy of the SMS DOM and is labeled H in the TS DOM. The policy

is that onInput event handlers should be run under SME. We trust the first-party event handler onClick to

not misbehave, so the policy is to run this event handler with TT.

The ks in Figure 5.9 is the result of looking up event handlers for the input event on the password field

and the public click event on the “Submit” button. Note that ks will be the same whether we use SMS or

TS for shared storage (more details on this to follow). For illustrative purposes, ks is the result of running

all three event handlers. In reality, the local stores would initially be empty and the input event handlers

would run to completion before the click event was triggered.

Rule In-L is used to process the public Input event. It will run all the registered event handlers in

whatever context they are visible. Since the event handler is registered in both the L and H copies of

the SMS DOM, and with label L in the TS DOM, it is visible to both the L and H context. Since we

are running this event handler with SME, the ks has two onInput event handlers: one running in the L

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 84

context and one in the H context (note that SMS and TS produce the same ks).4 The onInput event handler

attempts to output to an L channel. In the H execution, this output is suppressed (Out-Skip) because the

output condition for SME requires that the label on the channel matches the label of the pc. On the other

hand, the same output in the L execution would succeed (Out). Recall that event handlers running in the

L context interact with the L copy of the SMS DOM and receive default values instead of tainted values

from the TS DOM. Therefore, this output does not leak anything to the attacker since the L copy of the

execution receives a default value for the password from the DOM in both cases.

For the Click event, In-H runs all event handlers visible to H (i.e., only those labeled H). This is the

third element in ks (note that, like above, SMS and TS produce the same ks). This event handler will run

in the H context, so it will interact with the H copy of the SMS σg and runs the risk of upgrading public

variables in the TS σg. In this case, Listing 5.1 only reads from the shared storage, so nothing is leaked

through TS. Recall from above that everything from the H copy of the SMS storage will be labeled H, and

everything that comes from the TS storage will keep its label. An output for TT succeeds if the pc (H)

joined with the label on the value being output (p + u, so, H t H = H in the case of SMS or H t L = H in

the case of TS) is at or below the label on the channel (H). Therefore, this output succeeds.

This example shows that our framework can seamlessly compose enforcement mechanisms and se-

curely convert data between different enforcement mechanisms, like SMS and TT.

5.4 Security and Weak Secrecy

Next we present two security definitions of different strengths, compare these two definitions, and prove

that the techniques from Chapter 2 may be composed to enforce varying levels of security.

5.4.1 Attacker Observation

Our definition for trace equivalence is similar to previous chapters, except here we also consider a more

complex tree-structure for our DOM. To quantify how much an attacker learns by interacting with our

framework, we first define what the attacker can observe from an execution trace. A trace T is a sequence

of execution steps, inductively defined as T = G,P ` T′
αl=⇒ K where an empty trace is the initial

state G,P ` K0. An attacker’s observation of T, denoted T ↓L, is the sequence of L-observable inputs and

outputs in T. Two execution traces are L-equivalent if their L observations are the same: T ≈L T′ iff T ↓L=

T′ ↓L. The L observation of an execution trace is defined in Figure 5.10.

4If the same event handler is run under TT, we only want to run the event handler once to avoid duplicated outputs to H
channels. There is a precision tradeoff between running the event handler only in the H context (suppress all the L outputs) or L
context (may alter the H outputs, depending on the global storage technique). We choose to run the event handler in the L context
only and leave further exploration of the effects on precision to future work.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 85

(G,P ` K) ↓L= ·
Trace-Base

P(id.Ev(v)) = L

(G,P ` K
id.Ev(v)
=⇒ T′) ↓L= id.Ev(v) :: T′ ↓L

Trace-LowIn

P(α) = L or l v L

(G,P ` K
(α,l)
=⇒ T′) ↓L= α :: T′ ↓L

Trace-Low

rel(K) = R P(id.ev(v)) = H R(P , id.ev(v)) = α 6= •

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= rls(α) :: T′ ↓L

Trace-HighRelease

P(id.ev(v)) = H∆

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= T′ ↓L

Trace-High∆

rel(K) = R P(id.ev(v)) = H ∧R(P , id.ev(v)) = •

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= T′ ↓L

Trace-HighNoRelease

P(α) = H or α = •

(G,P ` K
(α,H)
=⇒ T′) ↓L= T′ ↓L

Trace-High

Figure 5.10: Rules for projecting execution traces to L

Low inputs (Trace-LowIn) and other low actions (Trace-Low) are observable. Rule Trace-Low de-

fines a “low action” as one produced in the low context (l v L) or an L-labeled action (P(α) = L).

L-labeled inputs and outputs to L-labeled channels are all L-labeled actions. High inputs are not observ-

able unless they are released. Inputs from dynamic elements are never declassified (Trace-High∆) and

we use the shorthand R(P , id.Ev(v)) to decide whether the H inputs were released. If R(P , id.Ev(v)) =

• (Trace-HighNoRelease), it means the input was not released by the declassification policy, while

R(P , id.Ev(v)) = (ρ′, r, α) (Trace-HighRelease) means the event was declassified (ρ′ is the new declas-

sification state, r is the valued released on the declassification channel, and α is the declassified event, or

• if only the state and/or channel are updated). Finally, secret actions (P(α) = H) performed in the H

context are not observable as shown in Trace-H.

Two configurations K1 and K2 are L-equivalent if their global stores σG
1 and σG

2 and their configuration

stacks ks1 and ks2 are L-equivalent. Configuration stacks are L-equivalent if all the L configurations have

L-equivalent local stores and they agree on commands. Most of these definitions are straightforward. The

most interesting definition is L-equivalence of the tree-structured DOM, which is defined inductively over

the structure of the tree beginning with the root nodes.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 86

5.4.2 Progress-Insensitive Security

We first define attacker’s knowledge assuming that the attacker can view all the publicly-observable inputs

and outputs, as well as the initial state of the system (this includes the initial global variables and DOM

upon page load which contains no secrets). The attacker’s knowledge given a trace T is what they believe

the secret inputs might have been, which is the set of inputs from L-equivalent execution traces starting from

the same initial state:

Definition 21 (Attacker Knowledge). An attacker’s knowledge after observing T beginning from state σ0 with se-

curity policy P and declassification moduleR denotedK(T, σG
0 ,P ,R) is defined as {τi | ∃T′ ∈ runs(σG

0 ,P ,R), T ≈L

T′, τi = in(T′)}

We define runs(...) as the set of possible execution traces resulting from the shared state σG
0 under the

policy P ,R. The set of inputs from a trace T is denoted in(T), while τ is a sequence of actions.

Intuitively, the system is secure if the attacker does not refine their knowledge. However, this definition

is too strong for our system because it is progress sensitive. A possibly diverging loop that depends on a

secret will allow the attacker to refine their knowledge based on whether the system makes progress to ac-

cept another low input. Instead, we define a weaker, progress-insensitive security property, by introducing

the following progress-insensitive attacker’s knowledge below:

Definition 22 (Progress Knowledge). An attacker’s knowledge after observing trace T beginning from state σ0

with security policy P and declassification module R, when they know the system will continue to make progress,

denoted Kp(T, σG
0 ,P ,R) is defined as {τi | ∃T′ ∈ runs(σG

0 ,P ,R), T ≈PL T′, τi = in(T′), prog(T′)}

The attacker is allowed to observe the progress behavior of traces, so we add prog(T′) (defined the same

as in Chapter 3.4.2) as a condition on T′ to consider only the traces which produce the same L-observations

and make progress.

We also allow the attacker’s knowledge to be refined by declassification. To be precise about what is

leaked by declassification, we define progress-insensitive knowledge with release:

Definition 23 (Release Knowledge). An attacker’s knowledge after observing a trace T beginning from state

σ0 with security policy P and declassification module R, which just produced the declassification α, denoted

Krp(T, σG
0 ,P ,R, α) is defined as {τi | ∃T′ ∈ runs(σG

0 ,P ,R), T ≈L T′, τi = in(T′), prog(T′), α′ = (last(T) α
=⇒

K)) ↓L, releaseT(T′, α′))}

We add releaseT as a condition on T′ to only consider the traces which produce the same L-observations,

make progress, and produce the same declassification.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 87

Using these knowledge definitions, we define what it means for a program to be secure: when the

system takes a step, the attacker’s confidence about the secret inputs should not increase; they should not

be able to distinguish between any more traces than before, other than through whether the system makes

progress and what is declassified. We use � subscript for the subset relation (⊇�) to say that the input

sequences after the step may be longer and rlsA(...) holds if the step was a declassification.

Definition 24 (Progress-Insensitive Security). The compositional framework is progress-insensitive secure iff

given any initial global store σG
0 and release policy R,P , it is the case that for all traces T, actions α, and configu-

rations K s.t. (G,P ` T α
=⇒ K) ∈ runs(σG

0 ,P ,R), then, the following holds

• If rlsA(G,P ` last(T) α
=⇒ K): K(G,P ` T α

=⇒ K, σG
0 ,P ,R) ⊇� Krp(T, σG

0 ,P ,R, α)

• Otherwise: K(G,P ` T α
=⇒ K, σG

0 ,P ,R) ⊇� Kp(T, σG
0 ,P ,R)

We can prove that any combination of enforcement mechanisms SME, SMS, MF, and FS satisfy this

progress-insensitive security condition:

Theorem 25 (Soundness). If event handlers are enforced with V ∈ {SME, MF} and the global storage is enforced

with G ∈ {SMS, FS}, then the composition of these event handlers and global stores in our framework satisfies

progress-insensitive security.

We prove our framework secure with these enforcement mechanisms by defining a series of “require-

ments” for the framework (called Trace and Expression requirements), variable (called Variable require-

ments), and event handler stores (called Event Handler requirements). These requirements are described

in Table 5.2. Overall, these requirements follow a similar structure to other knowledge-based security

proofs from prior work. The most noteworthy difference is the notion of “strong equivalence” for values.

Traditionally, noninterference only requires that values are equivalent (i.e., they are the same public val-

ues, or both values are secret) but here we require that values are both equivalent and publicly observable

(i.e., they are equivalent only if they are the same public values; they cannot be tainted). This distinction

is important for highlighting the difference between progress-insensitive security and weak secrecy.

5.4.3 Weak Secrecy

As discussed in Section 5.2, NSU semantics are too rigid for our setting. Unfortunately, without NSU

semantics, taint tracking techniques are susceptible to implicit leaks. Namely, branching on a secret in

the L context may result in different public behavior for different secrets. We can also see implicit leaks

through global store: suppose a secret event handler upgrades a public value stored in the global variable

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 88

Trace Requirements
(W)T1 ≈L traces, ≈L states Equivalent traces starting in equivalent states lead to

equivalent states
(W)T2 Empty traces, ≈L states Traces producing no public events produce equiva-

lent states
T3 Secret pc’s, empty traces Steps under a secret pc produce no public events

(W)T4 Strong one-step If a trace takes a step, then an equivalent trace can
take an equivalent step

(W)T5 Weak one-step Equivalent traces taking steps producing equivalent
public observations lead to equivalent states

Expression Requirements
E1 L-expressions are ≈L Evaluating an expression under equivalent stores

with public pc’s results in strong equivalent values
WE1 L-expressions are ≈L Evaluating an expression under equivalent stores

with public pc’s results in equivalent values
Variable Requirements

V1 L-lookups are ≈L Lookups of the same variable under public pc’s in
equivalent stores result in strong equivalent values

WV1 L-lookups are ≈L Lookups of the same variable under public pc’s in
equivalent stores result in equivalent values

(W)V2 H-assignments are ≈L Assignments to stores under a secret pc result in an
equivalent store

(W)V3 L-assignments are ≈L Assignments to equivalent stores under public pc’s
result in equivalent stores

Event Handler Storage Requirements
EH1 L-lookups are ≈L Lookups in equivalent DOMs under public pc’s re-

sult in strong equivalent values
WEH1 L-lookups are ≈L Lookups in equivalent DOMs under public pc’s re-

sult in equivalent values
(W)EH2 H EH lookups empty Event handler lookups under a secret pc produce no

public event handlers
EH3 H-updates are ≈L Updates under a secret pc results in an equivalent

store
(W)EH4 L-updates are ≈L Updates under public pc’s in equivalent stores result

in equivalent stores

Table 5.2: Requirements for Progress-Insensitive Security and Weak Secrecy. The requirements for both
are similar, except that Weak Secrecy does not use requirements T3 or EH3 and the Progress-Insensitive
Security requirements E1, V1, and EH1 use strong equivalence while the Weak Secrecy requirements WE1,
WV1, and WEH1 use standard equivalence.

x. If the attacker successfully output x in the past, but cannot output x now, they can conclude that a

secret event handler which writes to x must have run recently. For example, the leaky third-party script

shown in Listing 5.3 violates Definition 24 when the script is enforced with TT and the global storage

with TS. Consider the scenario where the user inputs a password “abcd". Before the output (true, L), the

attacker knows the input was some password, but they are not sure which one, so their knowledge set is

all possible passwords. After the output, the attacker learns that the input password must start with an

‘a’, thus refining the set of possible inputs to only the passwords beginning with ‘a’, which violates the

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 89

K1

K2
K2’

?

K1’

(a) Progress-insensitive Security: Each in the H context before EvL is L-equivalent, even though T2 sees different H events than T1.
From T1 ≈L T2, T1 and T2 see the same public input: EvL. We show that each step in the L context (K1 to K′1 and K2 to K′2) produces
≈L states and from this, we prove that T2 can take step α

=⇒ producing the same output α = ch(v) and equivalent states ≈L .

? ?

(b) Weak Security: The proof is similar to above except that T1 and T2 are also synchronized on gw(_) and br(_) actions. Because of

this, when T1 takes a step to accept a low event
EvL=⇒ , we need to know that running the event handler for EvH,1 in T2 (=⇒∗)

will not produce any gw(_) actions. This is guaranteed by the wkTrace condition in Kwp().

Figure 5.11: Comparison of Progress-insensitive security (top) and Weak Security (bottom) proofs. Given
T1 ≈L T2, where T1 takes a step to , we want to show that T2 can take equivalent steps , and that trace
equivalence maintains state equivalence .

security condition. Branching on a secret implicitly leaked information to the attacker.

Instead, we prove a weaker security condition called weak secrecy [95, 84] which allows implicit leaks

through control flow but still ensures that explicit leaks via outputs are still prevented.

Additional attacker observations We modify our semantics with additional outputs to capture both

types of implicit leaks described above: br(_) (“branch”) when branching on a tainted value in the L

context, and gw(_) (“global write”) when a L-labeled value is upgraded in the H context.

Knowledge-based weak secrecy definition Since we allow information to leak through control flow

decisions, we define another form of knowledge to capture this:

Definition 26 (Weak Knowledge). An attacker’s knowledge after observing T beginning from state σ0 with

security policy P , declassification moduleR, which just implicitly leaked αl , denoted Kwp(T, Σ0,P ,R, αl) is defined

as {τi | ∃T′ ∈ runs(Σ0,P ,R), T ≈L T′, τi = in(T′), prog(T′), wkTrace(T′, α′) where α′ = (last(T) αl=⇒ K)) ↓L}

last(T) returns the last configuration in a trace. Here, ≈L ensures the implicit leaks up to this point were

the same and wkTrace ensures the next implicit leak is the same. If T is about to output br(b) or gw(x), then

T′ can be extended to produce the same output. We also need to make sure that when T receives a public

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 90

input, T′ does not leak anything until the next public input. Because inputs come nondeterministically,

and we only want to consider traces which produce the same implicit leaks, we do not want T′ to leak

anything extra in a secret event handler before the next public input. This ensures that if T and T′ were

≈L up to this point, they will continue to be equivalent after the next step. Maintaining equivalence like this

is important for proving security.

Consider, again, our leaky third-party script in Listing 5.3 where the user inputs the password “abcd".

In our weak secrecy semantics, the event handler would generate br(true) when branching on the secret.

The wkTrace predicate in the weak secrecy definition allows the attacker to refine their knowledge to

include the fact that the branch condition must evaluate to true by throwing out all the traces which do

not generate this branch condition. Only passwords starting with ‘a’ cause the branch condition to be true,

so at this step, the attacker is allowed to learn that the password must begin with ‘a’ (i.e., the knowledge

set is refined from all possible passwords to all possible passwords starting with ‘a’). Therefore, the output

does not further refine the attacker’s knowledge, so this program satisfies weak secrecy.

Definition 27 (Progress-insensitive Weak Secrecy). The compositional framework satisfies progress-insensitive

weak secrecy in our framework iff given any initial global store, σG
0 , and release policy P ,R, it is the case that for

all traces T, actions α, and configurations K s.t. (T α
=⇒ K) ∈ runs(σG

0 ,P ,R), the following holds

• If rlsA(G,P ` last(T) α
=⇒ K): K(G,P ` T α

=⇒ K, σG
0 ,P ,R) ⊇� Krp(T, σG

0 ,P ,R, α)

• If wkAction(last(T) α
=⇒ K): K(T α

=⇒ K, σG
0 ,P ,R) ⊇� Kwp(T, σG

0 ,P ,R, α)

• Otherwise: K(T α
=⇒ K, σG

0 ,P ,R) ⊇� Kp(T, σG
0 ,P ,R).

Meta-theory We prove that any combination of enforcement mechanisms that we instantiated our frame-

work with, including TT and TS, satisfy Definition 27:

Theorem 28 (Soundness-Weak Secrecy). If event handlers are enforced with V ∈ {SME, MF, TT} and the global

storage is enforced with G ∈ {SMS, FS, TS}, then the composition of these event handlers and global stores in our

framework satisfies progress-insensitive weak secrecy.

We prove weak secrecy using a similar technique to progress-insensitive security. The requirements

are nearly the same and are shown in Table 5.2 with a (W). Requirements T3 and EH3 cannot be proven

in the presence of implicit leaks (upgrades to global variables in the H context is publicly observable).

However, they are not needed to prove weak secrecy. The requirements mentioning “strong equivalence”

are weakened to “equivalence” since leaking branch conditions is permitted.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 91

Further comparisons of the proof techniques behind these two security definitions are shown in Fig-

ure 5.11. The events that two equivalent traces T1 and T2 must agree on for the weak secrecy definition are

a superset of those required by the regular security definition, so the set of traces in the equivalent class

(knowledge set) of the former is a subset of the latter. Consequently, attackers know more in the system

that allows implicit leaks. We prove that our weak secrecy security condition is weaker than our standard

security condition, in general:

Theorem 29 (PI Security implies PI Weak Secrecy). If the composition of event handlers and global storage

enforcement are progress-insensitive secure, then they also satisfy progress-insensitive weak secrecy.

5.4.4 Securing TT

We can prove that in the presence of a secure global storage, using taint tracking for the event handler is

secure, even without NSU semantics.

Theorem 30 (Soundness (TT)). If event handlers are enforced with V ∈ {TT, SME, MF} and the global storage

is enforced with G ∈ {SMS, FS}, then the composition of these event handlers and global stores in our framework

satisfies progress-insensitive security.

The proof deviates from the requirements shown in Table 5.2. We cannot prove the variable require-

ments for TT because looking up a tainted value violates requirement V1. However, these requirements

are stronger than necessary. The proof is intuitive: from the requirements, a secure global store will not

allow a public event handler to access secrets, nor will it let secret event handlers modify public values.

Recall that the local variable storage is cleared between event handlers, so there is no way for public event

handlers to branch on secret values because the local storage will only contain public values. This means

that WV1 is sufficient to prove the stronger security condition and taint tracking techniques can be used

securely, without NSU semantics, as long as the global structures satisfy strong security guarantees.

Going back to our example, the event handler in Listing 5.1 is secure, even though it is enforced with

TT because it does not have implicit leaks. On the other hand, code with implicit leaks (Listing 5.2 and 5.3)

can be secured by connecting the taint tracking script enforcement with a secure storage like SMS or FS,

as shown by Theorem 30. This is noteworthy because it suggests that the selection of script enforcement

is not as relevant to security as the selection of the global storage enforcement. Furthermore, the effects of

TT are not manifested in this setting (since tainted variables never appear in the L context), meaning that

as long as the shared structures are secure, the event handlers may require no additional enforcement.

CHAPTER 5. COMPOSITIONAL IFC FOR REACTIVE SYSTEMS 92

5.5 Discussion

So far, we developed a compositional framework to combine multi-execution techniques (strong security

guarantees) with taint tracking (weaker security guarantees). One question that remains is whether we

can use a compositional definition and proof infrastructure of the form, “If A is secure and B is secure,

then their composition is secure”. This is challenging in our setting because the security of event handlers

often depends on the security of the global store. Instead, we define compositional security based on the

interfaces between event handlers and global storage in a rely-guarantee style using “requirements” on

execution traces, variable storage, and event handler storage.

5.6 Summary

We develop a framework to enable the flexible composition of dynamic IFC enforcement mechanisms for

reactive programs with provable security guarantees. We use a knowledge-based security condition to

compare the relative security of different compositions. We extend weak secrecy to reason about implicit

flows of information due to control flow decisions within as well as between event handlers. Finally, we

show that some compositions (namely, ones using multi-storage techniques for shared storage) allows

taint tracking enforcement for event handlers to achieve stronger security guarantees compared to using

taint tracking for all of the code.

Chapter 6

Discussion and Future Work

In this Chapter we discuss alternative approaches for protecting sensitive data on the web (Section 6.1)

as well as potential directions for future work, including alternative web models or reactive systems

(Sections 6.2 and 6.3) and possible extensions for our compositional framework (Section 6.4).

6.1 Alternatives to IFC

In this thesis, we focus on IFC techniques but there are other approaches for protecting sensitive data on

the web. One option is to isolate untrusted JavaScript [90] so that it cannot access sensitive user data on

the webpage. These approaches would guarantee that untrusted, possibly attacker-controlled, code cannot

access private information, but they also tend to be more coarse-grained than IFC techniques, and may

require code or browser modifications (similar to our IFC monitors). The tradeoffs between isolation and

IFC techniques have been studied [86], highlighting that that performance and usability are both potential

barriers to IFC adoption. Our compositional framework is one approach to help alleviate the performance

concerns, but more research is needed on usable IFC. Future efforts in this area should look at how users

or developers can write complex policies [100] and how to allow users to express their preferences about

the tradeoffs between IFC techniques (as we describe in Chapter 5.1).

6.2 More Realistic Web Models

Alternative DOM models, event bubbling, pre-emptive event scheduling DOM event handling logic

is quite complex and can be used to leak information [76, 25, 5, 73]. Interactions between SME and DOM

event scheduling logic is an interesting problem that has not been investigated. Some of those problems

can be mitigated in our system because script-generated events are handled by the execution at the same

93

CHAPTER 6. DISCUSSION AND FUTURE WORK 94

security level. However, as we show in Chapter 4, sometimes surprising interactions between executions

arise due to declassification. Interactions between event bubbling/pre-emptive event scheduling and

declassification may pose new challenges. It would also be interesting to incorporate a more realistic

tree-structured DOM into Chapter 4 to explore whether the structure of the DOM yields any interesting

new ways for the attacker to influence declassification, and whether the same technique can mitigate the

new risks.

DOM element removal In Chapters 3 and 4, we show that attackers can leverage dynamic features

like DOM element generation and event simulation to trigger declassifications. DOM element removal is

another dynamic feature that could lead to leaks. For example, consider the following program where the

security policy says that keypress events should be kept secret and button clicks may be declassified:

onKeyPress(k) { if k == 42 then remove(b) }

This event handler removes the button identified by b if the secret keypress is 42, otherwise (for other

keypresses) the button stays. If the attacker sees a declassified event associated with b they will know that

the user has not generated a secret keypress with 42: declassifying an event from a button that might have

been removed if a different branch were taken leaks something about secret keypress events to the attacker.

Unfortunately, leaks are difficult to detect using purely dynamic monitors because dynamic techniques

only know what happens in the branch that gets executed, while this leak is related to the branch of code

that was not executed. A hybrid monitor that looks at both branches and does not allow declassification

for events associated with page elements which might have been removed would be a possible solution.

Other web features and implementation Our work focuses on JavaScript event handlers and interac-

tions with the DOM, but we could expand our model to include other relevant browser features. For

example, the network and AJAX requests included in the Featherweight Firefox model [27] would require

more sophisticated event handler scheduling, but could also lead to a more interesting attacker model

for Chapter 4. Another direction for future research would be to develop a prototype browser based on

Firefox (similar to FlowFox [35]) or Chromium (similar to prior work [22]). One goal of our compositional

framework is that it would allow users to balance the tradeoffs of different enforcement mechanisms. We

also assume that someone (e.g., the user, or browser manufacturer) writes security policies to determine

which information flows are allowed. A prototype browser would also help us evaluate the usability of

the mechanisms for selecting IFC enforcement and writing policies.

CHAPTER 6. DISCUSSION AND FUTURE WORK 95

6.3 Applications to Other Reactive Settings

Our framework can be applied to different reactive settings, such as web apps with a full DOM, OS

processes [54, 102], mobile phone applications [52, 41, 68], and serverless computing [6]. Other reactive

systems typically have less sophisticated storage than the DOM and more complex scheduling compared

to JavaScript’s single-threaded execution. We would need to modify the semantics to accommodate dif-

ferent schedulers and ensure they do not become a source of information leakage.

In Chapter 5, we find that the security of the overall application may rely more on the security of

the shared resources than the individual event handlers. Meanwhile, when enforcing information flow

policies in concurrent systems [85, 89, 8, 55], the security of shared resources is also important to the

security of the overall application. It would be interesting to explore other connections between our

compositional framework and work on information flow in concurrent systems, which may also involve

timing-sensitive [77, 87] or probabilistic [93, 80] notions of noninterference.

6.4 Extending our Compositional Framework

Additional IFC monitors We consider only a few dynamic enforcement mechanisms, but our framework

could be easily extended to accommodate others. To add another event handler enforcement mechanism,

the local storage would need to be defined as well as conditions for when to produce or suppress output.

Rules for interacting with the local storage and any other special rules (for instance, for switching exe-

cutions in SME or branching on faceted values in MF) would also need to be added. For global variable

storage, only the storage syntax and rules for accessing the store would be necessary. The event handler

storage is by far the most involved, likely requiring rules for defining the storage itself as well as rules for

interacting with each of the event handler enforcement mechanisms.

Traditional taint tracking upgrades the pc when branching on a tainted value, but our semantics in

Chapter 5 do not. We made this choice for two reasons: First, this choice is consistent with prior work on

weak secrecy [84, 95]. Second, upgrading the pc on tainted branches adds complexity to the semantics, but

still leaks information. Other approaches like no sensitive upgrade (NSU) semantics (and its more flexible

variants like permissive upgrades [14]), or terminating the execution of individual event handlers [73],

can be adapted to the reactive setting. Adapting these mechanisms for our framework is straightforward:

low-level rules for commands need to be defined. Variants of NSU techniques may achieve a stronger

security guarantee but run the risk of altering the behavior of non-leaky programs if they prevent upgrades

to variables which never affect outputs to public channels. The focus of our work is on the effect of

composition on security and we leave the investigation of additional mechanisms to future work.

CHAPTER 6. DISCUSSION AND FUTURE WORK 96

Attacker influence and other security properties Our compositional framework in Chapter 5 uses the

techniques from Chapter 3 for protecting declassification from attacker influence. It would be interesting

to incorporate our notion of integrity from Chapter 4 into our framework, both to allow for more fine-

grained monitoring, but also to investigate whether the attacks we identify for SME (specifically the leaks

between executions from Chapter 4.2.3) also exist in faceted execution.

Appendix A

Supporting Materials for Chapter 3

A.1 Additional Definitions

A.1.1 Equivalence definitions

We say two configurations Σ1 and Σ2 are equivalent w.r.t. label L, denoted Σ1 ≈L Σ2, if their declassifica-

tion states and configurations for the low-execution are the same.

Definition 31 (Configuration equivalence). Given two configurations Σ1 and Σ2, where Σ1 = R1, d1; κL1; κH1

and Σ2 = R2, d2; κL2; κH2, Σ1 ≈L Σ2 iff R1 = R2, d1 = d2, and κL1 = κL2.

projR,P (·) = ·
P ` a : L

projR,P (a) = a
P ` a : H∆

projR,P (a) = ·

P ` a : H R = (ρ,D) D(ρ, a) = (ρ′, r, a′)
ρ′ 6= ρ or r 6= none or a′ 6= •

projR,P (a) = (ρ′, r, a′)
P ` a : H R = (ρ,D) D(ρ, a) = (ρ, none, •)

projR,P (a) = ·

Figure A.1: Projection of actions

(Σ) ⇓PL = ·
Σ = R, d; κL; κH T′ ∈ runs(Σ′,R′,P) Σ 6≈L Σ′ α ∈ in(T)

(P ` Σ α
=⇒ T′) ⇓PL = projR,P (α) :: T′ ⇓PL

T′ ∈ runs(Σ′,R′,P) Σ 6≈L Σ′ α 6∈ in(T)
(P ` Σ α

=⇒ T′) ⇓PL = α :: T′ ⇓PL

T′ ∈ runs(Σ′,R′,P) Σ ≈L Σ′

(P ` Σ α
=⇒ T′) ⇓PL = T′ ⇓PL

Figure A.2: Projection of traces

97

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 98

Next we formally define the equivalence between two traces w.r.t. L, denoted T1 ≈PL T2. We first define

a projection relation on actions based on the declassification module, denoted projR,P (a) in Figure A.1.

We define the projection of execution traces w.r.t. P , denoted T ⇓PL , in Figure A.2. We say two traces are

equivalent w.r.t. the label L and label context P if their projections are the same.

Definition 32 (Trace equivalence). Given two execution traces T1 and T2, T1 ≈PL T2 iff T1 ⇓PL = T2 ⇓PL .

A.1.2 Knowledge definitions

We use the same knowledge definitions as in Chapter 3.4.2.

Definition 2 (Attacker Knowledge). Formally, K(T, σ0,P ,R) is defined as {τi | ∃T′ ∈ iruns(σ0,P ,R), T ≈PL
T′, τi = in(T′)}

Definition 4 (Progress Knowledge). Formally, Kp(T, σ0,P ,R) is defined as {τi | ∃T′ ∈ iruns(σ0,P ,R), T ≈PL
T′, τi = in(T′), prog(T′,P)}

Where prog(T,P) holds iff T = P ` Σ0 =⇒∗ Σ and ∃T′ s.t. T′ = Σ
τ

=⇒∗ ΣC, and consumer(ΣC)

A.1.3 Robust declassification

Robustness requires that active attackers cannot learn more than passive attackers. We define σ1 <A σ2 to

mean that σ2 contains more active components (i.e., event handlers and page elements) than σ1.

σ1 <A σ2

σ <A σ

refl

σ1 <A σ2 x 6∈ dom(σ2)

σ1 <A σ2[x 7→ v]
var

σ1 <A σ2

σ1 <A σ2, id 7→ (v, M)
obj

σ1 <A σ2 M1 <A M2

σ1, id 7→ (v, M1) <A σ2, id 7→ (v, M2)
eh

We say two input traces τ1 and τ2 are L equivalent w.r.t. the label context P and release policy R,

written τ1 ≈P ,R
L τ2, when they have the same low inputs and equivalent high inputs under declassification.

We define R∗P (τ) in Figure A.3, which is the declassified input trace of τ.

Definition 33 (Input equivalence w.r.t. release policy). We say that τ1 and τ2 are equivalent w.r.t. the label

context P and release module R, written τ1 ≈P ,R
L τ2, iff R∗P (τ1) = R∗P (τ2).

We write (σ,P ,R, τi) ⇑ to mean that the SME execution trace starting from σ given input τi will not

reach a consumer state. We say κ(τ) ⇑ iff there does not exist a κ′ s.t. κ
τ
−→∗ κ′ and consumer(κ′). We say

Σ(τ) ⇑ iff there does not exist a Σ′ s.t. P ` Σ
τ

=⇒∗ Σ′ and consumer(Σ′).

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 99

R∗P (·) = ·
P ` a : L

R∗P (a τ) = a :: R∗P (τ)
P ` a : H∆

R∗P (a τ) = R∗P (τ)

P ` a : H R = (ρ,D) D(ρ, a) = (ρ′, r, a′) ρ′ 6= ρ or r 6= none or a′ 6= • R′ = (ρ′,D)
R∗P (a τ) = (r, a′) :: R′∗P (τ)

P ` a : H R = (ρ,D) D(ρ, a) = (ρ, none, •)
R∗P (a τ) = R∗P (τ)

Figure A.3: Declassified input trace

We formally define an interleaving of two traces as follows:

τ1 ./ · = τ1

τ1 = τ′1 :: τ′′1 τ2 = α :: τ′2

τ1 ./ τ2 = τ′1 :: α :: (τ′′1 ./ τ′2)

We define the following relation for A and B, sets of traces:

A ⊆� B iff ∀τ ∈ A, ∃τ′, τ∆ with τ′ ∈ B, and τ ./ τ∆ = τ′

We define the domain of a set of inputs:

τ = τ′ :: α

dom(τ) = dom(α) ∪ dom(τ′)

α = id.ev(v)

dom(α) = {id}

α = ch(v)

dom(α) = { }

Definition 34 (Compatibility). We say that a state σ is compatible with a release policy R and label context P ,

when for all τ P ` d0, R; κ
τ
−→∗ d′, R′; κ′ iff κ

τ
−→∗ κ′ where d0 is the initial release channel, κ = (σ, skip, C, ·).

We say that a configuration is in consumer state, written consumer(Σ) or consumer(κ) if all its execution

states are in consumer state.

producer(κ) iff ∃σ, c, E, κ = (σ, c, P, E)

consumer(κ) iff ∃σ, κ = (σ, skip, C, ·)

consumer(Σ) iff ∃d,R, Σ = d,R; κL; κH and consumer(κL) and consumer(κH)

We say that for a trace T = Σ1 =⇒ ... =⇒ ΣN , an increasing sequence of indices [i1, i2, ..., iK] s.t. K ≤ N

is a separation.

For a separation [i1, i2, ..., iK]:

(1) Σ1 =⇒∗ Σi1 is a sequence;

(2) For any t ≤ K− 1, Σit+1 =⇒∗ Σit+1 is a sequence.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 100

We define fst(T) and last(T) to be the first and last configuration of T respectively.

We say that a trace T is a complete run if consumer(last(T)).

We call a trace T a complete segment if consumer(last(T)), and no configuration in T other than the

first the last is in consumer state.

Σ ∼C
H d,R; κH iff Σ = d,R; κL; κH and consumer(Σ)

Σ ∼C
L d, κL iff Σ = d,R; κL; κH and consumer(κL)

Σ ∼P
H d,R; κH iff Σ = d,R; κL; κH and consumer(κL), and ¬consumer(κH)

Σ ∼PP
H d,R; κH iff Σ = d,R; κL; κH and ¬consumer(κL)

Σ ∼P
L d, κL iff Σ = d,R; κL; κH and ¬consumer(κH)

Σ ∼PP
L d,R; κL iff Σ = d,R; κL; κH , consumer(κL) and ¬consumer(κH)

Σ ∼C
H d,R; κH

P ` Σ ∼T
H d,R; κH

Sim-HS
Σ ∼P

H d,R; κ P ` α2 : H α1 = α2 P ` T ∼T
H t

P ` Σ
α1=⇒ T ∼T

H d,R; κ
α2−→ t

Sim-HH

Σ ∼P
H d,R; κ P ` α2 : L or α2 = • P 0 α1 : H P ` T ∼T

H t

P ` Σ
α1=⇒ T ∼T

H d,R; κ
α2−→ t

Sim-HL

Σ ∼PP
H d,R; κH

P ` Σ ∼TP
H d,R; κH

Sim-LS
Σ ∼PP

H d,R; κH P ` α : L or α = • P ` T ∼TP
H d,R; κH

P ` Σ α
=⇒ T ∼TP

H d,R; κH

Sim-LL

Definition 35 (No leak outside declassification). We say that a state σ is has no leak outside declassification, if for

all label context P , R, R′, τi1 and τi2, s.t. R∗P (τi1) = R
′∗
P (τi2), for all τ1 and τ2 P ` t1 = d0, R; κ −→∗ d′, R′; κ′

and P ` t2 = d0, R′; κ −→∗ d′, R′; κ′, and in(t1) = τi1, in(t2) = τi2, it is the case that out(t1)|PL = out(t2)|PL .

We define pr(P ,R, n, τ) = (τ′, A), to help compute a new projection function. It returns a projected

trace and an array that records released values.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 101

pr(P ,R, n, ·) = (·, ∅)

P ` a : L pr(P ,R, n, τ) = (τ′, A)

pr(P ,R, n, a τ) = (a :: τ′, A)

P ` a : H∆

pr(P ,R, n, a τ) = pr(P ,R, n, τ)

P ` a : H R = (ρ,D)

D(ρ, a) = (ρ′, r, a′) ρ′ 6= ρ or r 6= none or a′ 6= • R′ = (ρ′,D) pr(P ,R, n + 1, a τ) = (τ′, A)

pr(P ,R, n, a τ) = (a′ :: τ′, A[n] := r)

P ` a : H R = (ρ,D) D(ρ, a) = (ρ, none, •)

pr(P ,R, n, a τ) = pr(P ,R, n, τ)

PR(P ,R, τ) = (τ′,R′) where pr(P ,R, 1, τ) = (τ′, A), R′ = ((0, A),D′), and D′((n, A), a) = ((n +

1, A), A[n], a).

We assume that If P ` a : H, and D(ρ, a) = a′, then P ` a′ : H. We make sure that the projected input

• is considered H.

Σ ∼PP
L d,R; κL

P ` Σ ∼TP
L d,R; κL

Σ ∼PP
L d,R; κL P ` α : H or α = • P ` T ∼TP

L d,R; κL

P ` Σ α
=⇒ T ∼TP

L d,R; κL

R∗P (τ) = R′∗P (τ′) consumer(κH) consumer(κL)

P ` d,R; κL; κH ∼C
L d,R′; κL@(τ, τ′)

Σ ∼C
L d, κL

P ` Σ ∼T
L d,R; κL

Sim-LC
Σ ∼P

L d, κ P ` α2 : L α1 = α2 P ` T ∼T
L t

P ` Σ
α1=⇒ T ∼T

L d,R; κ
α2−→ t

Sim-LL

Σ ∼P
L d, κ P ` α2 : H or α2 = • P 0 α1 : L P ` T ∼T

L t

P ` Σ
α1=⇒ T ∼T

L d,R; κ
α2−→ t

Sim-HL

A.2 Soundness Proofs

Theorem 6 (Soundness) ∀P ,R, σ0, T, Σ, α s.t. (T α
=⇒ Σ) ∈ iruns(σ0,P ,R),

K(T α
=⇒ Σ,P ,R) ⊇� Kp(T,P ,R)

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 102

Proof.

Need to show ∀τ ∈ Kp(T,P ,R), ∃τ′ ∈ K(T α
=⇒ Σ,P ,R) s.t. τ � τ′

Let τ ∈ Kp(P ` T,P ,R).

Then from the definition of Kp(), there is a trace for which τ is the input T1 = P ` Σ0 =⇒∗ Σ1

and τ = in(T1)

From definition of Kp(), we know that T1 ≈PL T

We also know from Kp() that there is a trace T = P ` Σ0 =⇒∗ Σ2 and Σ2
α

=⇒ Σ

Case I: Σ ≈L Σ2

By assumption and Lemma 37, (P ` Σ0 =⇒∗ Σ2) ≈PL (P ` Σ0 =⇒∗ Σ2 =⇒ Σ)

Then from T1 ≈PL T, we know that T1 ≈PL (P ` T α
=⇒ Σ)

Let τ′ = in(T1).

Thus, from T1 ≈PL (P ` T α
=⇒ Σ), we know that τ′ ∈ K(T α

=⇒ Σ,P ,R) and τ � τ′.

Case II: Σ 6≈L Σ2

From T1 ≈PL T and Lemma 123, Σ1 ≈L Σ2

Then from Lemma 7, ∃Σ′1, τ′′ s.t.

P ` Σ1
τ′′

=⇒∗ Σ′1 with (Σ1
τ′′

=⇒∗ Σ′1) ≈PL (Σ2
α

=⇒ Σ).

Then from T1 ≈PL T, we know that (T1
τ′′

=⇒∗ Σ′1) ≈PL (T α
=⇒ Σ), so

Thus, from (T1
τ′′

=⇒∗ Σ′1) ≈PL (T α
=⇒ Σ) we know that in(T1) :: in(Σ1

τ′′

=⇒∗ Σ′1) ∈ K(T
α

=⇒ Σ,P ,R)

Let τ′ = in(T1) :: in(Σ1
τ′′

=⇒∗ Σ′1).

Thus, we know that τ′ ∈ K(T α
=⇒ Σ,P ,R) and τ � τ′

Lemma 8 (Eq trace Eq state) If T1 = P ` Σ1 =⇒∗ Σ′1 and T2 = P ` Σ2 =⇒∗ Σ′2 with Σ1 ≈L Σ2 and

T1 ≈PL T2, then Σ′1 ≈L Σ′2.

Proof.

∃τ1, τ2 s.t. T1 = P ` Σ1

τ1
=⇒∗ Σ′1 and T2 = P ` Σ2

τ2
=⇒∗ Σ′2

By induction over the length of τ1.

Base Case: len(τ1) = 0

Follows from T1 ≈PL T2, T1 ⇓L= ·, and the definition of ≈PL for execution traces

Inductive Case len(τ1) = k + 1 where k ≥ 0

Subcase I: Σ′′1 ≈L Σ′1

Follows from Lemma 37 and the IH

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 103

Subcase II: Σ′′1 6≈L Σ′1

The proof for this case follows from the IH and Lemma 36

Lemma 7 (Strong One-step) If T1 = P ` Σ1
α

=⇒ Σ′1 with Σ1 6≈L Σ′1, Σ1 ≈L Σ2, and prog(Σ2,P) then ∃Σ′2, T2

s.t. T2 = P ` Σ2 =⇒∗ Σ′2 with T1 ≈PL T2 and Σ′1 ≈L Σ′2

Proof.

We examine each case of E :: P ` Σ1
α

=⇒ Σ′1. The proof is straightforward. We show a few representative

cases.

Denote Σ1 = R1, d1; κL1; κH1 with κL1 = σL1, cL1, sL1, EL1 and likewise for κH1, Σ2, Σ′1, Σ′2

Case I: E ends in SmeI-NR1

From Σ1 ≈L Σ2, we know that sL2 = C and cL2 = skip

By assumption, P(id.ev(v)) = H

Subcase i: sH2 6= C

From prog(Σ2,P), we know that ∃T′ s.t. T′ = P ` Σ2
τ

=⇒∗ ΣC with consumer(ΣC)

Then repeatedly applying SmeO-LH and SmeO-HH will produce T′ s.t. T′ ⇓PL = ·

From this, ΣC ≈L Σ2 and sH2 = C, so the proof proceeds the same as Subcase ii, below

Subcase ii: sH2 = C

From Σ1 ≈L Σ2, we know that R1 = (ρ1,D1) = R2 = (ρ2,D2), which tells us that

D1(ρ1, id.ev(v)) = (r, emp, ρ′) = D2(ρ2, id.ev(v))

Then, SmeI-NR1 may be applied to the second trace with input id.ev(v)

From Σ1 ≈L Σ2, we know that d1 = d2

Then from D1(ρ1, id.ev(v)) = (r, emp, ρ′) = D2(ρ2, id.ev(v)), we know that

d′1 = update(d1, r) = update(d2, r) = d′2

Then from Σ1 ≈L Σ2, D1(ρ1, id.ev(v)) = (r, emp, ρ′) = D2(ρ2, id.ev(v)), and

d′1 = update(d1, r) = update(d2, r) = d′2, we know that Σ′1 ≈L Σ′2 and T1 ≈PL T2

Case II: E ends in SmeI-R

From Σ1 ≈L Σ2, sL2 = C and cL2 = skip

By assumption, P(id.ev(v)) = H

Subcase i: sH2 6= C

The proof proceeds the same as Subcase I.i

Subcase ii: sH2 = C

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 104

From Σ1 ≈L Σ2, we know that R1 = (ρ1,D1) = R2 = (ρ2,D2), which tells us that

D1(ρ1, id.ev(v)) = (r, eL, ρ′) = D2(ρ2, id.ev(v))

Then, SmeI-R may be applied to the second trace with input α = id.ev(v)

From Σ1 ≈L Σ2, we know that d1 = d2

Then from D1(ρ1, id.ev(v)) = (r, eL, ρ′) = D2(ρ2, id.ev(v)), we know that

d′1 = update(d1, r) = update(d2, r) = d′2

From Σ1 ≈L Σ2, we also know that σL1 = σL2, which also tell us that σL1(eL) = cL = σL2(eL)

From Σ1 ≈L Σ2, D1(ρ1, id.ev(v)) = (r, eL, ρ′) = D2(ρ2, id.ev(v)),

d′1 = update(d1, r) = update(d2, r) = d′2, and σL1(eL) = cL = σL2(eL), we know that Σ′1 ≈L Σ′2

and T1 ≈PL T2

Case III: E ends in SmeO-LL

From Σ1 ≈L Σ2, we know that sL1 = sL2 and ¬consumer(κL1)

From this, ¬consumer(κL2)

By inspecting the SME rules, one of the following must be true:

consumer(κL2) ∧ consumer(κH2); or ¬consumer(κL2) ∧ producer(κH2); or

consumer(κL2) ∧ ¬consumer(κH2)

Then, from ¬consumer(κL2), we know that producer(κH2)

Then, SmeO-LL may be applied to the second trace

From Σ1 ≈L Σ2, we know that d1 = d2 and κL1 = κL2

From d1 = d2, κL1 = κL2, and because the operational semantics are deterministic, d2, κL2
α−→ κ′L2 and

κ′L2 = κ′L1

From Σ1 ≈L Σ2 and κ′L2 = κ′L1, we know that Σ′1 ≈L Σ′2 and T1 ≈PL T2

Case IV: E ends in SmeO-HH

From Σ1 ≈L Σ2, we know that sL1 = sL2 and consumer(κL1)

By assumption, Σ′1 ≈L Σ1

From sL1 = sL2 and consumer(κL1), we know that consumer(κL2)

From Σ′1 ≈L Σ1 and definition of ≈PL for execution traces, T1 ≈PL ·

Subcase i: sH2 6= C

By assumption, ¬consumer(κH2)

Applying the operational semantics rules gives, d2, κH2
α′−→ κ′H2

Subsubcase a: P(α′) = H

Then, SmeO-HH may be applied to the second trace, which tells us Σ′2 ≈L Σ2

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 105

From Σ′2 ≈L Σ2 and definition of ≈PL for execution traces, T2 ≈PL ·

From Σ1 ≈L Σ2, Σ′1 ≈L Σ1, and Σ′2 ≈L Σ2, we know that Σ′1 ≈L Σ′2

From T1 ≈PL · and T2 ≈PL ·, we know that T1 ≈PL T2

Subsubcase b: P(α′) = L or α′ = •

The proof proceeds the same as subsubcase a, above, except that SmeO-HL is applied.

Subcase ii: sH2 = C

Let Σ′2 = Σ2, which tells us T2 ≈PL ·

From Σ1 ≈L Σ2, Σ′1 ≈L Σ1, and Σ′2 = Σ2, we know that Σ′1 ≈L Σ′2

From T1 ≈PL · and T2 ≈PL ·, then we know that T1 ≈PL T2

Lemma 36 (Weak One-step). If T1 = P ` Σ1
α1=⇒ Σ′1 and T2 = P ` Σ2

α2=⇒ Σ′2 with T1 ≈PL T2, Σ1 ≈L Σ2,

Σ1 6≈L Σ′1, and Σ2 6≈L Σ′2 then Σ′1 ≈L Σ′2.

Proof.

We examine each case of E :: P ` Σ1
α

=⇒ Σ′1 The proof is straightforward. We show a few representative

cases.

Denote Σ1 = R1, d1; κL1; κH1 with κL1 = σL1, cL1, sL1, EL1 and likewise for κH1, Σ2, Σ′1, Σ′2

Case I: E ends in SmeI-NR1

From Σ1 6≈L Σ′1, we know that R1 6= R′1 or d1 6= d′2, which tells us that T1 ⇓PL = (r, emp, ρ′) with

r 6= none or ρ′ 6= ρ

Then, from T1 ≈PL T2 we know that T2 ⇓PL = (r, emp, ρ′) and P(α2) = H

From Σ1 ≈L Σ2, we know that sL2 = C, cL2 = skip, R1 = R2 and d1 = d2

From all this, we know that the second trace must end in SmeI-NR1 with α2 = id′.ev′(v′)

From R1 = R2, T1 ⇓PL = (r, emp, ρ′), and T2 ⇓PL = (r, emp, ρ′), we know that R′1 = R′2
By similar reasoning, d′1 = update(d1, r) = update(d2, r) = d′2

Thus, from Σ1 ≈L Σ2, R′1 = R′2, and d′1 = d′2, we know that Σ′1 ≈L Σ′2

Case II: E ends in SmeI-L

From Σ1 ≈L Σ2, we know that sL2 = C and cL2 = skip

And from T1 ≈PL T2, we know T1 ⇓PL = id.ev(v) = T2 ⇓PL
By assumption, P(id.ev(v)) = L

From all this, the second trace must end in SmeI-L with α2 = id.ev(v)

From Σ1 ≈L Σ2, we know σL1 = σL2 which tells us that σL1(id.ev(v)) = cL = σL2(id.ev(v))

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 106

Thus, from Σ1 ≈L Σ2 and σL1(id.ev(v)) = cL = σL2(id.ev(v)), we know that Σ′1 ≈L Σ′2

Case III: E ends in SmeO-LL

By assumption, ¬consumer(κL1) and P(α1) = L

From Σ1 ≈L Σ2, sL1 = sL2 and α1 = α2, d1 = d2 and κL1 = κL2

From ¬consumer(κL1) and sL1 = sL2, it must also be the case that ¬consumer(κL2)

By inspecting the SME rules, one of the following must be true:

consumer(κL2) ∧ consumer(κH2); or ¬consumer(κL2) ∧ producer(κH2); or

consumer(κL2) ∧ ¬consumer(κH2)

Then, from ¬consumer(κL2), we know that producer(κH2)

And from P(α1) = L and α1 = α2, we know that P(α2) = L

From all this, we know the second trace must end in SmeO-LL.

From d1 = d2 and κL1 = κL2 and because the operational semantics are deterministic, we know

d2, κL2
α2−→ κ′L2 and κ′L2 = κ′L1

Thus, from Σ1 ≈L Σ2 and κ′L2 = κ′L1, we know Σ′1 ≈L Σ′2

Lemma 37. If T = P ` Σ0 =⇒∗ Σ1 and Σ1 ≈L Σ2, then T ≈PL (T =⇒ Σ2)

Proof (sketch): By induction over the length of T.

A.3 Robust Declassification Proofs

Theorem 12 (Robust Declassification) ∀σ1, σ2,P ,R, τi, τ∆, s.t. P = (Γ, ml) and Γ ⊆ dom(σ1), σ1 <A σ2,

∀T1 ∈ iruns(σ1,P ,R) s.t. T1 is a complete run, ∀T2 ∈ iruns(σ2,P ,R) s.t. T2 is a complete run, with τi =

in(T1), in(T2) = τi ./ τ∆, dom(τ∆) ∩ Γ = ∅ =⇒ K(T1, σ1,P ,R) ⊆� K(T2, σ2,P ,R) ∪ {τi | ∃τ′i , s.t. τ′i �

τi and (σ2,P ,R, τ′i) ⇑}.

Proof.

Want to show: ∀τ ∈ K(T1, σ1,P ,R), either

(a) ∃τ∆ s.t. τ ./ τ∆ ∈ K(T2, σ2,P ,R); or (b) ∃τ′ s.t. τ′ � τ and (σ2,P ,R, τ′) ⇑

We make the following assumptions throughout:

(A1) σ1 <A σ2; (A2) T1 ∈ iruns(σ1,P ,R); (A3) T1 is a complete run; (A4) T2 ∈ iruns(σ2,P ,R);

(A5) T2 is a complete run; (A6) in(T1) = τi; (A7) in(T2) = τi ./ τ∆; (A8) dom(τ∆) ∩ Γ = ∅

Let τ be s.t. τ ∈ K(T1, σ1,P ,R)

Then, ∃T s.t. τ = in(T) and T1 ≈PL T1

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 107

From (A1) and Lemma 53, either

∃τ2, T′2 s.t. T′2 ∈ iruns(σ2,P ,R) with in(T′2) = in(T), or

∃τ′ s.t. τ′ � τ and (σ2,P ,R, τ′) ⇑

In the second case, the second conclusion holds.

Otherwise, we assume the first is true and we know prog(T′2,P)

Then, from Lemma 39, τ ≈P ,R
L τi

From (A8) and Lemma 38, ∀α ∈ τ∆, P(α) = H∆

Then from (A7) and Lemma 50, in(T2) ≈P ,R
L τi

From τ ≈P ,R
L τi and in(T2) ≈P ,R

L τi, we know that in(T2) ≈P ,R
L in(T′2)

From Lemma 52, either

(1) T′2 is a complete run; or

(2) ∃T′′2 , T′′′2 s.t. T′2 = T′′2 =⇒ T′′′2 with T′′2 a complete run and in(T′′2) ≈
P ,R
L in(T′2); or

(3) ∃T′′′2 s.t. T′2 =⇒ T′′′2 and T′′′2 is a complete segment

Case I: (2) is true

Then from (A5) and Lemma 44, T′′2 ≈L T2

Therefore, τ ∈ K(T2, σ2,P ,R).

Case II: (1) is true

The proof proceeds the same as for Case I, except that T′′2 = T′2

Case III: (3) is true

The proof proceeds the same as for Case I, except that T′′2 = T′2 =⇒ T′′′2 .

Lemma 38 (New Object H∆ Label). If dom(τ) ∩ Γ = ∅, then ∀α ∈ τ, P(α) = H∆

Proof (sketch): Follows directly from definition of Γ and H∆

Lemma 39 (Eq Trace Eq Inputs). ∀P ,R, σ1, σ2, T1, T2, s.t. T1 ∈ iruns(σ1,P ,R), T2 ∈ iruns(σ2,P ,R), T1 ≈PL
T2, then in(T1) ≈P ,R

L in(T2).

Proof (sketch): By induction on len(T1)

Let Σ1, Σ′1, Σ2, Σ′2 be s.t. T1 = Σ1 =⇒∗ Σ′1 and T2 = Σ2 =⇒∗ Σ′2

Base Case I: len(T1) = 0

The proof for this case follows from the assumption that T1 ⇓PL = T2 ⇓PL = · and Lemma 40

Inductive Case II: len(T1) = k + 1, k ≥ 1

We let Σ′′1 , α be s.t. T1 = Σ1
α

=⇒ Σ′′1 =⇒∗ Σ′1. Then there are 2 subcases

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 108

Subcase i: Σ1 ≈L Σ′′1 . The proof follows from (Σ1 ≈L Σ′′1) ≈
P ,R
L · and the IH

Subcase ii: Σ1 6≈L Σ′′1 . The proof follows from Lemma 42, Lemma 41, and the IH

Lemma 40 (Eq Trace No Inputs). ∀P ,R, T, s.t. T ≈PL ·, then in(T) ≈P ,R
L ·.

Proof (sketch): The proof is by induction on len(T). Then we split the proof on which rule was applied

to the trace, and we only need to consider the cases where there is no observable input, which includes

SmeI-NR1, SmeI-NR2, SmeO-HL, and SmeO-HH

Lemma 41 (Eq Trace One Obs). ∀P ,R, T, Σ, Σ′ s.t. T ≈PL (Σ =⇒ Σ′) with Σ 6≈L Σ′, in(T) ≈P ,R
L in(Σ =⇒ Σ′)

Proof (sketch): The proof is by induction on len(T). For the inductive case, when the observable action is

the last step, the proof follows from T ≈PL (Σ =⇒ Σ′) and Lemma 40. When the observable action is not

the last step, the proof follows from the IH.

Lemma 42 (Eq Exec Trace Split Exists). ∀P ,R, Σ1, Σ′1, Σ′′1 , Σ2, Σ′′2 s.t. (Σ1 =⇒ Σ′1 =⇒∗ Σ′′1) ≈PL (Σ2 =⇒∗ Σ′2)

with Σ1 6≈L Σ′1, then ∃Σ′′2 s.t. (Σ2 =⇒∗ Σ′2) = (Σ2 =⇒∗ Σ′′2 =⇒∗ Σ′2) with (Σ1 =⇒ Σ′1) ≈PL (Σ2 =⇒∗ Σ′′2)

and (Σ′1 =⇒∗ Σ′′1) ≈PL (Σ′′2 =⇒∗ Σ′2)

Proof (sketch): By induction on len(Σ2 =⇒∗ Σ′2). For the inductive case, when the last step results in an

equivalent state, the proof follows from the IH. Otherwise, the last step is an observable step and we make

the split here.

Lemma 43 (Eq Exec Trace Split Exists Back). ∀P ,R, Σ1, Σ′1, Σ′′1 , Σ2, Σ′′2 s.t. (Σ1 =⇒∗ Σ′1 =⇒ Σ′′1) ≈PL
(Σ2 =⇒∗ Σ′2) with Σ′1 6≈L Σ′′1 , then ∃Σ′′2 s.t. (Σ2 =⇒∗ Σ′2) = (Σ2 =⇒∗ Σ′′2 =⇒∗ Σ′2) with (Σ1 =⇒∗ Σ′1) ≈PL
(Σ2 =⇒∗ Σ′′2) and (Σ′1 =⇒ Σ′′1) ≈PL (Σ′′2 =⇒∗ Σ′2)

Proof (sketch): The proof is similar to Lemma 42.

Lemma 44 (Eq Interleaving Eq Trace). ∀P ,R, T1, T2, Σ1, Σ′1, Σ2, Σ′2 s.t. T1 = Σ1 =⇒∗ Σ′1 is a complete run

and T2 = Σ2 =⇒∗ Σ′2 is a complete run with Σ1 ≈L Σ2 and in(T1) ≈P ,R
L in(T2), imply T1 ≈PL T2

Proof.

By induction on len(T1).

We refer to the following assumptions throughout:

(1) in(T1) ≈P ,R
L in(T2); (2) Σ1 ≈L Σ2; (3) consumer(Σ′1); (4) consumer(Σ′2)

Denote: Σ1 = R1, d1, κL1, κH1, Σ′1 = R′1, d′1, κ′L1, κ′H1 and similarly for Σ2, Σ′2

Base Case I: len(T1) = 0

By assumption, T1 = Σ1 = Σ′1, which tells us that T1 ⇓PL = · and in(T1) = ·

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 109

From (1) and in(T1) = ·, in(T2) ≈P ,R
L ·

From (2) and (3), we know that consumer(Σ1) and consumer(κL2)

Then from Lemma 45, T2 ⇓PL = ·

Therefore, from T1 ⇓PL = · and T2 ⇓PL = ·, T1 ≈PL T2

Inductive Case II: len(T1) = k + 1, k ≥ 0

Assume that the conclusion holds for len(T1) = k

Let α1, Σ′′1 be s.t. Σ1
α1=⇒ Σ′′1 =⇒∗ Σ′1

We split the proof into separate cases based on which rule the first trace begins with

Subcase i: SmeI-NR1

By assumption, consumer(Σ1) and (i.1) α1 ≈P ,R
L ·, or (i.2) ∃r, a′ s.t. R(α1) = (r, a′)

Subsubcase a: (i.1) is true

Then, from the definition of ≈PL , we know that Σ′′1 ≈L Σ1 and (2) tells us Σ′′1 ≈L Σ2

From (1) and (3), Σ′′1 =⇒∗ Σ′1 is a complete run and in(Σ′′1 =⇒∗ Σ′1) ≈
P ,R
L in(T2), meaning we can

apply the IH

From IH on Σ′′1 =⇒∗ Σ′1 and T2, we know that (Σ′′1 =⇒∗ Σ′1) ≈PL T2

From Σ′′1 ≈L Σ1, we know that (Σ1
α1=⇒ Σ′′1) ≈PL ·

Then, from the definition of ≈PL , T1 ≈PL T2

Subsubcase b: (i.2) is true

From (2), (1), (i.2), and Lemma 46,

∃ΣC, Σ′′2 , α2 s.t. T2 = Σ2 =⇒∗ ΣC
α2=⇒ Σ′′2 =⇒∗ Σ′2 with

(Σ2 =⇒∗ ΣC) ≈PL ·, α2 ≈P ,R
L α1, and in(Σ′′1 =⇒∗ Σ′1) ≈

P ,R
L in(Σ′′2 =⇒∗ Σ′2)

Then from Lemma 48 ΣC ≈L Σ2

From ΣC ≈L Σ2 and (2), we know that ΣC ≈L Σ1

From ∃r, a′ s.t. R(α1) = (r, a′), α2 ≈P ,R
L α1 and definition of ≈PL , we know that Σ1 6≈L Σ′1 and

ΣC 6≈L Σ′′2

Then, from Lemma 36, Σ′′1 ≈L Σ′′2

From (3) and (4), Σ′′1 =⇒∗ Σ′1 is a complete run and Σ′′2 =⇒ Σ′2 is a complete run, so the IH may be

applied on Σ′′2 =⇒∗ Σ′2 and Σ′′1 =⇒∗ Σ′1

From the IH, we know that (Σ′′1 =⇒∗ Σ′1) ≈PL (Σ′′2 =⇒∗ Σ′2)

And from ∃r, a′ s.t. R(α1) = (r, a′) and α2 ≈P ,R
L α1 we know that R(α2) = (r, a′)

Thus, T1 ≈PL T2

Subcase ii: SmeI-NR2, SmeI-R, or SmeI-L

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 110

The proof for SmeI-NR2 proceeds the same as the proof for subsubcase (i.a), above, and the proofs for

SmeI-R or SmeI-L are similar to subsubcase (i.b).

Subcase v: SmeO-LL

By assumption,

in(Σ′′1 =⇒∗ Σ′1) ≈
P ,R
L in(T1); and Σ1 6≈L Σ′′1 ; and α1 6∈ in(T1)

From Lemma 47 gives ∃Σ′′2 , α2 s.t. T2 = Σ2
α2=⇒ Σ′′2 =⇒∗ Σ′2 with

(Σ1
α1=⇒ Σ′′1) ≈PL (Σ2

α2=⇒ Σ′′2) and Σ′′1 ≈L Σ′′2

From (3) and (4), Σ′′1 =⇒∗ Σ′1 is a complete run and Σ′′2 =⇒∗ Σ′2 is a complete run

From (Σ1
α1=⇒ Σ′′1) ≈PL (Σ2

α2=⇒ Σ′′2), we know that in(Σ′′2 =⇒∗ Σ′2) ≈
P ,R
L in(T2)

Then from (1) and in(Σ′′1 =⇒∗ Σ′1) ≈
P ,R
L in(T1), we know that in(Σ′′1 =⇒∗ Σ′1) ≈

P ,R
L in(Σ′′2 =⇒∗ Σ′2)

From all of this, we know the IH may be applied on Σ′′1 =⇒∗ Σ′1 and Σ′′2 =⇒∗ Σ′2

By applying the IH on Σ′′1 =⇒∗ Σ′1 and Σ′′2 =⇒∗ Σ′2, we know that (Σ′′1 =⇒∗ Σ′1) ≈PL (Σ′′2 =⇒∗ Σ′2)

Lemma 49 gives T1 ≈PL T2

Subcase vi: SmeO-LH

The proof for this case proceeds the same as the proof for subcase (v), above.

Subcase vii: SmeO-HH

By assumption, Σ′′1 ≈L Σ1 and in(Σ1 =⇒ Σ′′1) ≈
P ,R
L ·

From (4), Σ′′1 =⇒∗ Σ′1 is a complete run

From (2) and Σ′′1 ≈L Σ1, we know that Σ′′1 ≈L Σ2

From in(Σ1 =⇒ Σ′′1) ≈
P ,R
L ·, we know that in(Σ′′1 =⇒∗ Σ′1) ≈

P ,R
L in(T1)

Then, from (1), in(Σ′′1 =⇒∗ Σ′1) ≈
P ,R
L in(T2)

From all of this, we know the IH may be applied on Σ′′1 =⇒∗ Σ′1 and T2

By applying the IH on Σ′′1 =⇒∗ Σ′1 and T2, we know that (Σ′′1 =⇒∗ Σ′1) ≈PL T2

Then from in(Σ1 =⇒ Σ′′1) ≈
P ,R
L ·, we know that T1 ≈PL T2

Subcase viii: SmeO-HL

The proof for this case proceeds the same as the proof for subcase (vii), above.

Lemma 45 (High Input Empty Trace). ∀P ,R, T, Σ, Σ′ s.t. Σ = R; κL; κH and T = Σ =⇒∗ Σ′ with

consumer(κL) and in(T) ≈P ,R
L ·, then T ⇓PL = ·

Proof (sketch): The proof is by induction on len(T). It uses the definition of ≈P ,R
L and ⇓PL for traces.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 111

Lemma 46 (Eq Input Split Exists). ∀P , T1, T′1, T2, Σ1, Σ2, Σ′2, α1 s.t. T1 = Σ1
α1=⇒ T′1, T2 = Σ2 =⇒∗ Σ′2,

consumer(Σ1), Σ1 ≈L Σ2, Σ1 = R, d; κL; κH1, Σ2 = R, d; κL; κH2, in(T1) ≈P ,R
L in(T2), and projR,P (α1) 6= ·,

then ∃ΣC, Σ′′2 , α2 s.t. T2 = Σ2 =⇒∗ ΣC
α2=⇒ Σ′′2 =⇒∗ Σ′2 with projR,P (α1) = projR,P (α2), (Σ2 =⇒∗ ΣC) ⇓PL =

·, and in(T′1) ≈
P ,R
L in(Σ′′2 =⇒∗ Σ′2)

Proof (sketch): The proof is by induction on len(T2). When the first step of T2 is not observable, the result

follows from the IH. When the step is observable, the result follows from the definition of projR,P and ⇓PL .

Lemma 47 (Eq State Out Split Exists). ∀P ,R, Σ1, Σ′1, Σ′′1 , Σ2, Σ′′2 , α1 s.t. Σ1
α1=⇒ Σ′1 =⇒∗ Σ′′1 is a complete

run and Σ2 =⇒∗ Σ′′2 is a complete run, with Σ1 ≈L Σ2, α1 6∈ in(Σ1 =⇒∗ Σ′′1), and Σ1 6≈L Σ′1, then ∃Σ′2, α2 s.t.

Σ2
α2=⇒ Σ′2 =⇒∗ Σ′′2 with (Σ1

α1=⇒ Σ′1) ≈PL (Σ2
α2=⇒ Σ′2) and Σ′1 ≈L Σ′2

Proof (sketch): The proof is by case analysis on the first rule applied to T1. We only need to consider cases

where the step produces an observable output, so rules SmeO-LL and SmeO-LH.

Lemma 48 (Empty Exec Eq State). ∀P , T, Σ, Σ′ s.t. T = Σ =⇒∗ Σ′ and T ⇓PL = ·, then Σ ≈L Σ′

Proof.

By induction on len(T)

Base Case I: len(T) = 0

Σ ≈L Σ′ follows from T = Σ = Σ′

Inductive Case II: len(T) = k + 1, k ≥ 0

Assume that the conclusion holds for len(T) = k

Let Σ′′ be s.t. T = Σ α
=⇒ Σ′′ =⇒∗ Σ′

From (1) and definition of ⇓PL (Σ =⇒ Σ′′) ⇓PL = · and (Σ′′ =⇒∗ Σ′) ⇓PL = ·

Then, we only need to consider cases which don’t produce observations, which includes rules

SmeI-NR1, SmeI-NR2, SmeO-HH, and SmeO-HL

Subcase i: SmeI-NR1

From definition of projR,P (), D(ρ, α) = (ρ, none, •) and from this, we know that R′ = R and d′ = d

Thus, Σ′′ ≈L Σ and Σ ≈L Σ′ follows from the IH

Subcase ii: SmeI-NR2, SmeO-HH, or SmeO-HL

By assumption, Σ′ ≈L Σ′′, thus, Σ ≈L Σ′ follows from the IH

Lemma 49 (Eq Exec Concatenation). ∀P , T1, T′1, T′′1 , T2, T′2, T′′2 , s.t. T1 = T′1 =⇒ T′′1 and T2 = T′2 =⇒ T′′2 with

T′1 ≈PL T′2 and T′′1 ≈PL T′′2 , then T1 ≈PL T2

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 112

Proof (sketch): The proof is by induction on len(T′′1) and uses Lemma 43.

Lemma 50 (Eq High Traces, Eq Traces). ∀P ,R, τ1, τ2, τ, τ∆ s.t. τ1 = τ ./ τ∆ with ∀α ∈ τ∆, P(α) = H or

P(α) = H∆, and τ ≈P ,R
L τ2, imply τ1 ≈P ,R

L τ2

Proof.

By induction on len(τ1)

We make the following assumptions throughout:

(1) τ1 = τ ./ τ∆; (2) ∀α ∈ τ∆,P(α) = H or P(α) = H∆; and (3) τ ≈P ,R
L τ2

Base Case I: len(τ1) = 0

By assumption, τ1 = ·, and from (1) we know that τ = · and τ∆ = ·

Then, from (3) τ2 ≈P ,R
L ·, and thus τ1 ≈P ,R

L τ2

Inductive Case II: len(τ1) = k + 1, k ≥ 0

Let τ′1, α be s.t. τ1 = τ′1 :: α, then, from the definition ./, either

(II.1) ∃τ′ s.t. τ = τ′ :: α or

(II.2) ∃τ′∆ s.t. τ∆ = τ∆ :: α

Subcase i: (II.1) is true

From (II.1) and definition of ./, τ′1 = τ′ ./ τ∆

Subsubcase a: α ≈P ,R
L ·

By assumption and from (3), τ′ ≈P ,R
L τ2

Then from (2) and τ′1 = τ′ ./ τ∆, we know that the IH may be applied on τ′1, τ′, and τ2

From applying the IH on τ′1, τ′, and τ2 we know that τ′1 ≈
P ,R
L τ2

Thus, from the definition of ≈P ,R
L we know that τ1 ≈P ,R

L τ2

Subsubcase b: α 6≈P ,R
L ·

From Lemma 51, ∃τ′2, τ′′2 s.t.

τ2 = τ′2 :: τ′′2 , τ′2 ≈
P ,R
L τ′, and τ′′2 ≈

P ,R
L α

From (2), τ′1 = τ′ ./ τ∆, and τ′2 ≈
P ,R
L τ′, we know that the IH may be applied on τ′1, τ′, and τ′2

By applying the IH on τ′1, τ′, and τ′2, we know that τ′1 ≈
P ,R
L τ′2

Thus, from the definition of ≈P ,R
L τ1 ≈P ,R

L τ2

Subcase ii: (II.2) is true

From (II.2) and definition of ./, τ′1 = τ ./ τ′∆

By assumption and from (2) and definition of ≈P ,R
L , we know that α ≈P ,R

L ·

From (2), (3), and τ′1 = τ ./ τ′∆, we know that the IH may be applied on τ′1, τ, and τ2

By applying the IH on τ′1, τ, and τ2, we know that τ′1 ≈
P ,R
L τ2

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 113

Then, from the definition of ≈P ,R
L , we know that τ′1 ≈

P ,R
L τ1

Thus, τ1 ≈P ,R
L τ2

Lemma 51 (Eq Trace Split Exists). ∀P ,R, τ1, τ′1, τ2, α s.t. τ1 = τ′1 :: α with τ1 ≈P ,R
L τ2, then ∃τ′2, τ′′2 s.t.

τ2 = τ′2 :: τ′′2 with τ′2 ≈
P ,R
L τ′1 and τ′′2 ≈

P ,R
L α

Proof (sketch): The proof is by induction on len(τ2)

Lemma 52 (Trace Truncation, Extension). ∀T s.t. prog(T,P), either

1. T is a complete run,

2. ∃T′, T′′ s.t. T = T′ =⇒ T′′ with in(T) ≈P ,R
L in(T′), or

3. ∃T′ s.t. T =⇒ T′ and T′ is a complete segment

Proof (sketch): The proof is by induction on the length of T

Lemma 53 (Active simulate passive multi-step). If Σ1 <A Σ2, and P ` Σ1

τ1
=⇒∗ Σ′1, then either (1) exists τ2,

Σ′2, and P ` Σ2

τ2
=⇒∗ Σ′2, in(τ1) = in(τ2), and Σ′1 <A Σ′2 or (2) exists τ, s.t. τ ≺ in(τ1) and P ` Σ2(τ) ⇑.

Proof.

By induction over the length of τ1.

Case I: |τ1| = 0

Conclusion (1) follows from Σ′1 = Σ1 and Σ′2 = Σ2

Case II: |τ1| = k + 1, where k ≥ 0

By assumption, Σ1

τ′1
=⇒∗ Σ′′1

α1=⇒ Σ′1 and τ1 = τ′1 :: α1

By I.H. on τ′1, there are two subcases

Subcase i

By assumption, ∃τ′2, Σ′′2 with P ` Σ2

τ′2
=⇒∗ Σ′′2 , in(τ′1) = in(τ′2), and Σ′′1 <A Σ′′2 .

Then by Lemma 54, there are two subsubcases

Subsubcase a

By assumption, ∃τ′′2 , Σ′2 with P ` Σ′′2
τ′′2

=⇒∗ Σ′2, in(α1) = in(τ′′2), and Σ′1 <A Σ′2.

Then, P ` Σ2

τ′2
=⇒∗ Σ′′2

τ′′2
=⇒∗ Σ′2 and in(τ′1 α1) = in(τ′2 τ′′2)

Thus, conclusion (1) holds

Subsubcase b

By assumption, ∃τ, s.t. τ ≺ in(α1) and P ` Σ′′2 (τ) ⇑.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 114

Then, P ` Σ2(in(τ′2) τ) ⇑. and in(τ′2) τ ≺ in(τ′1 α1)

Thus, conclusion (2) holds

Subcase ii

By assumption ∃τ, s.t. τ ≺ in(τ′1) and P ` Σ2(τ) ⇑ and from (1) τ ≺ in(τ′1 α1)

Thus, conclusion (2) holds

Lemma 54 (Active simulate passive single step). If Σ1 <A Σ2, wf(Σ1), wf(Σ2) and P ` Σ1
α

=⇒ Σ′1, then

either (1) exists τ, P ` Σ2
τ

=⇒∗ Σ′2, in(α) = in(τ), and Σ′1 <A Σ′2 (2) exists τ, s.t. τ ≺ in(α) and P ` Σ2(τ) ⇑.

Proof. We examine each case of E :: P ` Σ1
α

=⇒ Σ′1

Case I: E ends in SmeI-NR1

By assumption,

Σ1 = (ρ,D), d; σL, skip, C, ·; σH , skip, C, ·; α = id.Ev(v);

Σ′1 = (ρ′,D), d′; σL, skip, C, ·; σH , cH , P, ·; P(id.Ev(v)) = H;

D(ρ, id.Ev(v)) = (r, •, ρ′); d′ = update(d, r); σH(id.Ev(v)) = cH

From Σ1 <A Σ2, we know that Σ2 = (ρ,D), d; σL2, cL2, C, EL; σH2, cH2, C, EH

and σL <A σL2 and σH <A σH2

And from wf(Σ2), we know that Σ2 = (ρ,D), d; σL2, skip, C, ·; σH2, skip, C, ·

Then, applying SmeI-NR1 on Σ2 gives Σ′2 = (ρ′,D), d′; σL2, skip, C, ·; σH2, c′H2, P, ·, where

c′H2 = σH2(id.Ev(v))

From Lemma 55, σH(id.Ev(v)) <A σH2(id.Ev(v))

Thus, Σ′1 <A Σ′2

Case II: E ends in SmeI-NR2, SmeI-R, or SmeI-L

The proofs for these cases are similar to Case I Case III: E ends in SmeO-LL

By assumption,

Σ1 = R, d; κL; κH where κL = σL, cL, sL, EL

Σ′1 = R, d; κ′L; κH where κ′L = σ′L, c′L, s′L, E′L and P(α) = L, sL = P/LC, κH is in producer state and

d, σL, cL, sL, EL
α−→ σ′L, c′L, s′L, E′L

From Σ1 <A Σ2, we know that Σ2 = R, d; κL2; κH2 where κL2 = σL2, cL2, sL, (EL, E′L2)

σL <A σL2, cL <A cL2, κL <A κL2, κH <A κH2

From κH in producer state and κH <A κH2, we also know that κH2 is in producer state

From Lemma 56, we have 2 cases

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 115

Subcase i:

By assumption, ∃τ, κ′L2.d; κL2
τ
−→∗ κ′L2, in(α) = in(τ) = · and κ′L <A κ′L2

From Lemma 59 ∃τ′, Σ′2 s.t.

P ` Σ2
τ′

=⇒∗ Σ′2; Σ′2 = d,R; κ′L2; κH2; producer(κH2); and in(τ′) = ·

Thus, Σ′1 <A Σ′2

Subcase ii:

By assumption, ∃τ.τ ≺ in(α) and κL2(τ) ⇑

So there exists τ′ s.t. τ′ ≺ in(α) and

P ` Σ2(τ
′) ⇑, where τ′ = τ ↓Pl .

Case IV: E ends in SmeO-LH, SmeO-HH, or SmeO-HL

The proof for these cases is similar to the one for Case III

Lemma 55. σ1 <A σ2 implies σ1(id.Ev(v)) <A σ2(id.Ev(v)).

Proof (sketch): Follows directly from the definition of σ1 <A σ2

Lemma 56 (Active simulate passive single execution). If κ1 <A κ2, and d; κ1
α−→ κ′1, then either (1) exists τ,

κ′2, d; κ2
τ
−→∗ κ′2, in(α) = in(τ) = ·, and κ′1 <A κ′2 or (2) exists τ, τ ≺ in(α), κ2(τ) ⇑.

Proof (sketch): We examine each case of E :: d; κ1
α−→ κ′1. The proof for rule P uses Lemma 57. The case for

rule LCtoP uses Lemma 55, and the case for rules PtoLC and PtoC uses Lemma 58.

Lemma 57. If σ1 <A σ2, c1 <A c2, d, σ1, c1
α−→ σ′1, c′1, E1 then exists σ′2, c′2, E2 s.t. d, σ2, c2

α−→ σ′2, c′2, E2 and

σ′1 <A σ′2, c′1 <A c′2 and E2 = E1, E′2.

Lemma 58 (State increases). If d, σ1, c1
α−→ σ2, c2, E and noUpd(c1) then σ1 <A σ2.

Lemma 59 (Single execution to multi-execution).

1. If d, κ1
τ
−→∗ κ2, κL = (σ, skip, C, ·) and Σ1 = d,R; κL; κ1 then exists τ′, Σ2, P ` Σ1

τ′

=⇒∗ Σ2, Σ2 =

d,R; κL; κ2 and in(τ′) = ·.

2. If d, κ1
τ
−→∗ κ2, κH = (_, _, P, _) and Σ1 = d,R; κ1; κH then exists τ′, Σ2, P ` Σ1

τ′

=⇒∗ Σ2, Σ2 =

d,R; κ2; κH and in(τ′) = ·.

Proof (sketch): By induction over the length of d, κ1
τ
−→∗ κ2 (for the first case) and induction over the length

of d, κ1
τ
−→∗ κ2 (for the second case).

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 116

A.4 Precision Proofs

Lemma 60 (Precision H). P ` T = Σ1 =⇒∗ Σ2, T is a complete run, P ` t = d1,R1; κ1 −→∗ d2,R2; κ2 is a

complete run, Σ1 ∼C
H d1,R1; κ1, and in(T) = in(t), implies out(T)|PH = out(t)|PH .

Proof. By induction over the number of complete segments in T

Base case: T contains 0 complete segments

By assumption, Σ1 ∼C
H d1,R1; κ1, in(T) = in(t), and |T| = 0

From in(T) = in(t) and the semantics, we know that |t| = 0

Then, from |T| = 0 and |t| = 0, we know that out(T)|PH = out(t)|PH = ·.

Inductive case: T = T′ =⇒ T′′ where T′ is a complete segment

Let T′ = Σ1 =⇒∗ Σ′1. Then, by assumption, Σ1 ∼C
H d1,R1; κ1, in(T) = in(t), and in(T) = in(T′) :: in(T′′)

Then, t = t −→ t′′ where t is a complete segment,

Let t′ = d1,R1; κ1 −→∗ d′1,R′1; κ′1, then we have in(t) = in(t′) :: in(t′′) and in(T′) = in(t′)

From Lemma 61, out(T′)|PH = out(t′)|PH and Σ′1 ∼C
H d′1,R′1; κ′1

Applying the IH on Σ′1 =⇒ T′′ and d′1,R′1; κ′1 −→ t′′ gives us out(Σ′1 =⇒ T′′)|PH = out(d′1,R′1; κ′1 −→ t′′)|PH
Thus, out(T)|PH = out(t)|PH = ·.

Lemma 61 (Precision H one segment). P ` T = Σ1 =⇒∗ Σ2, T is a complete segment, P ` t = d1,R1; κ1 −→∗

d2,R2; κ2 is a complete segment, Σ1 ∼C
H d1,R1; κ1, and in(T) = in(t) implies out(T)|PH = out(t)|PH and Σ2 ∼C

H

d2,R2; κ2.

Proof. By examining the first step of T. When |T| = 0, the conclusion trivially holds. We only consider

cases where T = Σ1
α

=⇒ Σ′1 =⇒∗ Σ2.

Case I: T begins with SmeI-NR1 or SmeI-NR2

By assumption, Σ1 ∼C
H d1,R1; κ1

Then, we know that t = d1,R1; κ1
α−→ d′1,R′1; κ′1 −→∗ d2,R2; κ2 via In-H rule and Σ′1 ∼P

H d′1,R′1; κ′1

Then, from Lemma 62, we know that P ` T ∼T
H t

Then from Lemma 63, we have out(T)|PH = out(t)|PH Case II: T begins with SmeI-R or SmeI-L

By assumption, Σ1 ∼C
H d1,R1; κ1

Then, we know that t = d1,R1; κ1
α−→ d′1,R′1; κ′1 −→∗ d2,R2; κ2 via In-H rule and

∃κL s.t., Σ′1 = d′1,R′1; κL; κ′1 and κ′1 is not in consumer state

Let T′ = Σ′1 =⇒∗ Σ2 and t′ = d′1,R′1; κ′1 −→∗ d2,R2; κ2

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 117

Then, from Lemma 65, T′ = T1
•

=⇒ T2, and fst(T2) = d′′,R′′; κ′′L ; κ′′H , κ′′H = (σ′′H , c′′, P, ·), and

consumer(κ′′L), and P ` T1 ∼TP
H d′′,R′′; κ′′H .

And from Lemma 64, out(T1)|PH = · and d′′ = d′1, R′′ = R′1, and κ′′H = κ′1 and ¬consumer(Lexe(last(T1)))

Then, we know that fst(T2)
P
Hd′1,R′1; κ′1

From Lemma 63 on T2 and t′, we have out(T2)|PH = out(t′)|PH
Thus, out(T)|PH = out(t)|PH

Lemma 62. P ` T = Σ1 =⇒∗ Σ2, T is a complete segment, and P ` t = d,R; κ1 −→∗ κ2, t is a complete run,

and Σ1 ∼P
H d,R; κ1, implies P ` T ∼T

H t.

Proof (sketch): By induction over the length of T.

Lemma 63. E :: P ` T ∼T
H t implies out(T)|PH = out(t)|PH .

Proof (sketch): By induction over the structure of E .

Lemma 64. E :: P ` T ∼TP
H d,R; κH implies out(T)|PH = · and last(T) ∼PP

H d,R; κH

Proof (sketch): By induction over the structure of E .

Lemma 65. P ` T = Σ1 =⇒∗ Σ2, T is a complete segment, and the high execution of Σ1 is not in consumer state

implies T = T1
α

=⇒ T2, fst(T2) = d,R; κL; κH , κH = (σH , c, P, ·), consumer(κL), P ` T1 ∼TP
H d,R; κH .

Proof (sketch): By induction over the length of T.

Lemma 66 (Precision L). Σ1 = d0,R; (σ, skip, C, ·); (σ, skip, C, ·) P ` T = Σ1 =⇒∗ Σ2, tr = (σ, skip, C, ·) −→∗

κ, and T and tr are complete run starting from consumer configurations, and σ does not leak beyond declassification,

and in(T) = in(tr), then out(T)|PL = out(tr)|PL .

Proof.

Let P ` t1 = d0,R; (σ, skip, C, ·) −→∗ κ1 and (τ′,R′) = PR(P ,R, in(T)).

By Lemma 71 and Lemma 67,

∃t′ s.t. P ` t′ = d0,R′; (σ, skip, C, ·) −→∗ κ′ and in(t′) = τ′ and out(T)|PL = out(t′)|PL
Because we assume there are no leaks outside declassification, we know that out(t′)|PL = out(t1)|PL .

Because we assume the state is compatible with the declassification policy, out(t1)|PL = out(tr)|PL
Thus, out(T)|PL = out(tr)|PL

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 118

Lemma 67 (L eq multi-step). P ` Σ1 ∼C
L d,R′; κ1@(τi, τ′i), |τ′i | = |R′∗P (τ′i)|, P ` T = Σ1 =⇒∗ Σ2, T is

a complete run starting from a consumer configuration, in(T) = τi, implies exists t, P ` t = d,R′; κ1 −→∗

d2,R2, κ2, and in(t) = τ′i , and out(T)|PL = out(t)|PL .

Proof. By induction over the length of τi.

Base case: |τi| = 0

By assumption, P ` Σ1 ∼C
L d,R′; κ1@(τi, τ′i)

Then, we know that τ′i = ·

Let t = d,R′; κL and the conclusion holds

Inductive case: |τi| = k + 1

Let τi = α :: τi1, T = T′ =⇒ T′′ where T′ is a complete segment, and T′ = Σ1 =⇒∗ Σ′1

By assumption, P ` Σ1 ∼C
L d,R′; κ1@(τi, τ′i)

Then, we know that R∗P (τi) = R′∗P (τ′i)

We split the proof and consider each case of RP (α)

Subcase i: RP (α) = NR

By assumption and R∗P (τi) = R′∗P (τ′i), we know that R∗P (τi1) = R′∗P (τ′)

Then, from Lemma 69, out(T′)|PL = · and P ` Σ2 ∼C
L d,R′; κL@(τi1, τ′i)

By applying the IH on Σ2 =⇒ T′′, we know that

∃P ` t = d,R′; κ1 −→∗ d2,R2, κ2, with

in(t) = τ′i , and out(Σ2 =⇒ T′′)|PL = out(t)|PL
Then, from out(T′)|PL = ·, we know that out(T)|PL = out(t)|PL
Subcase ii: RP (α) 6= NR

By assumption and R∗P (τi) = R′∗P (τ′i), we know that τ′i = α′ :: τ′i1 and R∗P (τi1) = R′∗P (τ′i1)

Then, from Lemma 68,

t, P ` t1 = d,R′; κ1 −→∗ d2,R2, κ2, and in(t1) = α′, and out(T′)|PL = out(t1)|PL , and

P ` Σ2 ∼C
L d2,R2; κ2@(τi1, τ′i1)

Applying the IH on Σ2 =⇒ T′′, we know that

∃P ` t2 = d2,R2; κ2 −→∗ d′2,R′2, κ′2, and in(t2) = τ′i1, and out(Σ2 =⇒ T′′)|PL = out(t2)|PL
Let t = t1 :: t2, then we know that out(T)|PL = out(t)|PL

If the current input is released to low execution, apply Lemma 68. If the current input is not released to

low execution, apply Lemma 69.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 119

Lemma 68 (L eq single-step R). If P ` Σ1 ∼C
L d,R′; κ1@(α τi, α′ τ′i), RP (α) 6= NR, |α′ τ′i | = |R′∗P (α′ τ′i)|,

P ` T = Σ1 =⇒∗ Σ2, T is a complete segment in(T) = α, then exists t, P ` t = d,R′; κ1 −→∗ d2,R2, κ2, and

in(t) = α′, and out(T)|PL = out(t)|PL , and P ` Σ2 ∼C
L d2,R2; κ2@(τi, τ′i)

Proof.

By assumption,

consumer(Σ1) and consumer(Σ2), in(T) = α, P ` Σ1 ∼C
L d,R′; κL@(α τi, α′ τ′i), and RP (α) 6= NR,

From P ` Σ1 ∼C
L d,R′; κL@(α τi, α′ τ′i), we know that

RP (α) = R′P (α′) = αi and R1∗P (τi) = R1′∗P (τ
′
i)

where R1 = (ρ1,D), (ρ1, r, αi) = D(ρ, α) and R1′ = (ρ′1,D′) is similarly defined

By the semantic rules, SmeI-NR1 or SmeI-R or SmeI-L could apply

Case I: SmeI-NR1 applies

By assumption,

T = Σ1 =⇒ Σ′1 =⇒∗ Σ2 and P ` Σ′1 ∼PP
L d1,R1; κL where d1 = update(d, r)

From Lemma 70, Σ′1 =⇒∗ Σ2 = T′ =⇒ Σ2 and P ` T′ ∼TP
L d1,R1; κL and P ` Σ2 ∼C

L d1,R1; κL

By semantic rules, d,R′; κL can step using In-H rule

Let κL = σ, skip, C, · and t = d,R′; κL
emp−→ d1,R1′; σ, skip, P, · •−→ d1,R1′; κL

From Lemma 72, out(T)|PL = out(t)|PL = ·

Thus, P ` Σ2 ∼C
L d1,R1′; κL@(τi, τ′i)

Case II: SmeI-R or SmeI-L applies.

We only show the case for SmeI-R and the proof for the other case is similar

By assumption,

T = Σ1 =⇒ Σ′1 =⇒∗ Σ′2 =⇒∗ Σ2 where Σ′2 = d′2,R′′2 ; κ′L2; κ′H2 and consumer(κ′L1) and

¬consumer(κ′H1) and all low executions between Σ′1 and Σ′2 are not in consumer state

Let T1 = Σ′1 =⇒∗ Σ′2 and T2 = Σ′2 =⇒∗ Σ2

By semantic rules, d,R′; κ1 can step using In-H rule: d,R′; κ1
d−→1,R1′; κ′1, and we also know that

P ` Σ′1 ∼P
L d1, κ′1

From Lemma 74, ∃t, P ` t = d1,R1′; κ′1 −→∗ d1,R1′, κ2, and P ` T ∼T
L t

From, Lemma 73, out(T1)|PL = out(t)|PL , and P ` Σ′2 ∼C
L d2, κ2

Let Σ′2 = d1,R1; κ2; κH

From Lemma 70, P ` Σ′2 =⇒∗ Σ2 ∼TP
L d2,R1; κ2 and P ` Σ2 ∼C

L d1,R; κ2

From Lemma 72, out(Σ′2 =⇒∗ Σ2)|PL = ·

Then, out(T)|PL = out(t)|PL ,

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 120

Thus, P ` Σ2 ∼C
L d1,R1′; κ2@(τi, τ′i)

Lemma 69 (L eq single-step NR). If P ` Σ1 ∼C
L d,R′; κL@(α τi, τ′i), RP (α) = NR, P ` T = Σ1 =⇒∗ Σ2, T

is a complete segment, in(T) = α, then out(T)|PL = · and P ` Σ2 ∼C
L d,R′; κL@(τi, τ′i)

Proof.

Assume T = Σ1 =⇒ Σ2.

By assumption,

consumer(Σ1) and consumer(Σ2); in(T) = α; P ` Σ1 ∼C
L d,R′; κL@(α τi, τ′i); and RP (α) = NR,

Then, we also know that R∗P (ατi) = R′∗P (τ′i) and R∗P (τi) = R′∗P (τ′i)

By the semantic rules, only SmeI-NR1 or SmeI-NR2 could apply

T = Σ1 =⇒ Σ′1 =⇒∗ Σ2 and P ` Σ′1 ∼PP
L d,R; κL

From Lemma 70, Σ′1 =⇒∗ Σ2 = T′ =⇒ Σ2 and P ` T′ ∼TP
L d,R; κL and P ` Σ2 ∼C

L d,R; κL

From Lemma 72 out(T)|PL = ·

Thus, P ` Σ2 ∼C
L d,R′; κL@(τi, τ′i)

Lemma 70 (L eq single-step NR producer). If P ` Σ1 ∼PP
L d,R; κL, P ` T = Σ1 =⇒∗ Σ2, T is a complete

segment, then T = T′ =⇒ Σ2 and P ` T′ ∼TP
L d,R; κL and P ` Σ2 ∼C

L d,R; κL

Proof. By induction over the length of T.

Base case: |T| = 1

Assume T = Σ1 =⇒ Σ2.

By assumption, consumer(Σ2) P ` Σ1 ∼PP
L d,R; κL,

Then, ¬consumer(Hexe(Σ1))

By the semantic rules, only SmeO-HL rule could apply

Thus, let T1 = Σ1, T2 = Σ2 and the conclusion holds

Inductive case: |T| = k + 1

Assume T = Σ1 =⇒ T1, let T1 = Σ′1 =⇒∗ Σ2

By. I.H on T1 T1 = T′1 =⇒ Σ2, and P ` T′1 ∼TP
L d,R; κL and P ` Σ2 ∼C

L d,R; κL

Let T′ = Σ1 =⇒ T′1, thus, P ` T′ ∼TP
L d,R; κL

Lemma 71 (Projected release eq). PR(P ,R, τ) = (τ′,R′) implies R∗P (τ) = R′∗P (τ′) = τ′.

APPENDIX A. SUPPORTING MATERIALS FOR CHAPTER 3 121

Proof (sketch): By induction over the length of τ.

Lemma 72. If E :: P ` Σ α
=⇒ T ∼TP

L d,R; κL then out(T)|PL = ·.

Proof (sketch): By induction on the derivation E .

Lemma 73. If E :: P ` T ∼T
L t then out(T)|PL = out(t)|PL , and P ` last(T) ∼C

L last(t).

Proof (sketch): By induction on the derivation E .

Lemma 74. If P ` Σ1 ∼P
L d, κL, P ` T = Σ1 =⇒∗ Σ2 and for all the configurations in T, only the low-

execution configuration in Σ2 is in consumer state, then for all R′, exists t, P ` t = d,R′; κ1 −→∗ d,R′, κ2, and

P ` T ∼T
L t.

Proof. By induction over the length of T.

Base case: |T| = 1

Assume T = Σ1 =⇒ Σ2, Σ1 = d;R; κL; κH , and Σ2 = d′;R′; κ′L; κ′H ,

By assumption, consumer(Σ2) and ¬consumer(κL) and ¬consumer(κH)

By the semantic rules, only SmeO-LL or SmeO-LH rule could apply so d = d′, R = release′, κH = κ′H

By semantic rules, we can apply Out rule, giving t = d;R′; κL −→ κ′L

By applying ∼T
L rules, P ` T ∼T

L t.

Inductive case: |T| = k + 1, we can directly apply I.H.

Appendix B

Supporting Materials for Chapter 4

B.1 Additional Definitions

B.1.1 Operations on labels

pc ↓p

(lc, li) ↓c= lc (lc, li) ↓i= li

B.1.2 SME Configuration Equivalence

Two SME configurations are equivalent if they have the same release and endorsement modules and equiv-

alent SME states and configuration stacks. We define a single equivalence definition for both observational

(p = c) and behavioral equivalence (p = i).

Definition 75 (Configuration equivalence). Given two SME configurations K1 and K2 where K1 = R1,S1, Σ1, ks1

and K2 = R2,S2, Σ2, ks2, K1 ≈
p
l K2 iff R1 = R2, S1 = S2, Σ1 ≈

p
l Σ2, and ks1 ≈

p
l ks2

SME state equivalence Two SME states are observationally equivalent at l if their l-observations are the

same. Similarly, they are behaviorally equivalent at l if their l-behaviors are the same.

Definition 76 (SME state equivalence). Given two SME states Σ1, Σ2, Σ1 ≈
p
l Σ2 iff Σ1 ↓

p
l = Σ2 ↓

p
l

For the copies of the store at pc s.t. pc ↓pv l, the observation (or behavior) is the store. Otherwise,

the observation (or behavior) is the l-projection of the store which includes page elements with label l′ s.t.

l′ v l and the l-projection of the event handlers. We show the rules for computing the l-projection of an

SME store, single store, and event handler map in Figure B.1.

122

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 123

Σ ↓p
l = Σ′

Σ = pc 7→ σG
pc, Σ′ pc ↓pv l

Σ ↓p
l = pc 7→ σG

pc, Σ′ ↓p
l

Σ = pc 7→ (_, σEH) pc ↓p 6v l

Σ ↓p
l = pc 7→ (·, σEH ↓p

l), Σ′ ↓p
l · ↓p

l = ·

σEH ↓p
l = σEH′

pc ↓pv l

(id 7→ (v, M, pc), σEH) ↓p
l = (id 7→ (dv, M ↓p

l , pc)), σEH ↓p
l

pc ↓p 6v l

(id 7→ (v, M, pc), σEH) ↓p
l = σEH ↓p

l

· ↓p
l = ·

M ↓p
l = M′

(Ev 7→ EH, M) ↓p
l = (Ev 7→ EH ↓p

l), M ↓p
l · ↓p

l = ·

EH ↓p
l = EH′

pc ↓pv l

({(eh, pc)} ∪ EH) ↓p
l = {(eh, pc)} ∪ EH ↓p

l

pc ↓p 6v l

({(eh, pc)} ∪ EH) ↓p
l = EH ↓p

l · ↓p
l = ·

Figure B.1: Rules for the observation of an SME store, single store, and event handler map at l (when
p = c) and behavior of an SME store at l (when p = i).

ks ↓p
l = ks′

ks = (κ, pcsrc, pc) :: ks′ pc ↓pv l

ks ↓p
l = (κ, pcsrc, pc) :: ks′ ↓p

l

ks = (κ, pcsrc, pc) :: ks′ pc ↓p 6v l

ks ↓p
l = ks′ ↓p

l · ↓p
l = ·

Figure B.2: Rules for the observation (when p = c) or behavior (when p = i) of a configuration stack at l

Configuration stack equivalence Two SME states are observationally equivalent at l if their l-observations

are the same. Similarly, they are behaviorally equivalent at l if their l-behaviors are the same. We show

the rules for computing the l-projection of a configuration stack in Figure B.2.

Definition 77 (Configuration stack equivalence). Given two SME states Σ1, Σ2, Σ1 ≈
p
l Σ2 iff Σ1 ↓

p
l = Σ2 ↓

p
l

B.1.3 Additional syntax/terminology

τ is a sequence of actions visible at some security level. This includes standard actions α, declassifica-

tions and endorsements, and the creation of a new element/event handler which is capable of robust

declassification or transparent endorsement.

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 124

Sequence of actions: τ ::= · | τ :: α | τin | τdown | τnm

Input actions: τin ::= · | (id.Ev(v), pc)

Release actions: τrls ::= τin | rls(id.Ev(v), ρ, v, E, pc)

Sanitize actions: τsntz ::= τin | sntz(id.Ev(v), ρ, v, E, pc)

Downgraded actions: τdown ::= down(id.Ev(v), τrls, τsntz, E, pc)

Nonmalleable actions: τnm ::= r(id, pc) | t(id, pc) | | r(id, eh, pc) | t(id, eh, pc)

We have two versions of downgrade actions. One includes an updated state and downgraded value

(ρ, v, respectively), the other does not. We need both because we prove security against attackers at any

place in the security lattice. The first case is when the original event is visible to the attacker. In this case,

they would also see the updated state and downgraded value. In the second case, the attacker does not

see the event being downgraded, only the events which are downgraded to their visibility.

B.1.4 Execution trace equivalence

Two execution traces are observationally equivalent if their l-observations are the same. Similarly, two

execution traces are behaviorally equivalent if their l-behaviors are the same.

Definition 78 (Execution trace equivalence). Given two execution traces, T, T′, T ≈p
l T′ iff T ↓p

l = T′ ↓p
l

The trace projection rules for non-input actions are shown in Figure B.3 and rules for inputs are shown

in Figure B.4. Trace projection rules for inputs use the helper functions in Figures B.5 and B.6. The

helper functions rely on robust and transparent so that declassifications/endorsements only appear in the

projected trace if they are robust/transparent. Note that to prove robust declassification, we want to treat

all declassifications as trusted so we have separate rules for p = c (rls(_) event only if declassification

happens in a visible execution pc′ ↓cv l) and p = i (rls(_) for any declassification). We do something

similar to prove transparent endorsement.

For inputs, we use helper functions to decide if the declassifications are observable (and likewise

for endorsements). This depends on whether the decision to declassify was robust, and whether the

declassification policy actually declassified anything. We show the rules for declassification, but the ones

for endorsement are similar.

B.1.5 Knowledge definitions

Knowledge

Definition 13 (Attacker Knowledge at l). Formally, K(T, Σ0,R,S ,P , l) is defined as {τ | ∃T′ ∈ runs(Σ0,R,

S ,P), T ≈c
l T′, τ = in(T′)}

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 125

T ↓p
l = τ

P ` K ↓p
l = ·

TP-Base

pc ↓pv l α 6∈ {id.Ev(v), ch(v)}

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓p

l = α :: T′ ↓p
l

TP-Out1

pc ↓pv l ∨ P(ch) ↓pv l

(P ,D, E ` K
(ch(v),pc)
=⇒ T′) ↓p

l = ch(v) :: T′ ↓p
l

TP-Out2

pc ↓p 6v l ↓p P(ch) ↓p 6v l

(P ,D, E ` K
(ch(v),pc)
=⇒ T′) ↓p

l = T′ ↓p
l

TP-Out-Silent

α 6∈ {id.Ev(v), ch(v), new(_)} pc ↓p 6v l

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓p

l = T′ ↓p
l

TP-Out-Silent2

α ∈ {new(id, pcsrc), newEH(id, eh, pcid, pcsrc)} pc ↓c 6v l
τ = t(id, pc) if α = new(...) ∧ pcsrc ↓

cv pc ↓c

τ = t(id, eh, pc) if α = newEH(...) ∧ pcsrc ↓
cv pc ↓c ∧pcid ↓

cv pc ↓c τ = · otherwise

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓c

l= τ :: T′ ↓c
l

TP-NewC

α ∈ {new(id, pcsrc), newEH(id, eh, pcid, pcsrc)} pc ↓i 6v l
τ = r(id, pc) if α = new(...) ∧ pcsrc ↓

iv pc ↓i

τ = r(id, eh, pc) if α = newEH(...) ∧ pcsrc ↓
iv pc ↓i ∧pcid ↓

iv pc ↓i τ = · otherwise

(P ,D, E ` K
(α,pc)
=⇒ T′) ↓i

l= τ :: T′ ↓i
l

TP-NewI

Figure B.3: Trace projection for output and dynamic behaviors

in(T) is the sequence of input events provided to the system resulting in trace T, which includes both

user interactions with the system (id.Ev(v)) and dynamically-generated page elements (new(id, pcsrc)). We

consider dynamically-generated page inputs to model an active attacker, who may control some of the

code running on the webpage.

Progress-Insensitive (PI) Knowledge At attacker at l ∈ Lc should not be able to refine their knowledge

of the secret inputs, besides what is leaked by observing that the system makes progress.

Definition 79 (Progress Knowledge at l). Formally,Kp(T, Σ0,R,S ,P , l) is defined as {τi | ∃T′ ∈ runs(Σ0,R,S ,P),

T ≈c
l T′, τi = in(T′), prog(T′)}

prog(T) holds if the trace T eventually returns to the consumer state to process another user event.

prog(T) iff T = P ,D, E ` K0 =⇒∗ K ∧ ∃KC s.t.

P ,D, E ` K
τ

=⇒∗ KC ∧ consumer(KC) ∧ ∀αl ∈ τ, output(αl)

consumer(K) holds if there are no pending event handlers in the event handler queue (i.e., K = R,S ; Σ; ·)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 126

T ↓p
l = τ

P(id.Ev(v)) = pc′ K = _, _; Σ; _ Σ(pc) = (_, σEH)

σEH(id) ↓i 6v pc ↓i σEH(id) ↓c 6v pc ↓c

τ = trInput(pc′, pc, id.Ev(v), l, p)

(P ,D, E ` K
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In

P(id.Ev(v)) = pc′ K = _, _; Σ; _ Σ(pc) = (_, σEH)

σEH(id) ↓iv pc ↓i σEH(id) ↓c 6v pc ↓c

τ = trRobust((P ,D, E ` K
(id.Ev(v),pc)

=⇒ T′), l, p)

(P ,D, E ` K
(id.Ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In-R

P(id.Ev(v)) = pc′ K = _, _; Σ; _ Σ(pc) = (_, σEH)

σEH(id) ↓iv pc ↓i σEH(id) ↓cv pc ↓c

τ = trRobustTransparent((P ,D, E ` K
(id.Ev(v),pc)

=⇒ T′), l, p)

(P ,D, E ` K
(id.ev(v),pc)

=⇒ T′) ↓p
l = τ :: T′ ↓p

l

TP-In-RT

Figure B.4: Trace projection for inputs

PI Release Knowledge

Definition 80 (Release Knowledge at l). Formally,Krp(T, Σ0,R,S ,P , αl , l) is defined as {τi | ∃T′ ∈ runs(Σ0,R,

S ,P), T ≈c
l T′, τi = in(T′), prog(T′), τr = (P ,D, E ` last(T) αl=⇒ K)) ↓c

l , releaseT(T′, τr, l))}

Where release(T, τ, l) holds if the trace T will eventually produce the same release event(s), τ, at level

l. Note: we use τ here because a downgraded event may appear different to different security levels, so a

downgraded event may result in multiple events.

releaseT(P ,D, E ` K0 =⇒∗ K, τ, l) iff ∃T, KC, K′ s.t., consumer(KC)∧

T = P ,D, E ` K =⇒∗ KC =⇒ K′ with (P ,D, E ` K =⇒∗ KC) ↓c
l= · and...

T ↓c
l=


τ when τ = rls(_)

down(id.Ev(v), τrls, _, E, pc) when τ = down(id.Ev(v), τrls, τsntz, E, pc)

PI Transparent Knowledge Secure downgrading involves both confidentiality and integrity. To securely

endorse an event, the source should have enough privilege to see the event. When we define equivalent

traces, we need to also consider the confidentiality level of the source of events (even those in executions

that the attacker does not have enough privilege to see). We define transparent knowledge to measure the

amount of information leaked to an attacker when a transparent endorsement originates in an execution

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 127

E ↓p
l = E′

pc ↓pv l

((id.Ev(v), pc) :: E′) ↓p
l = (id.Ev(v), pc) :: E′ ↓p

l

pc ↓p 6v l

((id.Ev(v), pc) :: E′) ↓p
l = E′ ↓p

l

trInput(pc, pc′, id.Ev(v), l, p) = τ

pcsrc ↓
p tpcP ↓

pv l
trInput(pcP , pcsrc, id.Ev(v), l, p) = (id.Ev(v), pcsrc)

input

pcsrc ↓
p tpcP ↓

p 6v l
trInput(pc′, pc, id.Ev(v), l, p) = ·

noInput

trRobust(K
(id.Ev(v),pc)

=⇒ T, l, p) = τ

P(id.Ev(v)) = pc′

R = (ρ, d) E = ((id.ev(v), (lc, li)) | pc′ ↓cv lc @ pc ↓c ∧li = pc ↓i tpc′ ↓i)
D((id.ev(v), pc), pc′, ρ) = (ρ′, v, Ed) E′ = robust(Σ, E :: Ed, pc)

pc, r ` Σ, E′ ks τ′ = rls(id.Ev(v), ρ′, v, E′ ↓c
l , pc) if ρ 6= ρ′ ∨ v 6= none∨ ks ↓c

l 6= ·
τ′ = trInput(pc′, pc, id.Ev(v), l, c) otherwise

trRobust((P ,D, E ` R, _; Σ; _
(id.Ev(v),pc)

=⇒ T′), l, c) = τ′
robust-C

P(id.Ev(v)) = pc′

R = (ρ, d) E = ((id.ev(v), (lc, li)) | pc′ ↓cv lc @ pc ↓c ∧li = pc ↓i tpc′ ↓i)
D((id.ev(v), pc), pc′, ρ) = (ρ′, v, Ed) E′ = robust(Σ, E :: Ed, pc)

pc, r ` Σ, E′ ks τ′ = rls(id.Ev(v), ρ′, v, E′, pc) if pc ↓iv l and ρ 6= ρ′ ∨ v 6= none∨ ks 6= ·
τ′ = trInput(pc′, pc, id.Ev(v), l, i) otherwise

trRobust((P ,D, E ` R, _; Σ; _
(id.Ev(v),pc)

=⇒ T′), l, i) = τ′
robust-I

Figure B.5: Helper functions for trace projection for input rules

trDowngrade(K
(id.Ev(v),pc)

=⇒ T, l, p) = τ

K = R,S ; Σ; _ αl = (id.Ev(v), pc) P(id.Ev(v)) = pc′

τin = trInput(pc′, pc, id.Ev(v), l, p)
τd = trRobust((P ,D, E ` K

αl=⇒ T′), l, p) τe = trTransparent((P ,D, E ` K
αl=⇒ T′), l, p)

Ed,e = downgradeD,E (R,S , Σ, αl , pc′) pc, rt ` Σ, Ed,e ks ks ↓p
l = ·

τ = τin if τd 6= rls(_) ∧ τe 6= sntz(_)
τ = τd if τd = rls(_) ∧ τe 6= sntz(_) τ = τe if τe = sntz(_) ∧ τd 6= rls(_)

trDowngrade((P ,D, E ` K
αl=⇒ T′), l, p) = τ

rls-or-sntz

K = R,S ; Σ; _ αl = (id.Ev(v), pc) P(id.Ev(v)) = pc′

τd = trRobust((P ,D, E ` K
αl=⇒ T′), l, p)

τe = trTransparent((P ,D, E ` K
αl=⇒ T′), l, p) Ed,e = downgradeD,E (R,S , Σ, αl , pc′)

pc, rt ` Σ, Ed,e ks ks ↓p
l 6= · or τd = rls(_) ∧ τe = sntz(_)

τ = down(id.Ev(v), τd, τe, Ed,e, pc)

trDowngrade((P ,D, E ` K
αl=⇒ T′), l, p) = τ

down

Figure B.6: Helper functions for trace projection for input rules

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 128

they do not have privilege to see (i.e., they learn that there is an element on that copy of the page which

the principal generating the event has enough privilege to see).

Definition 81 (Transparent Knowledge at l). Formally, Ktp(T, Σ0,R,S ,P , αl , l) is defined as {τi | ∃T′ ∈

runs(Σ0,R,S ,P), T ≈c
l T′, τi = in(T′), prog(T′), τ = (P ,D, E ` last(T) αl=⇒ K)) ↓c

l , transparentT(T′, τ, l))}

Where transparentT(T, τ, l) holds if the trace T will eventually produce the same elements capable

of transparent endorsement, given by τ. We also need to consider the case where T does not produce

any elements capable of transparent endorsement. In this case, T has reached a new input event and an

equivalent trace should be able to get to a consumer state without producing any visible events (like t(_)).

This is why input events are also considered transparent actions, in addition to t(_). For a similar reason,

we need to consider outputs made in executions that are visible to the attacker. A single event may trigger

event handlers in several executions, not all of which are visible to the attacker. If an event handler is

running in an execution that is visible to the attacker (i.e., the trace is producing ch(_) or • events), then

we know an equivalent trace running an event handler in an execution that is not visible to the attacker

should not produce any visible events (like t(_)).

transparentT(P ,D, E ` K0 =⇒∗ K, τ, l) iff ∃T, K′, τ s.t. T = P ,D, E ` K
τ

=⇒∗ K′ and...

T ↓c
l= τ when τ = t(_)

consumer(K′) ∧ T ↓c
l= · when τ ∈ {(id.Ev(v), _), sntz(_)}

lowEH(K′) ∧ ∀(α, pc) ∈ τ′, α ∈ {ch(_), •} ∧ pc ↓c 6v l when τ ∈ {ch(_), •}

where lowEH(K) holds if the current event handler running in K is running with pc ↓cv l

Confidentiality Security (with Declassification)

Definition 18 (Knowledge-based PINI w/ Declassification, Transparency). A system is progress-insensitive

secure against l-observers for l ∈ Lc iff given any initial global store Σ0 and downgrade policy R,S ,P , it is the

case that for all traces T, actions αl , and configurations K s.t. (P ,D, E ` T
αl=⇒ K) ∈ runs(Σ0,R,S ,P), then, the

following holds

• If rlsA(P ,D, E ` last(T) αl=⇒ K, l): K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Krp(T, Σ0,R,S ,P , αl , l)

• If trnsprntA(P ,D, E ` last(T) αl=⇒ K, l):

K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Ktp(T, Σ0,R,S ,P , αl , l)

• Otherwise: K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Kp(T, Σ0,R,S ,P , l)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 129

where rlsA(P ,D, E ` T
αl=⇒ K, l) iff T ↓c

l∈ {rls(_), down(_)} and trnsprntA(P ,D, E ` T =⇒ K, l) iff T ↓c
l∈

{t(_), (id.Ev(v), _), sntz(_), ch(_), •}

B.1.6 Influence definitions

Influence

Definition 15 (Attacker Influence over l). Formally, I(T, Σ0,R,S ,P , l) is defined as {τ | ∃T′ ∈ runs(Σ0,R,S ,P),

T ≈i
l T′, τ = in(T′)} in(T) is the sequence of input events provided to the system resulting in trace T,

which includes both user interactions with the system (id.Ev(v)) and dynamically-generated page ele-

ments (new(id, pcsrc)).

Integrity Security The possible inputs (including new page elements) supplied by an untrusted attacker

should not be refined as more l-trusted actions are taken by the system; if they are, it means the attacker

must have influence something trusted.

I(T, Σ0,R,S ,P , l) ⊆� I(P ,D, E ` T =⇒ K, Σ0,R,S ,P , l)

Progress-Insensitive (PI) Influence If a loop condition depends on an untrusted value, untrusted parties

would be in control of whether any trusted operations following the loop occur. We permit this influence,

so we only consider the traces which return to consumer states (i.e., the ones which make progress).

The possible inputs supplied by an attacker at should not be refined as more l-trusted actions are taken

by the system, outside of what influence they have over whether the system makes progress.

Definition 82 (Progress Influence over l). Formally, Ip(T, Σ0,R,S ,P , l) is defined as {τi | ∃T′ ∈ runs(Σ0,R,S ,P),

T ≈i
l T′, τi = in(T′), prog(T′)}

PI Sanitization Influence

Definition 83 (Sanitization Influence). Formally, Iep(T, Σ0,R,S ,P , αl , l) is defined as {τi | ∃T′ ∈ runs(Σ0,R,S ,P),

T ≈i
l T′, τi = in(T′), prog(T′), τs = (P ,D, E ` last(T) αl=⇒ K)) ↓i

l , sanitizeT(T′, τs, l))}

Where sanitize(T, τ, l) holds if trace T will eventually produce the same endorsement(s), τ, at level l.

sanitizeT(P ,D, E ` K0 =⇒∗ K, τ, l) iff ∃T, KC, K′ s.t., consumer(KC)∧

T = P ,D, E ` K =⇒∗ KC =⇒ K′ with (P ,D, E ` K =⇒∗ KC) ↓i
l= · and...

T ↓i
l=


τ when τ = sntz(_)

down(id.Ev(v), _, τsntz, E, pc) when τ = down(id.Ev(v), τrls, τsntz, E, pc)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 130

PI Robust Influence Secure downgrading involves both confidentiality and integrity. To securely de-

classify an event, the principal triggering the event should trust the source of the event handler. When we

define equivalent traces, we need to also consider the integrity level of the source of events (even those in

executions that the attacker has direct influence over). We define robust influence to measure the amount

of influence the attacker has over robust page elements (i.e., we allow their influence to be refined by the

existence of robust page elements that they must not have had influence over).

Definition 84 (Robust Influence over l). Formally, Irp(T, Σ0,R,S ,P , αl , l) is defined as {τi | ∃T′ ∈ runs(Σ0,R,

S ,P), T ≈c
l T′, τi = in(T′), prog(T′), τ = (P ,D, E ` last(T) αl=⇒ K)) ↓c

l , robustT(T′, τ, l))}

Where robustT(T, τ, l) holds if the trace T will eventually produce the same elements capable of robust

declassification, given by τ. We also need to consider the case where T does not produce any elements

capable of robust declassification. In this case, T has reached a new input event and an equivalent trace

should be able to get to a consumer state without producing any visible events (like r(_)). This is why

input events are also considered robust actions, in addition to r(_). For a similar reason, we need to

consider outputs made in executions that are not under the influence of the attacker. A single event may

trigger event handlers in several executions, not all of which are under the attacker’s influence. If an event

handler is running in an execution that is not under the attacker’s influence (i.e., the trace is producing

ch(_) or • events), then we know an equivalent trace running an event handler in an execution that is

under the attacker’s influence should not produce any visible events (like r(_)).

robustT(P ,D, E ` K0 =⇒∗ K, τ, l) iff ∃T, K′, τ s.t. T = P ,D, E ` K
τ

=⇒∗ K′ and...

T ↓i
l= τ when τ = r(_)

consumer(K′) ∧ T ↓i
l= · when τ ∈ {(id.Ev(v), _), rls(_)}

lowEH(K′) ∧ ∀(α, pc) ∈ τ, α ∈ {ch(_), •} ∧ pc ↓i 6v l when τ ∈ {ch(_), •}

where lowEH(K) holds if the current event handler running in K is running with pc ↓iv l

Integrity Security (with Endorsement)

Definition 17 (Influence-based PINI w/ Endorsement, Robustness). The l-trusted components of a system

are progress-insensitive secure against untrusted influence iff given any initial global store Σ0 and downgrade

policy R,S ,P , it is the case that for all traces T, actions αl , and configurations K s.t. (P ,D, E ` T
αl=⇒ K) ∈

runs(Σ0,R,S ,P), then, the following holds

• If sntzA(P ,D, E ` last(T) αl=⇒ K, l): I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Iep(T, Σ0,R,S ,P , αl , l)

• If rbstA(P ,D, E ` last(T) αl=⇒ K, l): I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Irp(T, Σ0,R,S ,P , αl , l)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 131

• Otherwise: I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Ip(T, Σ0,R,S ,P , l)

where sntzA(P ,D, E ` T
αl=⇒ K, l) iff T ↓i

l∈ {sntz(_), down(_)} rbstA(P ,D, E ` T =⇒ K, l) iff

T ↓i
l∈ {r(_), (id.Ev(v), _), rls(_), ch(_), •}

B.2 Proofs

B.2.1 Top-level theorems

Theorem 19(a) (Soundness-Confidentiality). For any downgrade policy R,S ,P , SME state Σ0, and for traces,

states, and actions T, K, αl s.t. P ,D, E ` T
αl=⇒ K ∈ runs(Σ0,R,S ,P), then an attacker’s knowledge of events

secret to l is not refined:

• If rlsA(P ,D, E ` last(T) αl=⇒ K, l): K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Krp(T, Σ0,R,S ,P , αl , l)

• If trnsprntA(P ,D, E ` last(T) αl=⇒ K, l):

K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Ktp(T, Σ0,R,S ,P , αl , l)

• Otherwise: K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Kp(T, Σ0,R,S ,P , l)

Proof.

The proof is split between three cases depending on the action, shown below. In each case, we want to

show that ∃τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) s.t. τ � τ′ for τ defined below

Case I: rlsA(P ,D, E ` last(T) αl=⇒ K, l)

Let τ ∈ Krp(T, Σ0,R,S ,P , αl , l) and τr = (P ,D, E ` last(T) αl=⇒ K) ↓c
l

Then from the definition of Krp(), there is a trace for which τ is the input T1 = P ,D, E ` K0 =⇒∗ K1

and τ = in(T1) and all of the following:

T1 ≈c
l T, prog(T1), and releaseT(T1, τr, l)

We also know from Krp() that there is a trace T = P ,D, E ` K0 =⇒∗ K2 and P ,D, E ` K2
αl=⇒ K

Subcase i: τr = rls(_)

By assumption and from releaseT(T1, τr, l), ∃K′1 s.t. P ,D, E ` T1 =⇒∗ K′1 with

(P ,D, E ` K1 =⇒∗ K′1) ↓c
l= τr

From T1 ≈c
l T, we know that (P ,D, E ` T

αl=⇒ K) ≈c
l (P ,D, E ` T1 =⇒∗ K′1)

From this and the definition of K(),

in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l)

Let τ′ = in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) then

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 132

τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) and τ � τ′

Subcase ii: τr = down(τrls, _)

From T1 ≈c
l T and Lemma 85, K1 ≈c

l K2

By assumption and from K1 ≈c
l K2, T1 ≈c

l T prog(T1), releaseT(T1, τr, l), and Lemma 106,

∃K′1 s.t. P ,D, E ` K1 =⇒∗ K′1 with (P ,D, E ` K2 =⇒ K) ≈c
l (P ,D, E ` K1 =⇒∗ K′1)

From this and the definition of K(),

in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l)

Let τ′ = in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) then

τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) and τ � τ′

Case II: trnsprntA(P ,D, E ` last(T) αl=⇒ K, l)

Let τ ∈ Ktp(T, Σ0,R,S ,P , αl , l) and τt = (P ,D, E ` last(T) αl=⇒ K) ↓c
l

Then from the definition of Ktp(), there is a trace for which τ is the input T1 = P ,D, E ` K0 =⇒∗ K1

and τ = in(T1) and all of the following:

T1 ≈c
l T, prog(T1), and transparentT(T1, τt, l)

We also know from Ktp() that there is a trace T = P ,D, E ` K0 =⇒∗ K2 with P ,D, E ` K2
αl=⇒ K

Subcase i: τt = t(_)

By assumption and from transparentT(T1, τt, l), ∃K′1 s.t. P ,D, E ` T1 =⇒∗ K′1 with

(P ,D, E ` K1 =⇒∗ K′1) ↓c
l= τt

From T1 ≈c
l T, we know that (P ,D, E ` T

αl=⇒ K) ≈c
l (P ,D, E ` T1 =⇒∗ K′1)

From this and the definition of K(),

in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l)

Let τ′ = in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) then

τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) and τ � τ′

Subcase ii: τt = {(id.Ev(v), _), sntz(_), ch(_), •}

From T1 ≈c
l T and Lemma 85, K1 ≈c

l K2

By assumption and from K1 ≈c
l K2, T1 ≈c

l T, prog(T1), transparentT(T1, τt, l), and Lemma 98,

∃K′1 s.t. P ,D, E ` K1 =⇒∗ K′1 with (P ,D, E ` K2 =⇒ K) ≈c
l (P ,D, E ` K1 =⇒∗ K′1)

Then from T1 ≈c
l T, (P ,D, E ` T1 =⇒∗ K′1) ≈c

l (P ,D, E ` T =⇒ K)

From this and the definition of K(),

in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l)

Let τ′ = in(T1) :: in(P ,D, E ` K1 =⇒∗ K′1) then

τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) and τ � τ′

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 133

Case III: ¬rlsA(P ,D, E ` last(T) αl=⇒ K, l)

and ¬trnsprntA(P ,D, E ` last(T) αl=⇒ K, l)

Let τ ∈ Kp(T, Σ0,R,S ,P , αl , l)

Then from the definition of Kp(), there is a trace for which τ is the input T1 = P ,D, E ` K0 =⇒∗ K1

and τ = in(T1) and both of the following:

T1 ≈c
l T and prog(T1)

We also know from Kp() that there is a trace T = P ,D, E ` K0 =⇒∗ K2 and P ,D, E ` K2
αl=⇒ K

By assumption and from the definition of rlsA and trnsprntA,

(P ,D, E ` last(T) =⇒ K) ↓c
l 6∈ {rls(_), down(_), sntz(_), t(_), (id.Ev(v), _), ch(_), •}

From this and the definition of ↓c
l for T, (P ,D, E ` last(T) αl=⇒ K) ↓c

l= ·

Then, T ≈c
l (P ,D, E ` T

αl=⇒ K)

Then from T1 ≈c
l T, we know that T1 ≈c

l (P ,D, E ` T
αl=⇒ K)

Let τ′ = in(T1)

Then from T1 ≈c
l (P ,D, E ` T

αl=⇒ K), τ′ ∈ K(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) and τ � τ′

Theorem 19(b) (Soundness-Integrity). For any downgrade policy R,S ,P , SME state Σ0, and for traces, states,

and actions T, K, αl s.t. P ,D, E ` T
αl=⇒ K ∈ runs(Σ0,R,S ,P), then an attacker does not have influence over

trusted behaviors at l:

• If sntzA(P ,D, E ` last(T) αl=⇒ K, l): I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Iep(T, Σ0,R,S ,P , αl , l)

• If rbstA(P ,D, E ` last(T) αl=⇒ K, l): I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Irp(T, Σ0,R,S ,P , αl , l)

• Otherwise: I(P ,D, E ` T
αl=⇒ K, Σ0,R,S ,P , l) ⊇� Ip(T, Σ0,R,S ,P , l)

Proof (sketch): The proof is similar to the one for Theorem 19(a). Instead of p = c for ↓p
l and ≈p

l , we use

p = i. The action considered in each case is different (but dual to the ones from the previous proof) and

the same Lemmas are used in the proof.

B.2.2 Supporting lemmas

Lemma 85 (Equivalent Trace, Equivalent State). If T1 = P ,D, E ` K1 =⇒∗ K′1 and T2 = P ,D, E ` K2 =⇒∗

K′2 with K1 ≈
p
l K2 and T1 ≈

p
l T2, then K′1 ≈

p
l K′2

Proof (sketch):

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 134

By induction on len(T1) and len(T2)

Base Case I: len(T1) = 0 and len(T2) = n

The conclusion follows from T1 ≈
p
l T2 and Lemma 86

Base Case II: len(T1) = n and len(T2) = 0

The proof is similar to Base Case I

Inductive Case III: len(T1) = n + 1 and len(T2) = m + 1

Subcase i: (P ,D, E ` K′′1 =⇒ K′1) ↓
p
l = ·

The conclusion follows from the IH and Lemma 86

Subcase ii: (P ,D, E ` K′′2 =⇒ K′2) ↓
p
l = ·

The proof is similar to Subcase i

Subcase iii: (P ,D, E ` K′′1 =⇒ K′1) ↓
p
l 6= · and (P ,D, E ` K′′2 =⇒ K′2) ↓

p
l 6= ·

The conclusion follows from IH and Lemma 91

Lemma 86 (Empty Traces, Equivalent States). If T = P ,D, E ` K =⇒∗ K′ and T ↓p
l = ·, then K ≈p

l K′

Proof.

By induction on the length of T. We highlight some interesting cases.

Base Case I: len(T) = 0

By assumption, T = K and K′ = K

Therefore, K ≈p
l K′

Inductive Case II: len(T) = n + 1

By assumption, T = P ,D, E ` K =⇒∗ K1 =⇒ K2

Want to show K ≈p
l K2

Then from T ↓p
l = ·, we know that (P ,D, E ` K =⇒∗ K1) ↓

p
l = ·

The IH may be applied on (P ,D, E ` K =⇒∗ K1)

IH on (P ,D, E ` K =⇒∗ K1) gives K ≈p
l K1

Let T′ = P ,D, E ` K1
αl=⇒ K2 with T′ ↓p

l = ·

Therefore, from K ≈p
l K1, want to show K1 ≈

p
l K2

From T′ ↓p
l = · and the definition of T ↓p

l , we know that pc ↓p 6v l

From T′ ↓p
l = ·,

When αl = new(id, pcsrc), pc), then pc ↓p 6v l with pcsrc 6v pc;

When αl = newEH(id, eh, pcid, pcsrc), then pc ↓p 6v l with pcsrc 6v pc or pcid 6v pc

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 135

From this, pc ↓p 6v l and αl ∈ {(new(id, pcsrc), pc), newEH(id, eh, pcid, pceh)} implies pcsrc ↓p 6v l and/or

pcid ↓p 6v l

Subcase i: T′ ends in In-D

By assumption, all of the following:

Σ1 = Σ2 = (_, σEH); S1 = S2, ks1 = ·; P(id.Ev(v)) = pc′; E = ((id.Ev(v), pc′′) | pct pc′ v pc′′);

downgradeD(R1, Σ1, (id.Ev(v), pc), pc′) = (R2, E′); Σ, E ks; pc, r ` Σ, E′ ks′; ks2 = ks :: ks′;

σEH(id) ↓iv pc ↓i; and σEH(id) ↓c 6v pc ↓c

From downgradeD(R1, Σ1, (id.Ev(v), pc), pc′) = (R2, E′) and the definition of downgradeD , all of the

following:

Ed = ((id.Ev(v), (lc, li)) | pc′ ↓cv lc @ pc ↓c ∧li = pc ↓i tpc′ ↓i); R1 = (ρ1, d1);

D((id.Ev(v), pc), pc′, ρ1) = (ρ2, vd, E′d); d2 = update(d1, vd); R2 = (ρ2, d2); and

E′ = robust(Σ1, Ed :: E′d, pc)

From σEH(id) ↓iv pc ↓i and σEH(id) ↓c 6v pc ↓c, we know that T′ ↓p
l = trRobust(...)

From T′ ↓p
l = trRobust(...), T′ ↓p

l = ·, and the definition of trInput, pc ↓p tpc′ ↓p 6v l

Then from E = ((id.Ev(v), pc′′) | pct pc′ v pc′′), we know that E ↓p
l = ·

Then from Lemma 89, ks ≈p
l ·

From the definition of trRobust, D((id.Ev(v), pc), pc′, ρ1) = (ρ1, none, E′d) and ks′ ↓p
l = ·

Then from ks1 = · and ks2 = ks :: ks′, we know that ks1 ≈
p
l ks2

From D((id.Ev(v), pc), pc′, ρ1) = (ρ2, vd, E′d) = (ρ1, none, E′d) and d2 = update(d1, vd), we know that

d2 = d1

From D((id.Ev(v), pc), pc′, ρ1) = (ρ2, vd, E′d) = (ρ1, none, E′d) and d2 = d1, we know that R1 = R2

Therefore, from R1 = R2, S1 = S2, Σ1 = Σ2, and ks1 ≈
p
l ks2, we know that K1 ≈

p
l K2

Subcase ii: T′ ends in Out

By assumption, all of the following:

R1 = R2; S1 = S2; ks1 = (κ, pcsrc, pc) :: ks; F :: pcsrc, dd, de ` Σ1, κ −→pc Σ2, ks′; ks2 = ks′ :: ks; and

α = ch(v)

By assumption and from T′ ↓p
l = ·, α = ch(v), and the definition of T ↓p

l , it must be the case that

pc ↓p 6v l

Then from Lemma 87, Σ1 ≈
p
l Σ2 and (κ, pcsrc, pc) ≈p

l ks′

From this and pc ↓p 6v l, we know that ks′ ↓p
l = · and (κ, pcsrc, pc) ↓p

l = ·

Then from ks1 = (κ, pcsrc, pc) :: ks, ks2 = ks′ :: ks, and (κ, pcsrc, pc) ≈p
l ks′ ks1 ≈

p
l ks2

Therefore, from R1 = R2, S1 = S2, Σ1 ≈
p
l Σ2, and ks1 ≈

p
l ks2, we know that K1 ≈

p
l K2

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 136

Subcase iii: T′ ends in Out-Next

The proof for this case follows from the definition of T ↓p
l

Lemma 87. If pcsrc, dd, de ` Σ1, κ
α−→pc Σ2, ks with pc ↓p 6v l and α ∈ {new(id, pcsrc), newEH(id, eh, pcsrc)}

implies pcsrc ↓p 6v l and/or pcid ↓p 6v l, then Σ1 ≈
p
l Σ2 and (κ, pcsrc, pc) ≈p

l ks

Proof (sketch):

We examine each case of F :: pcsrc, dd, de ` Σ1, κ −→pc Σ2, ks. The proof uses Lemmas 89 and 88.

Lemma 88. If pcsrc, dd, de ` Σ1, σ1, c1
α−→pc Σ2, σ2, c2, E with pc ↓p 6v l and α ∈ {new(id, pcsrc), newEH(id, eh,

pcsrc)} implies pcsrc ↓p 6v l and/or pcid ↓p 6v l, then Σ1 ≈
p
l Σ2

Proof (sketch): By induction on the structure of F :: pcsrc, dd, de ` Σ1, σ1, c1 −→pc Σ2, σ2, c2, E

Lemma 89 (Secret EH Lookups are Not Observable). If Σ, E ks with E ↓p
l = · then ks ≈p

l ·

Proof.

By induction on the structure of F :: Σ, E ks.

Case I: F ends in lookup

By assumption, all of the following:

E = (id.Ev(v), pc) :: E′; Σ(pc) = (_, σEH) and σEH(id) = (_, M, pcid); ∃G :: pc, pcid, v ` M(Ev) ks1;

∃G ′ :: Σ, E′ ks2; and ks = ks1 :: ks2

From E ↓p= · and E = (id.Ev(v), pc) :: E′, we know that pc ↓p 6v l and E′ ↓p
l = ·

From Lemma 90, ks1 ≈
p
l ·

Applying the IH on G, gives ks2 ≈
p
l ·

Therefore, from ks = ks1 :: ks2, ks1 ≈
p
l ·, and ks2 ≈

p
l ·, we have ks ≈p

l ·

Case II: F ends in lookup-missing

The proof for this case follows from the IH

Case III: F ends in lookup-empty

By assumption, ks = ·

Lemma 90. If pc, pcid, v ` EH ks with pc ↓p 6v l, then ks ≈p
l ·

Proof (sketch): By induction on the structure of F :: pc, pcid, v ` EH ks

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 137

Lemma 91 (Weak One-Step). If T1 = P ,D, E ` K1
αl,1
=⇒ K′1 and T2 = P ,D, E ` K2

αl,2
=⇒ K′2, with T1 ≈

p
l T2,

K1 ≈
p
l K2, T1 ↓

p
l 6= ·, and T2 ↓

p
l 6= ·, then K′1 ≈

p
l K′2

Proof.

We examine each case of F :: P ,D, E ` K1
αl,1
=⇒ K′1

Denote G :: P ,D, E ` K2
αl,2
=⇒ K′2

We refer to the following assumptions throughout:

(1) K1 ≈
p
l K2; (2) T1 ≈

p
l T2; (3) T1 ↓

p
l 6= ·; and (4) T2 ↓

p
l 6= ·

Case I: F ends in In

By assumption and from Σ1(pc1) = (_, σEH
1), all of the following:

R1 = R′1; S1 = S ′1; Σ1 = Σ′1; αl,1 = (id.Ev(v), pc1); P(id.Ev(v)) = pc′1;

E1 = ((id.Ev(v), pc′′1) | pc1 t pc′1 v pc′′1); σEH
1 (id) ↓i 6v pc1 ↓i; σEH

1 (id) ↓c 6v pc1 ↓c; and Σ1, E1 ks′1

From (3), αl,1 = (id.Ev(v), pc1), P(id.Ev(v)) = pc′1, σEH
1 (id) ↓i 6v pc1 ↓i, σEH

1 (id) ↓c 6v pc1 ↓c, and the

definition of T ↓p
l , we know that T1 ↓

p
l = (id.Ev(v), pc1)

Then from (3), pc1 ↓p tpc′1 ↓pv l

From T1 ↓
p
l = (id.Ev(v), pc1) and (2), T2 ↓

p
l = (id.Ev(v), pc1)

Then from (4), αl,2 = (id.Ev(v), pc2) and P(id.Ev(v)) = pc′2

From P(id.Ev(v)) = pc′1 and P(id.Ev(v)) = pc′2, we know that pc′1 = pc′2

And from T2 ↓
p
l = (id.Ev(v), pc1) and αl,2 = (id.Ev(v), pc2), we know that pc1 = pc2

Subcase i: G ends in In

By assumption, all of the following:

R2 = R′2; S2 = S ′2; Σ2 = Σ′2; E2 = ((id.Ev(v), pc′′2) | pc2 t pc′2 v pc′′2); and Σ2, E2 ks′2

From pc′1 = pc′2, pc1 = pc2, E1 = (...), and E2 = (...), we know that E1 ≈
p
l E2

The from Lemma 95,

ks1 ≈
p
l ks2

From (1), R1 = R′1, and R2 = R′2, we know that R′1 = R′2
And from (1) S1 = S ′1, and S2 = S ′2, we know that S ′1 = S ′2
And from (1), Σ1 = Σ′1, and Σ2 = Σ′2, we know that Σ′1 ↓p= Σ′2 ↓p

From R′1 = R′2, S ′1 = S ′2, Σ′1 ↓p= Σ′2 ↓p, and ks1 ≈
p
l ks2, we know that K′1 ≈

p
l K′2

Subcase ii: G ends in In-D, In-E or In-DE

These cases hold vacuously based on (1) and pc1 = pc2

Case II: F ends in In-D, In-E, or In-DE

The proof is similar to Case I. We split the proof into two cases: one where the step produces a

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 138

declassification, and one where it doesn’t. It also uses Lemma 96.

Case III: F ends in Out

By assumption, all of the following:

αl,1 = (ch(v), pc1); ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 ; P(ch) = pc1; ∃F ′ :: pcsrc,1, dd,1, de,1 ` Σ1, κ1
ch(v)−→ Σ′1, κ′′′1 ;

ks′1 = ks′′′1 :: ks′′1 ; R′1 = R1; and S ′1 = S1

From (3), αl,1 = (ch(v), pc1), and P(ch) = pc1, T1 ↓
p
l = ch(v) with pc1 ↓pv l ∨ P(ch) ↓pv l

Then, from P(ch) = pc1, pc1 ↓pv l

From (2) and T1 ↓
p
l = ch(v), we know that T2 ↓

p
l = ch(v)

Then, from the definition of T ↓p
l , αl,2 = (ch(v), pc2) with pc2 ↓pv l ∨ P(ch) ↓pv l

Then, from our output rules, G must end with Out with all of the following:

P(ch) = pc2; ks2 = (κ2, pcsrc,2, pc2) :: ks′′2 ; ∃G ′ :: pcsrc,2, dd,2, de,2,` Σ2, κ2,
ch(v)−→ Σ′2, κ′′′2 ; ks′2 = ks′′′2 :: ks′′2 ;

R′2 = R2; and S ′2 = S2

From P(ch) = pc1 and P(ch) = pc2, we know that pc1 = pc2

From (1), pc1 ↓pv l, pc1 = pc2, ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 , and ks′2 = ks′′′2 :: ks′′2 , we know that

(κ1, pcsrc,1, pc1) = (κ2, pcsrc,2, pc2) with ks′′1 ≈
p
l ks′′2

Then from Lemma 92, Σ′1 ≈
p
l Σ′2 and ks′′′1 ≈

p
l ks′′′2

From ks′1 = ks′′′1 :: ks′′1 , ks′2 = ks′′′2 :: ks′′2 , ks′′1 ≈
p
l ks′′2 , and ks′′′1 ≈

p
l ks′′′2 , we know that ks′1 ≈

p
l ks′2

From (1), R′1 = R1, and R′2 = R2, we know that R′1 = R′2
Similarly, from (1), S ′1 = S1, and S ′2 = S2, we know that S ′1 = S ′2
Thus, from R′1 = R′2, S ′1 = S ′2, Σ′1 ≈

p
l Σ′2, and ks′1 ≈

p
l ks′2, we know that K′1 ≈

p
l K′2

Case IV: F ends in Out-Skip or Out-Silent

The proof for this case is similar to Case III

Case V: F ends in Out-Silent and T1 ↓
p
l =∈ {t(_), r(_)}

Without loss of generality, assume T1 ↓
p
l = r(id, pc1). The proof for the other cases are similar. The most

important difference is that when T1 ↓
p
l = r(id, eh, pc1), then we also have pcid,1 ↓iv pc1 ↓i and

pcid,2 ↓iv pc1 ↓i

In general:

pcsrc,1 ↓pv pc1 ↓p

pcsrc,2 ↓pv pc2 ↓p and

pcid,1 ↓pv pc1 ↓p

pcid,2 ↓pv pc2 ↓p

(which is the premise for Lemma 94)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 139

By assumption, all of the following:

αl,1 = (new(id, pcsrc,1), pc1); ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 ; producer(κ1);

∃F ′ :: pcsrc,1, dd,1, de,1 ` Σ1, κ1
new(id,pcsrc,1)−→ Σ′1, κ′′′1 ; ks′1 = ks′′′1 :: ks′′1 ; R′1 = R1; and S ′1 = S1

By assumption and from (3) and αl,1 = (new(id, pcsrc,1), pc1), we know that pc1 ↓c 6v l and pcsrc,1 ↓iv pc1 ↓i

By assumption and from (2), we know that T2 ↓c= r(id, pc2) and pc1 = pc2

Then, we know that αl,2 = (new(id, pcsrc,2), pc2) with pc2 ↓c 6v l and pcsrc,2 ↓iv pc2 ↓i

Since new is the only rule to produce α = new(_), we know κ1 = (_, new(id, e1), _, _) and

ks2 = (κ2, pcsrc,2, pc2) :: ks′′2 with κ2 = (_, new(id, e2), _, _) and ks′′1 ≈
p
l ks′′2

From κ2 = (_, new(id, e2), _, _), we know that producer(κ2)

Therefore, G must end in Out-Silent, with all of the following:

∃G ′ :: pcsrc,2, dd,2, de,2,` Σ2, κ2,
new(id,pcsrc,2)−→ Σ′2, κ′′′2 ; ks′2 = ks′′′2 :: ks′′2 ; R′2 = R2; and S ′2 = S2

From Lemma 94, Σ′1 ≈
p
l Σ′2 and ks′′′1 ≈

p
l ks′′′2

From ks′1 = ks′′′1 :: ks′′1 , ks′2 = ks′′′2 :: ks′′2 , ks′′1 ≈
p
l ks′′2 , and ks′′′1 ≈

p
l ks′′′2 , we know that ks′1 ≈

p
l ks′2

From (1), R′1 = R1, and R′2 = R2, we know that R′1 = R′2
And from (1), S ′1 = S1, and S ′2 = S2, we know that S ′1 = S ′2
Thus, from R′1 = R′2, S ′1 = S ′2, Σ′1 ≈

p
l Σ′2, and ks′1 ≈

p
l ks′2, we know that K′1 ≈

p
l K′2

Case VI: F ends in Out-Next

The proof for this case is straightforward. It uses the assumptions at the beginning to establish that

pc1 ↓pv l, and pc2 ↓pv l, which helps show K′1 ≈
p
l K′2

Lemma 92. If pcsrc, dd, de ` Σ1, κ
α1−→pc Σ′1, ks1 and pcsrc, dd, de ` Σ2, κ

α2−→pc Σ′2, ks2, with Σ1 ≈
p
l Σ2 and

pc ↓pv l, then Σ′1 ≈
p
l Σ′2 and ks1 ≈

p
l ks2

Proof (sketch): We examine each case of F :: pcsrc, dd, de ` Σ1, κ
α1−→pc Σ′1, ks1 The proof uses Lemmas 95

and 93.

Lemma 93. If pcsrc, dd, de ` Σ1, σ, c
α1−→pc Σ′1, σ1, c1, E1 and pcsrc, dd, de ` Σ2, σ, c

α2−→pc Σ′2, σ2, c2, E2, with

Σ1 ≈
p
l Σ2 and pc ↓pv l, then Σ′1 ≈

p
l Σ′2, σ1 = σ2, c1 = c2, and E1 = E2

Proof (sketch): By induction on the structure of F :: pcsrc, dd, de ` Σ1, σ, c
α1−→pc Σ′1, σ1, c1, E1 and

G :: pcsrc, dd, de ` Σ2, σ, c
α2−→pc Σ′2, σ2, c2, E2

Lemma 94. If pcsrc,1, dd,1, de,1 ` Σ1, κ1
α1−→pc Σ′1, ks′1 and pcsrc,2, dd,2, de,2 ` Σ2, κ2

α2−→pc Σ′2, ks′2, with α1 =

new(id, pcsrc,1) and α2 = new(id, pcsrc,2), or α1 = newEH(id, eh, pcid,1, pcsrc,1) and α2 = newEH(id, eh, pcid,2, pcsrc,2)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 140

Σ1 ≈
p
l Σ2, pc ↓p 6v l, and pcsrc,1 ↓pv pc1 ↓p pcsrc,2 ↓pv pc2 ↓p and pcid,1 ↓pv pc1 ↓p pcid,2 ↓pv pc2 ↓p, then

Σ′1 ≈
p
l Σ′2 and ks′1 ≈

p
l ks′2

Proof.

We examine each case of F :: pcsrc,1, dd,1, de,1 ` Σ1, κ1
α1−→pc Σ′1, ks′1

Denote G :: pcsrc,2, dd,2, de,2 ` Σ2, κ2
α2−→pc Σ′2, ks′2

We refer to the following assumptions throughout:

(1) Σ1 ≈
p
l Σ2;

(2) pc ↓p 6v l;

(3) pcsrc,1 ↓pv pc1 ↓p and pcsrc,2 ↓pv pc2 ↓p;

(4) pcid,1 ↓pv pc1 ↓p and pcid,2 ↓pv pc2 ↓p; and either

(5) α1 = new(id, pcsrc,1) and α2 = new(id, pcsrc,2) or

(6) α1 = newEH(id, eh, pcid,1, pcsrc,1) and α2 = newEH(id, eh, pcid,2, pcsrc,2)

From (5) and (6) and since only P could produce new(_) or newEH(_), we know that F and G must end in

P; and we know the following:

(7) ∃F ′ :: pcsrc,1, dd,1, de,1 ` Σ1, σ1, c1
α1−→pc Σ′1, σ′1, c′1, E1; (8) c1 ∈ {new(id, e1), addEH(id, eh)};

ks′1 = ((σ′1, c′1, P, E :: E1), pcsrc,1, pc); (9) ∃G ′ :: pcsrc,2, dd,2, de,2 ` Σ2, σ2, c2
α2−→pc Σ′2, σ′2, c′2, E2;

(10) c2 ∈ {new(id, e2), addEH(id, eh)}; ks′2 = ((σ′2, c2, P, E :: E2), pcsrc,2, pc)

From (2), ks′1 = ((σ′1, c′1, P, E :: E1), pcsrc,1, pc), and ks′2 = ((σ′2, c2, P, E :: E2), pcsrc,2, pc), we know that

ks′1 ≈
p
l ks′2

From (7)-(10), F ′ and G ′ end in new or add-eh

Case I: F ′ and G ′ end in new

By assumption and from Σ1(pc) = (_, σEH
1) and Σ2(pc) = (_, σEH

2), we know the following:

(I.1) σEH′
1 = σEH

1 [id 7→ (_, ·, pcsrc,1)]; (I.2) σEH′
2 = σEH

2 [id 7→ (_, ·, pcsrc,2)]; Σ′1 = Σ1[pc 7→ (_, σEH′
1)]; and

Σ′2 = Σ2[pc 7→ (_, σEH′
2)]

From (1) and (2), Σ1 ≈
p
l Σ2 and σEH

1 ≈p
l σEH

2

Then from (I.1), (I.2), and (3), we know that σEH′
1 ≈p

l σEH′
2

Thus, from (2), Σ1 ≈
p
l Σ2 Σ′1 = Σ1[pc 7→ (_, σEH′

1)], Σ′2 = Σ2[pc 7→ (_, σEH′
2)], and σEH′

1 ≈p
l σEH′

2 we know

that Σ′1 ≈
p
l Σ′2

Case II: F ′ and G ′ end in add-eh

By assumption and from Σ1(pc) = (_, σEH
1), Σ2(pc) = (_, σEH

2), and eh = onEv(x){c} we know the

following:

(II.1) σEH
1 (id) = (_, M1, pcid,1); (II.2) M1(Ev) = EH1; (II.3) M′1 = M1[Ev 7→ EH1 ∪ {eh, pcsrc,1}];

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 141

(II.4) σEH′
1 = σEH

1 [id 7→ (_, M′1, pcid,1)]; (II.5) Σ′1 = Σ1[pc 7→ (_, σEH′
1)]; (II.6) σEH

2 (id) = (_, M2, pcid,2);

(II.7) M2(Ev) = EH2; (II.8) M′2 = M2[Ev 7→ EH2 ∪ {eh, pcsrc,2}]; (II.9) σEH′
2 = σEH

2 [id 7→ (_, M′2, pcid,2)];

and (II.10) Σ′2 = Σ2[pc 7→ (_, σEH′
2)]

From (1) and (2), Σ1 ≈
p
l Σ2 and σEH

1 ≈p
l σEH

2

From (4), (II.1), (II.2), (II.6), (II.7), and σEH
1 ≈p

l σEH
2 , we know that M1 ↓

p
l = M2 ↓

p
l and EH1 ↓

p
l = EH2 ↓

p
l

Then from (3), (II.3), and (III.8), we know that M′1 ↓
p
l = M′2 ↓

p
l

From (4), (II.4), (II.9), and M′1 ↓
p
l = M′2 ↓

p
l , we know that σEH′

1 ≈p
l σEH′

2

Thus, from (2), (II.5), (II.10), Σ1 ≈
p
l Σ2, and σEH′

1 ≈p
l σEH′

2 , we know that Σ′1 ≈
p
l Σ′2

Lemma 95 (Equivalent State, Equivalent Event Handlers). If Σ1 ≈
p
l Σ2 and E1 ≈

p
l E2, with Σ1, E1 ks1,

Σ2, E2 ks2 then ks1 ≈
p
l ks2

Proof (sketch): By induction on F :: Σ1, E1 ks1 and G :: Σ2, E2 ks2 The proof uses Lemmas 90 and 89.

Lemma 96. If Σ1 ≈
p
l Σ2 and E1 ≈

p
l E2, with pcEv, f ` Σ1, E1 ks1, pcEv, f ` Σ2, E2 ks2 and f ∈ {r, t, rt}

then ks1 ≈
p
l ks2

Proof (sketch): By induction on F :: pcEv, f ` Σ1, E1 ks1 and G :: pcEv, f ` Σ2, E2 ks2 for f ∈ {r, t, rt}.

The proof also

uses Lemma 90.

Lemma 97. If pc, f ` Σ, E ks with E ↓p
l = · and f ∈ {r, t, rt}, then ks ≈p

l ·

Proof (sketch): By induction on the structure of F :: pc, f ` Σ, E ks for f ∈ {r, t, rt} The proof also uses

Lemma 90.

Lemma 98 (Strong One-step). If K1 ≈
p
l K2, T1 = P ,D, E ` K1

αl,1
=⇒ K′1 with T1 ↓

p
l = τ 6= · and prog(K2), with

¬rlsA(T1), trnsprntA(T1, l), transparentT(K2, τ, l) if p = c, ¬sntzA(T1), rbstA(T1, l), robustT(K2, τ, l) if p = i,

and T1 ↓
p
l 6∈ {t(_), r(_)}, then ∃K′2, T2 s.t. T2 = P ,D, E ` K2 =⇒∗ K′2 with T1 ≈

p
l T2 and K′1 ≈

p
l K′2

Proof.

We examine each case of F :: T1 = P ,D, E ` K1
αl,1
=⇒ K′1

We refer to the following assumptions throughout:

(1) T1 ↓
p
l = τ 6= ·; (2) K1 ≈

p
l K2; (3) prog(K2); (4) ¬rlsA(T1), trnsprntA(T1, l), transparentT(K2, τ, l) if p = c;

(5) ¬sntzA(T1), rbstA(T1, l), robustT(K2, τ, l) if p = i; and (6) T1 ↓
p
l 6∈ {t(_), r(_)}

Case I: F ends in In

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 142

The proof for this case is straightforward. It uses prog(K2) and Lemma 86 to step to an equivalent

consumer state. Lemma 95 is used to establish equivalence of the resulting event handlers.

Case II: F ends in In-D

By assumption and from (4) and (5), P ,D, E ` K2 =⇒∗ KC with consumer(KC), and

(P ,D, E ` K2 =⇒∗ KC) ↓
p
l = ·

From consumer(KC), we know that ksC = ·

From Lemma 86, K2 ≈
p
l KC

From (2) and K2 ≈
p
l KC, we know that K1 ≈

p
l KC

By assumption, all of the following:

S ′1 = S1; Σ′1 = Σ1; α1 = (id.Ev(v), pc); P(id.Ev(v)) = pc′; Σ1(pc) = (_, σEH
1); σEH

1 (id) ↓iv pc ↓i;

σEH
1 (id) ↓c 6v pc ↓c; E1 = ((id.Ev(v), pc′′) | (pct pc′ v pc′′));

downgradeD(R1, Σ1, (id.Ev(v), pc), pc′) = (R′1, E′1); Σ1, E1 ks′′1 ; pc, r ` Σ1, E′1 ks′′′1 ; and

ks′1 = ks′′1 :: ks′′′1

From the definition of downgradeD , all of the following:

R1 = (ρ1, d1); D(id.Ev(v), pc, ρ1) = (ρ′1, v1, E′d,1); d′1 = update(d1, v1); R′1 = (ρ′1, d′1);

Ed,1 = ((id.Ev(v), (lc, li)) | pc′ ↓cv lc @ pc ↓c ∧li = pc ↓i tpc′ ↓i); and E′1 = robust(Σ1, Ed,1 :: E′d,1, pc)

From (1), P(id.Ev(v)) = pc′, σEH
1 (id) ↓iv pc ↓i, and σEH

1 (id) ↓c 6v pc ↓c, we know that

T1 ↓
p
l = (id.Ev(v), pc) or T1 ↓

p
l = rls(id.Ev(v), ρ′1, v1, E′′1 , pc)

Subcase i: T1 ↓
p
l = (id.Ev(v), pc)

By assumption and from pc, r ` Σ1, E′1 ks′′′1 and E′1 = robust(Σ1, Ed,1 :: E′d,1, pc), we know that

pc ↓p
l v l; D(id.Ev(v), pc′, ρ1) = (ρ1, none, E′d,1); and ks′′′1 ↓

p
l = · if p = c and ks′′′1 = · if p = i

From D(id.Ev(v), pc, ρ1) = (ρ′1, v1, E′d,1) = (ρ1, none, E′d,1) and d′1 = update(d1, v1), we know that

d′1 = d1

Similarly, from D(id.Ev(v), pc, ρ1) = (ρ′1, v1, E′d,1) = (ρ1, none, E′d,1), d′1 = d1, and R′1 = (ρ′1, d′1), we

know that R′1 = R1

From K1 ≈
p
l KC, pc ↓p

l v l, σEH
1 (id) ↓iv pc ↓i, and σEH

1 (id) ↓c 6v pc ↓c, we know that

σEH
C (id) ↓iv pc ↓i and σEH

C (id) ↓c 6v pc ↓c

Then, In-D may be applied to RC,SC; ΣC; ksC with input (id.Ev(v), pc), meaning:

∃K′2 s.t. G :: T2 = P ,D, E ` K2 =⇒∗ KC
(id.Ev(v),pc)

=⇒ K′2 with

S ′2 = SC; Σ′2 = ΣC; P(id.Ev(v)) = pc′2; E2 = ((id.Ev(v), pc′′) | (pct pc′ v pc′′));

downgradeD(R2, Σ2, (id.Ev(v), pc), pc′) = (R′2, Ed,2); ΣC, E2 ks′′2 ; pc, r ` Σ2, E′2 ks′′′2 ; and

ks′2 = ks′′2 :: ks′′′2

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 143

From the definition of downgradeD ,

RC = (ρC, dC); D(id.Ev(v), pc, ρC) = (ρ′2, v2, E′d,2); d′2 = update(dC, v2); R′2 = (ρ′2, d′2);

Ed,2 = ((id.Ev(v), (lc, li)) | pc′ ↓cv lc @ pc ↓c ∧li = pc ↓i tpc′ ↓i); and

E′2 = robust(ΣC, Ed,2 :: E′d,2, pc)

From K1 ≈
p
l KC, D(id.Ev(v), pc, ρC) = (ρ′2, v2, E′d,2) = (ρ1, none, E′d,1) and d′2 = update(dC, v2), we know

that d′2 = dC and E′d,1 = E′d,2

From Ed,1 = (...) and Ed,2 = (...), we know that Ed,1 = Ed,2

Then, from Lemma 102, E′1 ≈
p
l E′2 if p = c and E′1 = E′2 if p = i

And from Lemma 96, ks′′′1 ≈
p
l ks′′′2 if p = c

From Lemma 104, ks′′′1 = ks′′′2 if p = i

Then, from ks′′′1 ↓
p
l = · if p = c and ks′′′1 = · if p = i, we know that ks′′′2 ≈

p
l · if p = c and ks′′′2 = · if p = i

Then, from D(id.Ev(v), pc, ρC) = (ρC, none, E′d,1), d′2 = dC, pc ↓p
l v l, and the definition of T ↓p

l , we know

that T2 ↓
p
l = (id.Ev(v), pc)

Then, from T1 ↓
p
l = (id.Ev(v), pc), we know that T1 ≈

p
l T2

From D(id.Ev(v), pc, ρC) = (ρC, none, E′d,1) and d′2 = dC, we know that R′2 = RC

From K1 ≈
p
l KC, R′1 = R1, and R′2 = RC, we know that R′1 = R′2

Similarly, from K1 ≈
p
l KC, S ′1 = S1, and S ′2 = SC, we know that S ′1 = S ′2

And from K1 ≈
p
l KC, Σ′1 = Σ1, and Σ′2 = ΣC, we know that Σ′1 = Σ′2

From E1 = (...) and E2 = (...), we know that E1 = E2

From Lemma 95, ks′′1 ≈
p
l ks′′2

From ks′′′1 ≈
p
l ks′′′2 if p = c and ks′′′1 = ks′′′2 if p = i, we know that ks′′′1 ≈

p
l ks′′′2

From ks′1 = ks′′1 :: ks′′′1 , ks′2 = ks′′2 :: ks′′′2 , ks′′1 ≈
p
l ks′′2 , and ks′′′1 ≈

p
l ks′′′2 , we know that ks′1 ≈

p
l ks′2

Thus, from R′1 = R′2, S ′1 = S ′2, Σ′1 = Σ′2, and ks′1 ≈
p
l ks′2, we know that K′1 ≈

p
l K′2

Subcase ii: T1 ↓
p
l = rls(id.Ev(v), ρ′1, v1, E′′1 , pc)

By assumption and from (4), p = i and pc ↓pv l

Then, from (2), we know that σEH
1 = σEH

2

The rest of the proof for this case is similar to Subcase i

Case III: F ends in In-E

The proof is similar to Case II. It uses Lemma 103 instead of Lemma 102 and Lemma 105 instead of

Lemma 104.

Case IV: F ends in In-DE

From (4), T1 ↓
p
l 6= down(...), so the proof is similar to Case II.

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 144

Case V: F ends in Out

By assumption and from (4) and (5), P ,D, E ` K2
τ′

=⇒∗ Kl with lowEH(Kl) and

∀(α, pc) ∈ τ′, α ∈ {ch(_), •} ∧ pc ↓p 6v l

From lowEH(Kl), we know that ksl = (κl , pcsrc,l , pcl) :: ks′l with pcl ↓pv l

From Lemma 101, (P ,D, E ` K2
τ

=⇒∗ Kl) ↓
p
l = ·

Then, from Lemma 86, K2 ≈
p
l Kl

From (2) and K2 ≈
p
l Kl , we know that K1 ≈

p
l Kl

By assumption, all of the following:

R′1 = R1; S ′1 = S1; αl,1 = (ch(v), pc1); P(ch) = pc1; R1 = (ρd,1, dd,1); S1 = (ρe,1, de,1);

ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 ; producer(κ1); ∃F ′ :: pcsrc,1, dd,1, de,1 ` Σ1, κ1
ch(v)−→pc1

Σ′1, ks′′′1 ; ks′1 = ks′′′1 :: ks′′1

From (1), αl,1 = (ch(v), pc1), and the definition of ↓p
l for T, we know that pc1 ↓pv l

From K1 ≈
p
l Kl , ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 , ksl = (κl , pcsrc,l , pcl) :: ks′l , and the definition of ≈p

l for ks, we

know that pc1 = pcl and (κ1, pcsrc,1, pc1) = (κl , pcsrc,l , pcl)

From K1 ≈
p
l Kl , R1 = (ρd,1, dd,1), and S1 = (ρe,1, de,1), we know that

Rl = (ρd,l , dd,l) and Sl = (ρe,l , de,l) with

dd,1 = dd,l and de,1 = de,l

From Lemma 99, ∃G ′ :: pcsrc,l , dd,l , de,l ` Σl , κl
ch(v)−→pcl

Σ′2, ks′′2 with Σ′1 ≈
p
l Σ′2 and ks′′′1 ≈

p
l ks′′2

From producer(κ1) and (κ1, pcsrc,1, pc1) = (κl , pcsrc,l , pcl), we know that producer(κ2)

Then, Out may be applied to Rl ,Sl ; Σl ; ksl , producing output (ch(v), pcl), meaning:

G :: T2 = P ,D, E ` K2 =⇒∗ Kl
(ch(v),pcl)=⇒ K′2 with R′2 = Rl , S ′2 = Sl , and ks′2 = ks′′2 :: ks′l

From pc1 ↓
p
l v l, αl,1 = (ch(v), pc1), and P(ch) = pc1, we know that T1 ↓

p
l = ch(v)

Similarly, from pcl ↓pv l, pc1 = pcl , and (P ,D, E ` K2
τ

=⇒∗ Kl) ↓
p
l = ·, we know that T2 ↓

p
l = ch(v)

Thus, T1 ≈
p
l T2

From K1 ≈
p
l Kl , ks1 = (κ1, pcsrc,1, pc1) :: ks′′1 , and ksl = (κl , pcsrc,l , pcl) :: ks′l , we know that ks′′1 ≈

p
l ks′l

From ks′1 = ks′′′1 :: ks′′1 , ks′2 = ks′′2 :: ks′l , ks′′′1 ≈
p
l ks′′2 , and ks′′1 ≈

p
l ks′l , we know that ks′1 ≈

p
l ks′2

From K1 ≈
p
l Kl , R′1 = R1, and R′2 = Rl , we know that R′1 = R′2

Similarly, from K1 ≈
p
l Kl , S ′1 = S1, and S ′2 = Sl , we know that S ′1 = S ′2

Thus, from R′1 = R′2, S ′1 = S ′2, Σ′1 ≈
p
l Σ′2, and ks′1 ≈

p
l ks′2, we know that K′1 ≈

p
l K′2

Case VI: F ends in Out-Skip, Out-Silent, or Out-Next

The proofs for these cases are similar to Case V

Lemma 99. If F :: pcsrc, dd, de ` Σ1, κ
α−→pc Σ′1, ks1 with pc ↓pv l and Σ1 ≈

p
l Σ2, then ∃G :: pcsrc, dd, de `

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 145

Σ2, κ
α−→pc Σ′2, ks2 with Σ′1 ≈

p
l Σ′2 and ks1 ≈

p
l ks2

Proof (sketch): We examine each case of F :: pcsrc, dd, de ` Σ1, κ
α−→pc Σ′1, ks1. The proof also uses Lem-

mas 95 and 100

Lemma 100. If F :: pcsrc, dd, de ` Σ1, σ, c α−→pc Σ′1, σ1, c1, E1 with pc ↓pv l and Σ1 ≈
p
l Σ2, then ∃G ::

pcsrc, dd, de ` Σ2, σ, c α−→pc Σ′2, σ2, c2, E2 with Σ′1 ≈
p
l Σ′2, σ1 = σ2, c1 = c2, and E1 = E2

Proof (sketch): By induction on the structure of F :: pcsrc, dd, de ` Σ1, σ, c α−→pc Σ′1, σ1, c1, E1

Lemma 101. If T = P ,D, E ` K
τ

=⇒∗ K′ with ∀(α, pc) ∈ τ, α ∈ {ch(_), •} ∧ pc ↓p 6v l, then T ↓p
l = ·

Proof (sketch): By induction on the length of T

Lemma 102. If Σ1 ≈
p
l Σ2 with pc ↓pv l, with robust(Σ1, E, pc) = E1 and robust(Σ2, E, pc) = E2, then E1 ≈

p
l E2

if p = c and E1 = E2 if p = i

Proof (sketch): By induction on the structure of F :: robust(Σ1, E, pc) = E1 and G :: robust(Σ2, E, pc) = E2

Lemma 103. If Σ1 ≈
p
l Σ2 and pc ↓pv l, with transparent(Σ1, E, pc) = E1 and transparent(Σ2, E, pc) = E2, then

E1 ≈
p
l E2 if p = c and E1 = E2 if p = i

Proof (sketch): The proof is by induction on the structure of F :: transparent(Σ1, E, pc) = E1 and G ::

transparent(Σ2, E, pc) = E2, similar to the one for Lemma 102.

Lemma 104. If Σ1 ≈i
l Σ2, with pcEv, r ` Σ1, E ks1, pcEv, r ` Σ2, E ks2 and pcEv ↓iv l E = robust(Σ1, _, pc) =

robust(Σ2, _, pc) then ks1 = ks2

Proof (sketch): By induction on the structure of F :: pcEv, f ` Σ1, E ks1 and G :: pcEv, f ` Σ2, E ks2

Lemma 105. If Σ1 ≈c
l Σ2, with pcEv, t ` Σ1, E ks1, pcEv, t ` Σ2, E ks2 and pcEv ↓cv l E = transparent(Σ1,

_, pc) = transparent(Σ2, _, pc) then ks1 = ks2

Proof (sketch): The proof is by induction on the structure of F :: pcEv, t ` Σ1, E ks1 and G :: pcEv, t `

Σ2, E ks2, similar to Lemma 104.

Lemma 106 (Strong One-step – Downgrade). If K1 ≈
p
l K2, T1 = P ,D, E ` K1

αl,1
=⇒ K′1 with T1 ↓

p
l =

τ = down(_) and prog(K2), with releaseT(K2, τ, l) if p = c, and sanitizeT(K2, τ, l) if p = i, then ∃K′2, T2 s.t.

T2 = P ,D, E ` K2 =⇒∗ K′2 with T1 ≈
p
l T2 and K′1 ≈

p
l K′2

Proof.

Denote F :: P ,D, E ` K1
αl,1
=⇒ K′1

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 146

Without loss of generality, assume that p = c (the proof for p = i is similar)

We refer to the following assumptions throughout:

(1) K1 ≈
p
l K2; (2) T1 ↓

p
l = τ = down(_); (3) prog(K2); (4) releaseT(K2, τ, l)

From (2), F ends in In-DE, meaning ∃KC, K′2 s.t. T2 = P ,D, E ` K2 =⇒∗ KC
αl,2
=⇒ K′2 with

consumer(KC), (P ,D, E ` K2 =⇒∗ KC) ↓
p
l = ·, and T2 ↓

p
l = down(...)

From Lemma 86, K2 ≈
p
l KC

From (1) and K2 ≈
p
l KC, K1 ≈

p
l KC

From (2), consumer(KC), and T2 ↓
p
l = down(...), we know that F ends in In-DE and all of the following:

αl,1 = (id.Ev(v), pc); P(id.Ev(v)) = pc′; Σ1(pc) = (_, σEH); σEH(id) ↓iv pc ↓i; σEH(id) ↓cv pc ↓c;

E1 = ((id.Ev(v), pc′′) | pct pc′ v pc′′); Σ1, E1 ks′′1 ; downgradeD(R1, Σ1, αl,1, pc′) = (R′1, Ed,1);

pc, r ` Σ1, Ed,1 ksd,1; downgradeE (S1, Σ1, αl,1, pc′) = (S ′1, Ee,1); pc, t ` Σ1, Ee,1 kse,1;

downgradeD,E (R1, Σ1, αl,1, pc′) = Em,1; pc, rt ` Σ1, Em,1 ksm,1; Σ′1 = Σ1; and ks′1 = ks′′1 :: ksd,1 :: kse,1 :: ksm,1

From the definition of downgradeD , all of the following:

R1 = (ρd,1, dd,1); E′d,1 = ((id.Ev(v), (lc, li)) | pc ↓cv lc @ pc′ ↓c ∧li = pc ↓i tpc′ ↓i);

D((id.Ev(v), pc), pc′, ρd,1) = (ρ′d,1, vd,1, E′′d,1); d′d,1 = update(dd,1, vd,1); R′1 = (ρ′d,1, d′d,1); and

Ed,1 = robust(Σ1, E′d,1 :: E′′d,1, pc)

From the definition of downgradeE , all of the following:

S1 = (ρe,1, de,1); E′e,1 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c);

E((id.Ev(v), pc), pc′, ρe,1) = (ρ′e,1, ve,1, E′′e,1); d′e,1 = update(de,1, ve,1); S ′1 = (ρ′e,1, d′e,1); and

Ee,1 = transparent(Σ1, E′e,1 :: E′′e,1, pc)

From the definition of downgradeD,E , we know that Em,1 = mergeEvents(E′d,1 :: E′′d,1, E′e,1 :: E′′e,1)

Denote G :: P , E , E ` KC =⇒ K′2

From (2), τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc)

Then, G ends in In-DE with input αl,2 = id.Ev(v), producing trace T2 = P ,D, E ` K2 =⇒∗ K′2 with

E2 = ((id.Ev(v), pc′′) | pct pc′ v pc′′); ΣC, E2 ks′′2 ; downgradeD(RC, ΣC, αl,2, pc′) = (R′2, Ed,2);

pc, r ` ΣC, Ed,2 ksd,2; downgradeE (SC, ΣC, αl,2, pc′) = (S ′2, Ee,2); pc, t ` ΣC, Ee,2 kse,2;

downgradeD,E (RC, ΣC, αl,2, pc′) = Em,2; pc, rt ` ΣC, Em,2 ksm,2; Σ′2 = ΣC; and

ks′2 = ks′′2 :: ksd,2 :: kse,2 :: ksm,2

From the definition of downgradeD , all of the following:

RC = (ρd,C, dd,C); E′d,2 = ((id.Ev(v), (lc, li)) | pc ↓cv lc @ pc′ ↓c ∧li = pc ↓i tpc′ ↓i);

D((id.Ev(v), pc), pc′, ρd,C) = (ρ′d,2, vd,2, E′′d,2); d′d,2 = update(dd,C, vd,2); R′2 = (ρ′d,2, d′d,2); and

Ed,2 = robust(ΣC, E′d,2 :: E′′d,2, pc)

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 147

From the definition of downgradeE ,

SC = (ρe,C, de,C); E′e,2 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c);

E((id.Ev(v), pc), pc′, ρe,C) = (ρ′e,2, ve,2, E′′e,2); d′e,2 = update(de,C, ve,2); S ′2 = (ρ′e,2, d′e,2); and

Ee,2 = transparent(ΣC, E′e,2 :: E′′e,2, pc)

From the definition of downgradeD,E , we know that Em,2 = mergeEvents(E′d,2 :: E′′d,2, E′e,2 :: E′′e,2)

From (4), τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc) , and T2 ↓
p
l = down(...), we know that

T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc)

From the definition of trDowngrade, pc ↓pv l and ksm,1 ↓
p
l 6= ·

From R1 = RC, R1 = (ρd,1, dd,1), and RC = (ρd,C, dd,C), we know that (ρd,1, dd,1) = (ρd,C, dd,C)

Similarly, from S1 = SC, S1 = (ρe,1, de,1), and SC = (ρe,C, de,C), we know that (ρe,1, de,1) = (ρe,C, de,C)

Case I: pc ↓pv l

By assumption and from K1 ≈
p
l KC, we know that Σ1(pc) = ΣC(pc)

From (ρd,1, dd,1) = (ρd,C, dd,C), D((id.Ev(v), pc), pc′, ρd,1) = (ρ′d,1, vd,1, E′′d,1), and

D((id.Ev(v), pc), pc′, ρd,C) = (ρ′d,2, vd,2, E′′d,2), we know that (ρ′d,1, vd,1, E′′d,1) = (ρ′d,2, vd,2, E′′d,2)

Then from d′d,1 = update(dd,1, vd,1) and d′d,2 = update(dd,C, vd,2), we know that d′d,1 = d′d,2

From (ρ′d,1, vd,1, E′′d,1) = (ρ′d,2, vd,2, E′′d,2), d′d,1 = d′d,2, R′1 = (ρ′d,1, d′d,1), and R′2 = (ρ′d,2, d′d,2), we know that

R′1 = R′2
Similarly, we know that (ρ′e,1, ve,1, E′′e,1) = (ρ′e,2, ve,2, E′′e,2), which gives us d′e,1 = d′e,,2 and S ′1 = S ′2
From Σ1 ≈

p
l ΣC, Σ′1 = Σ1, and Σ′2 = ΣC, we know that Σ′1 ≈

p
l Σ′2

From E1 = ((id.Ev(v), pc′′) | pct pc′ v pc′′) and E2 = ((id.Ev(v), pc′′) | pct pc′ v pc′′), we know that

E1 = E2

From Lemma 95, ks′′1 ≈
p
l ks′′2

From τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc) and T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc), we know that

either Ed,1 ↓
p
l = Ed,2 ↓

p
l or ksd,1 ↓

p
l = ksd,2 ↓

p
l = ·

From Lemma 96, ksd,1 ≈
p
l ksd,2

From E′e,1 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c) and

E′e,2 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c), we know that E′e,1 = E′e,2

Then from Σ1 ≈
p
l ΣC, (ρ′e,1, ve,1, E′′e,1) = (ρ′e,2, ve,2, E′′e,2), Ee,1 = transparent(Σ1, E′e,1 :: E′′e,1, pc) and

Ee,2 = transparent(ΣC, E′e,2 :: E′′e,2, pc), we know that Ee,1 = Ee,2

Then from Σ1 ≈
p
l ΣC, pc, t ` Σ1, Ee,1 kse,1, and pc, t ` ΣC, Ee,2 kse,2, we know that kse,1 = kse,2

From τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc) and T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc), we know that

Em,1 ↓
p
l = Em,2 ↓

p
l

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 148

From Lemma 96, ksm,1 ≈
p
l ksm,2

Then, from ks′1 = ks′′1 :: ksd,1 :: kse,1 :: ksm,1 and ks′2 = ks′′2 :: ksd,2 :: kse,2 :: ksm,2, we know that ks′1 ≈
p
l ks′2

Thus, from τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc), T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc),

(ρ′e,1, ve,1, E′′e,1) = (ρ′e,2, ve,2, E′′e,2), and kse,1 = kse,2, we know that T1 ≈
p
l T2

And, from R′1 = R′2, S ′1 = S ′2, Σ′1 ≈
p
l Σ′2, and ks′1 ≈

p
l ks′2, we know that K′1 ≈

p
l K′2

Case II: pc ↓p 6v l

From (ρd,1, dd,1) = (ρd,C, dd,C), D((id.Ev(v), pc), pc′, ρd,1) = (ρ′d,1, vd,1, E′′d,1), and

D((id.Ev(v), pc), pc′, ρd,C) = (ρ′d,2, vd,2, E′′d,2), we know that (ρ′d,1, vd,1, E′′d,1) = (ρ′d,2, vd,2, E′′d,2)

Then from d′d,1 = update(dd,1, vd,1) and d′d,2 = update(dd,C, vd,2), we know that d′d,1 = d′d,2

From (ρ′d,1, vd,1, E′′d,1) = (ρ′d,2, vd,2, E′′d,2), d′d,1 = d′d,2, R′1 = (ρ′d,1, d′d,1), and R′2 = (ρ′d,2, d′d,2), we know that

R′1 = R′2
Similarly, we know that (ρ′e,1, ve,1, E′′e,1) = (ρ′e,2, ve,2, E′′e,2), which gives us d′e,1 = d′e,,2 and S ′1 = S ′2
From Σ1 ≈

p
l ΣC, Σ′1 = Σ1, and Σ′2 = ΣC, we know that Σ′1 ≈

p
l Σ′2

From E1 = ((id.Ev(v), pc′′) | pct pc′ v pc′′) and E2 = ((id.Ev(v), pc′′) | pct pc′ v pc′′), we know that

E1 = E2

From Lemma 95, ks′′1 ≈
p
l ks′′2

From τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc) and T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc), we know that

either Ed,1 ↓
p
l = Ed,2 ↓

p
l or ksd,1 ↓

p
l = ksd,2 ↓

p
l = ·

By assumption and from p = c, E((id.Ev(v), pc), pc′, ρe,1) = (ρ′e,1, ve,1, E′′e,1),

E((id.Ev(v), pc), pc′, ρe,C) = (ρ′e,2, ve,2, E′′e,2), and since E will only change lc to be more secret,

we know that E′′e,1 ↓
p
l = E′′e,2 ↓

p
l = ·

From p = c, E′e,1 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c), and

E′e,2 = ((id.Ev(v), (lc, li)) | pc ↓iv li @ pc′ ↓i ∧lc = pc ↓c tpc′ ↓c), we know that Ee,1′ ↓
p
l = E′e,2 ↓

p
l = ·

Then from Ee,1 = transparent(Σ1, E′e,1 :: E′′e,1, pc) and

Ee,2 = transparent(ΣC, E′e,2 :: E′′e,2, pc), we know that Ee,1 ↓
p
l = Ee,2 ↓

p
l = ·

From Lemma 97, kse,1 ↓
p
l = kse,2 ↓

p
l = ·

From τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc) and T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc), we know that

Em,1 ↓
p
l = Em,2 ↓

p
l

From Lemma 96, ksm,1 ≈
p
l ksm,2

Then, from ks′1 = ks′′1 :: ksd,1 :: kse,1 :: ksm,1 and ks′2 = ks′′2 :: ksd,2 :: kse,2 :: ksm,2, we know that ks′1 ≈
p
l ks′2

Thus, from p = c, τ = down(id.Ev(v), τrls, τsntz,1, Em,1, pc), T2 ↓
p
l = down(id.Ev(v), τrls, _, Em,1, pc), and the

definition of trTransparent, we know that T1 ≈
p
l T2

APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 4 149

And, from R′1 = R′2, S ′1 = S ′2, Σ′1 ≈
p
l Σ′2, and ks′1 ≈

p
l ks′2, we know that K′1 ≈

p
l K′2

Appendix C

Supporting Materials for Chapter 5

C.1 Additional Definitions

C.1.1 General Definitions

Value operations valOf takes a value or node and returns a standard value by removing any attached

labels. It is not defined for faceted values or nodes. labOf takes a value or a node and a pc and returns the

label on the value, if there is one, or the pc if the value is not labeled.

State, G projection σG ↓EH returns the event handler store from the shared storage, while σG ↓g returns

the variable store from the shared storage. G ↓EH returns the enforcement mechanism for the event

handler storage and G ↓g returns the enforcement mechanism for the shared variable storage.

consumer/producer The consumer predicate holds for a compositional configuration if there are no event

handlers running (i.e., the configuration stack ks is empty). If there is at least one element in ks, the producer

predicate holds. The consumer predicate holds for a configuration stack if the configuration on the top

of the stack is in consumer state (i.e., the consumer(κ) predicate holds). Similarly, the producer predicate

holds for a configuration stack if the configuration on the top of the stack is in producer state (i.e., the

producer(κ) predicate holds). For ks = ·, neither predicate holds for ks.

C.1.2 Operations on Faceted Values

Updating/accessing facets Set and get facet are for creating and updating faceted values. Note for

getFacet and dv: the type of the default value can be inferred from the other facet. To keep things simple,

we use the same default value for all types.

150

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 151

getFacetA(a, ·) = a

a ↓pcl
6= ·

getFacetA(a, pcl) = a ↓pcl

a ↓pcl
= ·

getFacetA(a, pcl) = NULL

Optimization for faceted events We merge locally triggered events in MF so that if the same event

handler is triggered in both the H and L context, it runs just once in the · context rather than running

twice.

mergeEvs((id.Ev(v), H), (id.Ev(v), L)) = (id.Ev(v), ·)
mergeEv-same

id 6= id′ or Ev 6= Ev′ or v 6= v′

mergeEvs((id.Ev(v), H), (id′.Ev′(v′), L)) = (id.Ev(v), H), (id′.Ev′(v′), L)
mergeEv-diff

EH = · or EL = ·

mergeEvs(EH , EL) = EH :: EL

mergeEv-s1

Faceted value projection The L projection of a faceted value is the L facet and likewise for H. The

projection of standard values is the same value. Note that we use projection rather than getFacet for

determining if two stores are equivalent so if the projection produces · it means the value has not been

initiated in that context. We return · to hide that value instead of returning dv so that a store with a · facet

and a store without the value at all will still be equivalent.

C.1.3 Operations on Event Handlers

We define two projection operations for event handlers. These are used by the event handler lookup

semantics. ↓pc returns all of the event handler with label visible to pc. When the pc = · we return all event

handlers. @pc is the same as ↓pc for pc v L, but when pc = H it returns only the H and · event handlers.

(eh), l) ↓pc

(id.Ev(v), l) ↓·= (id.Ev(v), l)

l 6v pcl

(id.Ev(v), l) ↓pcl
= ·

l v pcl

(id.Ev(v), l) ↓pcl
= (id.Ev(v), l)

(eh, l)@pc

pc v L l v L

(eh, l)@pc = (eh, l)

pc 6v L pc = l ∨ pc = ·

(eh, l)@pc = (eh, pc)

pc v L l 6v L

(eh, l)@pc = ·

pc 6v L pc = l ∨ pc = ·

(eh, l)@pc = (eh, pc)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 152

C.1.4 Operations on SMS stores

getStore takes an SMS store and a pc and returns the copy of the store indicated by the pc. setStoreVar

updates the SMS shared variable storage. It takes a compositional store σG, a pc, and an updated copy of

the SMS store indicated by the pc. It updates σG so that the pc copy of the global variable store is updated

to the given store. setStore does something similar for the SMS EH store.

C.1.5 Well-formed Initial State

We say that an initial state is well-formed if all of the following are true:

• Every global variable has been initialized. We assume the set of global variables is static; no new

variables are created and the ones which exist in the initial state persist for the duration of the

execution

• For the SMS event handler store, the event handlers in the H copy of the store only contains event

handlers with label H, and likewise for the event handlers in the L copy

• For the TS event handler store, tainted nodes may only contain event handlers with label H. Un-

tainted nodes may contain event handlers labeled L or H

C.2 Complete Semantics

C.2.1 Framework Semantics

The top-most level for our compositional framework processes user input events and outputs to chan-

nels. These rules govern how inputs trigger event handlers and how outputs are processed and use the

judgement G,P ` K α
=⇒ K′, meaning the compositional configuration K can step to K′ given input α or

producing output α under the compositional enforcement G and label context P . The rules are shown in

Figures 5.2 and 5.3 in Chapter 5.3.

Event handler lookup semantics The event handler lookup semantics use the judgement G,V , σG `

ks; lookupEhAPI(...) pc ks′ and the rules are shown in Figure C.1. They take the global store and current

configuration stack, ks, use a helper function by the same name as the lookupEhAPI to look up a list of

relevant event handlers and the context they should run in (C). The rules are shown in Figure C.2. To

turn this list into a configuration stack, createK looks up the enforcement mechanism, V , and formats the

configuration depending on which mechanism is used (crtKV (...)). The final result is another configuration

stack, ks′, which is appended to the old one ks :: ks′.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 153

G,V , σG ` ks; lookupEhAPI(...) pc ks′

C = lookupEhAPIG(σG, id.Ev(v), pc) ks′ = createK(P , id.Ev(v), C)
G,P , σG ` ks; lookupEhAPI(id.Ev(v)) pc ks :: ks′

lookupEhAPI

ks = (V ; κ; pc) :: _
C = lookupEHsG,V (σ

G, id.Ev(v), pct l) ks′ = createK(P , id.Ev(v), C)
G,P , σG ` ks :: ks′; lookupEHs(E) pc ks′′

G,P , σG ` ks; lookupEHs((id.Ev(v), l), E) pc ks′′
lookupEHs-r

G,P , σG ` ks; lookupEHs(·) pc ks
lookupEHs-s

P(id.Ev(v), eh, pc) = V
createK(P , id.Ev(v), ((c, pc), C)) = crtKV (eh, v, pc) :: createK(P , id.Ev(v), C) createK(P , id.Ev(v), ·) = ·

crtKSME(eh, v, L) =
(SME; ((·, skip, C, ·); (·, eh(v), P, ·)); L)

crtKSME(eh, v, H) =
(SME; ((·, eh(v), P, ·); (·, skip, C, ·)); H)

crtKSME(eh, v, ·) = (SME; ((·, eh(v), P, ·); (·, eh(v), P, ·)); L) crtKMF(eh, v, l) = (MF; (·, eh(v), P, ·); l)

l v L
crtKTT(eh, v, l) = (TT; (·, eh(v), P, ·); L)

l 6v L
crtKTT(eh, v, l) = (TT; (·, eh(v), P, ·); H)

Figure C.1: Event handler lookup semantics

lookupEHAt performs a join because the @ operation returns everything with label l ∈ {pc, ·}, but we

want to run them at pc. lookupEHAll returns all event handlers visible at that pc and runs them at the join

of their label with the pc. lookupEHs returns the event handlers for a locally triggered event.

Output and output conditions outConditionV (...) determines if an output should be allowed. The output

condition for SME event handlers is that the pc matches the label on the channel (P(ch)) since SME is only

allowed to output to channels matching the execution. Similarly for MF, if the pc is a standard label (i.e.,

L or H), the label on the channel must match the pc for the output to succeed. If the pc = ·, then we

check that the value being output is visible to the channel (i.e., v ↓P(ch) 6= ·). If it is, the output succeeds,

otherwise, the output fails. Finally, for TT, outputs succeed if the data is visible to the channel. This

means that the data itself as well as the context the data was generated in should both be visible to the

channel (i.e., pct l v P(ch)).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 154

lookupEhAPIG(σG, pc, id.Ev(v)) = C

lookupG↓EH
(σ, pcl , id) = φ valOf(φ) 6= NULL

labOf(φ, pcl) = l C = (φ.M(Ev)@pcl) t pcl t l
lookupEHAtG(σ, pcl , id.Ev(v)) = mergeC(C)

lookupEHAt

lookupG↓EH
(σ, pcl , id) = φ

valOf(φ) = NULL
lookupEHAtG(σ, pcl , id.Ev(v)) = ·

lookupEHAt-s

lookupEHAtG(σ, H, id.Ev(v)) = CH
lookupEHAtG(σ, L, id.Ev(v)) = CL mergeC(CH , CL) = C

lookupEHAtG(σ, ·, id.Ev(v)) = C
lookupEHAt-nc

lookupG↓EH
(σ, pcl , id) = φ

valOf(φ) 6= NULL labOf(φ, pcl) = l C = (φ.M(Ev) ↓pcl
) t pcl t l

lookupEHAllG(σ, pcl , id.Ev(v)) = mergeC(C)
lookupEHAll

lookupG↓EH
(σ, pc, id) = φ valOf(φ) = NULL

lookupEHAllG(σ, pcl , id.Ev(v)) = ·
lookupEHAll-s

lookupEHAllG(σ, H, id.Ev(v)) = CH lookupEHAllG(σ, L, id.Ev(v)) = CL

lookupEHAllG,V (σ, ·, id.Ev(v)) = mergeC(CH , CL)
lookupEHAll-nc-merge

V 6= TT C = lookupEHAtG(σ, pc, id.Ev(v))
lookupEHsG,V (σ, pc, id.Ev(v)) = C

pc v L C = lookupEHAllG(σ, ·, id.Ev(v))
lookupEHsG,TT(σ, pc, id.Ev(v)) = C

pc 6v L C = lookupEHAllG(σ, H, id.Ev(v))
lookupEHsG,TT(σ, pc, id.Ev(v)) = C

mergeC(C, C ′) = C ′′

(eh, l′) 6∈ C
mergeC((eh, l), C) = (eh, l), mergeC(C)

C = (C ′, (eh, l′), C ′′)
mergeC((eh, l), C) = mergeC((eh, l ∧ l′), C ′, C ′′)

Figure C.2: Event handler lookup helper functions

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 155

G,V , d ` σG
1 , κV

α−→pc σG
2 , ks

G,P , SME, d ` σG
1 , κL

α−→L σG
2 , (SME; κ′L; L) :: ks ¬consumer(κ′L)

G,P , SME, d ` σG
1 , κH ; κL

α−→L σG
2 , (SME; (κH ; κ′L); L) :: ks

SME-L

G,P , SME, d ` σG
1 , κL

α−→L σG
2 , (SME; κ′L; L) :: ks consumer(κ′L)

G,P , SME, d ` σG
1 , κH ; κL

α−→L σG
2 , (SME; (κH ; κ′L); H) :: ks

SME-LtoH

G,P , SME, d ` σG
1 , κH

α−→H σG
2 , (SME; κ′H ; H) :: ks

G,P , SME, d ` σG
1 , κH ; κL

α−→H σG
2 , (SME; (κ′H ; κL); H) :: ks

SME-H

G, MF, d
 σG
1 , σ1, cstd α−→· σG

2 , σ2, 〈cH |cL〉, E2

G,P , MF, d ` σG
1 , σ1, cstd, P, E1

α−→· σG
2 , (MF; (σ2, cL, P, (E1, E2)); L) :: (MF; (σ2, cH , P, (E1, E2)); H)

P-F

Figure C.3: Additional rules for processing the event handler queue for SME and MF

C.2.2 EH queue semantics

The mid-level semantics are of the form: G,P ,V ` σG
1 , κ

α−→pc σG
2 , ks and run a single event handler κ

with the given enforcement mechanism V and produce some output α. The rules are shown in Figure 5.5

in Chapter 5.3.2. There are a few additional rules for processing some enforcement mechanisms shown in

Figure C.3. SME-L and SME-LtoH run the L execution. If the system is still in producer state after taking

a step (¬consumer(κ′L) as in SME-L), the pc remains L to continue running the L execution. Otherwise,

the low execution is in consumer state (consumer(κ′L) as in SME-LtoH) and the pc switches to H to run

the H execution (SME-H). P-F handles the case where MF produces a faceted command. In this case, we

split the execution to run the L command with pc = L and the H command with pc = H. Note about MF

semantics: similar to the original faceted execution semantics, we split execution whenever we see faceted

values, but unlike prior work, we never go back to a joint execution. Once the execution splits, it remains

split until the event handler finishes execution.

C.2.3 EH semantics

The lower-level semantic rules for evaluating individual event handlers are triggered by the mid-level se-

mantics in the “producer” state. The judgement for these rules is G,V , d
 σG
1 , σV1 , cstd

1
α−→pc σG

2 , σV2 , c2, E.

These rules are shown in Figure C.4 and are mostly standard and enforcement-independent, except for

interactions with the store. Note: these rules are meant to be general enough to apply to any enforcement

mechanism, which is why valOf appears in most rules.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 156

G,V , d
 σG
1 , σV1 , cstd

1
α−→pc σG

2 , σV2 , c2, E

G,V , d
 σG, σV , skip; c •−→pc σG, σV , c, ·
skip

G,V , d
 σG
1 , σV1 , c1

α−→pc σG
2 , σV2 , c′1, E

G,V , d
 σG
1 , σV1 , c1; c2

α−→pc σG
2 , σV2 , c′1; c2, E

seq

G,V , σG, σV ` e ⇓Vpc v valOf(v) = true

G,V , d
 σG, σV , if e then c1 else c2
•−→pc σG, σV , c1, ·

if-true

G,V , σG, σV ` e ⇓Vpc v valOf(v) = false

G,V , d
 σG, σV , if e then c1 else c2
•−→pc σG, σV , c2, ·

if-false

G,V , σG, σV ` e ⇓Vpc v valOf(v) = true

G,V , d
 σG, σV , while e do c •−→pc σG, σV , c; while e do c , ·
while-true

G,V , σG, σV ` e ⇓Vpc v valOf(v) = false

G,V , d
 σG, σV , while e do c •−→pc σG, σV , skip, ·
while-false

G,V , σG, σV ` e ⇓Vpc v

G,V , d
 σG, σV , output ch e
ch(v)−→pc σG, σV , skip, ·

output

read(d, ι) = v

G,V , d
 σG, σV , x := declassify(ι, e)
declassify(ι,v)−→ L σG, σV , x := v, ·

declassify-L

G,V , d
 σG, σV , x := declassify(ι, e) •−→H σG, σV , x := e, ·
declassify-H

Figure C.4: Event handler semantics

G,V , d
 σG
1 , σV1 , c1

α−→pc σG
2 , σV2 , c2, E

G, MF, d
 σG
1 , σV1 , c1

α−→· σG
2 , σV2 , 〈cH |cL〉, E

G, MF, d
 σG
1 , σV1 , c1; c2

α−→· σG
2 , σV2 , setFacetC(cH ; c2, cL; c2), E

seq-f

G, MF, σG, σV ` e ⇓MF
· v = 〈_|_〉 vH = getFacetV(v, H) vL = getFacetV(v, L)
cH = c1 if vH = true cH = c2 if vH = false
cL = c1 if vL = true cL = c2 if vL = false

G, MF, d
 σG, σV , if e then c1 else c2
•−→· σG, σV , setFacetC(cH , cL), ·

if-f

G, MF, σG, σV ` e ⇓MF
· v = 〈_|_〉 vH = getFacetV(v, H) vL = getFacetV(v, L)

cH = c; while e do c if vH = true cH = skip if vH = false
cL = c; while e do c if vL = true cL = skip if vL = false

G, MF, d
 σG, σV , while e do c •−→· σG, σV , setFacetC(cH , cL), ·
while-f

read(d, ι) = v

G, MF, d
 σG, σV , x := declassify(ι, e)
declassify(ι,v)−→ · σG, σV , setFacetC(x := e, x := v), ·

declassify-nc

Figure C.5: Additional event handler semantics for MF

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 157

Faceted semantics There are a few additional rules shown in Figure C.5 for dealing with faceted values.

seq-f handles the case where the first command in a sequence c1; c2 steps to a faceted command (〈cH |cL〉).

We use setFacetC to create a new faceted command where the H facet is the sequence cH ; c2 and the L

facet is the sequence cL; c2. if-f handles branching on a faceted value and while-f handles looping on a

faceted value. In both cases, we evaluate the conditional for both facets and produce a faceted command.

Finally, when evaluating a declassification with pc = ·, we create a faceted command where the command

in the H facet performs the assignment directly, and the L facet assigns the declassified value.

Variable assignment The rules for variable assignment involve a function assign. The rules are shown in

Figure C.8. For SME, configurations keep track of each copy of the store with the execution, so assignments

can be made directly. On the other hand, to update a variable in an SMS store, we first pick the correct

copy of the store using getStore, which is the copy that matches the given pc. We make the assignment in

this store, then update the SMS store using setStoreVar to include the updated copy.

x ∈ σ is a requirement for FS and TS. If the variable does not exist in the store, the assignment is

skipped. Assignments when pc = · are straightforward. For a standard pc (i.e., L or H), we first create a

faceted value which combines the old value from the store with the value being assigned. If the new value

is faceted, getFacetV will get the correct facet and setFacetV will get the correct facet from the old value.

The facet matching the pc comes from the new value, and the other facet comes from the old value: this

is the value assigned to the store. In TS and TT, the value being assigned is labeled l t pc so that neither

the value nor the context it is assigned in cause any leaks.

C.2.4 Expression semantics

The expression semantics are shown in Figure C.7. Note that the sub-expressions are converted to the

same types in each rule. So, for bop, this means that types will not be mixed (e.g., (v, l) bop 〈vH |vL〉 is

not possible). To keep top-level rules as separate as possible from mechanism-specific details (like the

structure of the values), we assume that bop well-defined for the various types of values (i.e., standard,

labeled, and faceted).

Type conversion rules Because the shared variable storage, EH storage, and event handlers may all be

enforced differently from each other, computations involving different values from different enforcement

mechanisms may need to be converted to a different format. The rules are shown in Figure C.7. We

include the destination enforcement mechanism (i) in the expression semantics and convert the final

result to whatever format is expected by this enforcement mechanism.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 158

G,V , d
 σG
1 , σV1 , cstd

1
α−→pc σG

2 , σV2 , c2, E

G,V , σG
1 , σV1 ` e ⇓Vpc v x /∈ σG

1 assignV (σV1 , pc, x, v) = σV2

G,V , d
 σG
1 , σV1 , x := e •−→pc σG

1 , σV2 , skip, ·
assign-L

G,V , σG
1 , σV1 ` e ⇓G↓g

pc v x ∈ σG
1 assignG↓g(σ

G
1 , pc, x, v) = σG

2

G,V , d
 σG
1 , σV1 , x := e •−→pc σG

2 , σV1 , skip, ·
assign-G

assigni(σ, pc, x, v) = σ′

assignSME(σ
std, H, x, v) = σstd[x 7→ v]

sme-assign-H
assignSME(σ

std, L, x, v) = σstd[x 7→ v]
sme-assign-L

σ = getStore(σG ↓g, pcl) x ∈ σ σ′ = σ[x 7→ v]

assignSMS(σ
G, pcl , x, v) = setStoreVar(σG, pcl , σ′)

sms-assign

σ = getStore(σG ↓g, pcl) x 6∈ σ

assignSMS(σ
G, pcl , x, v) = σG sms-assign-s

σ′ = σ[x 7→ v]
assignMF(σ, ·, x, v) = σ′

mf-assign

vL = varMF(σ, L, x) v′ = setFacetV(getFacetV(v, H), vL)

assignMF(σ, H, x, v) = σ[x 7→ v′]
mf-assign-H

vH = varMF(σ, H, x) v′ = setFacetV(vH , getFacetV(v, L))
assignMF(σ, L, x, v) = σ[x 7→ v′]

mf-assign-L

x ∈ σ σ′ = σ[x 7→ v]
assignFS(σ, ·, x, v) = σ′

fs-assign

x ∈ σ vL = varFS(σ, L, x)
v′ = setFacetV(getFacetV(v, H), vL)

assignFS(σ, H, x, v) = σ[x 7→ v′]
fs-assign-H

x ∈ σ vH = varFS(σ, H, x)
v′ = setFacetV(vH , getFacetV(v, L))

assignFS(σ, L, x, v) = σ[x 7→ v′]
fs-assign-L

x 6∈ σ

assignFS(σ, pc, x, v) = σ
fs-assign-s

assignTT(σ, pc, x, (v, l)) = σ[x 7→ (v, l t pc)]
tt-assign

x ∈ σ

assignTS(σ, pc, x, (v, l)) = σ[x 7→ (v, l t pc)]
ts-assign

x 6∈ σ

assignTS(σ, pc, x, (v, l)) = σ
ts-assign-s

Figure C.6: Variable assignment semantics

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 159

G,V , σG, σV ` e ⇓i
pc v

if x ∈ σG, then v = varG↓g(σ
G, pc, x) otherwise, v = varV (σV , pc, x) toDst(v, pc, i) = v′

G,V , σG, σV ` x ⇓i
pc v′

var

G,V , σG, σV ` e1 ⇓i
pc v1 G,V , σG, σV ` e2 ⇓i

pc v2 v = v1 bop v2

G,V , σG, σV ` e1 bop e2 ⇓i
pc v

bop

toDst(v, pc, i) = v′

dst ∈ {SME, SMS, MF, FS}
toDst(vstd, pc, dst) = vstd MS

dst ∈ {TT, TS} pc v L

toDst(vstd, pc, dst) = (vstd, L)
MStoT-L

dst ∈ {TT, TS} pc 6v L

toDst(vstd, pc, dst) = (vstd, pc)
MStoT-H

dst ∈ {TT, TS}
toDst((vstd, l), pcl , dst) = (vstd, l t pcl)

T

dst 6∈ {TT, TS} l v pcl

toDst((vstd, l), pcl , dst) = vstd TtoMS
dst 6∈ {TT, TS} l 6v pcl

toDst((vstd, l), pcl , dst) = dv
TtoMS-dv

toDst((vstd, L), ·, dst) = vstd TtoMS-nc-L
toDst((vstd, H), ·, dst) = 〈vstd|dv〉

TtoMS-nc-H

v = 〈_|_〉
toDst(v, ·, dst) = v

NC

ehAPIe(G, σ, pc, id, v1, · · · , vn) = v

ehAPIeG(σ, H, id, getFacetV(v1, H), · · · , getFacetV(vn, H)) = vH
ehAPIeG(σ, L, id, getFacetV(v1, L), · · · , getFacetV(vn, L)) = vL

ehAPIe(G, σ, ·, id, v1, · · · , vn) = createFct(vH , vL)
ehAPI-nc

ehAPIeG(σ, pcl , id, v1, · · · , vn) = v
ehAPIe(G, σ, pcl , id, v1, · · · , vn) = v

ehAPI

vMF
1 bop vMF

2

v1 = 〈_|_〉 or v2 = 〈_|_〉 vH = (getFacetV(v1, H)) bop (getFacetV(v2, H))
vL = (getFacetV(v1, L)) bop (getFacetV(v2, L))

v1 bop v2 = setFacetV(vH , vL)
bop-facet

vTT
1 bop vTT

2

(v, l) bop (v′, l′) = (v bop v′, l t l′)
bop-label

Figure C.7: Expression semantics

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 160

EH expression APIs, binary operations The ehAPIe rules shown in Figure C.7 handle any special cases

at the interface between different enforcement mechanisms. Since the expression semantics convert the

types of the attributes to the format expected by G, we only need to consider the case where the no-context

pc may be used. We use ehAPI-nc to split the context and compute both the H and L cases to make the

result as accurate as possible. We combine the results using createFct. Otherwise, the EH storage functions

are called directly. The rules for the tree-structured EH storage are similar except that the EH nodes are

passed by reference rather than passing an id.

Binary operations are straightforward, except when they involve facets or tainted values. The relevant

rules are shown in Figure C.7. Recall from our expression semantics that values in sub-expressions will be

converted to the same format (i.e., binary operations will not mix faceted values and labeled values). To

perform a binary operation involving a faceted value (rule bop-facet), split the faceted value(s) on the H

and L facets, separately, then combine the results into a faceted value. To perform a binary operation on

two labeled (tainted) values (rule bop-label), perform the operation on the values and assign the result

the join of the labels on the original values.

Variable lookup Variable lookup rules are shown in Figure C.8. Variable lookups for MF and FS stores

are the same. If the lookup happens under a “standard” (i.e., L or H) pc, then we use getFacetV to get the

appropriate facet from that value in the store (rules mf-var and fs-var). Uninitialized L or H facets will

be ·. getFacetV returns dv in this case. If the pc is ·, we perform the lookup in both the L and H context

and create a faceted value with the results using setFacetV (rules mf-var-f and fs-var-f).

The rules for TT and TS are mostly straightforward. If the variable is in the store, we simply return the

value (rules tt-var and ts-var). If not, we always return a default value with label H, regardless of the pc

(rules tt-var-dv and ts-var-dv). If we labeled the default value with the pc, we would leak something to

the attacker if the variable did exist in the store and was tainted (because (dv, L) is distinguishable from

(v, H)). To hide the possibility of the variable holding a secret, we always taint the default value.

C.2.5 EH Storage semantics

Unstructured EH Storage command semantics Here we describe the commands for interacting with the

event handler storage. The rules are shown in Figure C.9 Note: these rules are meant to be general enough

to apply to any enforcement mechanism, which is why labOf appears in most rules. assign-D updates

the attribute for a node with id id. createElem adds an empty node with id id and assigns the value

determined by expression e. addEH registers a new event handler (eh) to a node given by id. trigger

triggers the event handlers for Ev associated with a node id with parameter e. Each of these rules uses a

helper function with the type of enforcement (G ↓EH) as one of the parameters.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 161

varV (σV , pc, x) = v

varSME(σ
std, pcl , x) = σstd(x)

sme-var

x 6∈ σstd

varSME(σ
std, pcl , x) = dv

sme-var-dv

σl = getStore(σ, pcl)

varSMS(σ, pcl , x) = σl(x)
sms-var

σl = getStore(σ, pcl) x 6∈ σl

varSMS(σ, pcl , x) = dv
sms-var-dv

v = getFacetV(σ(x), pcl)

varMF(σ, pcl , x) = v
mf-var

x ∈ σ
vH = varMF(σ, H, x) vL = varMF(σ, L, x)

varMF(σ, ·, x) = setFacetV(vH , vL)
mf-var-f

x 6∈ σ

varMF(σ, pc, x) = dv
mf-var-dv

v = getFacetV(σ(x), pcl)

varFS(σ, pcl , x) = v
fs-var

x ∈ σ vH = varFS(σ, H, x) vL = varFS(σ, L, x)
varFS(σ, ·, x) = setFacetV(vH , vL)

fs-var-f

x 6∈ σ

varFS(σ, pc, x) = dv
fs-var-dv

varTT(σ, pcl , x) = σ(x)
tt-var

x 6∈ σ

varTT(σ, pcl , x) = (dv, H)
tt-var-dv

varTS(σ, pc, x) = σ(x)
ts-var

x 6∈ σ

varTS(σ, pc, x) = (dv, H)
ts-var-dv

Figure C.8: Variable lookup rules

Tree-structured EH Storage command semantics The rules are mostly similar to the unstructured EH

storage semantics. The exceptions are shown in Figure C.10. createChild adds an empty node as the

left-most child of the node at location ap. The new node has id id and value given by expression e. The

parent of the new node is located at ap. If ap is NULL, the store is unchanged. createSibling adds an

empty node as the right-hand sibling of the node at location as. The new node has id id and value given

by expression e. The parent of the new node is the parent of as. If as or the parent of as is NULL, the store

is unchanged.

Unstructured EH Storage command semantics (helper functions) The rules in this section connect the

framework to the specific enforcement mechanisms protecting the shared EH storage. For each helper

function, there is a set of rules for each enforcement mechanism (SMS, FS, TS).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 162

G,V , d
 σG
1 , σV1 , cstd

1
α−→pc σG

2 , σV2 , c2, E

G,V , σG
1 , σV1 ` e ⇓G↓EH

pc v assignG↓EH
(σG

1 , pc, id, v) = σG
2

G,V , d
 σG
1 , σV1 , id := e •−→pc σG

2 , σV1 , skip, ·
assign-D

G,V , σG
1 , σV1 ` e ⇓G↓EH

pc v σG
2 = createElemG↓EH(σ

G
1 , pc, id, v)

G,V , d
 σG
1 , σV1 , create(id, e) •−→pc σG

2 , σV1 , skip, ·
createElem

σG
2 = registerEHG↓EH

(σG
1 , pc, id, eh)

G,V , d
 σG
1 , σV1 , register(id, eh) •−→pc σG

2 , σV1 , skip, ·
addEH

G,V , σG, σV ` e ⇓G↓EH
pc v E = triggerEHG↓EH

(σG, pc, id, Ev, v)

G,V , d
 σG, σV , trigger(id, Ev, e) •−→pc σG, σV , skip, E
trigger

Figure C.9: Shared Unstructured EH storage command semantics

G,V , σG
1 , σV1 ` e ⇓G↓EH

pc v σG
2 = createChildG↓EH(σ

G
1 , pc, id, ap, v)

G,V , d
 σG
1 , σV1 , createChild(id, ap, e) •−→pc σG

2 , σV1 , skip, ·
createChild

G,V , σG
1 , σV1 ` e ⇓G↓EH

pc v σG
2 = createSiblingG↓EH

(σG
1 , pc, id, as, v)

G,V , d
 σG
1 , σV1 , createSibling(id, as, e) •−→pc σG

2 , σV1 , skip, ·
createSibling

Figure C.10: Shared Tree-structured EH storage command semantics

Node lookup. Figure C.11 shows the rules for looking up a node in the unstructured EH storage. For the

SMS store, this is straightforward. Recall that for the faceted store, nodes may contain faceted values if

they depend on a secret. The FS store also checks whether the node is initialized in the given context by

checking if the attribute in the node is initialized (i.e., whether φ.v ↓pc 6= ·). If a node with matching id

does not exist in the store, or if the node has not been initialized in the given context, rule fs-lookup-s

returns NULL. If the pc = ·, we split the execution and perform the lookup in both the L and H contexts.

We create a facet with the results using setFacetN. The rules for looking up a node in the TS store are

mostly straightforward. We always label NULL as secret in this case, regardless of the pc because we want

it to be indistinguishable from a secret node (in case one exists in an equivalent store).

Node attribute update. Figure C.12 shows the rules for updating the attribute of a node. The SMS rules

are straightforward. sms-assignEH-nc handles the case where the pc = ·. Here, we split the context and

make assignments to the L and H stores separately. The rules for FS attribute updates directly replace the

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 163

lookupG(σ, pc, id) = φ

σ′ = getStoreSMS(σ, pcl) σ′(id) = φ

lookupSMS(σ, pcl , id) = φ
sms-lookup

σ′ = getStoreSMS(σ, pcl) id 6∈ σ′

lookupSMS(σ, pcl , id) = NULL
sms-lookup-s

σ(id) = φ φ.v ↓pcl
6= ·

lookupFS(σ, pcl , id) = φ
fs-lookup

id 6∈ σ or σ(id).v ↓pcl
= ·

lookupFS(σ, pcl , id) = NULL
fs-lookup-s

φH = lookupFS(σ, H, id) φL = lookupFS(σ, L, id)
lookupFS(σ, ·, id) = setFacetN(φH , φL)

fs-lookup-f

σ(id) = φ

lookupTS(σ, pc, id) = φ
ts-lookup

id 6∈ σ

lookupTS(σ, pc, id) = (NULL, H)
ts-lookup-s

Figure C.11: Rules for looking up a node in the unstructured EH storage

attribute in the store if the pc = · and a node with matching id is found in the store (rule fs-assignEH) and

do not change the store if no matching node is found or if the node is not initialized in the given context

(rule fs-assignEH-s). For a standard pc (i.e., it is L or H), we update the attribute by using updateFacet

(rule fs-assignEH-upd). If the node is faceted (i.e., lookupFS returns a faceted value), then the execution

splits and performs the assignment in both the L and H context (rule fs-assignEH-nc). The rules for the

TS store are straightforward.

Triggering an event handler. Figure C.13 contains rules for triggering event handlers. For SMS, sms-

triggerEH triggers the event in the given context (either L or H). If a node with matching id does

not exist, sms-triggerEH-s does not trigger any events. When the pc = ·, sms-triggerEH-nc splits the

context to look up the event in both copies of the store. If multiple events are generated, they are merged

using mergeEvs (Section C.1.2). The rules for FS and TS are similar, except that TS runs the new event in

the context given by the pc joined with the label on the node joined with the label on the argument to the

event (rather than just pc like the others).

Creating a new node. Figure C.14 contains rules for creating a new EH node. To create a new node, we first

check if a node with id exists. If it does not, we create an empty node with the given id. If it does exist,

we update the node with the given attribute using assign. The rules for SMS and FS are straightforward.

Updating a node in TS is more complex: First, we check the current label on the node (given by l′).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 164

assignG (σ, pc, id, v) = σ′

σ = getStoreSMS(σ
G ↓EH, pcl) (v′, M) = σ(id) σ′ = σ[id 7→ (v, M)]

assignSMS(σ
G, pcl , id, v) = setStoreSMS(σ

G, pcl , σ′)
sms-assignEH

σ = getStoreSMS(σ
G ↓EH, pcl) id 6∈ σ

assignSMS(σ
G, pcl , id, v) = σG sms-assignEH-s

σG
1 = assignSMS(σ

G, H, id, getFacet(v, H)) σG
2 = assignSMS(σ

G
1 , L, id, getFacet(v, L))

assignSMS(σ
G, ·, id, v) = σG

2
sms-assignEH-nc

(v′, M) = lookupFS(σ, ·, id)
assignFS(σ, ·, id, v) = σ[id 7→ (v, M)]

fs-assignEH
NULL = lookupFS(σ, pc, id)

assignFS(σ, pc, id, v) = σ
fs-assignEH-s

(v′, M) = lookupFS(σ, pcl , id)
v′′ = updateFacet(v′, v, pcl)

assignFS(σ, pcl , id, v) = σ[id 7→ (v′′, M)]
fs-assignEH-upd

φ = lookupFS(σ, ·, id) = 〈_|_〉
σ′ = assignFS(σ, H, id, getFacet(v, H)) σ′′ = assignFS(σ

′, L, id, getFacet(v, L))
assignFS(σ, ·, id, v) = σ′′

fs-assignEH-nc

(v′, M, l′) = σ(id)
assignTS(σ, pc, id, (v, l)) = σ[id 7→ (id, (v, l t pct l′), M, l′)]

ts-assignEH

id 6∈ σ

assignTS(σ, pc, id, (v, l)) = σ
ts-assignEH-s

Figure C.12: Rules for updating the attribute of a node in the unstructured EH storage

If the node is visible in the current context (i.e., l′ v pc), ts-create-u1 updates the attribute. The new

attribute has the label given by joining the label on the node, pc, and the label on the attribute. If the node

is not visible in the current context (i.e., l′ 6v pc), ts-create-u2 updates the attribute and the label on the

node. The new attribute has the label given by joining the pc and the label on the attribute. The new label

on the nodes is the pc. We update the label on the node because leaving the old label on the node would

mean the node is still not visible in the current context, despite the node being created. This would leak

to the attacker that a secret node with the given id existed. Finally, if the pc = · ts-create-nc creates the

node in the L context. This is different from the other stores (which split the context and create the node

twice) because the given attribute is already formatted as a labeled value. If we were to create the node

twice, it would create the node, then overwrite the attribute with the same value anyway. Creating the

node just once in the L context is more efficient and does not leak anything because the existence of the

node is not secret (since the pc = ·).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 165

triggerEHG (σ, pc, id, Ev, v) = E

lookupSMS(σ, pcl , id) = φ 6= NULL
triggerEHSMS(σ, pcl id, Ev, v) = (id.Ev(v), pcl)

sms-triggerEH

φ = lookupSMS(σ, pcl , id) = NULL
triggerEHSMS(σ, pcl , id, Ev, v) = ·

sms-triggerEH-s

EH = triggerEHSMS(σ, H, id, Ev, getFacet(v, H))
EL = triggerEHSMS(σ, L, id, Ev, getFacet(v, L))

triggerEHSMS(σ, ·, id, Ev, v) = mergeEvs(EH , EL)
sms-triggerEH-nc

φ = lookupFS(σ, pc, id) 6= 〈_|_〉 6= NULL
triggerEHFS(σ, pc, id, Ev, vstd) = (id.Ev(v), pc)

fs-triggerEH

〈_|_〉 = lookupFS(σ, pc, id) ∨ v = 〈_|_〉
EH = triggerEHFS(σ, H, id, Ev, getFacet(v, H)) EL = triggerEHFS(σ, L, id, Ev, getFacet(v, L))

triggerEHFS(σ, ·, id, Ev, v) = mergeEvs(EH , EL)
fs-triggerEH-nc

lookupFS(σ, pc, id) = NULL
triggerEHFS(σ, pc, id, Ev, vstd) = ·

fs-triggerEH-s

lookupG (σ, pcl , id) = (_, _, lφ) l = labOf(v, pcl)

triggerEHG (σ, pcl , id, Ev, v) = (id.Ev(v), pcl t lφ t l)
ts-triggerEH

EH = triggerEHG (σ, H, id, Ev, getFacetV(v, H)) EL = triggerEHG (σ, L, id, Ev, getFacetV(v, L))
triggerEHG (σ, ·, id, Ev, v) = mergeEvs(EH , EL)

ts-triggerEH-nc

φ = lookupG (σ, pcl , id) = (NULL, _)
triggerEHG (σ, pcl , id, Ev, v) = ·

ts-triggerEH-s

Figure C.13: Rules for triggering an event in the unstructured EH storage

Registering a new event handler. Figure C.15 contains rules for registering a new event handler. To register

a new event handler, we first look up the node with the given id. If the node exists, we add the event

handler, otherwise we do not change the store. If the pc = · we split the context and add the event handler

in both the L and H context. The rules for the SMS and TS stores are straightforward. For the FS store,

if the node with matching id is faceted, registerEH-nc splits the execution to add the event handler to

both nodes in the facet.

Tree-structured EH Storage command semantics (helper functions) The rules in this section connect

the framework to the specific enforcement mechanisms protecting the shared EH storage. For each helper

function, there is a set of rules for each enforcement mechanism (SMS, FS). Note that because we prove

the unstructured TS store only satisfies weak secrecy, we do not formalize the tree-structured TS store.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 166

createElemG(σG
1 , pc, id, v) = σG

2

lookupSMS(σ, pcl , id) = NULL φ = (vstd, ·) σ′ = getStore(σ, pcl)

createElemSMS(σ, pcl , id, v) = setStore(σ, pcl , σ′[id 7→ φ])
sms-create

lookupSMS(σ, pc, id) = φ 6= NULL σ′ = assignSMS(σ, pc, id, v)
createElemSMS(σ, pcl , id, v) = σ′

sms-create-u

σ′ = createElemSMS(σ, H, id, v) σ′′ = createElemSMS(σ
′, L, id, v)

createElemSMS(σ, ·, id, v) = σ′′
sms-create-nc

lookupFS(σ, ·, id) = NULL v′ = getFacetV(v, pc) φ = (createFacet(v′, pc), ·)
createElemFS(σ, pc, id, v) = σ[id 7→ φ]

fs-create

lookupFS(σ, ·, id) = φ 6= NULL σ′ = assignFS(σ, pc, id, v)
createElemFS(σ, pc, id, v) = σ′

fs-create-u

lookupTS(σ, pcl , id) = (NULL, _) φ = (v, ·, pcl)

createElemTS(σ, pcl , id, v) = σ[id 7→ φ]
ts-create

lookupTS(σ, pc, id) = (v′, M, l′) l′ v pc σ′ = σ[id 7→ ((v, l t pct l′), M, l′)]
createElemTS(σ, pc, id, (v, l)) = σ′

ts-create-u1

lookupTS(σ, pc, id) = (v′, M, l′) l′ 6v pc σ′ = σ[id 7→ ((v, l t pc), M, pc)]
createElemTS(σ, pc, id, (v, l)) = σ′

ts-create-u2

σ′ = createElemTS(σ, L, id, v)
createElemTS(σ, ·, id, v) = σ′

ts-create-nc

Figure C.14: Rules for creating a new node in the unstructured EH storage

Node address lookup. Figure C.16 contains rules for looking up the address of a node. lookupA looks up the

address of a node by traversing the EH tree store recursively. We show only the rules for FS. The biggest

difference between SMS and FS is that the structure of the nodes is different. fs-lookupA handles the

case where the current node matches the given id. We also have to check that the node is visible in the

given context (i.e., φ.v ↓pcl
6= ·). If the node we’re currently checking does not match, but it is visible in the

given context, fs-lookupA-r1 adds the node’s children (that are visible in the given context, A ↓pcl
) to the

list of nodes to check. If the current node does not match the given id, and is not visible, fs-lookupA-r2

checks the rest of the nodes in the list but does not add the children of the current node. Traversing the

SMS tree is a little easier because we know all of the nodes are visible as long as we are interacting with

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 167

registerEHG (σG
1 , pc, id, eh) = σG

2

(v, M) = lookupSMS(σ, pcl , id)
eh = onEv(x){c} M′ = M[Ev 7→ M(Ev) ∪ {(eh, pcl)}] σ′ = getStore(σ, pcl)

registerEHSMS(σ, pcl , id, eh) = setStore(σ, pcl , σ′[id 7→ (v, M′)])
sms-registerEH

NULL = lookupSMS(σ, pcl , id)
registerEHSMS(σ, pcl , id, eh) = σ

sms-registerEH-s

σ′ = registerEHSMS(σ, H, id, eh) σ′′ = registerEHSMS(σ
′, L, id, eh)

registerEHSMS(σ, ·, id, eh) = σ′′
sms-registerEH-nc

(v, M) = lookupFS(σ, pc, id) eh = onEv(x){c} M′ = M[Ev 7→ M(Ev) ∪ {(eh, pc)}]
registerEHFS(σ, pc, id, eh) = σ[id 7→ (v, M′)]

fs-registerEH

〈φH |φL〉 = lookupFS(σ, pc, id)
σ′ = registerEHFS(σ, H, id, eh) σ′′ = registerEHFS(σ

′, L, id, eh)
registerEHFS(σ, ·, id, eh) = σ′′

fs-registerEH-nc

NULL = lookupFS(σ, pc, id)
registerEHFS(σ, pc, id, eh) = σ

fs-registerEH-s

(v, M, l) = lookupTS(σ, pcl , id)
eh = onEv(x){c} M′ = M[Ev 7→ M(Ev) ∪ {(eh, pcl t l)}]

registerEHTS(σ, pcl , id, eh) = σ[id 7→ (v, M′, l)]
ts-registerEH

σ′ = registerEHTS(σ, H, id, eh) σ′′ = registerEHTS(σ
′, L, id, eh)

registerEHTS(σ, ·, id, eh) = σ′′
ts-registerEH-nc

φ = lookupTS(σ, pcl , id) valOf(φ) = NULL
registerEHTS(σ, pcl , id, eh) = σ

ts-registerEH-s

Figure C.15: Rules for registering a new event handler in the unstructured EH storage

lookupAG (σG , pc, id, A) = a

σ(a).id = id φ.v ↓pcl
6= ·

lookupAFS(σ, pcl , id, (a :: A)) = a
fs-lookupA

σ(a).id 6= id σ(a).v ↓pcl
6= ·

lookupAFS(σ, pcl , id, (A :: σ(a).A ↓pcl
)) = a′

lookupAFS(σ, pcl , id, (a :: A)) = a′
fs-lkupA-r1

σ(a).v ↓pcl
= ·

lookupAFS(σ, pcl , id, A) = a′

lookupAFS(σ, pcl , id, (a :: A)) = a′
fs-lookupA-r2

aH = lookupAFS(σ, H, id, A ↓H) aL = lookupAFS(σ, L, id, A ↓L)

lookupAFS(σ, ·, id, A) = setFacetA(aH , aL)
fs-lookupA-f

lookupAFS(σ, pcl , id, ·) = NULL
fs-lookupA-s

Figure C.16: Rules for looking up the address of a node in the tree-structured EH storage

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 168

lookupG(σG , pcl , id, A) = φ

σ′ = getStore(σ, pcl) lookupASMS(σ, pcl , id, art) = a 6= NULL σ′(a) = φ

lookupSMS(σ, pcl , id) = φ
sms-lookup

lookupASMS(σ, pcl , id, art) = NULL
lookupSMS(σ, pcl , id) = NULL

sms-lookup-s

Figure C.17: Rules for looking up a node in the tree-structured EH storage

assignG(σG1 , pc, a, v) = σG2

(id, v′, M, ap, A) = σ(a)
assignFS(σ, ·, a, v) = σ[a 7→ (id, v, M, ap, A)]

fs-assignEH
assignFS(σ, pcl , NULL, v) = σ

fs-assignEH-s

assignFS(σ, H, aH , getFacetV(v, H)) = σ′ assignFS(σ, L, aL, getFacetV(v, L)) = σ′′

assignFS(σ, ·, 〈aH |aL〉, v) = σ′′
fs-assignEH-nc

(id, v′, M, ap, A) = σ(a) v′′ = updateFacet(v′, v, pcl)

assignFS(σ, pcl , a, v) = σ[a 7→ (id, v′′, M, ap, A)]
fs-assignEH-upd

Figure C.18: Rules for updating the attribute of a node in the tree-structured EH storage

the appropriate copy of the store. If pc = ·, fs-lookupA-f splits the execution to look for the address of

the node in both the L and H contexts. The result is made into a faceted address using setFacetA. Finally,

if a node with matching id does not exist, fs-lookupA-s returns NULL.

Node lookup. Figure C.17 contains rules for looking up nodes by id. This function works by looking up

the address of the node with matching id and then returning the node stored at that address. For the

SMS store, sms-lookup uses lookupASMS to get the address of the node. If the address is not NULL, we

look up the node using the address in the copy of the store returned by getStore. If the address is NULL,

sms-lookup-s returns NULL. The rules for FS are similar except they don’t use getStore.

Node attribute update. Figure C.18 contains rules for updating the attribute of a node. One of the arguments

to this function is the address of the node being updated, so the node does not need to be looked up.

Note for FS we assume that we only have the address of valid nodes, visible at this context. To update the

attribute of an FS node, when pc = · fs-assignEH updates the attribute directly. If the pc 6= · (i.e., it is L

or H), fs-assignEH-upd updates the attribute by using updateFacet which only changes the appropriate

facet of the attribute. If the address is NULL, fs-assignEH-s leaves the store unchanged. If the address is

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 169

triggerEHG(σG , pc, id, Ev, v) = E

lookupASMS(σ, pcl , id, art) 6= NULL
triggerEHSMS(σ, pcl , id, Ev, v) = (id.Ev(v), pc)

sms-triggerEH

lookupASMS(σ, pcl , id, art) = NULL
triggerEHSMS(σ, pcl , id, Ev, v) = ·

sms-triggerEH-s

EH = triggerEHSMS(σ, H, id, Ev, getFacet(v, H))
EL = triggerEHSMS(σ, L, id, Ev, getFacet(v, L))

triggerEHSMS(σ, ·, id, Ev, v) = mergeEvs(EH , EL)
sms-triggerEH-nc

Figure C.19: Rules for triggering the event handler in the tree-structured EH storage

faceted, fs-assignEH-nc splits the execution and performs the assignment to both addresses. The rules

for SMS are similar except they use getStore and setStore to ensure we are interacting with the appropriate

copy of the storage.

Triggering an event handler. Figure C.19 contains rules for triggering an event handler. Unlike some of the

other functions, this one takes the id of the node, so it does need to be looked up. We trigger events in

SMS and FS stores the same way, so we show only the rules for SMS. We first look up the node with

matching id. If one exists (i.e., the address of the node is not NULL), then sms-triggerEH returns an event

triggered in the given context. If a node with matching id does not exist (i.e., the address of the node is

NULL), then sms-triggerEH-s does not trigger any events. If the pc = ·, then sms-triggerEH-nc splits

the execution and we trigger the event in both the L and H copy of the store. Finally, if more than one

event is triggered, we merge them using mergeEvs (Section C.1.2).

Adding a child to a node. Figure C.20 contains rules for adding a child to an existing node. One of the

arguments to this function is the address of the parent node, so the node does not need to be looked up.

Adding a child to a node in the SMS store is straightforward, so we focus on the rules for FS. fs-createC

looks up the given id to see if the given node already exists. Note that we use pc = · for the lookup to

see if the node exists in any context, not just the given context. If the node does not exist, we also look

up the parent node. We create a new node with given (faceted) attribute and (faceted) parent, add it to

the store (at a fresh location), and also add a faceted pointer to the new node to the list of children of the

given parent node. We create facets using createFacet (Section C.1.2). The new node will have a faceted

attribute and parent because it only exists in the given context, if a node with the same id is added later

in a different context, we will update the other facet of the attribute/parent appropriately. If a node with

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 170

createChildG(σG1 , pc, id, ap, v) = σG2

lookupAFS(σ, ·, id, art) = NULL a 6∈ σ σ(ap) = (idp, vp, M, a′p, A) vp ↓pcl
6= ·

σ′ = σ[ap 7→ (idp, vp, M, a′p, (createFacet(a, pcl) :: A))]

σ′′ = σ′[a 7→ (id, createFacet(v, pcl), ·, createFacet(ap, pcl), ·)]
createChildFS(σ, pcl , id, ap, v) = σ′′

fs-createC

lookupAFS(σ, ·, id, art) = 〈a|NULL〉
σ(a) = (id, v′, M, a′p, A) σ(ap) = (idp, vp, Mp, a′′p , Ap) vp ↓L 6= ·

σ′ = σ[ap 7→ (idp, vp, Mp, a′p, (createFacet(a, L) :: Ap))]

σ′′ = σ′[a 7→ (id, updateFacet(v′, v, L), M, updateFacet(a′p, ap, L), A)]

createChildFS(σ, L, id, ap, v) = σ′′
fs-createC-uL

lookupAFS(σ, ·, id, art) = 〈NULL|a〉
σ(a) = (id, v′, M, a′p, A) σ(ap) = (idp, vp, Mp, a′′p , Ap) vp ↓H 6= ·

σ′ = σ[ap 7→ (idp, vp, Mp, a′p, (createFacet(a, H) :: Ap))]

σ′′ = σ′[a 7→ (id, updateFacet(v′, v, H), M, updateFacet(a′p, ap, H), A)]

createChildFS(σ, H, id, ap, v) = σ′′
fs-createC-uH

σ′ = createChildFS(σ, H, id, getFacetA(ap, H), getFacetV(v, H))
σ′′ = createChildFS(σ, L, id, getFacetA(ap, L), getFacetV(v, L))

createChildFS(σ, ·, id, ap, v) = σ′′
fs-createC-nc

lookupAFS(σ, ·, id, art) = a a ↓pcl
6= NULL∨ σ(ap).v ↓pcl

= ·
createChildFS(σ, pcl , id, ap, v) = σ

fs-createC-s1

createChildFS(σ, pcl , id, NULL, v) = σ
fs-createC-s2

Figure C.20: Rules for adding a child to a node in the tree-structured EH storage

the given id already exists in the given context, the parent node is not visible in the given context, or if

the pointer to the parent node is NULL, fs-createC-s1 or fs-createC-s2 (respectively) leaves the store

unchanged. If pc = ·, fs-createC-nc splits the execution to add the node in both contexts.

Recall that we use the · context to see if a node with the given id already exists in the store. We do this

to see if the node already exists in the other context so that we can initialize the node in the new context.

fs-createC-uL handles the case where the node already exists in the H context and is being added in the

L context (and respectively for fs-createC-uH to add the node in the H context). In these cases, we get

a faceted node when we look up the node by id and the facet for the context we want to add the node

in is NULL (meaning that the node does not exist in that context yet). Instead of adding a new node, we

update the existing node. We use updateFacet to update the attribute and pointer to the parent.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 171

createSiblingG(σG1 , pc, id, as, v) = σG2

lookupAFS(σ, ·, id, art) = NULL a 6∈ σ σ(as).v ↓pcl
6= ·

σ(as).ap ↓pcl
= ap σ(ap) = (idp, v′, M, a′p, (A :: a′s :: A′)) a′s ↓pcl

= as v′ ↓pcl
6= ·

σ′ = σ[ap 7→ (idp, v′, M, a′p, (A :: a′s :: createFacet(a, pcl) :: A′))]
σ′′ = σ′[a 7→ (id, createFacet(v, pcl), ·, createFacet(ap, pcl), ·)]

createSiblingFS(σ, pcl , id, as, v) = σ′′
fs-createS

lookupAFS(σ, ·, id, art) = 〈a|NULL〉
σ(a) = (id, v′, M, a′p, A) σ(as).v ↓L 6= · σ(as).ap ↓L= ap

σ(ap) = (idp, vp, Mp, a′p, (Ap :: a′s :: A′p)) a′s ↓L= as vp ↓L 6= ·
σ′ = σ[ap 7→ (idp, v′, M, a′p, (A :: a′s :: createFacet(a, L) :: A′))]

σ′′ = σ′[a 7→ (id, updateFacet(v′, v, L), ·, updateFacet(a′p, ap, L), ·)]
createSiblingFS(σ, L, id, as, v) = σ′′

fs-createS-uL

lookupAFS(σ, ·, id, art) = 〈NULL|a〉
σ(a) = (id, v′, M, a′p, A) σ(as).v ↓H 6= · σ(as).ap ↓H= ap

σ(ap) = (idp, vp, Mp, a′p, (Ap :: a′s :: A′p)) a′s ↓H= as vp ↓H 6= ·
σ′ = σ[ap 7→ (idp, v′, M, a′p, (A :: a′s :: createFacet(a, H) :: A′))]

σ′′ = σ′[a 7→ (id, updateFacet(v′, v, H), ·, updateFacet(a′p, ap, H), ·)]
createSiblingFS(σ, H, id, as, v) = σ′′

fs-createS-uH

σ′ = createSiblingFS(σ, H, id, getFacetA(as, H), getFacetV(v, H))
σ′′ = createSiblingFS(σ, L, id, getFacetA(as, L), getFacetV(v, L))

createSiblingFS(σ, ·, id, as, v) = σ′′
fs-createS-nc

lookupAFS(σ, ·, id, art) = a a ↓pcl
6= ·

createSiblingFS(σ, pcl , id, as, v) = σ
fs-createS-s1

as = NULL∨ σ(as).ap ↓pcl
= NULL

createSiblingFS(σ, pcl , id, as, v) = σ
fs-createS-s2

σ(as).v ↓pcl
= · ∨ σ(as).ap ↓pcl

= · ∨ σ(σ(as).ap ↓pcl
).v ↓pcl

= ·
createSiblingFS(σ, pcl , id, as, v) = σ

fs-createS-s3

Figure C.21: Rules for adding a sibling to a node in the tree-structured EH storage

registerEHG (σG1 , pc, a, eh) = σG2

σ′ = getStore(σ, pcl)
σ′(a) = (id, v, M, ap, A) eh = onEv(x){c} M′ = M[Ev 7→ M(Ev) ∪ {(eh, pcl)}]

registerEHSMS(σ, pcl , a, eh) = setStore(σ, pcl , σ′[a 7→ (id, v, M′, ap, A)])
sms-registerEH

σ′ = registerEHSMS(σ, H, getFacet(a, H), eh) σ′′ = registerEHSMS(σ, L, getFacet(a, L), eh)
registerEHSMS(σ, ·, a, eh) = σ′′

sms-registerEH-nc

registerEHSMS(σ, pcl , NULL, eh) = σ
sms-registerEH-s

Figure C.22: Rules for registering an event handler to a node in the tree-structured EH storage

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 172

Adding a sibling to a node. Figure C.21 contains rules for adding a sibling to an existing node. One of

the arguments to this function is the address of the sibling node, so the node does not need to be looked

up. Again, adding a sibling to a node in the SMS store is straightforward, so we show only the FS rules,

which are similar to adding a child.

Registering a new event handler. Figure C.22 contains rules for registering an event handler to a node. One of

the arguments to this function is the address node being updated, so the node does not need to be looked

up. To register a new event handler in the SMS store, sms-registerEH looks up the node and adds the

new event handler to the event handler map with the given context as the label. getStore and setStore are

used to ensure that we interact with the correct copy of the SMS store. If the pc = ·, sms-registerEH-nc

splits the execution and registers the event handler in both copies of the store. If the node’s address is

NULL, sms-registerEH-s leaves the store unchanged. Registering a new event handler in the FS store is

similar.

Unstructured EH Storage expression semantics For the unstructured EH store, we only have one ex-

pression which is used to look up the attribute of a node: getValG . These rules are straightforward. If a

matching node is found, we return the value, otherwise we return dv. For the TS store, we always taint dv

so the attacker cannot distinguish between a tainted node and one which does not exist.

G,V , σG, σV ` e ⇓i
pc v

∀i ∈ [1, n], G,V , σG, σV ` ei ⇓G↓EH
pc vi

ehAPIe(G ↓EH, σG, pc, a, v1, · · · , vn) = v toDst(v, pc, i) = v′

G,V , σG, σV ` ehAPIe(a, e1, · · · , en) ⇓i
pc v′

ehAPI

Tree-structured EH Storage expression semantics For the tree-structured EH store, we have several

expressions for navigating the tree (moveX) and looking up the attribute (getVal) and children of a node

(getChildren). We evaluate EH expressions using a helper function. Using ehAPI, we first evaluate sub-

expressions, then pass those results to a helper function, and finally use toDst to ensure the results are

appropriately formatted for the mechanism i.

Traversing the tree. We have several APIs for navigating the EH storage trees. moveRoot returns the root

node (i.e., the top-most node in the tree). moveUp takes the address of a node and returns the node above

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 173

moveXSMS(σ
SMS, pc, · · ·) = a

moveRootSMS(σ, pcl) = art sms-moveRoot

σ′ = getStore(σ, pcl)

moveUpSMS(σ, pcl , a) = σ′(a).ap
sms-moveU

moveUpSMS(σ, pcl , NULL) = NULL
sms-moveU-s

σ′ = getStore(σ, pcl)
σ′(a).A = a′ :: A

moveDownSMS(σ, pcl , a) = a′
sms-moveD

σ′ = getStore(σ, pcl)
σ′(a).A = ·

moveDownSMS(σ, pcl , a) = NULL
sms-moveD-s1

moveDownSMS(σ, pcl , NULL) =
NULL

sms-moveD-s2

σ′ = getStore(σ, pcl) σ′(a).ap = ap σ′(ap).A = A :: a :: a′ :: A′

moveRightSMS(σ, pcl , a) = a′
sms-moveR

σ′ = getStore(σ, pcl) σ′(a).ap = ap σ′(ap).A = A′p :: a

moveRightSMS(σ, pcl , a) = NULL
sms-moveR-s1

σ′ = getStore(σ, pcl) σ′(a).ap = NULL
moveRightSMS(σ, pcl , a) = NULL

sms-moveR-s2

moveRightSMS(σ, pcl , NULL) = NULL
sms-moveR-s3

Figure C.23: Rules for navigating the tree-structured SMS EH storage

getValG (σG , pc, a) = v

σ′ = getStore(σ, pcl) φ = σ′(a)
getValSMS(σ, pcl , a) = φ.v

sms-getVal

getValSMS(σ, pcl , NULL) = dv
sms-getVal-s

σ(a) = φ

getValFS(σ, pcl , a) = getFacetV(φ.v, pcl)
fs-getVal

getValFS(σ, pcl , NULL) = dv
fs-getVal-s

Figure C.24: Rules for accessing the attribute of node in the tree-structured EH storage

it (i.e., its parent). moveDown takes the address of a node and returns the first node below it (i.e., its first

child). moveRight takes the address of a node and returns the node to its right (i.e., its righthand sibling).

Figure C.23 shows the rules for navigating the SMS tree. sms-moveRoot returns the address of the

root node in the tree. Recall that the root node is always given by art. sms-moveU takes the address of a

node and returns its parent and sms-moveU-s handles the case where the given address is NULL (in which

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 174

getChildrenG (σG , pc, a) = v

σ′ = getStore(σ, pcl) φ = σ′(a)
getChildrenSMS(σ, pcl , a) = len(φ.A)

sms-getChildren

getChildrenSMS(σ, pcl , NULL) = dv
sms-getChildren-s

σ(a) = φ φ.v ↓pcl
6= ·

getChildrenFS(σ, pcl , a) = len(φ.A ↓pcl
)

fs-getChildren

σ(a).v ↓pcl
= · ∨ a = NULL

getChildrenFS(σ, pcl , a) = dv
fs-getChildren-s

Figure C.25: Rules for returning the number children a node in the tree-structured EH storage has

case we return NULL). sms-moveD takes the address of a node and returns its first child. sms-moveD-s1

and sms-moveD-s2 handle the case where the given node does not have any children, or the given node is

NULL (respectively). In both cases we return NULL. sms-moveR takes the address of a node (a), navigates

to its parent (ap), and returns ap’s child following a. If there is no child following a, sms-moveR-s1 returns

NULL. If ap is NULL, sms-moveR-s2 returns NULL. If a is NULL, sms-moveR-s3 returns NULL. The rules

for navigating the FS tree are similar.

Looking up attributes. Figure C.24 shows the rules for looking up the attribute of a given node. To look up

the attribute of an SMS node, sms-getVal looks up the given address in the relevant copy of the store and

returns the node’s attribute. If the given address is NULL, sms-getVal-s returns a default value. To look

up the attribute of an FS node, fs-getVal looks up the given address and returns the appropriate facet of

the node. If the given address is NULL, fs-getVal-s returns a default value.

Number of children. Figure C.25 shows the rules for looking up the number of children a node has. Note

that we return a default value instead of 0 for invalid or NULL nodes. This is to ensure that the attacker

cannot tell the difference between a node not existing and a node being hidden from the current context.

For an SMS node, sms-getChildren first looks up the node in the relevant copy of the store. Then,

it computes the length of the node’s list of children. If the given address is NULL, sms-getChildren-s

returns a default value. For an FS node, fs-getChildren looks up the node and, if it is visible in the

current context (i.e., v ↓pcl
6= ·), then it returns the length of the node’s list of children. If the given address

is NULL or if the node is not visible in the current context (i.e., v ↓pcl
= ·), then fs-getChildren-s returns

the default value.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 175

C.2.6 Weak secrecy semantics

We differentiate weak from standard semantics by using
w instead of
, `w instead of `, assignW instead

of assign, etc., respectively. For commands involving conditionals: if-false, while-true, and while-false

are similar to if-true. For G 6= TS, all assignment functions return • for α. The rules are shown in

Figure C.26. Some event handler APIs are also modified for TS. The rules are shown in Figure C.27. All

other mechanisms return • for α. gw(id) is emitted whenever a node is created in the H context or the

value of the node is upgraded from L to H.

C.3 Security Definitions

C.3.1 Configuration equivalence

Configurations are equivalent if (1) their release modules R are in the same state, (2) the same values are

on their release channels d, (3) their global stores are equivalent σG, and (4) their current configuration

stacks ks are equivalent. The rules are shown in Figure C.28.

Definition 107 (Configuration equivalence). Given two compositional configurations K1 and K2 where K1 =

R1, d1; σG
1 ; ks1 and K2 = R2, d2; σG

2 ; ks2, K1 ≈L K2 iff R1 = R2, d1 = d2, σG
1 ≈L σG

2 , and ks1 ≈L ks2

Configuration stack equivalence Equivalence is defined inductively from the top down; the publicly

visible (pc v L) configurations should be equivalent and the private configurations (pc 6v L) are ignored.

Equivalence for single configurations, κ. Two configurations are low equivalent if (1) they have equivalent

stores σ, (2) they are executing the same command c, (3) they are in the same execution state s, and (4)

their local events E are low equivalent. (Note: the rule for SME configurations helps with proofs). The

rules are shown in Figure C.28.

Local event queues are low equivalent iff their low projections are the same.

Definition 108 (Event queue equivalence). Given two local event queues E1 and E2, E1 ≈L E2 iff E1 ↓L= E2 ↓L

The low projection of an event queue keeps only the publicly visible events (l v L); the secret events

(l 6v L) are ignored. Note that in our semantics, tainted arguments to local events also taints the event

itself. Also, facets never appear as event arguments: instead, they are split into separate events. So only

the label on the event needs to be considered for the ↓L definition. The rules are shown in Figure C.28.

C.3.2 Store equivalence

Local store equivalence Local stores σV are low equivalent if their low projections are the same.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 176

G, TT, d
w σG
1 , σTT

1 , c1
α−→pc σG

2 , σTT
2 , c2, E

G, TT, σG, σ ` e ⇓TT
pc (true, l) pc v L l 6v L

G, TT, d
w σG, σ, if e then c1 else c2
br(true)−→ pc σG, σ, c1, ·

if-true-br

G, TT, σG
1 , σ ` e ⇓G↓g

pc v x ∈ σG pc 6v L assignWG↓g(σ
G
1 , pc, x, v) = (σG

2 , α)

G, TT, d
w σG
1 , σ1, x := e α−→pc σG

2 , σ1, skip, ·
assign-G-h

G, TT, σG
1 , σ ` e ⇓G↓EH

pc v pc 6v L assignWG↓EH
(σG

1 , pc, id, v) = (σG
2 , α)

G, TT, d
w σG
1 , σ1, id := e α−→pc σG

2 , σ1, skip, ·
assign-D-h

G, TT, σG
1 , σ ` e ⇓G↓EH

pc v (σG
2 , α) = createElemWG↓EH(σ

G
1 , pc, id, v)

G, TT, d
w σG
1 , σ1, create(id, e) α−→pc σG

2 , σ1, skip, ·
createElem-h

assignWTS(σ, pc, x, v) = σ′

x ∈ σ l t pc v labOf(σ(x), pc)
assignWTS(σ, pc, x, (v, l)) = (σ[x 7→ (v, l t pc)], •)

ts-assign

x ∈ σ l t pc 6v labOf(σ(x), pc)
assignWTS(σ, pc, x, (v, l)) = (σ[x 7→ (v, l t pc)], gw(x))

ts-assign-gw

x 6∈ σ

assignWTS(σ, pc, x, (v, l)) = (σ, •)
ts-assign-s

(id, (v′, l′′), M, l′) = σ(id) l t pc v l′′ ∨ l′ 6v L
assignWTS(σ, pc, id, (v, l)) = (σ[id 7→ (id, (v, l t pct l′), M, l′)], •)

ts-assignEH

(id, (v′, l′′), M, l′) = σ(id) l t pc 6v l′′ l′ v L
assignWTS(σ, pc, id, (v, l)) = (σ[id 7→ (id, (v, l t pct l′), M, l′)], gw(id))

ts-assignEH-gw

id 6∈ σ

assignWTS(σ, pc, id, (v, l)) = (σ, •)
ts-assignEH-s

Figure C.26: Modified EH semantics for weak secrecy

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 177

lookupTS(σ, pcl , id) = (NULL, _) φ = (id, v, ·, pcl)

createElemWTS(σ, pcl , id, v) = (σ[id 7→ φ], •)
ts-create

(σ′, α) = createElemWTS(σ, L, id, v)
createElemWTS(σ, ·, id, v) = (σ′, α)

ts-create-nc

lookupTS(σ, pcl , id) = (id, (v′, l′), M, l′′)
l′′ v pcl l t pcl v l′ ∨ l′′ 6v L σ′ = σ[id 7→ (id, (v, l t pcl t l′′), M, l′′)]

createElemWTS(σ, pcl , id, (v, l)) = (σ′, •)
ts-create-u1

lookupTS(σ, pcl , id) = (id, (v′, l′), M, l′′)
l′′ v pcl l′′ v L l t pcl 6v l′ σ′ = σ[id 7→ (id, (v, l t pcl t l′′), M, l′′)]

createElemWTS(σ, pcl , id, (v, l)) = (σ′, gw(id))
ts-create-u1-gw

lookupTS(σ, pcl , id) = (id, (v′, l′), M, l′′) l′′ 6v pcl σ′ = σ[id 7→ (id, (v, l t pcl), M, pcl)]

createElemWTS(σ, pc, id, (v, l)) = (σ′, •)
ts-create-u2

Figure C.27: Updated event handler API semantics for weak secrecy

ks ≈L ks

· ≈L ·
pc1 v L ∧ pc2 v L V1 = V2 κ1 ≈L κ2 ks1 ≈L ks2

((V1; κ1; pc1) :: ks1) ≈L ((V2; κ2; pc2) :: ks2)

pc1 6v L ks1 ≈L ((V2; κ2; pc2) :: ks2)

((V1; κ1; pc1) :: ks1) ≈L ((V2; κ2; pc2) :: ks2)

pc2 6v L ((V1; κ1; pc1) :: ks1) ≈L ks2

((V1; κ1; pc1) :: ks1) ≈L ((V2; κ2; pc2) :: ks2)

κV1 ≈L κV2

κL = κ′L
κH ; κL ≈L κ′H ; κ′L

κ1 = σ1, c1, s1, E1 κ2 = σ2, c2, s2, E2
σ1 ≈L σ2 c1 = c2 s1 = s2 E1 ≈L E2

κ1 ≈L κ2

E ↓L= E′

pc v L
((id.Ev(v), pc), E) ↓L= id.Ev(v), E ↓L

pc 6v L
((id.Ev(v), pc), E) ↓L= E ↓L · ↓L= ·

Figure C.28: Rules for configuration stack and event queue equivalence

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 178

σV ↓L= σstd

· ↓L= ·
σV1 = σV2 , x 7→ 〈_|v〉 or σV1 = σV2 , x 7→ (v, L)

σV1 ↓L= x 7→ v, σV2 ↓L

σV1 = σV2 , x 7→ (v, H) or σV1 = σV2 , x 7→ 〈v|·〉
σV1 ↓L= σV2 ↓L

σMF
1 = σMF

2 , x 7→ vstd

σMF
1 ↓L= x 7→ vstd, σMF

2 ↓L

σSME = (σH , σL)

σSME ↓L= σL

Figure C.29: Low projection of a local variable store. The rules for the global variable store are the same.

Definition 109 (Local store equivalence). Given two local stores σV1 and σV2 , σV1 ≈L σV2 iff σV1 ↓L= σV2 ↓L

The low projection of a local store σV keeps the publicly visible variables and ignores the secret vari-

ables. Publicly visible and secret depend on the enforcement mechanism, V . For MF, unfaceted vstd values

are publicly visible, as well as the low facet vL of faceted values 〈vH |vL〉. If a faceted value does not have

a low facet, as in 〈v|·〉, the value is not publicly visible. For , L-labeled values are publicly visible (i.e., v is

visible in (v, L)) and H-labeled values are secret. For SME, the L copy of the store is visible while the H

copy is secret. The rules are shown in Figure C.29.

Global store equivalence Global stores (σg, σEH) are low equivalent if both their global variable stores

σg and event handler stores σEH are equivalent.

Definition 110. Given two global stores σG
1 and σG

2 where σG
1 = (σGg,1, σG

′
EH,1) and σG

2 = (σGg,2, σG
′

EH,2), σG
1 ≈L σG

2

iff σGg,1 ≈L σGg,2 and σG
′

EH,1 ≈L σG
′

EH,2

Global variable store equivalence is defined the same as for local variable stores. Two global variable

stores are equivalent if their low projections are the same. Global variable store projection is defined the

same as for the local variable store (see Figure C.29).

Definition 111 (Global variable store equivalence). Given two global variable stores σGg,1 and σGg,2, σGg,1 ≈L σGg,2

iff σGg,1 ↓L= σGg,2 ↓L

Unstructured EH store equivalence Event handler storage σEH low equivalence depends on the structure

of the event handler storage. We consider an unstructured EH storage and tree structured EH storage.

Two unstructured EH storages σEH are low equivalent if their low projections are the same.

Definition 112 (Unstructured event handler store equivalence). Given two unstructured event handler stores

σGEH,1 and σGEH,2, σGEH,1 ≈L σGEH,2 iff σGEH,1 ↓L= σGEH,2 ↓L

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 179

σGEH ↓L= σstd
EH

σFS
1 = σFS

2 , id 7→ φ φ = (v, M) v ↓L 6= ·
σFS

1 ↓L= id 7→ φ ↓L, σFS
2 ↓L

σFS
1 = σFS

2 , id 7→ φ φ = (v, M) v ↓L= ·
σFS

1 ↓L= σFS
2 ↓L

σTS
1 = σTS

2 , id 7→ φ φ = (v, M, l) l v L

σTS
1 ↓L= id 7→ φ ↓L, σTS

2 ↓L

σTS
1 = σTS

2 , id 7→ (v, M, l) l 6v L

σTS
1 ↓L= σTS

2 ↓L

(σH , σL) ↓L= σL · ↓L= ·

Figure C.30: Event handler store projection for unstructured event handler stores

The low projection of an unstructured EH storage is the publicly observable parts of publicly ob-

servable nodes (secret nodes are ignored). The meaning of publicly observable and secret depends on the

enforcement mechanism, G. The rules are shown in Figure C.30. For SMS, the entire L copy of the EH

storage is publicly observable, while the H copy is secret. In FS, a node is visible if the value stored in the

node is visible (i.e., v ↓L 6= ·). If the value is not visible (i.e., v ↓L= ·), the node is considered secret. For

TS, a node labeled L is publicly observable, while a node labeled H is secret. The definitions for publicly

observable parts of a node are shown in Section C.3.4.

Tree structured EH store equivalence Two tree structured EH storages σEH are low equivalent if the

public view of the tree is the same in both EH stores. The meaning of the public view of a tree depends

on the enforcement mechanism, G. For SMS, the entire L copy of the EH storage is the public view, so

they are equivalent only if their L copies of the EH storages are the same. For FS, the low copy of the

EH storage is defined as the low projection of the tree, starting at the root node, located at art. The low

projection of the tree is defined below in Section C.3.4.

Definition 113 (Tree-structured event handler store equivalence). Given two tree-structured event handler

stores σGEH,1 and σGEH,2 where art
1 is the root node of σGEH,1 and art

2 is the root node of σGEH,2, σGEH,1 ≈L σGEH,2 iff

• If G = SMS: σL,1(art
1) ↓

σL,1
L = σL,2(art

2) ↓
σL,2
L for σGEH,1 = (σH,1, σL,1) and σGEH,2 = (σH,2, σL,2)

• If G = FS: σFS
1 (art

1) ↓
σFS

1
L = σFS

2 (art
2) ↓

σFS
2

L

C.3.3 Value equivalence and strong equivalence

We need a different definition for unstructured and tree-structured EH storages because for the tree-

structured EH storage values include locations in the EH store, while the unstructured EH storage can

use a simpler equivalence definition because it does not include references.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 180

v ↓L= v′

vstd ↓L= vstd 〈_|vL〉 ↓L= vL 〈_|·〉 ↓L= · (v, L) ↓L= v (v, H) ↓L= ·

Figure C.31: Value projection for unstructured EH stores

v ↓σ
L= v′

v ∈ {n, b, dv, NULL}
vstd ↓σ

L= vstd
φ = σ(a)

a ↓σ
L= φ ↓σ

L

vL ∈ {n, b, dv, NULL}
〈_|vL〉 ↓σ

L= vL

φ = σ(aL)

〈_|aL〉 ↓σ
L= φ ↓σ

L 〈_|·〉 ↓σ
L= ·

v ∈ {n, b, dv, NULL}
(v, L) ↓σ

L= v
φ = σ(a)

(a, L) ↓σ
L= φ ↓σ

L (v, H) ↓σ
L= ·

Figure C.32: Value projection for tree-structured EH stores

Unstructured EH storage Two values are equivalent if their low projections are the same.

Definition 114 (Value equiv.–Unstructured EH store). Given two values v1 and v2, v1 ≈L v2 iff v1 ↓L= v2 ↓L

The low projection rules (when the unstructured EH store is used) are shown in Figure C.31. The low

projection of a standard value vstd is the same value vstd. The low projection of a faceted value 〈vH |vL〉

is the value in the low facet vL, or nothing (denoted ·) when the low facet is empty, as in 〈v|·〉. The low

projection of a labeled value (v, l) is the value v when the label is L, or nothing, otherwise.

Tree-structured EH storage Two values are equivalent if their low projections are the same.

Definition 115 (Value equivalence–Tree-structured EH store). Given two values v1 and v2, v1 ≈σ1,σ2
L v2 iff

v1 ↓σ1
L = v2 ↓σ2

L

The low projection rules (when the tree-structured EH store is used) are shown in Figure C.32. The low

projection of a standard value vstd is the same value vstd when the value is not a (non-NULL) location. If

the value is a location, the low projection is the public view of the node at that location. The low projection

of a faceted value 〈vH |vL〉 is the value in the low facet vL, if it is not a location, or nothing (denoted ·)

when the low facet is empty, as in 〈v|·〉. When the value in the low facet is a location, the low projection

is the public view of the node at that location. The low projection of a labeled value (v, l) is the value v

when the label is L, or nothing, otherwise.

No-context projection is useful for proofs. The low projection of a value is the same value: v ↓·= v

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 181

Value (strong) equivalence Two values are (strong) low-equivalent when they are both low-equivalent

and have publicly observable interpretations. Having publicly observable interpretations has different mean-

ings, depending on the format of the value. Standard values and faceted values always have public

interpretations: standard values are, themselves, public, while faceted values have a public facet (or the

default value). Tainted values only have public interpretations if they themselves are publicly observable

(i.e., their label is at or below L). This distinction is important for the proofs, where tainted values might

introduce secrets to the public context and lead to implicit leaks, whereas standard and faceted values

will not.

Definition 116 (Value strong equiv.–Unstructured EH store). Given two values vI1 and vI2 , vI1 'L vI2 iff

• If I ∈ {std, MF, FS}: vI1 ≈L vI2

• If I ∈ {TT, TS}: (v′1, l1) ≈L (v′2, l2) and l1 v L, l2 v L for vI1 = (v′1, l1) and vI2 = (v′2, l2)

Definition 117 (Value strong equiv.–Tree-structured EH store). Given two values vI1 and vI2 , vI1 '
σ1,σ2
L vI2 iff

• If I ∈ {std, MF, FS}: vI1 ≈
σ1,σ2
L vI2

• If I ∈ {TT, TS}: (v′1, l1) ≈σ1,σ2
L (v′2, l2) and l1 v L, l2 v L for vI1 = (v′1, l1) and vI2 = (v′2, l2)

C.3.4 Node equivalence

Unstructured EH storage Publicly observable nodes φ are low-equivalent in an unstructured EH storage

if their low projections (their publicly observable parts) are the same. The low projection of a secret EH

storage node is denoted · since none of it is publicly observable.

Definition 118 (Node equiv.–Unstructured EH store). Given two nodes φ1 and φ2, φ1 ≈L φ2 iff φ1 ↓L= φ2 ↓L

The low projection of a node φ in an unstructured EH storage is defined differently for different

enforcement mechanisms, G. The rules are shown in Figure C.33. The publicly observable parts of a

standard node φstd are its value and publicly observable event handlers M ↓L. For a faceted node φFS, the

publicly observable parts are the low projection of the value in the node v ↓L, and the publicly observable

event handlers M ↓L. If the value in the node is not publicly observable (i.e., v ↓L= ·), then the entire node

is considered secret. Finally, the public view of a tainted node φTS is the public view of its value (v, l) ↓L

and event handler map M ↓L. If the label on the node itself is H, the entire node is considered secret. If

the value in a public node is considered secret, it is replaced with a default value dv in the public view.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 182

φG ↓L= φstd

φ = (v, M)

φstd ↓L= (v, M ↓L)

φ = (v, M) v ↓L 6= ·
φFS ↓L= (v ↓L, M ↓L)

φ = (v, M) v ↓L= ·
φFS ↓L= ·

φ = ((v, l), M, l′) l v L l′ v L

φTS ↓L= (v, M ↓L)

φ = ((v, l), M, l′) l 6v L l′ v L

φTS ↓L= (dv, M ↓L)

φ = (v, M, l) l 6v L

φTS ↓L= · NULL ↓L= NULL
l v L

(NULL, l) ↓L= NULL
l 6v L

(NULL, l) ↓L= ·

Figure C.33: Node projection for an unstructured EH store

Tree structured EH storage

Definition 119 (Node equivalence–Tree-structured EH store). Given two nodes φ1 and φ2, φ1 ≈σ1,σ2
L φ2 iff

φ1 ↓σ1
L = φ2 ↓σ2

L

The public view of a tree-structured node given store σ, φ ↓σ
L, is defined inductively over the node’s

children. Denote N = (id, vstd, M, ID, Ns) or · where ID is an id or ·, and Ns is an ordered list of N’s. The

rules are shown in Figure C.34. For a standard node φstd, the public view includes (1) the node’s id, (2) the

value stored in the node v, (3) the public event handlers M ↓L, (4) the id of the parent, and (5) an ordered

list of the public view of each of its children A ↓σ
L. If the node has no parent (ap = NULL), then ID in the

public view is ·. The public view of a faceted node φFS includes (1) the node’s id, (2) the public view of

the value stored in the node v ↓L, (3) the public event handlers M ↓L, (4) the id of the publicly observable

parent, and (5) and ordered list of the public view of each of its children A ↓σ
L. If the publicly observable

parent is NULL (ap ↓L= NULL), then ID in the public view is ·. If there is no publicly observable value

(v ↓L= ·) or parent (ap ↓L= ·), then the node itself is not publicly observable.

The public view of a list of nodes A ↓σ
L from store σ is defined inductively on the structure of the list

and produces an ordered list of publicly observable nodes Ns. If the first element in the list is a standard

address a (i.e., not faceted), then the public view of the list is the public view of the node at that address

φ ↓σ
L, followed by the public view of the rest of the list. If the first address in the list is faceted aFS, then

the public view of the list is public view of the node φ ↓σ
L at the public view of the address a ↓L followed

by the public view of the rest of the list. If the address is not publicly visible (i.e., a ↓L= ·), then that

address is ignored.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 183

φG ↓σ
L= N

φ = (id, v, M, ap, A) idp = σ(ap).id

φstd ↓σ
L= (id, v ↓σ

L, M ↓L, idp, A ↓σ
L)

φ = (id, v, M, NULL, A)

φstd ↓σ
L= (id, v ↓σ

L, M ↓L, ·, A ↓σ
L)

φ = (id, v, M, ap, A) ap ↓L 6= · idp = σ(ap ↓L).id v ↓L 6= ·
φFS ↓σ

L= (id, v ↓σ
L, M ↓L, idp, A ↓σ

L)

φ = (id, v, M, ap, A) ap = NULL∨ ap ↓L= NULL v ↓L 6= ·
φFS ↓σ

L= (id, v ↓σ
L, M ↓L, ·, A ↓σ

L)

φ = (id, v, M, ap, A) v ↓L= · ∨ ap ↓L= ·
φFS ↓σ

L= · NULL ↓σ
L= NULL

A ↓σ
L= Ns

φ = σ(a)
(a :: A) ↓σ

L= φ ↓σ
L:: A ↓σ

L

a ↓L 6= · φ = σ(a ↓L)

(aFS :: AFS) ↓σ
L= φFS ↓σ

L:: AFS ↓σ
L

a ↓L= ·
(aFS :: AFS) ↓σ

L= AFS ↓σ
L (·) ↓σ

L= ·

Figure C.34: Node projection for a tree-structured EH store

EH ↓L= EH′ 6= ∅
((Ev 7→ EH), M) ↓L= Ev 7→ EH′, M ↓L

EH ↓L= ∅
((Ev 7→ EH), M) ↓L= M ↓L · ↓L= ·

pc v L
({eh, pc} ∪ EH) ↓L= {eh, L} ∪ EH ↓L

pc 6v L
({eh, pc} ∪ EH) ↓L= EH ↓L ∅ ↓L= ∅

Figure C.35: Event handler map projection

Event handler map projection

The low projection of an event handler map M is defined inductively over the structure of the map. The

rules are shown in Figure C.35. For one event Ev 7→ EH, it is defined as the low projection of the event

handler sets EH for each event Ev. Events which do not have publicly observable event handlers (i.e.,

EH ↓L= ∅) are ignored.

The low projection of an event handler set EH is the set of publicly observable event handlers in EH.

An event handler is public if it was registered under a public pc (i.e., pc v L). In the projected set, all

publicly observable event handlers have pc = L. Secret event handlers (i.e., pc 6v L) are ignored.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 184

c ↓L= c

cstd ↓L= cstd 〈cH |cL〉 ↓L= cL

C ↓L= C ′

pc v L
((eh, pc), C) ↓L= eh, C ↓L

pc 6v L
((eh, pc), C) ↓L= C ↓L · ↓L= ·

Figure C.36: Command and EH queue projection rules

C.3.5 Additional equivalence definitions

Command and EH queue equivalence Commands and EH queues are low equivalent if their low pro-

jections are the same.

Definition 120 (Command equivalence). Given two commands c1 and c2, c1 ≈L c2 iff c1 ↓L= c2 ↓L

Definition 121 (EH queue equivalence). Given two EH queues EH1 and EH2, EH1 ≈L EH2 iff EH1 ↓L=

EH2 ↓L

The low projection of most commands c is the same command, c. The only exception is when the

command is faceted 〈cH |cL〉. In that case, the low projection is the command in the low facet, cL. Rules

are shown in Figure C.36. The EH queue is a runtime construct for building the configuration stack. EH

queues C are low equivalent if their low projections are the same. The low projection keeps the publicly

visible event handlers (pc v L). The secret event handlers (pc 6v L) are ignored. Note that command and

EH queue equivalence is not used for configuration equivalence, but it is useful for MF proofs.

C.3.6 Trace Equivalence

Two traces are equivalent if their low projections are the same.

Definition 122 (Trace equivalence). Given two traces T1 and T2, T1 ≈L T2 iff T1 ↓L= T2 ↓L

The rules for the low projection of a trace are shown in Figure C.37. They are similar to the rules

from Figure 5.10 in Section 5.4 except they also handle faceted actions. Note that P(α) = · has a different

interpretation than the · we have previously used. Here, it means “it has no label”.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 185

T ↓L= τ

G,P ` K ↓L= ·
TP-Base

P(id.Ev(v)) = L

(G,P ` K
id.Ev(v)
=⇒ T′) ↓L= id.Ev(v) :: T′ ↓L

TP-LI

P(α) = L or l v L

(G,P ` K
(α,l)
=⇒ T′) ↓L= α :: T′ ↓L

TP-L αl = 〈_|_〉

(G,P ` K
αl=⇒ T′) ↓L= getFacet(αl , L) :: T′ ↓L

TP-F

rel(K) = R P(id.ev(v)) = H R(P , id.ev(v)) = α 6= •

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= rls(α) :: T′ ↓L

TP-HI-R

P(id.ev(v)) = H∆

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= T′ ↓L

TP-HI-NR1

rel(K) = R P(id.ev(v)) = H ∧R(P , id.ev(v)) = •

(G,P ` K
id.ev(v)
=⇒ T′) ↓L= T′ ↓L

TP-HI-NR2
P(α) = H or α = •

(G,P ` K
(α,H)
=⇒ T′) ↓L= T′ ↓L

TP-H

P(α) = l

P(ch(v)) = P(ch)
Lab-O

P(declassify(ι, v)) = L
Lab-D

P(gw(x)) = L
Lab-gw

P(br(b)) = L
Lab-br

α 6∈ {id.Ev(v), ch(v), declassify(ι, v), gw(x), br(b)}
P(α) = ·

Lab-S

R(P , id.ev(v)) = α

R = (ρ,D) D(ρ, id.Ev(v)) = (ρ′, r, v′,V)
R(P , id.Ev(v)) = (ρ′, r, id.Ev(v′))

R = (ρ,D) D(ρ, id.Ev(v)) = (ρ′, r, emp,V)
R(P , id.Ev(v)) = (ρ′, r, •)

R = (ρ,D) D(ρ, id.Ev(v)) = (ρ, none, •,V)
R(P , id.Ev(v)) = •

Figure C.37: Projection of Traces to L Observation

C.3.7 Knowledge Definitions

Definition 21 (Attacker Knowledge). Formally, K(T, σG
0 ,R,P) is defined as {τi | ∃T′ ∈ runs(σG

0 ,R,P), T ≈L

T′, τi = in(T′)}

Definition 22 (Progress Knowledge). Formally, Kp(T, σG
0 ,R,P) is defined as {τi | ∃T′ ∈ runs(σG

0 ,R,P), T ≈L

T′, τi = in(T′), prog(T′)}

Where prog(T) iff T = G,P ` K0 =⇒∗ K and ∃KC s.t. G,P ` K =⇒∗ KC and consumer(KC)

Definition 23 (Release Knowledge). Formally,Krp(T, σG
0 ,R,P , α) is defined as {τi | ∃T′ ∈ runs(σG

0 ,R,P), T ≈L

T′, τi = in(T′), prog(T′), α′ = (last(T) α
=⇒ K) ↓L, releaseT(T′, α′)}

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 186

releaseT(T, α) =


T = G,P ` K0 =⇒∗ K ∧ ∃α′, K′s.t., G,P ` K α′

=⇒ K′

∧(G,P ` K α′
=⇒ K′) ↓L= α α = rls(_)

T = G,P ` K0 =⇒∗ K, ∃K′s.t., G,P ` K α
=⇒ K′ α = declassify(ι, v)

Definition 26 (Weak Knowledge). Formally,Kwp(T, σG
0 ,R,P , α) is defined as {τi | ∃T′ ∈ runs(σG

0 ,R,P), T ≈L

T′, τi = in(T′), prog(T′), α′ = (G,P ` last(T) α
=⇒ K)) ↓L, wkT(T′, α′))}

wkT(T, α) =



T = G,P ` K0 =⇒∗ K ∧ ∃K′ s.t. K =⇒ K′ ∧ (G,P ` K =⇒ K′) ↓L= α α = br(b)

T = G,P ` K0 =⇒∗ K ∧ ∃K′, T′ s.t. T′ = G,P ` K =⇒∗ K′ ∧ T′ ↓L= · α = gw(x)

∧ ∃K′′ s.t. G,P ` K′ =⇒∗ K′′ ∧ (G,P ` K′ =⇒∗ K′′) ↓L= α

T = G,P ` K0 =⇒∗ K α = id.Ev(v)

∧ ∃T′, K′ s.t. T′ = G,P ` K =⇒∗ KC ∧ consumer(KC) ∧ T′ ↓L= ·

T = G,P ` K0 =⇒∗ K α ∈ {•, ch(v)}

∧ ∃T′, K′ s.t. T′ = G,P ` K =⇒∗ Klp ∧ lowProducer(Klp) ∧ T′ ↓L= ·

¬consumer(K)

K = R, d, σG, (V ; κ; pc) :: ks pc v L

lowProducer(K)

¬consumer(K)

K = R, d, σG, (V ; κ; pc) :: ks pc 6v L

highProducer(K)

pc v L

lowContext((V ; κ; pc) :: ks) = true

pc 6v L

lowContext((V ; κ; pc) :: ks) = false

pc 6v L

highContext((V ; κ; pc) :: ks) = true

pc v L

highContext((V ; κ; pc) :: ks) = false

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 187

rlsA(G,P ` K α
=⇒ K′) iff (G,P ` K α

=⇒ K′) ↓L= rls(α′) or

(G,P ` K α
=⇒ K′) ↓L= declassify(ι, v)

wkA(G,P ` K α
=⇒ K′) iff (G,P ` K α

=⇒ K′) ↓L,w= br(b) or

(G,P ` K α
=⇒ K′) ↓L,w= gw(x) or

α ∈ in(G,P ` K α
=⇒ K′) ∧ P(α) = L or

(G,P ` K α
=⇒ K′) ↓L∈ {•, ch(v)}

C.3.8 Progress-Insensitive Security and Weak Secrecy

We say σG
0 is well-formed if the initial EH store is defined and the global variables are initialized. The

event handlers in the EH store should agree on the names of the global variables.

Definition 24 (Progress-Insensitive Security). The compositional framework is progress-insensitive secure iff

given any initial global store σG
0 and release policy R,P , it is the case that for all traces T, actions α, and configu-

rations K s.t. (G,P ` T α
=⇒ K) ∈ runs(σG

0 ,P), then, the following holds

• If rlsA(G,P ` last(T) α
=⇒ K):

K(G,P ` T α
=⇒ K, σG

0 ,R) ⊇� Krp(T, σG
0 ,R,P , α)

• Otherwise:

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

Definition 27 (Progress-Insensitive Weak Security). The compositional framework satisfies progress-insensitive

weak secrecy in our framework iff given any initial global store, σG
0 , and release policy R,P it is the case that for all

traces T, actions α, and configurations K s.t. (G,P ` T α
=⇒ K) ∈ runs(σG

0 ,P), the following holds

• If rlsA(G,P ` last(T) α
=⇒ K):

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Krp(T, σG
0 ,R,P , α)

• If wkA(G,P ` last(T) α
=⇒ K):

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kwp(T, σG
0 ,R,P , α)

• Otherwise:

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 188

C.4 Proofs

C.4.1 Progress-Insensitive Noninterference implies Weak Secrecy

Theorem 29 (Progress-Insensitive Noninterference implies Weak Secrecy). If the composition of event han-

dlers and global storage enforcement satisfies progress-insensitive noninterference, then they also satisfy progress-

insensitive weak secrecy.

Proof.

We want to show that the conditions for weak secrecy hold for any trace satisfying progress-insensitive

noninterference.

Let V , G be progress-insensitive secure and σG
0 be well-formed.

Let T, α, K be s.t. (G,P ` T α
=⇒ K) ∈ runs(σG

0 ,R,P). Then,

(1) If rlsA(G,P ` last(T) α
=⇒ K):

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Krp(T, σG
0 ,R,P , α)

(2) Otherwise:

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

We examine each case of G,P ` T α
=⇒ K. For each case, we want to show that the corresponding

condition for weak secrecy holds.

Case I: rlsA(last(T) α
=⇒ K)

This case follows from (1) since the corresponding case for release events is the same for weak secrecy

as it is for standard security.

Case II: wkA(last(T) α
=⇒ K)

From the assumption, we want to show

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kwp(T, σG
0 ,R,P , α)

By assumption and since visible, non-release events fall into the “other” category from (2),

K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

Then, it is sufficient to show that:

Kp(T, σG
0 ,R,P) ⊇� Kwp(T, σG

0 ,R,P , α) i.e., for any τ ∈ Kwp(T, σG
0 ,R,P , α),

∃τ′ ∈ Kp(T, σG
0 ,R,P) s.t. τ � τ′

Let τ ∈ Kwp(T, σG
0 ,R,P , α)

Then, from the definition of Kwp(), there is a trace for which τ is the input and all of the following:

∃T′ ∈ runs(σG
0 ,R,P) s.t. T ≈L T′, τ = in(T′), and prog(T′)

Then from the definition of Kp(), τ ∈ Kp(T, σG
0 ,R,P)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 189

If we let τ′ = τ then τ′ ∈ Kp(T, σG
0 ,R,P) and from the definition of �, τ � τ′

Case III: ¬rlsA(last(T) α
=⇒ K) and ¬wkA(last(T) α

=⇒ K)

This case follows from (2) since the corresponding case for non-release events is the same for standard

security as it is for the non-release, non-visible events for weak secrecy.

C.4.2 Top-Level Soundness Theorems

Theorem 25 (Soundness–Progress-Insensitive Noninterference). If ∀id.Ev(v), eh, pc : P(id.Ev(v), eh, pc) ∈

{SME, MF} and Gg,GEH ∈ {SMS, FS} and G = (Gg,GEH), then ∀R,P , σ0, T, K, αl s.t. G,P ` T
αl=⇒ K ∈

runs(σG
0 ,R,P , I), and σG

0 is well-formed,

• If rlsA(last(T) αl=⇒ K): K(G,P ` T
αl=⇒ K, σG

0 ,R,P) ⊇� Krp(T, σG
0 ,R,P , αl)

• Otherwise: K(G,P ` T
αl=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

Proof.

The proof is split between two cases depending on the action, shown below. In either case, we want to

show that ∃τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) s.t. τ � τ′ for τ defined below

Case I: rlsA(G,P ` last(T) αl=⇒ K)

Let τ ∈ Krp(T, σG
0 ,R,P , αl) and α′ = (G,P ` last(T) αl=⇒ K) ↓L

Then from the definition of Krp(), there is a trace for which τ is the input T1 = G,P ` K0 =⇒∗ K1 and

τ = in(T1) and all of the following:

T1 ≈L T, prog(T1), and release(T1, α′)

From release(T1, α′), ∃K′1, αl,1 s.t. G,P ` T1
αl,1
=⇒ K′1 with (G,P ` K1

αl,1
=⇒ K′1) ↓L= α′

Then from T1 ≈L T, we know that (G,P ` T
αl=⇒ K) ≈L (G,P ` T1

αl,1
=⇒ K′1)

From this the definition of K(), in(T1) :: in(G,P ` K1 =⇒ K′1) ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1 =⇒ K′1), then we have τ � τ′

Case II: ¬rlsA(G,P ` last(T) αl=⇒ K)

Let τ ∈ Kp(T, σG
0 ,R,P , αl)

Then from the definition of Kp(), there is a trace for which τ is the input T1 = G,P ` K0 =⇒∗ K1 with

τ = in(T1) and both of the following:

T1 ≈L T and prog(T1)

We also know from Krp() there is a trace T = G,P ` K0 =⇒∗ K2 and G,P ` K2
αl=⇒ K

Subcase i: (G,P ` last(T) αl=⇒ K) ↓L= ·

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 190

By assumption, and from T ≈L T1, we know T ≈L T1 ≈L (G,P ` T
αl=⇒ K)

Let τ′ = in(T1), then from the definition of K(), τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) and τ � τ′

Subcase ii: (G,P ` last(T) αl=⇒ K) ↓L 6= ·

From T1 ≈L T and Lemma 123 (Requirement (T1)), K1 ≈L K2

By assumption and from prog(T1), K1 ≈L K2, and Lemma 133 (Requirement (T4)),

∃K′1, τ′′ s.t. G,P ` K1
τ′′

=⇒∗ K′1 and (G,P ` K1
τ′′

=⇒∗ K′1) ≈L (G,P ` K2
αl=⇒ K)

From this and T ≈L T1, (G,P ` T1
τ′′

=⇒∗ K′1) ≈L (G,P ` T
αl=⇒ K)

Then from the definition of K(), we know that

in(T1) :: in(G,P ` K1
τ′′

=⇒∗ K′1) ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1
τ′′

=⇒∗ K′1) then

τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) and τ � τ′

Theorem 28 (Soundness - Weak Secrecy). If ∀id.Ev(v), eh, pc : P(id.Ev(v), eh, pc) ∈ {SME, MF, TT} and

Gg,GEH ∈ {SMS, FS, TS} and G = (Gg,GEH), then ∀R,P , σ0, T, K, αl s.t. G,P ` T
αl=⇒ K ∈ runs(σG

0 ,R,P , I),

and σG
0 is well-formed,

• If rlsA(G,P ` last(T) α
=⇒ K): K(G,P ` T α

=⇒ K, σG
0 ,R,P) ⊇� Krp(T, σG

0 ,R,P , α)

• If wkA(G,P ` last(T) α
=⇒ K): K(G,P ` T α

=⇒ K, σG
0 ,R,P) ⊇� Kwp(T, σG

0 ,R,P , α)

• Otherwise: K(G,P ` T α
=⇒ K, σG

0 ,R,P) ⊇� Kp(T, σG
0 ,R,P)

Proof.

The proof is split between two cases depending on the action, shown below. In either case, we want to

show that ∃τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) s.t. τ � τ′ for τ defined below

Case I: rlsA(G,P ` last(T) αl=⇒ K)

Let τ ∈ Krp(T, σG
0 ,R,P , αl) and α′ = (G,P ` last(T) αl=⇒ K) ↓L

Then from the definition of Krp(), there is a trace for which τ is the input T1 = G,P ` K0 =⇒∗ K1 and

τ = in(T1) and all of the following:

T1 ≈L T, prog(T1), and release(T1, α′)

From release(T1, α′), ∃K′1, αl,1 s.t. G,P ` T1
αl,1
=⇒ K′1 with (G,P ` K1

αl,1
=⇒ K′1) ↓L= α′

Then from T1 ≈L T, we know that (G,P ` T
αl=⇒ K) ≈L (G,P ` T1

αl,1
=⇒ K′1)

From this and the definition of K(), in(T1) :: in(G,P ` K1 =⇒ K′1) ∈ K(G,PPT
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1 =⇒ K′1), then we have τ � τ′

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 191

Case II: wkA(G,P ` last(T) αl=⇒ K)

Let τ ∈ Kwp(T, σG
0 ,R,P , αl) and α′ = (G,P ` last(T) αl=⇒ K) ↓L

Then from the definition of Kwp(), there is a trace for which τ is the input T1 = G,P ` K0 =⇒∗ K1 and

τ = in(T1) and all of the following:

T1 ≈L T, prog(T1), and wkT(T1, α′)

We also know from Kwp() there is a trace T = G,P ` K0 =⇒∗ K2 and G,P ` K2
αl=⇒ K

Subcase i: α′ = br(b)

By assumption and from wkT(T1, α′), ∃K′1 s.t. G,P ` T1 =⇒ K′1 with (G,P ` K1 =⇒ K′1) ↓L= α′

Then from T1 ≈L T, we know that (G,P ` T
αl=⇒ K) ≈L (G,P ` T1 =⇒ K′1)

From this and the definition of K(), in(T1) :: in(G,P ` K1 =⇒ K′1) ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1 =⇒ K′1), then we have τ � τ′

Subcase ii: α′ = gw(x)

By assumption and from wkT(T1, α′), ∃K′1, K′′1 s.t. G,P ` T1 =⇒∗ K′1 with (G,P ` K1 =⇒∗ K′1) ↓L= ·

and (G,P ` K′1 =⇒∗ K′′1) ↓L= α′

Then from T1 ≈L T, we know that (G,P ` T
αl=⇒ K) ≈L (G,P ` T1 =⇒ K′1)

From this and the definition of K(), in(T1) :: in(G,P ` K1 =⇒ K′′1) ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1 =⇒ K′′1) then we have τ � τ′

Subcase iii: α′ = id.Ev(v) or α′ ∈ {•, ch(v)}

From T1 ≈L T and Lemma 124 (Requirement (WT1)), K1 ≈L K2

By assumption and from prog(T1), K1 ≈L K2, and Lemma 139 (Requirement (WT4)),

∃K′1 s.t. G,P ` K1 =⇒∗ K′1 with (G,P ` K2 =⇒ K) ≈L (G,P ` K1 =⇒ K′1)

From this and T1 ≈LT, (G,P ` T1 =⇒∗ K′1) ≈L (G,P ` T =⇒ K)

Then from the definition of K(), we know that

in(T1) :: in(G,P ` K1
τ′′

=⇒∗ K′1) ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P)

Let τ′ = in(T1) :: in(G,P ` K1
τ′′

=⇒∗ K′1) then

τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) and τ � τ′

Case III: ¬rlsA(G,P ` last(T) αl=⇒ K) and ¬wkA(G,P ` last(T) αl=⇒ K)

Let τ ∈ Kp(T, σG
0 ,R,P , αl)

Then from the definition of Kp(), there is a trace for which τ is the input T1 = G,P ` K0 =⇒∗ K1 with

τ = in(T1) and both of the following

T1 ≈L T and prog(T1)

We also know from Krp() there is a trace T = G,P ` K0 =⇒∗ K2 and G,P ` K2
αl=⇒ K

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 192

Subcase i: (G,P ` last(T) αl=⇒ K) ↓L= ·

By assumption and from T1 ≈L T, we know that T ≈L T1 ≈L (G,P ` T
αl=⇒ K)

Let τ′ = in(T1), then from the definition of K(), τ′ ∈ K(G,P ` T
αl=⇒ K, σG

0 ,R,P) and τ � τ′

Subcase ii: (G,P ` last(T) αl=⇒ K) ↓L 6= ·

By assumption, and from the definition of ↓L, αl is a release event, branch, global write, low input,

or low output. Then, rlsA(G,P ` last(T) αl=⇒ K) or wkA(G,P ` last(T) αl=⇒ K), which violates the

assumption that neither condition holds. Therefore, this case holds vacuously.

C.4.3 Trace Requirements

Requirement (T1) Equivalent traces produce L-equivalent states

Lemma 123 (Equivalent Trace, Equivalent State). If T1 = G,P ` K1 =⇒∗ K′1 and T2 = G,P ` K2 =⇒∗ K′2

with K1 ≈L K2 and T1 ≈L T2, then K′1 ≈L K′2

Proof.

By induction on len(T1) and len(T2)

Base Case I: len(T1) = 0 and len(T2) = n

By assumption, T1 = K1, K′1 = K1, and T1 ↓L= ·

Then from T1 ≈L T2, T2 ↓L= · and Lemma 125 (Requirement (T2)) gives K2 ≈L K′2

Then K1 ≈L K2 gives K′1 ≈L K′2

Base Case II: len(T1) = n and len(T2) = 0

The proof is similar to Base Case I

Inductive Case III: len(T1) = n + 1 and len(T2) = m + 1

We assume the conclusion holds for len(T1) ≤ n and len(T2) ≤ m

By assumption, T1 = G,P ` K1 =⇒∗ K′′1 =⇒ K′1 with len(G,P ` K1 =⇒∗ K′′1) = n and

T2 = G,P ` K2 =⇒∗ K′′2 =⇒ K′2 with len(G,P ` K2 =⇒∗ K′′2) = m

Subcase i: (G,P ` K′′1 =⇒ K′1) ↓L= ·

By assumption, T1 ≈L (G,P ` K1 =⇒∗ K′′1)

From this and T1 ≈L T2, T2 ≈L (G,P ` K1 =⇒∗ K′′1)

Then the IH may be applied on (G,P ` K1 =⇒∗ K′′1) and T2 which gives K′′1 ≈L K′2

By assumption and from Lemma 125 (Requirement (T2)), K′′1 ≈L K′1

Then from K′′1 ≈L K′2 and K′′1 ≈L K′1, we know that K′1 ≈L K′2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 193

Subcase ii: (G,P ` K′′2 =⇒ K′2) ↓L= ·

The proof is similar to Subcase i

Subcase iii: (G,P ` K′′1 =⇒ K′1) ↓L 6= · and (G,P ` K′′2 =⇒ K′2) ↓L 6= ·

By assumption and from T1 ≈L T2, (G,P ` K1 =⇒∗ K′′1) ≈L (G,P ` K2 =⇒∗ K′′2) and

(G,P ` K′′1 =⇒ K′1) ≈L (G,P ` K′′2 =⇒ K′2)

Then the IH may be applied on (G,P ` K1 =⇒∗ K′′1) and (G,P ` K2 =⇒∗ K′′2) which gives K′′1 ≈L K′′2

Then from Lemma 144 (Requirement (T5)), K′1 ≈L K′2

Requirement (WT1) Equivalent traces produce L-equivalent states (Weak Secrecy)

Lemma 124 (Equivalent Trace, Equivalent State, Weak Secrecy). If T1 = G,P `w K1 =⇒∗ K′1 and T2 =

G,P `w K2 =⇒∗ K′2 with K1 ≈L K2 and T1 ≈L T2, then K′1 ≈L K′2

Proof (sketch): The proof is the same as for Lemma 123, except that it uses Lemma 128 (Req (WT2)) and

Lemma 147 (Req (WT5))

Requirement (T2) Empty traces produce L-equivalent states

Lemma 125. If T = G,P ` K =⇒∗ K′ and T ↓L= ·, then K ≈L K′

Proof.

By induction on the length of T.

Base Case I: len(T) = 0

By assumption, T = K and K′ = K. Thus K ≈L K′.

Inductive Case II: len(T) = n + 1

By assumption, T = G,P ` K =⇒∗ K1 =⇒ K2

Want to show K ≈L K2

From T ↓L= ·, we also know that (G,P ` K =⇒∗ K1) ↓L= ·

IH on (G,P ` K =⇒∗ K1) gives K ≈L K1

Let T′ = G,P ` K1 =⇒ K2, then from T ↓L= ·, we also know that T′ ↓L= ·

Next, we want to show K1 ≈L K2

Subcase i: T′ ends in I-NR1 or I-NR2

By assumption, σG
1 = σG

2 , κ1 = ·, and G,P , σG
1 ` ks1; lookupEHAll(id.Ev(v)) H ks2

From Lemma 182 (Requirement (EH2)), ks1 ≈L ks2

Then, we know K1 ≈L K2

Subcase ii: T′ ends in I-R-Diff, I-R-Same, or I-L,

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 194

By assumption and from the definition of ↓L for execution traces, (G, ks ` K1 =⇒ K2) ↓L 6= ·

But this contradicts T ↓L= ·, so this case holds vacuously

Subcase iii: T′ ends in O, O-Skip, or O-Other with pc v L

By assumption and from the definition of ↓L for execution traces, (G, ks ` K1 =⇒ K2) ↓L 6= ·

But this contradicts T ↓L= ·, so this case holds vacuously

Subcase iv: T′ ends in O, O-Skip, or O-Other with pc 6v L

The conclusion follows from our security lattice (i.e., pc must be H) and Lemma 126

Lemma 126. If G,P ,V , d ` σG
1 , κV

α−→H σG
2 , ks, then σG

1 ≈L σG
2 and (V ; κV ; H) ≈L ks

Proof (sketch): By induction on the structure of E :: G,P ,V , d ` σG
1 , κ

α−→H σG
2 , ks. The proof also uses

Lemma 127 and Lemma 182 (Requirement (EH2)).

Lemma 127. If G,V , d
 σG
1 , σV1 , c1

α−→H σG
2 , σV2 , c2, E, then σG

1 ≈L σG
2

Proof (sketch): By induction on the structure of E :: G,V , d
 σG
1 , σV1 , c1

α−→H σG
2 , σV2 , c2, E. The proof also

uses Lemma 157 (Requirement (V2)), and Lemmas 189.U, 190.U, 189.T, and 190.T (Requirement (EH3)).

Requirement (WT2) Empty traces produce L-equivalent states (Weak Secrecy)

Lemma 128. If T = G,P `w K =⇒∗ K′ and T ↓L= ·, then K ≈L K′

Proof (sketch): The proof is the same as for Lemma 125 (Requirement (T2)), except that it uses Lemma 129.

The additional assumption that α 6∈ {br(b), gw(x)} follows from T ↓L= ·.

Lemma 129. If G,P ,V , d `w σG
1 , κ1

α−→H σG
2 , κ2 with α 6∈ {br(b), gw(x)}, then σG

1 ≈L σG
2 and κ1 ≈L κ2

Proof (sketch): The proof is the same as for Lemma 126 except that is uses Lemma 130, Note that Lemma 182

(Requirement (EH2)) is also used.

Lemma 130. If G,V , d
w σG
1 , σV1 , c1

α−→H σG
2 , σV2 , c2, E, with α 6∈ {br(b), gw(x)} then σG

1 ≈L σG
2 and σV1 ≈L

σV2 and E ≈L ·

Proof (sketch): The proof is similar to the one for Lemma 127. The cases for assign-G and assign-D which

involve upgrades hold vacuously due to the assumption that α 6∈ {br(b), gw(x)}. Otherwise, this proof

uses Lemma 158 (Requirement (WV2)) instead of Lemma 157 (Requirement (V2)) and Lemma 192 (Re-

quirement (WEH3)) instead of Lemma 189 (Requirement (EH3)), and Lemma 195 (Requirement (WEH3))

instead of Lemma 190 (Requirement (EH3)).

Requirement (T3) H steps produce L-equivalent states and empty traces

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 195

Lemma 131 (H Step Equivalence). If T = G,P ` K1 =⇒∗ K2 and ∀α ∈ τ, output(α) with K1 = R, d; σ1; ks1

and ks1 ≈L ·, then, K1 ≈L K2 and T ↓L= ·

Proof.

By induction on len(T)

Base Case 1: len(T) = 0

By assumption, T = K1 and K2 = K1. Then, K1 ≈L K2 and T ↓L= ·

Base Case 2: len(T) = 1

By assumption, T = G,P ` K1
αl=⇒ K2

Case I: E ends in an input rule

This contradicts ∀α ∈ τ, output(α), therefore this case holds vacuously

Case II: E ends in an output rule with pc v L

This contradicts ks1 ≈L ·, therefore this case holds vacuously

Case III: E ends in an output rule with pc 6v L

By assumption and from ks1 ≈L ·, we know pc = H and E ends in O, O-Skip, or O-Other

And from the definitions of outCondition and output, T ↓L= ·

From Lemma 126 (Requirement (T2)), σG
1 ≈L σG

2 and (V ; κ; H) ≈L ks

Therefore, K1 ≈L K2

Inductive Case: len(T) = n + 1

By assumption, T = G,P ` K1 =⇒∗ K′1 =⇒ K2

IH on G,P ` K1 =⇒∗ K′1 gives K1 ≈L K′1 and (G,P ` K1 =⇒∗ K′1) ↓L= ·

From K1 ≈L K′1 and ks1 ≈L ·, the ks in K′1 is ≈L ·

By the same argument as Base Case 2, K′1 ≈L K2 and (G,P ` K′1 =⇒ K2) ↓L= ·

Lemma 132 (High Step Equivalence - MF, TT). If T = G,P ` K1 =⇒∗ KC with consumer(KC), K1 =

R, d; σ1; ks1 with ks1 6≈L ·, and highProducer(K1) then ∃K2 s.t. lowProducer(K2) and T = G,P ` K1 =⇒∗

K2 =⇒∗ KC with K1 ≈L K2 and (G,P ` K1 =⇒∗ K2) ↓L= ·

Proof.

By induction on the length of T

Base Case: len = 0

By assumption, T = K1 = KC. From this and consumer(KC), we know consumer(K1). But this contradicts

ks1 6≈L · and highProducer(K1), so this case holds vacuously.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 196

Base Case: len = 1

By assumption, E :: T = G,P ` K1 =⇒ KC. From this and the structure of the operational semantics,

E must end in O-Next with ks1 = (V ; κ; pc) and consumer(κ). But this contradicts ks1 6≈L ·, so this case

holds vacuously.

Base Case: len = 2

By assumption, T = G,P ` K1 =⇒ K2 =⇒ KC

Denote D :: G,P ` K1 =⇒ K2 and E :: G,P ` K2 =⇒ KC

Want to show lowProducer(K2), K1 ≈L K2, and (G,P ` K1 =⇒ K2) ↓L= ·

Case I: D ends in an input rule

By assumption, consumer(K1). But this contradicts ks1 6≈L · and highProducer(K1), so this case holds

vacuously.

Case II: D ends in O, O-Skip, or O-Other

By assumption and from the structure of the operational semantics,

∃D′ :: G,P ,V , d ` σG
1 , κ

α−→pc σG
2 , ks with ks1 = (V ; κ; pc) :: κ′1 and ks2 = ks :: ks′1

From ks1 6≈L · and highProducer(K1), pc = H and ks′1 6≈L ·

By assumption and from pc = H and the definitions of outCondition and output,

(G,P ` K1 =⇒ K2) ↓L= ·

Subcase i: D′ ends in LC

By assumption and from pc = H, ∃D′′ :: G,P ,V , σG
1 ` (V ; (σ, skip, C, ·); H); lookupEHs(E) H ks

From the rules for lookupEHs, which put (V ; (σ, skip, C, ·); H) at the top of the resulting ks, it must

be the case that ks2 = (V ; (σ, skip, C, ·); H) :: ks′ :: ks′1

From highProducer(K1) and Lemma 182 (Requirement (EH2)), ks2 ≈L ks1

From ks2 = (V ; (σ, skip, C, ·); H) :: ks′ :: ks′1, we know consumer(ks2)

Then E must end in O-Next

From ks′1 6≈L ·, it must be the case that ksC = (ks′ :: ks′1) 6= ·

Then ¬consumer(KC), but this contradicts consumer(KC), so this case holds vacuously

Subcase ii: D′ ends in PtoC

By a similar argument to Subcase i:

ks2 = (V ; (σ, skip, C, ·); H) :: ks′1. Then, E must end in O-Next and ks′1 6≈L · means ksC 6= · which

contradicts consumer(KC), so this case holds vacuously.

Subcase iii: D′ ends in P

By assumption, the resulting ks will be in H producer state. Then, E must end in O, O-Skip,

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 197

or O-Other, which contradicts consumer(KC) since the only rule to shrink the ks is O-Next.

Subcase iv: D′ ends in SME-H

If the resulting κH is in consumer state, the rest of the proof is similar to Subcase i or Subcase ii.

Otherwise, the resulting κH is in producer state and the rest of the proof is similar to Subcase iii.

Subcase v: D′ ends in SME-L, SME-LtoH, or P-F

In all of these cases, pc v L, which contradicts pc = H, so these cases hold vacuously.

Case III: D ends in O-Next

By assumption, ks1 = (V ; κ; pc) :: ks2

By assumption and from highProducer(K1), pc = H and (G,P ` K1 =⇒ K2) ↓L= ·

By assumption and from ks1 = (V ; κ; pc) :: ks2 and pc = H, K1 ≈L K2

From all of this and ks′1 6≈L ·, it must be the case that ks2 6≈L ·

Then, producer(K2) and from this, either

lowProducer(K2), in which case the desired conclusion holds.

Otherwise, highProducer(K2), in which case the proof proceeds similarly to Case II.iii.

Inductive Case: len(T) = n + 1 for n ≥ 2

By assumption, T = G,P ` K1 =⇒ K =⇒∗ KC with len(K =⇒∗ KC) = n

Denote D :: K1 =⇒ K

Case I: D ends in an input rule or O-Next

By assumption, consumer(K1), but this contradicts highProducer(K1), so this case holds vacuously

Case II: D ends in O, O-Skip, or O-Other

By assumption and from the structure of the operational semantics,

∃D′ :: G,P ,V , d ` σG
1 , κ

α−→pc σG, ks′ with all of the following:

ks1 = (V ; κ; pc) :: κ′1, ks = ks′ :: ks′1, and σG = σG
1

From ks1 = (V ; κ; pc) :: κ′1, ks1 6≈L · and highProducer(K1) we both of the following:

pc = H and ks′1 6≈L ·

By assumption and from pc = H and the definitions of outCondition and output,

(G,P ` K1 =⇒ K) ↓L= ·

From ks1 = (V ; κ; pc) :: κ′1, ks = ks′ :: ks′1, and σG = σG
1 , we know that K1 ≈L K

From pc = H and by a similar argument as the subcases for Base Case II, above, highProducer(K)

Then from ks1 6≈L · and Lemma 182 (Requirement (EH2)), the IH may be applied on

G,P ` K =⇒∗ KC

The conclusion follows from the IH and (G,P ` K1 =⇒ K) ↓L= · and K1 ≈L K

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 198

Case III: D ends in O-Next

By assumption and from the structure of the operational semantics, we know all of the following:

ks1 = (V ; κ; pc) :: κ′1, ks = ks′1, and σG = σG
1

From ks1 = (V ; κ; pc) :: κ′1, ks1 6≈L ·, and highProducer(K1), we know both of the following:

pc = H and ks′1 6≈L ·

By assumption and from pc = H, (G,P ` K1 =⇒ K) ↓L= ·

From ks1 = (V ; κ; pc) :: κ′1, ks = ks′1, and σG = σG
1 , we know that K1 ≈L K

And from ks = ks′1 and ks′1 6≈L ·, we know that producer(K)

Subcase i: lowProducer(K)

Then, let K2 = K and from (G,P ` K1 =⇒ K) ↓L= · and K1 ≈L K, the desired conclusion holds

Subcase ii: highProducer(K)

Then, the IH may be applied on G,P ` K =⇒∗ KC and the desired conclusion follows from the IH,

(G,P ` K1 =⇒ K) ↓L= · and K1 ≈L K

Requirement (T4) Strong one-step

Lemma 133 (Strong One-step). If K1 ≈L K2, T1 = G,P ` K1
αl,1
=⇒ K′1 with T1 ↓L 6= ·, ¬rlsA(T1), and prog(K2),

then ∃K′2, T2 s.t. T2 = G,P ` K2 =⇒∗ K′2 with T1 ≈L T2 and K′1 ≈L K′2

Proof.

We examine each case of E :: T1 = G,P ` K1
αl,1
=⇒ K′1

Denote Ki = (Ri, di, σi, ksi) for i ∈ {1, 2}

We refer to the following assumptions throughout:

(1) T1 ↓L 6= ·; (2) ¬rlsA(T1); (3) K1 ≈L K2; and (4) prog(K2)

Case I: E ends in I-NR1 or I-NR2

In both of these cases T1 ↓L= · or T1 ↓L= rls(...). This contradicts (1) and (2), so this case holds

vacuously.

Case II: E ends in I-R-Diff or I-R-Same

In both of these cases, rlsA(T1) This contradicts (2), so this case holds vacuously.

Case III: E ends in I-L

By assumption, P(αl) = L, σ′1 = σ1, and G,P , σ1 ` ·; lookupEH(id.Ev(v)) · ks′1

Subcase i: consumer(K2)

By assumption and from P(αl) = L, I-L may be applied to K2 with input id.Ev(v), producing trace

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 199

T2 = G,P ` K2
id.Ev(v)
=⇒ K′2

Then, G,P , σ2 ` ·; lookupEHAll(id.Ev(v)) · ks′2 and σ′2 = σ2

By assumption and from P(αl) = L, T1 ↓L= T2 ↓L

From (3), σ′1 = σ1, and σ′2 = σ2, we know that σ′1 ≈L σ′2

From (3) and Lemma 172 (Requirement (EH1)), ks′1 ≈L ks′2

Then K′1 ≈L K′2

Subcase ii: ¬consumer(K2)

From (4), ∃T′ s.t. T′ = G,P ` K2
τ

=⇒∗ KC where cstate(KC) and ∀α ∈ τ, α ∈ output(τ)

By assumption and from (3), ks2 ≈L ·

Then from Lemma 131 (Requirement (T3)), KC ≈L K2 and T′ ↓L= ·

The rest of the proof proceeds the same as Subcase i

Case IV: E ends in O

By assumption, all of the following:

ks1 = (V1; κ1; pc1) :: ks′′1 , ∃E ′ :: G,P ,V1, d ` σ1, κ1
ch(v1)−→ pc1

, σ′1, ks′′′1 , ks′1 = ks′′′1 :: ks′′1 , producer(κ1),

outConditionV1(P , ch(v1), pc1) = true, and αl,1 = output(P , ch(v1), pc1)

From αl,1 = output(P , ch(v1), pc1) and the definition of output: if pc1 = H, then T1 ↓L= ·, which

contradicts (1). Therefore, it must be the case that pc1 v L

Then, by assumption and from (3), ks2 = (V2; κ2; pc2) :: κ′′2

Subcase i: pc2 v L

By assumption and from (3), V1 = V2, κ1 ≈L κ2, and ks′′1 ≈L ks′′2

From (2), (3), and Lemma 134, ∃D′ :: G,P ,V2, d ` σ2, κ2
α2−→pc2

σ′2, ks′′′2 with all of the following:

pc2 v L, σ′1 ≈L σ′2, ks′′′1 ≈L ks′′′2 , and α2 ≈L ch(v1)

From α2 ≈L ch(v1), α = ch(v2) with v1 ≈L v2

Then from Lemma 136, outConditionV2(P , ch(v2), pc2) = true

Then by assumption and from ks′′1 ≈L ks′′2 , O may be applied to K2, producing trace

T2 = G,P ` K2
α2,l
=⇒ K′2

Then ks′′1 ≈L ks′′2 and ks′′′1 ≈L ks′′′2 gives ks′2 = ks′′′2 :: ks′′2 with ks′1 ≈L ks′2

From this and σ′1 ≈L σ′2, K′1 ≈L K′2

From the trace ending in O, we also know αl,2 = output(P , ch(v2), pc2)

Then from v1 ≈L v2 and Lemma 138, αl,1 ≈L αl,2

Then from the definition of equivalence for execution traces, T1 ≈L T2

Subcase ii: pc2 6v L

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 200

From (4), ∃T′, KC s.t. T′ = G,P ` K2 =⇒∗ KC and consumer(KC)

Then from Lemma 132 (Requirement (T3)), ∃K′ s.t. K2 =⇒∗ K′ and all of the following:

lowProducer(K′), K′ ≈L K2, and (G,P ` K2 =⇒∗ K′) ↓L= ·

The rest of the proof proceeds the same as Subcase i. Trace equivalence uses

(G,P ` K2 =⇒∗ K′) ↓L= · and state equivalence uses K′ ≈L K2

Case V: E ends in O-Skip

The proof for this case is similar to Case IV except that it uses Lemma 137 instead of Lemma 136.

Case VI: E ends in O-Other

The proof for this case is similar to Case V. α2 = • follows from Lemma 134, which tells us that

α1 ≈L α2 and α1 = • by assumption.

Case VII: E ends in O-Next

The proof for this case is straightforward. From (6), ks1 = (V1; κ1; pc1) :: ks′′1 and ks2 = (V2; κ2; pc2) :: ks′′2

with V1 = V2 and κ1 ≈L κ2 and ks′′1 ≈L ks′′2 when pc2 v L. Then, from κ1 ≈L κ2, consumer(κ2), and

O-Next can be applied to K2, which gives T1 ≈L T2. K′1 ≈L K′2 follows from ks′′1 ≈L ks′′2 .

When pc2 6v L, the proof is similar to Case IV.b.

Lemma 134 (Strong One-Step - Single Execution Semantics). If G,P ,V , d ` σG
1 , κ1

α1−→pc1
σG

3 , ks1 with

pc1 v L, α1 6= declassify(ι, v), σG
1 ≈L σG

2 , κ1 ≈L κ2, and pc2 v L, then G,P ,V , d ` σG
2 , κ2

α2−→pc2
σG

4 , ks2 with

σG
3 ≈L σG

4 , ks1 ≈L ks2, and α1 ≈L α2

Proof (sketch): By induction on the structure of E :: G,P ,V , d ` σG
1 , κ1

α1−→pc1
σG

3 , ks1. The proof also uses

Lemma 135, Lemma 182 (Requirement (EH2)), and Lemma 172 (Requirement (EH1)).

Lemma 135 (Strong One-Step - Command Semantics). If pc1, pc2 v L and G,V , d
 σG
1 , σ1, c

α1−→pc1

σG
3 , σ′1, c1, E1, with α1 6= declassify(ι, v), and σG

1 ≈L σG
2 , and σ1 ≈L σ2, then G,V , d
 σG

2 , σ2, c
α2−→pc2

σG
4 , σ′2, c2, E2 with σG

3 ≈L σG
4 , σ′1 ≈L σ′2, α1 ≈L α2, c1 ≈L c2, and E1 ≈L E2.

Proof (sketch): By induction on the structure of E :: G,V , d
 σG
1 , σ1, c α−→pc1

σG
3 , σ2, c1, E1. The proof

also uses Lemmas 152, 152.U, 152.T (Requirement (E1)), Lemmas 160.U and 160.T (Requirement (V3)),

Lemmas 196.U, 196.T, 197.U, and 197.T (Requirement (EH4)), and Lemma 179 (Requirement (EH1)).

Lemma 136. If v1 ≈L v2 and pc1, pc2 v L, with outConditionV (P , ch(v1), pc1) = true, then outConditionV (P ,

ch(v2), pc2) = true

Lemma 137. If v1 ≈L v2 and pc1, pc2 v L, with outConditionV (P , ch(v1), pc1) = false, then either:

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 201

1. outConditionV (P , ch(v2), pc2) = false, or

2. outConditionV (P , ch(v2), pc2) = true and v2 = 〈_|_〉

Lemma 138. If v1 ≈L v2 and pc1, pc2 v L with αl,1 = output(P , ch(v1), pc1) and αl,2 = output(P , ch(v2), pc2),

then αl,1 ≈L αl,2

Requirement (WT4) Strong one-step (Weak Secrecy)

Lemma 139 (Strong One-step, Weak Secrecy). If K1 ≈L K2 and T1 = G,P ` K1
αl,1
=⇒ K′1 with T1 ↓L= α′,

¬rlsA(T1), and prog(K2), wkT(K2, α′), then ∃K′2, T2, αl,2 s.t. T2 = G,P ` K2 =⇒∗ K′2 with T1 ≈L T2 and

K′1 ≈L K′2

Proof.

We examine each case of E :: T′1 = G,P ` K1
αl,1
=⇒ K′1

We refer to the following assumptions throughout:

(1) K1 ≈L K2; (2) T1 ↓L= α′; (3) ¬rlsA(T1); (4) prog(K2); and (5) wkT(K2, α′)

Case I: E ends in I-NR1 or I-NR2

In both of these cases T1 ↓L= · or T1 ↓L= rls(...). This contradicts (2) and (3), so this case holds

vacuously.

Case II: E ends in I-R-Diff or I-R-Same

In both of these cases, rlsA(T1). This contradicts (2), so this case holds vacuously.

Case III: E ends in I-L

By assumption, all of the following: P(αl) = L, σ′1 = σ1, and G,P , σ1 ` ·; lookupEH(id.Ev(v)) · ks′1

Subcase i: consumer(K2)

By assumption and from P(αl) = L, I-L may be applied to K2 with input id.Ev(v), producing trace

T2 = G,P ` K2
id.Ev(v)
=⇒ K′2

Then, G,P , σ2 ` ·; lookupEHAll(id.Ev(v)) · ks′2 and σ′2 = σ2

Then from the definition of L-projection for execution traces, T1 ↓L= T2 ↓L

From (3), σ′1 = σ1, and σ′2 = σ2, we know that σ′1 ≈L σ′2

From Lemma 172 (Requirement (EH1)), ks′1 ≈L ks′2

Therefore, K′1 ≈L K′2

Subcase ii: ¬consumer(K2)

From (5) and from αl,1 = id.Ev(v), ∃T′, Klp s.t. T′ = G,P ` K2
τ

=⇒∗ KC where both of the following:

cstate(KC) and T′ ↓L= ·

Then from Lemma 128 (Requirement (WT2)), K2 ≈L KC and the rest of the proof proceeds the same

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 202

as Subcase i.

Case IV: E ends in O

By assumption, ∃E ′ :: G,P ,V1, d ` σ1, κ1
ch(v1)−→ pc1

σ′1, ks′′′1 with all of the following:

ks1 = (V1; κ1; pc1) :: ks′′1 , ks′1 = ks′′′1 :: ks′′1 , producer(κ1), outConditionV1(P , ch(v1), pc1) = true, and

αl,1 = output(P , ch(v1), pc1)

From the definition of output: if pc1 = H, then T1 ↓L= ·, which contradicts (2). Therefore, it must be

that pc1 v L

Then from (1), ks2 = (V2; κ2; pc2) :: ks′′2

Subcase i: pc2 v L

From (1), ks1 = (V1; κ1; pc1) :: ks′′1 , and ks2 = (V2; κ2; pc2) :: ks′′2 ,

V1 = V2, κ1 ≈L κ2, and ks′′1 ≈L ks′′2

By assumption and from (5), wkK(κ2, α1)

Then from (1), (3), κ1 ≈L κ2, and Lemma 141, ∃D′ :: G,P ,V2, d ` σ2, κ2
α2−→pc2

σ′2, ks′′′2 with all of the

following:

pc2 v L, σ′1 ≈L σ′2, ks′′′1 ≈L ks′′′2 , and α2 ≈L ch(v1)

From α2 ≈L ch(v1), α = ch(v2) with v1 ≈L v2

Then from outConditionV1(P , ch(v1), pc1) = true and Lemma 136 (Requirement (T4)),

outConditionV2(P , ch(v2), pc2) = true

Then O may be applied to K2, producing trace T2 = G,P ` K2
α2,l
=⇒ K′2

Therefore, ks′2 = ks′′′2 :: ks′′2 , and from ks′′1 ≈L ks′′2 and ks′′′1 ≈L ks′′′2 , we know that ks′1 ≈L ks′2

From this and from σ′1 ≈L σ′2, K′1 ≈L K′2

From αl,2 = output(P , ch(v2), pc2) and Lemma 138 (Requirement (T4)), αl,1 ≈L αl,2

Then from the definition of equivalence for execution traces, T1 ≈L T2

Subcase ii: pc2 6v L

From (5) and (IV.6), ∃T′, Klp s.t. all of the following:

T′ = G,P ` K2 =⇒∗ Klp, lowProducer(Klp), and T′ ↓L= ·

Then from Lemma 128 (Requirement (WT2)), K2 ≈L Klp and the rest of the proof proceeds the same

as Subcase i.

Trace equivalence uses T′ ↓L= · and state equivalence uses K2 ≈L Klp.

Case V: E ends in O-Skip

By assumption, all of the following:

ks1 = (V1; κ1; pc1) :: ks′′1 , ∃E ′ :: G,P ,V , d ` σ1, κ1
ch(v1)−→ pc1

, σ′1, ks′′′1 , producer(κ),

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 203

outConditionI (P , ch(v1), pc1) = false, and αl,1 = (•, pc1)

If pc1 = H, then T1 ↓L= ·, which contradicts (2). Therefore, it must be the case that pc1 v L

Then, from (1), ks2 = (V2; κ2; pc2) :: κ′′2

Subcase i: pc2 v L

From (1), V1 = V2, κ1 ≈L κ2, and ks′′1 ≈L ks′′2

Then from (1), (3), ks′′1 ≈L ks′′2 , and Lemma 134, ∃D′ :: G,P ,V2, d ` σ2, κ2
α−→pc2

σ′2, ks′′′2 with all of the

following:

pc2 v L, σ′1 ≈L σ′2, ks′1 ≈L ks′2, and α ≈L ch(v1)

From α ≈L ch(v1), α = ch(v2) with v1 ≈L v2

Then from outConditionI (P , ch(v1), pc1) = false and Lemma 137 (Requirement (T4)), one of the

following must be true:

outConditionI (P , ch(v2), pc2) = false or outConditionI (P , ch(v2), pc2) = true and v2 = 〈_|_〉

Subsubcase a: outConditionI (P , ch(v2), pc2) = false is true

By assumption, O-Skip may be applied to K2, producing trace T2 = G,P ` K2
(•,pc2)=⇒ K′2

Then, from σ′1 ≈L σ′2 and ks′1 ≈L ks′2, we know that K′1 ≈L K′2

From the trace ending in O-Skip, αl,2 = (•, pc2)

Then from the definition of equivalence for execution traces, T1 ≈L T2

Subsubcase b: outConditionI (P , ch(v2), pc2) = true and v2 = 〈_|_〉 is true

By assumption, O may be applied to K2, producing trace T2 = G,P ` K2
αl,2
=⇒ K′2

Then, from σ′1 ≈L σ′2 and ks′1 ≈L ks′2, we know that K′1 ≈L K′2

From outConditionI (P , ch(v1), pc1) = false and the definition of output, either:

pc1 = L and P(ch) = H or pc1 = · and v1 ↓P(ch)= ·

By assumption and from the structure of the operational semantics, pc2 = · and V2 = MF

If pc1 = L and P(ch) = H is true, then from the definition of output,

output(P , ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

On the other hand, if pc1 = · and v1 ↓P(ch)= · is true, then P(ch) = H (because otherwise

outCondition would have been false) and output(P , ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

From αl,1 = (•, pc1) and the definition of equivalence for execution traces, T1 ≈L T2

Subcase ii: pc2 6v L

The proof for this case uses similar logic as Subcase IV.b to reach the assumptions for Subcase i, at

which point the proof proceeds the same as Subcase i.

Case VI: E ends in O-Other

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 204

The proof for this case is similar to Case V. α2 = • follows from Lemma 141, which tells us that α1 ≈L α2

and α1 = • by assumption.

Case VII: E ends in O-Next

The proof for this case is straightforward. From (1), ks1 = (V1; κ1; pc1) :: ks′′1 and ks2 = (V2; κ2; pc2) :: ks′′2

with V1 = V2 and κ1 ≈L κ2 and ks′′1 ≈L ks′′2 when pc2 v L. Then, from κ1 ≈L κ2,

consumer(κ2), and O-Next can be applied to K2, which gives T1 ≈L T2. K′1 ≈L K′2 follows from ks′′1 ≈L ks′′2 .

When pc2 6v L, the proof is similar to Case IV.b.

Definition 140. wkK(κ, α) for the mid-level semantics is similar to wkT for execution traces: it says that when

α = br(b), the mid-level semantics can take a step from κ producing the same action.

Lemma 141 (Strong One-Step - Single Execution Semantics, Weak Secrecy). If G,P ,V , d `w σG
1 , κ1

α1−→pc1

σG
3 , ks1 with pc1 v L, α1 6= declassify(ι, v), σG

1 ≈L σG
2 , κ1 ≈L κ2, wkK(κ2, α1) and pc2 v L, then G,P ,V , d `w

σG
2 , κ2

α2−→pc2
σG

4 , ks2 with σG
3 ≈L σG

4 , ks1 ≈L ks2, and α1 ≈L α2

Proof (sketch): The proof is the same as for Lemma 134 (Requirement (T4)) except that it uses Lemma 143

instead of Lemma 135. The proof uses Lemma 182 (Requirement (EH2)) for the LC case. wkK(κ2, α1) is

used to show wkC(c2, σG
2 , σ2, α1) for the command semantics.

Definition 142. wkC(c, σG, σ, α) for the command semantics is similar to wkT for execution traces and wkK for

mid-level semantics: it says that when α = br(b), the command c can take a step under σG and σ, producing the

same action

Lemma 143 (Strong One-Step - Command Semantics, Weak Secrecy). If pc1, pc2 v L and G,V , d
w

σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1, with α1 6= declassify(ι, v), wkC(c, σG
2 , σ2, α1) and σG

1 ≈L σ2, and σ1 ≈L σG
2 ,

then G,V , d
w σG
2 , σ2, c

α2−→pc2
σG

4 , σ′2, c2, E2 with σG
3 ≈L σG

4 , σ′1 ≈L σ′2, α1 ≈L α2, c′1 ≈L c′2, and E1 ≈L E2.

Proof.

By induction on the structure of E :: G,V , d
w σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1,

The proof is similar to the one for Lemma 135 (Requirement (T4)). The most noteworthy differences are

shown below:

We refer to the following assumptions throughout:

(1) pc1, pc2 v L; (2) α1 6= declassify(ι, v); (3) wkC(c, σG
2 , σ2, α1); (4) σG

1 ≈L σ2; (5) σ1 ≈L σ2

Case I: E ends in if-true

The cases for if-false, while-true, and while-false when V = TT are similar.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 205

The proofs for the cases where V 6= TT are the same as for Lemma 135 since the rules are unchanged

in those cases.

By assumption, all of the following:

c = if e then c′1 else c′2, c1 = c′1, E1 = ·, σG
3 = σG

1 , σ′1 = σ1, α1 = brOutput((true, l1)), and

G,V , σG
1 , σ1 ` e ⇓TT

pc1
(true, l1)

Then from (1), (4), (5), and Lemma 153 (Requirement (WE1)), G,V , σG
2 , σ2 ` e ⇓TT

pc2
v2 with v2 ≈L (true, l1)

From this, either v2 = (true, l2) and l1 = l2 or v2 = (false, H) and l1 = H

Subcase i: v2 = (true, l2) and l1 = l2 is true

Applying if-true produces trace G,V , d
w σG
2 , σ2, x := e

α2−→pc2
σG

2 , σ2, c′1, · with all of the following:

σG
4 = σG

2 , σ′2 = σ2, c2 = c′1, E2 = ·, and α2 = brOutput((true, l2))

Then from (4), σG
4 = σG

2 , and σG
3 = σG

1 , we know that σG
3 ≈L σG

4

From (5), σ′2 = σ2, and σ′1 = σ1, we know that σ′1 ≈L σ′2

From α1 = brOutput((true, l1)), α2 = brOutput((true, l2)), and the definition of brOutput, either:

α1 = α2 = • (if l1 = l2 = L) or α1 = α2 = br(true) (if l1 = l2 = H)

Then, in either case α1 ≈L α2

From c1 = c′1 and c2 = c′1, we know that c1 ≈L c2

From E1 = · and E2 = ·, we know that E1 ≈L E2

Subcase ii: v2 = (false, H) and l1 = H is true

Applying if-false produces trace G,V , d
 σG
2 , σ2, x := e

α2−→pc2
σG

2 , σ2, c2, · with

α2 = brOutput((false, H))

From α1 = brOutput((true, l1)), α2 = brOutput((true, l2)), and the definition of brOutput, we know

that α1 = br(true) and α2 = br(false)

But this contradicts (3), so this case holds vacuously

Case II: E ends in assign-G

The cases for assign-D and createElem when V = TT are similar to the case from Lemma 135

(Requirement (T4)), except that it uses Lemma 161 (Requirement (WV3)) instead of Lemma 160

(Requirement (V3)) for assign-G, Lemma 198 (Requirement (WEH4)) instead of Lemma 196

(Requirement (EH4)) for assign-D, and Lemma 199 (Requirement (WEH4)) instead of Lemma 197

(Requirement (EH4)) for createElem. The proofs for the cases where V 6= TT are the same as for

Lemma 135 (Requirement (T4)) since the rules always return • in those cases, meaning they are

effectively the same rules.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 206

Requirement (T5) Weak one-step

Lemma 144 (Weak One-Step). If T1 = G,P ` K1
αl,1
=⇒ K′1 and T2 = G,P ` K2

αl,2
=⇒ K′2, with T1 ≈L T2,

K1 ≈L K2, T1 ↓L 6= ·, and T2 ↓L 6= ·, then K′1 ≈L K′2

Proof.

We examine each case of E :: G,P ` K1
αl,1
=⇒ K′1. Denote D :: G,P ` K2

αl,2
=⇒ K′2.

We refer to the following assumptions throughout:

(1) K1 ≈L K2; (2) T1 ≈L T2; (3) T1 ↓L 6= ·; and (4) T2 ↓L 6= ·

Case I: E ends in I-NR1

By assumption, G,P , σ1 ` ·; lookupEHAll(id.Ev(v)) H ks′1, σ′1 = σ1, and R1 = (ρ1,D) with all of the

following:

D(ρ1, id.Ev(v)) = (ρ′1, r, •), d′1 = update(d1, r), and R′1 = (ρ′1,D)

From R1 = (ρ1,D) and (3), T1 ↓L= rls(ρ′1, r, •)

Then from (2), D must end in I-NR1 with some input id′.Ev′(v′) producing declassification ρ′1, r, • with

all of the following:

G,P , σ2 ` ·; lookupEHAll(id′.Ev′(v′)) H ks′2, σ′2 = σ2, and R2 = (ρ2,D) with

D(ρ2, id.Ev(v)) = (ρ′1, r, •), d′2 = update(d2, r), and R′2 = (ρ′1,D)

From R′1 = (ρ′1,D) and R′2 = (ρ′1,D), we know that R′1 = R′2
From (1), d′1 = update(d1, r), and d′2 = update(d2, r), we know that d′1 = d′2

From (1), σ′1 = σ1, and σ′2 = σ2, we know that σ′1 = σ′2

From Lemma 182, ks′1 ≈L · and ks′2 ≈L ·

Thus, ks′1 ≈L ks′2

Therefore, K′1 ≈L K′2

Case II: E ends in I-NR2

By assumption, T1 ↓L= ·, which contradicts (3), so this case holds vacuously.

Case III: E ends in I-R-Diff

By assumption, G,P , σ1 ` ·; lookupEHAt(id.Ev(v′)) L ks′′1 ,

G,P , σ1 ` ks′′1 ; lookupEHAt(id.Ev(v)) H κ′1, σ′1 = σ1, and R1 = (ρ1,D) with all of the following:

D(ρ1, id.Ev(v)) = (ρ′1, r, v′), d′1 = update(d1, r), and R′1 = (ρ′1,D)

Then, T1 ↓L= rls(id.Ev(v′))

Then from (2), D must end in I-R-Diff or I-R-Same with input αl,2 s.t. T2 ↓L= rls(ρ′1, r, id.Ev(v′))

Subcase i: D ends in I-R-Diff

By assumption, all of the following:

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 207

G,P , σ2 ` ·; lookupEHAt(id.Ev(v′)) L ks′′2 , G,P , σ2 ` ks′′2 ; lookupEHAt(αl,2) H κ′2, σ′2 = σ2, and

R2 = (ρ2,D) with

D(ρ2, id.Ev(v′)) = (ρ′1, r, _), d′2 = update(d2, r), and R′2 = (ρ′1,D)

From R′1 = (ρ′1,D) and R′2 = (ρ′1,D), we know that R′1 = R′2
From (1), d′1 = update(d1, r), and d′2 = update(d2, r), we know that d′1 = d′2

From Lemma 172 (Requirement (EH1)), ks′′1 ≈L ks′′2

From Lemma 182 (Requirement (EH2)), ks′′1 ≈L ks′1 and ks′′2 ≈L ks′2

Therefore, ks′1 ≈L ks′2

From (1), σ′1 = σ1, and σ′2 = σ2, we know that σ′1 ≈L σ′2

Thus, K′1 ≈L K′2

Subcase ii: D ends in I-R-Same

The proof is similar to Subcase i

Case IV: E ends in I-R-Same or I-L

The proof for these cases are similar to Case III

Case V: E ends in O

By assumption, all of the following:

ks1 = (V ; κ1; pc1) :: κ′′1 , producer(κ1), G,P ,V , d ` σ1, κ1
ch(v1)−→ pc1

σ′1, ks′′′1 , αl,1 = output(P , ch(v1), pc1),

outConditionV (P , ch(v1), pc1) = true, and ks′1 = ks′′′1 :: ks′′1

From (3) and the definition of trace projection, either pc1 v L or P(ch) = L or αl,1 = 〈_|_〉 and

getFacet(αl,1, L) 6= ·

If P(ch) = Lis true, then from the definition of output and outCondition: pc1 v L

If αl,1 = 〈_|_〉 and getFacet(αl,1, L) 6= · is true, then from the definition of output and outCondition:

pc1 = ·

Then, in any case, pc1 v L

From (1), ks2 = (V2; κ2; pc2) :: ks′′2

From the operational semantics, either D ends in O or αl,2 = (_, pc2)

If D ends in O is true, then from (2) and by a similar argument to above: pc2 v L

If αl,2 = (_, pc2)is true, then from (4) and the definition of trace projection: pc2 v L

Therefore, pc2 v L

Then, V2 = V , κ1 ≈L κ2, and ks′′1 ≈L ks′′2

Subcase i: D ends in O

By assumption, ∃D′ :: G,P ,V , d ` σ2, κ2
ch(v2)−→ pc2

σ′2, ks′′′2 and ks′2 = ks′′2 :: ks′′′2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 208

From Lemma 145, σ′1 ≈L σ′2 and ks′′′1 ≈L ks′′′2

Then from ks′′1 ≈L ks′′2 and ks′′′1 ≈L ks′′′2 , we know that ks′1 ≈L ks′2

Therefore, K′1 ≈L K′2

Subcase ii: D ends in O-Skip or O-Other

The proofs for these cases are similar to Subcase i.

Subcase iii: D ends in O-Next

By assumption, consumer(κ2)

But this contradicts producer(κ1) and κ1 ≈L κ2, so this case holds vacuously.

Case VI: E ends in O-Skip or O-Other

The proof for this case is similar to the proof for Case IV. The biggest difference is that pc1 v L

follows from (3) and the definition of trace projection.

Case VII: E ends in O-Next

The proof for this case is straightforward. It begins by establishing that pc2 v L and the rest follows

from (1).

Lemma 145 (Weak One-Step - Single Execution Semantics). If G,P ,V , d ` σG
1 , κ1

α1−→pc1
σG

3 , ks1, and

G,P ,V , d ` σG
2 , κ2

α2−→pc2
σG

4 , ks2 with pc1, pc2 v L, σG
1 ≈L σG

2 , and κ1 ≈L κ2, then σG
3 ≈L σG

4 and ks1 ≈L ks2

Proof (sketch): By induction on the structure of E :: G,P ,V , d ` σG
1 , κ1,

α1−→pc1
σG

3 , ks1. The proof also uses

Lemma 182 (Requirement (EH2)), Lemma 172 (Requirement (EH1)), and Lemma 146.

Lemma 146 (Weak One-Step - Command Semantics). If G,V , d
 σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1 and G,V , d

σG
2 , σ2, c

α2−→pc2
σG

4 , σ′2, c2, E2, with pc1, pc2 v L, σG
1 ≈L σG

2 , and σ1 ≈L σ2, then σG
3 ≈L σG

4 , σ′1 ≈L σ′2, c1 ≈L c2,

and E1 ≈L E2

Proof (sketch): By induction on the structure of E :: G,V , d
 σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1. The proof also

uses Lemmas 179, 152.U, and 152.T (Requirement (E1)), Lemmas 160.U and 160.T (Requirement (V3)), and

Lemmas 196.U, 196.T, 197.U, and 197.T (Requirement (EH4)).

Requirement (WT5) Weak one-step (Weak Secrecy)

Lemma 147 (Weak One-Step, Weak Secrecy). If T1 = G,P `w K1
αl,1
=⇒ K′1 and T2 = G,P `w K2

αl,2
=⇒ K′2, with

T1 ≈L T2, K1 ≈L K2, T1 ↓L 6= ·, and T2 ↓L 6= ·, then K′1 ≈L K′2

Proof.

We examine each case of E :: G,P `w K1
αl,1
=⇒ K′1. Denote D :: G,P `w K2

αl,2
=⇒ K′2

Case I: E ends in an input rule

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 209

The proofs for these cases are the same as Lemma 144 (Requirement (T5)). They use Lemma 172

(Requirement (EH1)) and Lemma 182 (Requirement (EH2)).

Case II: E ends in and output rule and T1 ↓L= T2 ↓L= gw(_)

Note that the only rules to emit gw(_) are assign-G-h, assign-D-h, and createElem-h, which only run

in the H context. The proof for this case follows from Lemma 148.

Case III: E ends in an output rule O, O-Skip, or O-Other and T1 ↓L= T2 ↓L 6= gw(_)

The proof for this case is similar to the output cases for Lemma 144 (Requirement (T5)). Note that all

other visible outputs still happen in the L context. These cases use Lemma 150 instead of Lemma 145.

The biggest difference here is that we need to show α1 = α2 when α1, α2 6= ch(_) to apply Lemma 150.

Denote E ′ :: G,P ,V , d `w σ1, κ1
α1−→pc1

σ′1, ks1 and D′ :: G,P ,V , d `w σ2, κ2
α2−→pc2

σ′2, ks2

Want to show: α1 = α2 when α1, α2 6= ch(_)

Assume that α1, α2 6= ch(_)

When E or D end in O or O-Skip, we know that α1 = ch(_) or α2 = ch(_)

Then, by assumption, E and D ends in O-Other with αl,1 = (α1, pc1) and αl,2 = (α2, pc2)

Then, αl,1, αl,2 6= 〈|〉, αl,1, αl,2 6= id.Ev(v), and αl,1, αl,2 6= rls(_)

Therefore, from the definition of trace projection, T1 ↓L= α1 and T2 ↓L= α2

Then from the definition of equivalence for traces, α1 = α2

Case IV: E ends in O-Next

The proof for this case is the same as from Lemma 144 (Requirement (T5)).

Lemma 148 (Weak One-Step - Single Execution Semantics - H context, Weak secrecy). If G,P ,V , d `

σG
1 , κ1

α1−→H σG
3 , ks1, and G,P ,V , d ` σG

2 , κ2
α2−→H σG

4 , ks2 with α1 = α2 = gw(_), σG
1 ≈L σG

2 , then σG
3 ≈L σG

4

and ks1 ≈L ks2

Proof (sketch): By induction on the structure of both traces. The only cases where α1 = α2 = gw(_) is

when the traces end in P or sme-h. The first case uses Lemma 149 and the second uses the IH. Since the

resulting ks is still in the H context in both cases, showing ks1 ≈L ks2 is trivial. Lemma 149 is used to show

that σG
3 ≈L σG

4

Lemma 149 (Weak One-Step - Command Semantics, Weak Secrecy). If G,V , d
w σG
1 , σ1, c1

α1−→H σG
3 , σ′1, c1, E1

and G,V , d
w σG
2 , σ2, c2

α2−→H σG
4 , σ′2, c2, E2, with α1 = α2 = gw(_) and σG

1 ≈L σG
2 then σG

3 ≈L σG
4

Proof.

By induction on the structure of E :: G,V , d
 σG
1 , σ1, c1

α1−→pc1
σG

3 , σ′1, c1, E1.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 210

Denote D :: G,V , d
 σG
2 , σ2, c2

α2−→pc2
σG

4 , σ′2, c2, E2

From α1 = α2 = gw(_) and the assumption that E and D are in the H context, E and D must end in

assign-G-h, assign-D-h, or createElem

Case I: E ends in assign-G-h

By assumption, assignWG↓g(σ
G
1 , H, x, v1) = (σG

3 , α1)

By assumption and from α1 = α2 = gw(_), we know that α1 = gw(x) and α2 = gw(x)

Then, D must end in assign-G-h with assignWG↓g(σ
G
2 , H, x, v2) = (σG

4 , α2)

From Lemma 159 (Requirement (WV2)), σG
3 ≈L σG

4

Case II: E ends in assign-D-h

By assumption, assignWG↓EH
(σG

1 , H, id, v1) = (σG
3 , α1)

By assumption and from α1 = α2 = gw(_), we know that α1 = gw(id) and α2 = gw(id)

Then, D ends in assign-D-h or createElem

Subcase i: σG
1 (id) = (id, v, M, l) with l v L

By assumption and from σG
1 ≈L σG

2 , we know that id ∈ σG
2 (id)

Then, D must end in assign-D-h with assignWG↓EH
(σG

2 , H, id, v2) = (σG
4 , α2)

From Lemma 191 (Requirement (WEH3)), σG
3 ≈L σG

4

Subcase ii: σG
1 (id) = (id, v, M, l) with l 6v L

By assumption and from σG
1 ≈L σG

2 , either

id ∈ σG
2 with σG

2 (id) = (id, _, _, H) or id 6∈ σG
2

In the first case, the proof is the same as Subcase i.

In the second case, D must end in createElem with assignWG↓EH
(σG

2 , H, id, v) = (σG
4 , α2)

From Lemma 193 (Requirement (WEH3)), σG
3 ≈L σG

4

Case III: E ends in createElem

The proof for this case is similar to Case II. It uses Lemma 194 (Requirement (WEH3)) instead of

Lemma 191.

Lemma 150 (Weak One-Step - Single Execution Semantics, Weak Secrecy). If G,P ,V , d `w σG
1 , κ1

α1−→pc1

σG
3 , ks1, and G,P ,V , d `w σG

2 , κ2
α2−→pc2

σG
4 , ks2 with pc1, pc2 v L, α1 = α2 when α1, α2 6= ch(_) σG

1 ≈L σG
2 , and

κ1 ≈L κ2, then σG
3 ≈L σG

4 and ks1 ≈L ks2

Proof (sketch): The proof is similar to the one for Lemma 145 (Requirement (T5)) except that it uses

Lemma 151 instead of Lemma 146. It uses Lemma 182 (Requirement (EH2)) and Lemma 172 (Requirement

(EH1)).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 211

Lemma 151 (Weak One-Step - Command Semantics, Weak Secrecy). If G,V , d
w σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1

and G,V , d
w σG
2 , σ2, c

α2−→pc2
σG

4 , σ′2, c2, E2, with pc1, pc2 v L, α1 = α2 when α1, α2 6= ch(_), σG
1 ≈L σG

2 , and

σ1 ≈L σ2, then σG
3 ≈L σG

4 , σ′1 ≈L σ′2, c1 ≈L c2, and E1 ≈L E2

Proof.

By induction on the structure of E :: G,V , d
 σG
1 , σ1, c

α1−→pc1
σG

3 , σ′1, c1, E1.

Denote D :: G,V , d
 σG
2 , σ2, c

α2−→pc2
σG

4 , σ′2, c2, E2

For the most part, this proof is the same as the one for Lemma 146 (Requirement (T5)) except that

Lemma 153 (Requirement (WE1)) is used instead of Lemma 152 (Requirement (E1)). It uses Lemma 179

(Requirement (EH1)) for the trigger case. We show the most interesting cases below.

Case I: E ends in if-true-br

By assumption, all of the following:

V = TT, c = if e then c′1 else c′2, G, TT, σG
1 , σ1 ` e ⇓TT

pc1
(true, l1), l1 6v L, α1 = br(true), c1 = c′1,

σG
3 = σG

1 , σ′1 = σ1, and E1 = ·

Then, D must end in if-true-br, if-false-br, if-true, or if-false with G, TT, σG
2 , σ2 ` e ⇓TT

pc2
(b, l2)

From Lemma 153 (Requirement (WV1)), (true, l1) ≈L (b, l2)

Then from l1 6v L, we know that l2 6v L

Then, D must end in if-true-br, if-false-br

From α1 = α2 when α1, α2 6= ch(_) and α1 = br(true), it must be the case that α2 = br(true)

Then, D must end in if-true-br with all of the following:

c2 = c′1, σG
4 = σG

2 , σ′2 = σ2, and E2 = ·

From σG
1 ≈L σG

2 and σG
3 = σG

1 , we know that σG
3 ≈L σG

4

From σ1 ≈L σ2, σ′1 = σ1, and σ′2 = σ2, we know that σ′1 ≈L σ′2

From c1 = c′1 and c2 = c′1, we know that c1 ≈L c2

From E1 = · and E2 = ·, we know that E1 ≈L E2

The proof for if-false-br is similar to Case I

The proofs for if-true and if-false is similar to Case I. Lemma 153 is used to show that the labels on the

branch condition are v L.

C.4.4 Expression Requirements

Requirement (E1) Equivalent traces produce L-equivalent states

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 212

Lemma 152. If σG
1 ≈L σG

2 and σ1 ≈L σ2 with pc1, pc2 v L and G,V , σG
1 , σ1 ` e ⇓i

pc1
v1, then

Unstructured EH storage: G,V , σG
2 , σ2 ` e ⇓i

pc2
v2 with v1 'L v2

Tree-structured EH storage: G,V , σG
2 , σ2 ` e ⇓i

pc2
v2 with v1 'σ1,σ2

L v2

Proof.

By induction on the structure of E :: G,V , σG
1 , σ1 ` e ⇓i

pc1
v1 Denote D :: G,V , σG

2 , σ2 ` e ⇓i
pc2

v2

Unstructured EH storage:

Case U.I: E ends in var

By assumption, all of the following:

e = x, v1 = toDst(v′1, pc1, i), and

if x ∈ σG
1 , then v′1 = varG↓g(σ

G
1 , pc1, x); otherwise, v′1 = varV (σ1, pc1, x)

From e = x, the last rule applied to D must have been var and all of the following:

v2 = toDst(v′2, pc2, i) and

if x ∈ σG
2 , then v′2 = varG↓g(σ

G
2 , pc2, x); otherwise, v′2 = varV (σ2, pc2, x)

Recall that in our semantics, the set of global variables is static, so x ∈ σG
1 is true iff x ∈ σG

2 is true

and v′1 = varV (σ1, pc1, x) is true iff v′2 = varV (σ2, pc2, x) is true

Then from Lemma 154.U (Requirement (V1)), v′1 'L v′2

And from Lemma 155.U (Requirement (V1)), v1 'L v2

Case U.II: E ends in bop

By assumption, all of the following:

e = e1 bop e2, ∃E1 :: G,V , σG
1 , σ1 ` e1 ⇓i

pc1
v1,1, ∃E2 :: G,V , σG

1 , σ1 ` e2 ⇓i
pc1

v2,1, and v1 = v1,1 bop v2,1

From e = e1 bop e2, the last rule applied to D must have been bop and all of the following:

∃D1 :: G,V , σG
2 , σ2 ` e1 ⇓i

pc2
v1,2, ∃D2 :: G,V , σG

1 , σ1 ` e2 ⇓i
pc2

v2,2, and v2 = v1,2 bop v2,2

IH on E1,D1 and E2,D2 gives v1,1 'L v1,2 and v2,1 'L v2,2

Thus, v1 'L v2

Case U.III: E ends in ehAPI

By assumption, all of the following:

e = ehAPI(id, e1, · · · , en), ∀i ∈ [1, n], ∃Ei :: G,V , σG
1 , σ1 ` ei ⇓G↓EH

pc1
vi,1,

v′1 = ehAPIG↓EH(σ
G
1 , pc1, id, v1,1, · · · , vn,1), and v1 = toDst(v′1, pc1, i)

From e = ehAPI(id, e1, · · · , en), the last rule applied to D must have been ehAPI and all of the following:

∀i ∈ [1, n], ∃Di :: G,V , σG
2 , σ2 ` ei ⇓I↓EH

pc2
vi,2, v′2 = ehAPIG↓EH(σ

G
2 , pc2, id, v1,2, · · · , vn,2), and

v2 = toDst(v′2, pc2, i)

IH on Ei,Di, ∀i ∈ [1, n] gives ∀i ∈ [1, n], vi,1 'L vi,2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 213

Then, from Lemma 162.U (Requirement (EH1)), v1 'L v2

Tree-structured EH storage:

The proof is similar to the one for the Unstructured storage, except that it uses Lemma 154.T

(Requirement (V1)), Lemma 155.T (Requirement (V1)), and Lemma 162.T (Requirement (EH1)).

Requirement (WE1) Equivalent traces produce L-equivalent states (Weak Secrecy)

Lemma 153. If σ1 ≈L σ2, with pc1, pc2 v L and G,V , σG
1 , σ1 ` e ⇓i

pc1
v1, then G,V , σG

2 , σ2 ` e ⇓i
pc2

v2 with

v1 ≈L v2

Proof (sketch): The proof is similar to the one for Lemma 152 (Requirement (E1)) except that it uses

Lemma 156 (Requirement (WV1)) instead of Lemma 154 (Requirement (V1)) and Lemma 180 (Require-

ment (WEH1)) instead of Lemma 162 (Requirement (EH1)).

C.4.5 Variable Storage Requirements

Requirement (V1) L lookups are equivalent

Lemma 154. If σ1 ≈L σ2 and pc1, pc2 v L, then for

Unstructured EH storage:

• varV (σ1, pc1, x) = v1 and varV (σ2, pc2, x) = v2 then v1 'L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 'L v2

Tree-structured EH storage:

• varV (σ1, pc1, x) = v1 and varV (σ2, pc2, x) = v2 then v1 'σ1,σ2
L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 'σ1,σ2
L v2

Proof (sketch): Only cases for V 6= TT and G 6= TS are needed, since the other cases are proven in the

weak secrecy version: Lemma 156 (Requirement (WV1)). The proof is by straightforward induction on

the structure of E :: vari(σ1, pc1, x) = v1 and D :: vari(σ2, pc2, x) = v2

Lemma 155.

Unstructured EH storage: If v1 'L v2, with pc1, pc2 v L and toDst(v1, pc1, i) = v′1, then toDst(v2, pc2, i) =

v′2 with v′1 'L v′2

Tree-structured EH storage: If v1 'σ1,σ2
L v2, with pc1, pc2 v L and toDst(v1, pc1, i) = v′1, then toDst(v2,

pc2, i) = v′2 with v′1 '
σ1,σ2
L v′2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 214

Proof (sketch): This proof is by straightforward case analysis on the structure of v1 and v2.

Requirement (WV1) L lookups are equivalent (Weak Secrecy)

Lemma 156. If σ1 ≈L σ2 and pc1, pc2 v L, then for

Unstructured EH storage:

• varV (σ1, pc1, x) = v1 and varV (σ2, pc2, x) = v2 then v1 ≈L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 ≈L v2

Tree-structured EH storage:

• varV (σ1, pc1, x) = v1 and varV (σ2, pc2, x) = v2 then v1 ≈σ1,σ2
L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 ≈σ1,σ2
L v2

Proof (sketch): Only the cases for TT and TS are needed since the other cases follow from Lemma 154

(Requirement (V1)). The proof is by straightforward induction on the structure of E :: vari(σ1, pc1, x) = v1

and D :: vari(σ2, pc2, x) = v2.

Requirement (V2) H assignments are unobservable

Lemma 157. assignG(σ, H, x, v) ≈L σ

Proof (sketch): Only cases for G 6= TS are needed since the other cases are proven in the weak secrecy

version: Lemma 158 (Requirement (WV2)) The proof is by case analysis on G

Requirement (WV2) H assignments are unobservable (Weak Secrecy)

Lemma 158. If assignWG(σ, H, x, v) = (σ′, •), then σ ≈L σ′

Proof (sketch): Only cases for G = TS are needed since the other cases follow from Lemma 157 (Require-

ment (V2)). The proof only requires two cases: one where x ∈ σ and one where x 6∈ σ.

Lemma 159. If σ1 ≈L σ2 and assignWG(σ1, H, x, v) = (σ′1, gw(x)), and assignWG(σ2, H, x, v) = (σ′2, gw(x))

then σ′1 ≈L σ′2

Proof.

Denote D :: assignWG(σ1, H, x, (v1, l1)) = (σ′1, α1) and E :: assignWG(σ2, H, x, (v2, l2)) = (σ′2, α2)

By assumption, α1 = α2 = gw(x) and σ1 ≈L σ2

From α1 = α2 = gw(x) and since only the TS semantics can produce gw(_), D and E end in assign-gw,

meaning that σ′1 = σ1[x 7→ (v1, l1 t H)] and σ′2 = σ2[x 7→ (v2, l2 t H)]

From our security lattice, l1 t H = H and l2 t H = H

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 215

Thus, σ′1 ≈L σ′2

Requirement (V3) L assignments are equivalent

Lemma 160. If σ1 ≈L σ2 and pc1, pc2 ∈ {L, ·}, with

Unstructured EH storage: v1 ≈L v2, then assigni(σ1, pc1, x, v1) ≈L assigni(σ2, pc2, x, v2)

Tree-structured EH storage: v1 ≈σ1,σ2
L v2, then assigni(σ1, pc1, x, v1) ≈L assigni(σ2, pc2, x, v2)

Proof (sketch): The proof is straightforward. We consider each mechanism i separately and have one case

for each pc.

Requirement (WV3) L assignments are equivalent (Weak Secrecy)

Lemma 161. If σ1 ≈L σ2 and pc1, pc2 ∈ {L, ·}, with v1 ≈L v2, then for (σ′1, α1) = assignWi(σ1, pc1, x, v1) and

(σ′2, α2) = assignWi(σ2, pc2, x, v2), σ′1 ≈L σ′2 and α1 = α2

Proof (sketch): Only the cases for i ∈ {TT, TS} are needed, since the other cases always produce α1 =

α2 = •, so their proofs follow from Lemma 160 (Requirement (V3)). The proof is by case analysis on

D :: (σ′1, α1) = assignWi(σ1, pc1, x, (v1, l1))

C.4.6 Event Handler Storage Requirements

Requirement (EH1) L lookups are equivalent

Lemma 162. If σ1 ≈L σ2 and pc1, pc2 v L and

Unstructured EH storage: ∀i ∈ [1, n], vi,1 'L vi,2 with v1 = ehAPIe(G, σ1, pc1, id, v1,1, · · · , vn,1) and

v2 = ehAPIe(G, σ2, pc2, id, v1,2, · · · , vn,2), then v1 'L v2

Tree-structured EH storage: ∀i ∈ [1, n], vi,1 'σ1,σ2
L vi,2 with v1 = ehAPIe(G, σ1, pc1, a1, v1,1, · · · , vn,1) and

v2 = ehAPIe(G, σ2, pc2, a2, v1,2, · · · , vn,2), then v1 'σ1,σ2
L v2

Proof (sketch): By induction on the structure of E :: v1 = ehAPIe(...) and D :: v2 = ehAPIe(...). The case

where E or D end in ehAPI uses Lemma 163.U (for the unstructured DOM) or Lemma 163.T (for the

tree-structured DOM).

Lemma 163. If σ1 ≈L σ2 and pcl,1, pcl,2 v L, then

Unstructured EH storage: if ∀i ∈ [1, n]vi,1 'L vi,2, then ehAPIeG(σ1, pc1, id, v1,1, · · · , vn,1) 'L

ehAPIeG(σ2, pc2, id, v1,2, · · · , vn,2)

Tree-structured EH storage: if ∀i ∈ [1, n]vi,1 'σ1,σ2
L vi,2, then ehAPIeG(σ1, pc1, id, v1,1, · · · , vn,1) 'σ1,σ2

L

ehAPIeG(σ2, pc2, id, v1,2, · · · , vn,2)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 216

Proof (sketch): There are additional lemmas for each event handler API.

Unstructured EH storage: The conclusion follows from Lemma 166.U when ehAPIe is getVal.

Tree-structured EH storage: The conclusion follows from Lemma 166.T when ehAPIe is getVal, Lemma 167

when ehAPIe is getChildren, Lemma 168 when ehAPIe is moveRoot, Lemma 169 when ehAPIe is moveUp,

Lemma 170 when ehAPIe is moveDown, and Lemma 171 when ehAPIe is moveRight.

Lemma 164. If σ1 ≈L σ2 and pc1, pc2 v L then

Unstructured EH storage: lookupG(σ1, pc1, id) ≈L lookupG(σ2, pc2, id)

Tree-structured EH storage: lookupG(σ1, pc1, id) ≈σ1,σ2
L lookupG(σ2, pc2, id)

Proof (sketch): The proof is by induction on the structure of E :: lookupG(σ1, pc1, id) and D :: lookupG(σ2, pc2,

id). The cases for the tree-structured DOM use Lemma 165.

Lemma 165. If σ1 ≈L σ2, pc1, pc2 v L and A1 ≈σ1,σ2
L A2, then lookupAG(σ1, pc1, id, A1) ≈σ1,σ2

L lookupAG(σ2,

pc2, id, A2)

Proof (sketch): The proof is by induction on the structure of E :: lookupAG(σ1, pc1, id, A1) and D :: lookupAG(

σ2, pc2, id, A2). and largely relies on the assumption that A1 ≈σ1,σ2
L A2.

Lemma 166. If σ1 ≈L σ2 and pc1, pc2 v L, then

Unstructured EH storage: getValG(σ1, pc1, id) 'L getValG(σ2, pc2, id)

Tree-structured EH storage: if a1 ≈σ1,σ2
L a2 getValG(σ1, pc1, a1) 'σ1,σ2

L getValG(σ2, pc2, a2)

Proof (sketch): Only the cases for G 6= TS are needed. The other cases are proven in the weak secrecy

version: Lemma 181 (Requirement (WE1)). In the proof, we examine each case of G. The cases for the

unstructured DOM use Lemma 164.U, while the ones for the tree-structured DOM rely on the assumption

that a1 ≈σ1,σ2
L a2.

Lemma 167. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2
L a2, then getChildrenG(σ1, pc1, a1) 'σ1,σ2

L getChildrenG(σ2,

pc2, a2)

Proof (sketch): Note that getChildren is defined only for the tree-structured EH storage. We split the proof

by G and then proceed by induction over the structure of D :: getChildrenG(σ1, pc1, a1) = v1 and E ::

getChildrenG(σ2, pc2, a2) = v2.

Lemma 168. If σ1 ≈L σ2 and pc1, pc2 v L, then moveRootG(σ1, pc1) '
σ1,σ2
L moveRootG(σ2, pc2)

Proof (sketch): Note that moveRoot is defined only for the tree-structured EH storage. The proof is very

straightforward, with just one case per G.

Lemma 169. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2
L a2, then moveUpG(σ1, pc1, a1) 'σ1,σ2

L moveUpG(σ2, pc2, a2)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 217

Proof (sketch): Note that moveUp is defined only for the tree-structured EH storage. We split the proof

by G and then proceed by induction over the structure of D :: moveUpG(σ1, pc1, a1) = a′1 and E ::

moveUpG(σ2, pc2, a2) = a′2.

Lemma 170. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2
L a2, then moveDownG(σ1, pc1, a1) 'σ1,σ2

L moveDownG(σ2,

pc2, a2)

Proof (sketch): Note that moveDown is defined only for the tree-structured EH storage. We split the proof

by G and then proceed by induction over the structure of D :: moveDownG(σ1, pc1, a1) = a′1 and E ::

moveDownG(σ2, pc2, a2) = a′2.

Lemma 171. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2
L a2, then moveRightG(σ1, pc1, a1) 'σ1,σ2

L moveRightG(σ2,

pc2, a2)

Proof (sketch): Note that moveRight is defined only for the tree-structured EH storage. We split the proof

by G and then proceed by induction over the structure of D :: moveRightG(σ1, pc1, a1) = a′1 and E ::

moveRightG(σ2, pc2, a2) = a′2

Lemma 172. If σ1 ≈L σ2 and ks1 ≈L ks2 with E1 ≈L E2 and pc1, pc2 v L, and one of the following:

1. When G,P , σ1 ` ks1; lookupEHAt(id.Ev(v)) pc1
ks′1, and G,P , σ2 ` ks2; lookupEHAt(id.Ev(v)) pc2

ks′2,

2. When G,P , σ1 ` ks1; lookupEHAll(id.Ev(v)) pc1
ks′1, and G,P , σ2 ` ks2; lookupEHAll(id.Ev(v)) pc2

ks′2,

3. When G,P , σ1 ` ks1; lookupEHAt(id.Ev(v)) L ks′1 and G,P , σ2 ` ks2; lookupEHAll(id.Ev(v)) · ks′2, or

4. When G,P , σ1 ` ks1; lookupEHs(E1) pc1
ks′1, and G,P , σ2 ` ks2; lookupEHs(E2) pc2

ks′2,

then ks′1 ≈L ks′2

Proof.

By induction on the structure of D :: G,P , σ1 ` ks1; lookupEHAPI(...) pc1
ks′1 and

E :: G,P , σ2 ` ks2; lookupEHAPI(...) pc2
ks′2

We refer to the following assumptions throughout:

(1) σ1 ≈L σ2; (2) ks1 ≈L ks2; (3) pc1, pc2 v L; and (4) E1 ≈L E2

Case I: D and E end in lookupEhAPI

C1 ≈L C2 follows from Lemma 175, Lemma 176, or Lemma 177, depending on the APIs.

The conclusion follows from (2) and Lemma 173

Case II: D ends in lookupEHs-s

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 218

If E2 = ·, then E ends in the same rule. Then, the proof follows from (2). Otherwise, E ends in

lookupEHs-r and the proof follows from Lemma 182 (Requirement (EH2)).

Case III: E ends in lookupEHs-s

The proof for this case is similar to Case II.

Case IV: D ends in lookupEHs-r

If l1, l2 v L, then E ends in the same rule and the proof follows from Lemmas 178 and 178, and the IH.

If l1 6v L or l2 6v L, then the proof follows from Lemmas 185 and 186 (Requirement (EH2)), and the IH.

Case V: E ends in lookupEHs-r

The proof for this case is similar to the one for Case IV.

Lemma 173. If C1 ≈L C2 and ks1 = createK(P , id.Ev(v), C1) and ks2 = createK(P , id.Ev(v), C2), then ks1 ≈L

ks2

Proof (sketch): The proof is by straightforward induction on the structure of D :: createK(P , id.Ev(v), C1)

and E :: createK(P , id.Ev(v), C2). It uses Lemma 174 for L event handlers and Lemma 187 (Requirement

(EH2)) for any H event handlers.

Lemma 174. If pc1, pc2 v L and ks1 = crtKV (eh, v, pc1) and ks2 = crtKV (eh, v, pc2), then ks1 ≈L ks2

Proof (sketch): This proof is straightforward. It uses the definition of ≈L for κ.

Lemma 175. σ1 ≈L σ2 with pc1, pc2 v L, then lookupEHAllG(σ1, pc1, id.Ev(v)) ≈L lookupEHAllG(σ2, pc2, id.Ev(v))

Proof.

By induction on the structure of E :: C1 = lookupEHAllG(σ1, id.Ev(v), pc1) and

D :: C2 = lookupEHAllG(σ2, id.Ev(v), pc2)

Want to show C1 ≈L C2

Case I: D ends in lookupEHall-s

By assumption, all of the following:

lookupG↓EH
(σ1, pc1, id) = φ1, valOf(φ1) = NULL, and C1 = ·

Subcase i: pc2 = L

From Lemma 164.U (for the unstructured EH storage), either

(i.1) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ2, pc2) = L; or

(i.2) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ2, pc2) = H

From Lemma 164.T (for the tree-structured EH storage),

(i.3) lookupG↓EH
(σ2, pc2, id) ≈σ2,σ1

L φ1

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 219

Subsubcase a: (i.1) or (i.3) (above) are true

From (i.1) (for the unstructured EH storage) and (i.3) (for the tree-structured EH storage), E ends

in lookupEHall-s with C2 = ·

Then from C1 = ·, we know that C1 ≈L C2

Subsubcase b: (i.2) (above) is true

From (i.2), C1 ≈L · and either

E ends in lookupEHAll; or E ends in lookupEHAll-s

In the first case, then from (i.2), C2 ≈L ·

Otherwise, C2 = ·

Thus, from C1 ≈L ·, we know that C1 ≈L C2

Subcase ii: pc2 = ·

By assumption, E ends in lookupEHall-nc-merge and all of the following:

∃E ′ :: lookupEHAllG(σ2, H, id.Ev(v)) = CH , ∃E ′′ :: lookupEHAllG(σ2, L, id.Ev(v)) = CL, and

C2 = mergeC(CH , CL)

From Lemma 183 (Requirement (EH2)), CH ≈L ·

IH on D and E ′′ gives CL ≈L C1

Then from the definition of mergeC, C1 ≈L C2

Case II: E ends in lookupEHall-s

The proof for this case is similar to Case I.

Case III: E ends in lookupEHall

By assumption, all of the following:

lookupG↓EH
(σ1, pc1, id) = φ1, valOf(φ1) 6= NULL, labOf(φ1, pc1) = l1, C1 = (φ1.M(Ev) ↓pc1

) t pc1 t l1,

and pc1 = L

From Lemma 164.U (for the unstructured EH storage), we know that either

(III.1) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ1, pc2) = L; or

(III.2) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ1, pc2) = H

Then from Lemma 164.T (for the tree-structured EH storage), we know that

(III.3) lookupG↓EH
(σ2, pc2, id) ≈σ2,σ1

L φ1

Subcase i: pc2 = L and (III.1) or (III.3) is true

By assumption, E ends in lookupEHall and all of the following:

labOf(φ2, pc2) = l2, C2 = (φ2.M(Ev) ↓pc2
) t pc2 t l2, and pc2 = L

Then, we know that l1 = l2 = L

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 220

From the definition of ↓L for M (which projects L- and

·-labeled event handlers to be labeled with L), we also know that C1 = φ1.M(Ev) ↓L and

C2 = φ2.M(Ev) ↓L

Then from the definition of ↓L for M, C1 ≈L C2

Subcase ii: pc2 = ·

By assumption, E ends in lookupEHall-nc-merge and the rest of the proof is similar to Subcase I.ii.

Subcase iii: (III.1) is true

The proof for this case is similar to Subcase I.i.b.

Case IV: D ends in lookupEHall

The proof for this case is similar to the one for Case III.

Case V: E ends in lookupEHall-nc-merge

By assumption, all of the following:

E ′ :: CH = lookupEHAllG(σ1, H, id.Ev(v)),

E ′′ :: CL = lookupEHAllG(σ1, L, id.Ev(v)), and

C1 = mergeC(CH , CL)

From Lemma 183 (Requirement (EH2)), CH ≈L ·

IH on D and E ′′ gives CL ≈L C1

Then, from the definition of mergeC, C1 ≈L C2

Case VI: D ends in lookupEHall-nc-merge

The proof is similar to Case V

Lemma 176. σ1 ≈L σ2 and pc1, pc2 v L, then lookupEHAtG(σ1, pc1, id.Ev(v1)) ≈L lookupEHAtG(σ2, pc2, id.Ev(v2))

Lemma 177. σ1 ≈L σ2, then lookupEHAtG(σ1, L, id.Ev(v)) ≈L lookupEHAllG(σ2, ·, id.Ev(v))

Proof (sketch): The proof for this case is similar to Lemma 175 and uses the fact that (M(Ev)@L)t L returns

the same thing as M(Ev) ↓L and Lemma 183 (Requirement (EH2)) is used to show that lookupEHAllG(σ2, ·,

id.Ev(v)) ≈L lookupEHAllG(σ2, L, id.Ev(v)).

Lemma 178. σ1 ≈L σ2 and pc1, pc2 v L, then lookupEHsG(σ1, pc1, id.Ev(v)) ≈L lookupEHsG(σ2, pc2, id.Ev(v))

Proof (sketch): Follows from Lemma 175 and Lemma 176.

Lemma 179. If σ1 ≈L σ, pc1, pc2 v L, and v1 ≈L v2 then triggerEHG(σ1, pc1, id, Ev, v1) ≈L triggerEHG(σ2, pc2,

id, Ev, v2)

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 221

Proof (sketch): The proof is by induction on the structure of E :: triggerEHG(σ1, pc1, id, Ev, v1) and D ::

triggerEHG(σ2, pc2, id, Ev, v2) and uses Lemma 164.U (for lookups in the unstructured DOM), Lemma 165

(for lookups in the tree-structured DOM), and Lemma 188 (Req (EH2)).

Requirement (WEH1) L lookups are equivalent

Lemma 180. If σ1 ≈L σ2 and pc1, pc2 v L and ∀i ∈ [1, n], vi,1 ≈L vi,2 with vi,1 ↓pc1
= vi,1, vi,2 ↓pc2

= vi,2, and

t1 = ehAPII (σ1, pc1, id, v1,1, · · · , vn,1) and t2 = ehAPII (σ2, pc2, id, v1,2, · · · , vn,2), then t1 ≈L t2

Proof (sketch): The proof is similar to the one for Lemma 162 (Requirement (EH1)). It uses Lemma 164

(Requirement (EH1)) and Lemma 181 instead of Lemma 166.

Lemma 181. If pc1, pc2 v L and φ1 ≈L φ2, with getValGG(pc1, φ1) = v1 and getValGG(pc1, φ2) = v2, then

v1 ≈L v2

Proof (sketch): Only the cases for G = TS are needed. The other cases follow from Lemma 166 (Require-

ment (EH1)).

Requirement (EH2) H EH lookups are unobservable

Lemma 182. If any of the following:

1. G,P , σ ` ks; lookupEHAll(id.Ev(v)) H ks′ or

2. G,P , σ ` ks; lookupEHAt(id.Ev(v)) H ks′ or

3. G,P , σ ` ks; lookupEHs(E) H ks′ or

4. G,P , σ ` ks; lookupEHs(E) pc ks′

then ks ≈L ks′

Proof (sketch):

By induction on the structure of E :: G,P , σ ` ks; lookupEHAPI(...) pc ks′

Case I: E ends in lookupEhAPI with pc = H

The proof follows from Lemma 183 (Requirement (EH2)), Lemma 184 and Lemma 186.

Case II: E ends in lookupEHs-R with pc = H

Follows from Lemma 185 (Requirement (EH2)), Lemma 186, and the IH.

Case III: E ends in lookupEHs-R with E ≈L ·

The assumption that E ≈L · allows us to apply Lemma 185 (Requirement (EH2)). Then, the proof is

similar to Case II.

Case IV: E ends in lookupEHs-s

Follows from assumption that ks′ = ks.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 222

Lemma 183. lookupEHAllG(σ, id.Ev(v), H) ≈L ·

Proof (sketch): The case for lookupEHall follows from our security lattice (everything is joined with the

pc, which is H, here). The case for lookupEHall-s is straightforward. The pc = · in lookupEHall-nc-

merge, so this case holds vacuously.

Lemma 184. lookupEHAtG(σ, id.Ev(v), H) ≈L ·

Proof (sketch): The case for lookupEHat follows from our security lattice (everything is joined with the pc,

which is H, here). The case for lookupEHat-s is straightforward. The pc = · in lookupEHat-nc-merge,

so this case holds vacuously.

Lemma 185. lookupEHsG(σ, id.Ev(v), H) ≈L ·

Proof (sketch): The proof follows from Lemma 183 (Requirement (EH2)) and Lemma 184

Lemma 186. If C ≈L · and ks = createK(P , id.Ev(v), C) then ks ≈L ·

Proof (sketch): This proof is by straightforward induction on the structure of D :: createK(P , id.Ev(v), C). It

uses Lemma 187.

Lemma 187. If ks = crtKV (eh, v, H) then ks ≈L ·

Proof (sketch): This proof is straightforward and follows directly from the assumption that the pc = H.

Lemma 188. triggerEHG(σ, H, id, Ev, v) ≈L ·

Proof (sketch):

By induction on the structure of E :: triggerEHG(σ, H, id, Ev, v) = E

Want to show E ≈L ·

Note that the rules are very similar for each enforcement mechanism and EH storage, so we do not

consider them separately.

Case I: E ends in triggerEH

By assumption, and from our security lattice, E = (id.Ev(v), H), therefore E ≈L ·

Case II: E ends in triggerEH-s

By assumption, E = ·, therefore E ≈L ·

Case iii: E ends in triggerEH-nc

By assumption, pc = ·, but we only want to consider cases where pc = H, so this case holds vacuously.

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 223

Requirement (EH3) H updates are unobservable

Lemma 189.

Unstructured EH storage: assignG(σ, H, id, v) ≈L σ

Tree structure EH storage: assignG(σ, H, a, v) ≈L σ

Proof (sketch): Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy

version: Lemma 191 and Lemma 192 (Requirement (WEH3)). The proof is straightforward. We examine

each case of E :: assignG(σ, H, id, v) (for the unstructured EH storage) and E :: assignG(σ, H, a, v) (for the

tree-structured EH storage) for each G. In every case, only the H view is changed, so the resulting store is

equivalent.

Lemma 190. For any G, all of the following hold:

Unstructured EH storage:

• createElemG(σ, H, id, v) ≈L σ

• registerEHG(σ, H, id, eh) ≈L σ

Tree structure EH storage:

• createChildG(σ, H, id, ap, v) ≈L σ

• createSiblingG(σ, H, id, as, v) ≈L σ

• registerEHG(σ, H, a, eh) ≈L σ

Proof (sketch): For createElem, only the cases for G 6= TS are considered. The other cases are proven in the

weak secrecy version: Lemma 194 and Lemma 195 (Requirement (WEH3)). We consider each G and EH

store structure separately and then proceed by induction on the structure of E :: createElemG(σ, H, id, v) ≈L

σ, then E :: registerEHG(σ, H, id, eh) ≈L σ, etc. The proof for createElem for the unstructured EH store also

uses Lemma 189 (Requirement (EH3)).

Requirement (WEH3) H updates are unobservable (Weak Secrecy)

Lemma 191. If σ1 ≈L σ2 and assignWG(σ1, H, id, (v1, l1)) = (σ′1, gw(x)) and assignWG(σ2, H, id, (v2, l2)) =

(σ′2, gw(x)), then σ′1 ≈L σ′2

Proof. Only the cases for G = TS are considered. The other cases are not considered since TS is the only

one which emits gw(_) events.

Denote D :: assignWG(σ1, H, id, (v1, l1)) and E :: assignWG(σ2, H, id, (v2, l2)).

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 224

From the assumption that D and E produce gw(x), D and E must end in ts-assign-gw

By assumption and from our security lattice, σ′1 = σ1[x 7→ (v1, H)] and σ′2 = σ2[x 7→ (v2, H)].

Therefore, from the assumption that σ1 ≈L σ2, σ′1 ≈L σ′2.

Lemma 192. If assignWG(σ, H, id, (v, l)) = (σ′, •),then σ ≈L σ′

Proof.

Only the cases for G = TS are considered. The other cases follow from Lemma 189 (Requirement (EH3)).

We examine each case of E :: assignWG(σ, H, id, (v, l))

Case I: E ends in ts-assign

By assumption and from our security lattice, H v labOf(σ(x), H) and σ′ = σ[x 7→ (v, H)]

Then from the definition of ≈L for values, σ ≈L σ′

Case II: E ends in ts-assign-s

By assumption, σ′ = σ. Therefore, σ ≈L σ′.

Case III: E ends in ts-assign-gw

We only consider cases which emit •, therefore this case holds vacuously.

Lemma 193. If σ1 ≈L σ2, and assignWG(σ1, H, id, (v1, l1)) = (σ′1, gw(id)) and createElemWG(σ2, H, id, (v2, l2)) =

(σ′2, gw(id)) then σ′1 ≈L σ′2

Proof.

Only the cases for G = TS are considered. The other cases are not considered since TS is the only one

which emits gw(_) events.

Denote D :: assignWG(σ1, H, id, (v1, l1)) = (σ′1, gw(id)) and E :: createElemWG(σ2, H, id, (v2, l2)) =

(σ′2, gw(id))

From the assumption that D and E produce gw(id), D must end in ts-assignEH-gw where (from our

security lattice)

σ1(id) = (id, _, M, lφ) and σ′1 = σ1[id 7→ (id, (v1, H), M, lφ)]

We examine each case of E

Case I: E ends in ts-create-u1-gw

By assumption and from our security lattice, all of the following:

lookupTS(σ2, H, id) = (id, v′, M, l′), φ2 = (id, (v2, H), M, l′), and σ′2 = σ2[id 7→ φ2]

Then, from σ1 ≈L σ2 and since the node labels do not change in either assignment, σ′1 ≈L σ′2

Case II: E ends in ts-create-nc

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 225

We only consider cases where pc = H, so this case holds vacuously.

Case III: E ends in ts-create, ts-create-u1, or ts-create-u2

We only consider rules which emit gw(id), so these cases hold vacuously.

Lemma 194. If σ1 ≈L σ2 and createElemWG(σ1, H, id, (v1, l1)) = (σ′1, gw(x)) and createElemWG(σ2, H, id, (v2,

l2)) = (σ′2, gw(x)), then σ′1 ≈L σ′2

Proof.

Only the cases for G = TS are considered. The other cases are not considered since TS is the only one

which emits gw(_) events.

Denote D :: createElemWG(σ1, H, id, (v1, l1)) = (σ′1, gw(id)) and

E :: createElemWG(σ2, H, id, (v2, l2)) = (σ′2, gw(id))

We examine each case of D

Case I: D ends in ts-create-u1-gw

By assumption and from our security lattice, both of the following

lookupTS(σ1, H, id) = (id, _, M1, lφ,1) and σ′1 = σ1[id 7→ (id, (v1, H), M1, lφ,1)

From the assumption that E emits gw(id) and runs in the H context, E ends in ts-create-u1-gw and

lookupTS(σ2, H, id) = (id, _, M2, lφ,2) and σ′2 = σ2[id 7→ (id, (v2, H), M2, lφ,2)

Then from σ1 ≈L σ2 and the definition of ≈L for TS nodes, either

lφ1 = lφ2 = H; or lφ1 = lφ2 = L and M1 ≈L M2

Then from σ1 ≈L σ2, σ′1 ≈L σ′2

Case II: D ends in ts-create, ts-create-u1, or ts-create-u2

We only consider rules which emit gw(id), so these cases hold vacuously.

Case III: D ends in ts-create-nc

We only consider cases where pc = H, so this case holds vacuously.

Lemma 195. If createElemWG(σ, H, id, (v, l)) = (σ′, •), then σ ≈L σ′

Proof.

Only the cases for G = TS are considered. The other cases follow from Lemma 190 (Requirement (EH3)).

We examine each case of D :: createElemWG(σ, H, id, v) = (σ, •)

Case I: D ends in ts-create

By assumption, lookupTS(σ, H, id) = (NULL, _) and σ′ = σ[id 7→ (id, (v, l), ·, H)]

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 226

Then from the definition of lookup for TS, id 6∈ σ

Thus, σ ≈L σ′

Case II: D ends in ts-create-u1

By assumption and from our security lattice, all of the following:

lookupTS(σ, H, id) = (id, (v′, l′), M, lφ), σ′ = σ1[id 7→ (id, (v, H), M, lφ), and H v l′

Thus, σ ≈L σ′

Case III: D ends in ts-create-u2

By assumption, lookupTS(σ, H, id) = (id, v′, M, l′) with l′ 6v H

But from our security lattice, such an l′ does not exist. So this case holds vacuously.

Case IV: D ends in ts-create-u1-gw

We only consider rules which emit • so this case holds vacuously.

Case V: D ends in ts-create-nc

We only consider cases where pc = H so this case holds vacuously.

Requirement (EH4) L updates are equivalent

Lemma 196. If σ1 ≈L σ2, pc1, pc2 v L, then

Unstructured EH storage: if v1 ≈L v2, then assignG(σ1, pc1, id, v1) ≈L assignG(σ2, pc2, id, v2)

Tree structure EH storage: if v1 ≈σ1,σ2
L v2, and a1 ≈σ1,σ2

L a2, then assignG(σ1, pc1, a, v1) ≈L assignG(σ2, pc2,

a, v2)

Proof (sketch): Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy

version: Lemma 198. The proof is by induction on the structure of D :: assignG(σ1, pc1, id, v1) = σ′1 and

E :: assignG(σ2, pc2, id, v2) = σ′2 The unstructured DOM also uses Lemma 189.U (Requirement (EH3)) for

the assignments to the H copy of the multi-store, and the tree-structured DOM uses Lemma 189.T for

the same reason. Meanwhile the unstructured DOM uses Lemma 164.U to show the DOM nodes are

equivalent after lookup, while the tree-structured DOM uses the assumption that a1 ≈σ1,σ2
L a2.

Lemma 197. If σ1 ≈L σ2, pc1, pc2 v L, then

Unstructured EH storage: If v1 ≈L v2, then

• createElemG(σ1, pc1, id, v1) ≈L createElemG(σ2, pc2, id, v2)

• registerEHG(σ1, pc1, id, eh) ≈L registerEHG(σ2, pc2, id, eh)

Tree structure EH storage: If v1 ≈σ1,σ2
L v2, ap,1 ≈σ1,σ2

L ap,2, as,1 ≈σ1,σ2
L as,2, and a1 ≈σ1,σ2

L a2, then

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 227

• createChildG(σ1, pc1, id, ap,1, v1) ≈L createChildG(σ2, pc2, id, ap,1, v2)

• createSiblingG(σ1, pc1, id, as,1, v1) ≈L createSiblingG(σ2, pc2, id, as,2, v2)

• registerEHG(σ1, pc1, a1, eh) ≈L registerEHG(σ2, pc2, a2, eh)

Proof (sketch): Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy

version: Lemma 199. We consider each G and EH store structure separately and then proceed by induction

on the structure of D and E for D :: createElemG(σ1, pc1, id, v1) and E :: createElemG(σ2, pc2, id, v2), then D ::

registerEHG(σ1, pc1, id, eh) and E :: registerEHG(σ2, pc2, id, eh), etc. Lemma 164.U is used for the unstructured

DOM to show that DOM nodes are equivalent after lookup (we use Lemma 165 (Requirement (EH1))

for a similar reason for the tree-structured DOM). We also use Lemma 196.U (Requirement (EH4)) to

show that updates to existing DOM nodes result in equivalent stores. The unstructured DOM also uses

Lemma 190.U (Requirement (EH3)) for assignments to the H copy of the multi-store (we use Lemma 190.T

(Requirement (EH3)) for the tree-structured DOM).

Requirement (WEH4) L updates are equivalent (Weak Secrecy)

Lemma 198. If σ1 ≈L σ2, pc1, pc2 v L, v1 ≈L v2, and α1 = α2, then for assignG(σ1, pc1, id, v1) = (σ′1, α1) and

assignG(σ2, pc2, id, v2) = (σ′2, α2), σ′1 ≈L σ′2

Proof.

Only the cases for G = TS are considered. The other cases are not considered since they follow from

Lemma 196

We examine each case of D :: assignG(σ1, pc1, id, v1) = (σ′1, α1)

Denote E :: assignG(σ2, pc2, id, v2) = (σ′2, α2)

We refer to the following assumptions throughout:

(1) σ1 ≈L σ2; (2) pc1, pc2 v L; and (3) v1 ≈L v2

From G = TS and (3), we also refer to:

(4) v1 = (v′1, l1) and v2 = (v′2, l2) and (5) (v′1, l1) ≈L (v′2, l2)

Case I: D ends in ts-assignEH

By assumption, all of the following:

σ1(id) = (id, (v′′1 , l′′1), M1, l′1), σ′1 = σ1[id 7→ (id, (v′1, l1 t pc1 t l′1), M1, l′1)], α1 = •, and l1 t pc1 v l′′1

Then from (2), l1 v l′′1

Subcase i: l′1 v L

By assumption and from (1), all of the following:

σ2(id) = (id, (v′′2 , l′′2), M2, l′2) with l′2 v L, (v′′1 , l′′1) ≈L (v′′2 , l′′2), and M1 ≈L M2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 228

Then, from l1 v l′′1 , (5) and (v′′1 , l′′1) ≈L (v′′2 , l′′2), it must be the case that l2 v l′′2

Then from (2) and our security lattice, l2 t pc2 v l′′2

Then, E ends in ts-assignEH with σ′2 = σ2[id 7→ (id, (v′2, l2 t pc2 t l′2), M2)] and α2 = •

From (1), (2), (5), and l′1, l′2 v L σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Subcase ii: l′1 6v L

By assumption and from (I.2), (I.5) and our security lattice, l′′1 = H and σ′1 ≈L σ′2

If id 6∈ σ2, then from ts-assignEH-s, σ′2 = σ2 and α2 = •

Then, in this case we know σ′1 ≈L σ′2 and α1 = α2

Otherwise, id ∈ σ2, and by assumption and from (1), σ2(id) = (id, (v′′2 , l′′2), M2, l′2) with l′2 6v L

Then, E ends in ts-assignEH with

σ′2 = σ2[id 7→ (id, (v′2, l2 t pc2 t l′2), M2, l′2)] and α2 = •

Then, from l′1, l′2 6v l, we know that σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Case II: D ends in ts-assignEH-s

By assumption, all of the following:

id 6∈ σ1, σ′1 = σ1, and α1 = •

From (1) and id 6∈ σ1, either

id 6∈ σ2; or labOf(σ2(id), _) = H

In the first case, E ends in ts-assignEH-s with σ′2 = σ2 and α2 = •

Thus, from σ′1 = σ1, and α1 = •, we know that σ′1 ≈L σ′2 and α1 = α2

In the other case, E ends in ts-assignEH with

σ′2 = σ2[id 7→ (id, (v, l2 t pc2 t H), σ2(id).M, H)] and α2 = •

Then from labOf(σ2(id), _) = H, we know that σ2 ≈L σ′2

From (1), σ′1 = σ1, and σ2 ≈L σ′2, we know that σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Case III: D ends in ts-assignEH-gw

By assumption, all of the following:

σ1(id) = (id, (v′′1 , l′′1), M1, l′1) with l′1 v L and l1 t pc1 6v l′′1

σ′1 = σ1[id 7→ (id, (v′1, l1 t pc1 t l′1), M1, l′1)], and α1 = gw(id)

Then from (1), we know all of the following:

σ2(id) = (id, (v′′2 , l′′2), M2, l′2) with l′2 v L and M1 ≈L M2, and

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 229

(v′′1 , l′′1) ≈L (v′′2 , l′′2)

From (2), l1 t pc1 6v l′′1 , and our security lattice, l1 = H and l′′1 = L

Then, from (5), we know that l2 = H

And from (v′′1 , l′′1) ≈L (v′′2 , l′′2), we know that l′′2 = L

From (2) and our security lattice, E must end in ts-assignEH-gw with

σ′2 = σ2[id 7→ (id, (v′2, l2 t pc2 t l′2), M2, l′2)] and α2 = gw(id)

From l1, l2 = H and our security lattice,

(v′1, l1 t pc1 t l′1) ≈L (v′2, l2 t pc2 t l′2)

Then from M1 ≈L M2 and l′1, l′2 v L, we know that σ′1 ≈L σ′2

And from α1 = gw(id) and α2 = gw(id), we know that α1 = α2

Lemma 199. If σ1 ≈L σ, and pc1, pc2 v L and v1 ≈L v2, then for (σ′1, α1) = createElemG(σ1, pc1, id, v1) and

(σ′2, α2) = createElemG(σ2, pc2, id, v2), σ′1 ≈L σ′2 and α1 = α2

Proof.

Only the cases for G = TS are considered. The other cases are not considered since they follow from

Lemma 197

By induction on the structure of D :: createElemG(σ1, pc1, id, v1) = (σ′1, α1) and

E :: createElemG(σ2, pc2, id, v2) = (σ′2, α2)

We refer to the following assumptions throughout:

(1) σ1 ≈L σ2; (2) pc1, pc2 v L; and (3) v1 ≈L v2

From G = TS and (3), we also refer to:

(4) v1 = (v′1, l1) and v2 = (v′2, l2) and (5) (v′1, l1) ≈L (v′2, l2)

Case I: D ends in ts-create

By assumption, all of the following:

lookupTS(σ1, L, id) = (NULL, _), σ′1 = σ1[id 7→ (id, (v′1, l1), ·, L)], and α1 = •

Then from Lemma 164 (Requirement (EH1)), lookupTS(σ2, L, id) ≈L (NULL, _)

Then either

(I.1) lookupTS(σ2, L, id) = (NULL, _); or (I.2) lookupTS(σ2, L, id) = (id, (v′′2 , l′′2), M, H)

Subcase i: (I.1) is true

From (I.1), E must end in ts-create with

σ′2 = σ2[id 7→ (id, (v′2, l2), ·, L)] and α2 = •

Then from (1), (5), and σ′1 = σ1[id 7→ (id, (v′1, l1), ·, L)], we know that σ′1 ≈L σ′2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 230

And from α1 = • and α2 = •, we know that α1 = α2

Subcase ii: (I.2) is true

From (I.2) and (2), E ends in ts-create-u2 with all of the following:

lookupTS(σ2, L, id) = (id, (v′′2 , l′′2), M2, H), σ′2 = σ2[id 7→ (id, (v′2, l2), M2, L), and α2 = •

From Lemma 200, M2 ≈L ·

Then from (1), (5), and σ′1 = σ1[id 7→ (id, (v′1, l1), ·, L)], we know that σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Subcase iii: pc2 = ·

The proof for this case follows from applying the IH on D and the premise of E .

Case II: E ends in ts-create

The proof is similar to Case I.

Case III: D ends in ts-create-u1

By assumption, all of the following:

lookupTS(σ1, L, id) = (id, (v′′1 , l′′1), M1, l′1), l′1 v L, σ′1 = σ1[id 7→ (id, (v′1, l1 t L t l′1), M1, l′1)], α1 = •, and

(III.1) l1 t L v l′′1 or l′1 6v L

From l′1 v L and since TS never contains ·, we know that l′1 = L

Then from (III.1) and from our security lattice, l1 v l′′1

From Lemma 164 (Requirement (EH1)), lookupTS(σ2, L, id) = (id, (v′′2 , l′′2), M2, l′2) with

l′2 v L, (v′′1 , l′′1) ≈L (v′′2 , l′′2) and M1 ≈L M2

Subcase i: pc2 = L

By assumption, E ends in ts-create-u1 or ts-create-u1-gw

From (5), l′′1 = l′′2 and l1 = l2

Then from l1 v l′′1 , we know that l2 v l′′2

Then, E must end in ts-create-u1 with σ′2 = σ2[id 7→ (id, (v′2, l2 t L t l′2), M2, l′2)] and α2 = •

Then, from σ′1 = σ1[id 7→ (id, (v′1, l1 t L t l′1), M1, l′1)] and σ′2 = σ2[id 7→ (id, (v′2, l2 t L t l′2), M2, l′2)],

we know that σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Subcase ii: pc2 = ·

The proof for this case follows from applying the IH on D and the premise of E .

Case IV: E ends in ts-create-u1 or ts-create-u1-gw

The proof is similar to Case III.

Case V: D ends in ts-create-u1-gw

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 231

The proof is similar to Case III

Case VI: D ends in ts-create-u2

By assumption, all of the following:

lookupTS(σ1, L, id) = (id, (v′′1 , l′′1), M1, l′1), l′1 6v L, σ′1 = σ1[id 7→ (id, (v′1, l1 t L), M1, L)], and α1 = •

From l′1 6v L and our security lattice, l′1 = H

The from Lemma 164 (Requirement (EH1)), either

(VI.1) lookupTS(σ2, L, id) = (id, (v′′2 , l′′2), M2, l′2) with l′2 = H; or

(VI.2) lookupTS(σ2, L, id) = (NULL, H)

Subcase i: (VI.1) is true

From (VI.1), E ends in ts-create-u2 with

σ′2 = σ2[id 7→ (id, (v′2, l2 t L), M2, L)] and α2 = •

From Lemma 200, M1 ≈L M2 ≈L ·

From (1), (5), σ′1 = σ1[id 7→ (id, (v′1, l1 t L), M1, L)], and σ′2 = σ2[id 7→ (id, (v′2, l2 t L), M2, L)],

we know that σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Subcase ii: (VI.2) is true

From (VI.2), E ends in ts-create with σ′2 = σ2[id 7→ (id, (v′2, l2), ·, L)] and α2 = •

From Lemma 200, M1 ≈L ·

From (1), (5), σ′1 = σ1[id 7→ (id, (v′1, l1 t L), M1, L)], and σ′2 = σ2[id 7→ (id, (v′2, l2), ·, L)], we know that

σ′1 ≈L σ′2

And from α1 = • and α2 = •, we know that α1 = α2

Subcase iii: pc2 = ·

The proof for this case follows from applying the IH on D and the premise of E .

Case VII: E ends in ts-create-u2

The proof is similar to Case VI.

Case VIII: D or E ends in ts-create-nc

The proof for this case follows from applying the IH on the premise of D and E .

Lemma 200. If φ = (id, v, M, H) were produced by our operational semantics starting in a well-formed state, then

M ≈L ·

Proof (sketch): Starting in a well-formed state, the invariant holds, since all event handlers registered to H

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 232

nodes are labeled H. New nodes created with label H also satisfy the invariant since they are created with

an empty event handler map.

The only way to register new event handlers is through one of the registerEH rules. ts-registerEH adds

the event handler to the event handler map and performs a join with the label of the node; thus, any new

event handler will have label H if the label of the node is H.

The only rule which changes the label of a node is ts-create-u2. This rule changes the label of the node

to match the pc only when the label is above the pc, i.e., it changes the label from H to L. Therefore, the

invariant that tainted nodes never have publicly visible event handlers is maintained by our semantics.

C.4.7 Progress-insensitive Noninterference for TT

Theorem 30 (Soundness (TT)). If event handlers are enforced with V ∈ {TT, SME, MF} and the global storage

is enforced with G ∈ {SMS, FS}, then the composition of these event handlers and global stores in our framework

satisfies progress-insensitive noninterference.
Proof (sketch): The proof follows the same format as the proof for Theorem 25. We consider two cases:

one where the last event was a declassification, and another where it was not. In the case that the last

event was a declassification, the proof follows from the definition of Krp(). When the last event was not

a declassification, the proof follows from Lemma 123 (Requirement (T1)) and Lemma 133 (Requirement

(T4)).

Recall that we structure our requirements to be extensible and easily updated. Here, we outline all

of the supporting lemmas for proving Theorem 30 and highlight the ones which need updates to prove

compositions with TT secure.

Trace Requirements The proof for Requirement (T1) does not need to be changed to prove PINI for TT.

It follows from Lemma 125 (Requirement (T2)) and Lemma 144 (Requirement (T5)).

The proof for Requirement (T2) does not need to be changed to prove PINI for TT. It follows from

Lemma 182 (Requirement (EH2)), Lemma 157 (Requirement (V2)), Lemma 189 (Requirement (EH3)), and

Lemma 190 (Requirement (EH3)).

The proof for Requirement (T3) does not need to be changed to prove PINI for TT. It follows from

Lemma 126 (Requirement (T2)) and Lemma 182 (Requirement (EH2)).

The proof for Requirement (T4) does not need to be changed to prove PINI for TT. It follows from

Lemma 172 and Lemma 179 (Requirement (EH1)), Lemma 131 and Lemma 132 (Requirement (T3)),

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 233

Lemma 182 (Requirement (EH2)), Lemma 152 (Requirement (E1)), Lemma 160 (Requirement (V3)), and

Lemma 196 and Lemma 197 (Requirement (EH4)).

The proof for Requirement (T5) does not need to be changed to prove PINI for TT. It follows from

Lemma 172 and Lemma 179 (Requirement (EH1)), Lemma 182 (Requirement (EH2)), Lemma 152 (Re-

quirement (E1)), Lemma 160 (Requirement (V3)), and Lemma 196 and Lemma 197 (Requirement (EH4)).

Expression Requirements The proof for Requirement (E1) does not need to be changed to prove PINI

for TT. It follows from Lemma 154 and Lemma 155 (Requirement (V1)) and Lemma 162 (Requirement

(EH1)).

Variable Store Requirements The proofs for Requirement (V1) need to be updated to prove TT is

secure, but the proofs for Requirements (V2) and (V3) (global variable storage and variable assignment,

respectively) do not need to be changed, nor do they depend on any other requirements. We outline the

changes for Requirement (V1) below.

Note that we also do not need to add/change any proofs to say that assignments do not leak anything.

This is because assignments in the H context can only leak through the global store, which is already

proven secure by Requirement (V2) for multi-storage techniques. Intuitively, assignments from TT would

either change the H copy of the store (which does not leak anything) or would be replaced with a default

value in the L copy of the store (which also does not leak anything).

EH storage Requirements None of the proofs for the event handler storage requirements need to be

changed to prove that TT satisfies PINI security, nor do they depend on any other requirements that need

to be changed.

Note: When we compose TT with a multi-storage technique, the TT event handlers in the L context

no longer receive secrets (i.e., none of the values become tainted). So, there is also no reason to taint

default values. We change tt-var-dv so that it returns dv labeled with the pc. This also helps maintain the

invariant that the local TT store does not have any tainted values when the pc = L (Lemma 202).

Lemma 201. If σ1 ≈L σ2 and pc1, pc2 v L, then for varTT(σ1, pc1, x) = v1 and varTT(σ2, pc2, x) = v2 then

v1 'L v2

Proof.

By induction on the structure of E :: varTT(σ1, pc1, x) = v1 and D :: varTT(σ2, pc2, x) = v2

From Lemma 202, ∀x ∈ (σTT
1 , σTT

2)labOf(x, _) = L

Then, σ1 = σ2

APPENDIX C. SUPPORTING MATERIALS FOR CHAPTER 5 234

Case I: E ends in tt-var

By assumption and from ∀x ∈ (σTT
1 , σTT

2)labOf(x, _) = L we know that x ∈ σ1 and σ1(x) = (v1, L)

Then, from σ1 = σ2, D ends in tt-var with σ2(x) = (v2, L)

From σ1 = σ2, σ1(x) = (v1, L), and σ2(x) = (v2, L), the desired conclusion holds

Case II: D ends in tt-var

The proof is similar to Case I

Case III: E ends in tt-var-dv

By assumption and from (2), x 6∈ σ1 and v1 = (dv, L)

Then, from σ1 = σ2, we know that x 6∈ σ2

From this, D must end in tt-var-dv with v2 = (dv, L)

From v1 = (dv, L) and v2 = (dv, L), the desired conclusion holds

Case IV: D ends in tt-var-dv

The proof is similar to Case III

Lemma 202. Whenever a public event handler is running, ∀x ∈ σTT, labOf(x, _) = L

Proof (sketch): To prove that the local store only contains public values while public event handlers are

running, we need to show that the condition holds when the event handler begins and is maintained until

the event handler finishes.

When the event handler begins running, the local store is empty, so the condition holds trivially.

As the event handler runs, the store is changed by assign-L. The value assigned is given by the

expression semantics. From the assumption that the local store only contains public values, and from

Lemma 152 (for expressions involving shared variables), the value being assigned is also public. Therefore,

the condition is maintained throughout the event handler execution.

Bibliography

[1] Johan Agat. Transforming out timing leaks. In Proceedings of the 27th ACM Symposium on Principles

of Programming Languages, POPL ’00, 2000. 5

[2] Amir A. Ahmadian and Musard Balliu. Dynamic policies revisited. In Proceedings of the 2022 IEEE

7th European Symposium on Security and Privacy, EuroSP ’22, 2022. 9

[3] Maximilian Algehed and Cormac Flanagan. Transparent IFC enforcement: Possibility and

(in)efficiency results. In Proceedings of the 2020 IEEE Computer Security Foundations Symposium, CSF

’20, 2020. 7, 39

[4] Maximilian Algehed, Alejandro Russo, and Cormac Flanagan. Optimising faceted secure multi-

execution. In Proceedings of the 2019 IEEE Computer Security Foundations Symposium, CSF ’19, 2019.

7

[5] Ana Gualdina Almeida Matos, José Fragoso Santos, and Tamara Rezk. An information flow monitor

for a core of DOM: Introducing references and live primitives. In Proceedings of the International

Symposium on Trustworthy Global Computing, TGC ’14, 2014. 1, 93

[6] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz,

and Keith Winstein. Secure serverless computing using dynamic information flow control. In Pro-

ceedings of the 2018 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA ’18, 2018. 95

[7] Aslan Askarov and Stephen Chong. Learning is change in knowledge: Knowledge-based security

for dynamic policies. In Proceedings of the 2012 IEEE Computer Security Foundations Symposium, CSF

’12, 2012. 9, 11

[8] Aslan Askarov, Stephen Chong, and Heiko Mantel. Hybrid monitors for concurrent noninterference.

In Proceedings of the 2015 IEEE Computer Security Foundations Symposium, CSF ’15, 2015. 1, 95

235

BIBLIOGRAPHY 236

[9] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive nonin-

terference leaks more than just a bit. In Proceedings of the European Symposium on Research in Computer

Security, ESORICS ’08, 2008. 5, 72

[10] Aslan Askarov and Andrew Myers. Attacker control and impact for confidentiality and integrity.

Logical Methods in Computer Science, 7(3), 2011. 11, 59

[11] Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification, encryption and

key release policies. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP ’07, 2007.

10, 14

[12] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release policies for dynamic

languages. In Proceedings of the 2009 IEEE Computer Security Foundations Symposium, CSF ’09, 2009. 2

[13] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow analysis. In

Proceedings of the 2009 ACM Workshop on Programming Languages and Analysis for Security, PLAS ’09,

2009. 1, 2, 8, 69, 71

[14] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information flow analysis. In Proceed-

ings of the 2010 ACM Workshop on Programming Languages and Analysis for Security, PLAS ’10, 2010. 1,

2, 8, 69, 95

[15] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information flow. In Pro-

ceedings of the 39th ACM Symposium on Principles of Programming Languages, POPL ’12, 2012. 1, 2, 6,

69

[16] Thomas H Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information

flow with exceptions. ACM Transactions on Programming Languages and Systems, 39(3), 2017. 7

[17] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. Faceted execution of

policy-agnostic programs. In Proceedings of the 2013 ACM Workshop on Programming Languages and

Analysis for Security, PLAS ’13, 2013. 2, 7, 69

[18] Musard Balliu. A logic for information flow analysis of distributed programs. In Proceedings of the

Nordic Conference on Secure IT Systems, NordSec ’13, 2013. 9

[19] Anindya Banerjee, David A Naumann, and Stan Rosenberg. Expressive declassification policies and

modular static enforcement. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP

’08, 2008. 10, 22

BIBLIOGRAPHY 237

[20] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If this then what? Controlling flows in IoT apps.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18,

2018. 1, 3, 69

[21] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld. Tracking information flow via delayed output.

In Proceedings of the Nordic Conference on Secure IT Systems, NordSec ’18, 2018. 1, 69

[22] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan Tian. Run-

time monitoring and formal analysis of information flows in Chromium. In Proceedings of the 2015

Network and Distributed System Security Symposium, NDSS ’15, 2015. 1, 2, 6, 8, 13, 69, 94

[23] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Information flow control

in WebKit’s JavaScript bytecode. In Proceedings of the International Conference on Principles of Security

and Trust, POST ’14, 2014. 6

[24] Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg, and Christian Hammer. WebPol:

Fine-grained information flow policies for web browsers. In Proceedings of the European Symposium

on Research in Computer Security, ESORICS ’17, 2017. 1, 2, 6, 8, 13, 69

[25] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens. Reactive non-

interference for a browser model. In Proceedings of the International Conference on Network and System

Security, NSS ’11, 2011. 4, 93

[26] Nataliia Bielova and Tamara Rezk. Spot the difference: Secure multi-execution and multiple facets.

In Proceedings of the European Symposium on Research in Computer Security, ESORICS ’16, 2016. 6, 68

[27] Aaron Bohannon and Benjamin C. Pierce. Featherweight Firefox: Formalizing the core of a web

browser. In Proceedings of the 2010 USENIX Conference on Web Application Development, WebApps ’10,

2010. 94

[28] Aaron Bohannon, Benjamin C Pierce, Vilhelm Sjöberg, Stephanie Weirich, and Steve Zdancewic.

Reactive noninterference. In Proceedings of the 2009 ACM Conference on Computer and Communications

Security, CCS ’09, 2009. 2, 3, 17

[29] Iulia Bolos§teanu and Deepak Garg. Asymmetric secure multi-execution with declassification. In

Proceedings of the International Conference on Principles of Security and Trust, POST ’16, 2016. 9

[30] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla. Preventing informa-

tion leaks through shadow executions. In Proceedings of the 2008 Annual Computer Security Applications

Conference, ACSAC ’08, 2008. 68

BIBLIOGRAPHY 238

[31] Ethan Cecchetti, Andrew Myers, and Owen Arden. Nonmalleable information flow control. In

Proceedings of the 2017 ACM Conference on Computer and Communications Security, CCS ’17, 2017. 2,

11, 12, 32, 34, 51, 53

[32] Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proceedings of the 19th IEEE

Computer Security Foundations Workshop, CSFW ’06, 2006. 11

[33] Andrey Chudnov and David A. Naumann. Inlined information flow monitoring for JavaScript. In

Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’15, 2015. 6

[34] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information flow for

JavaScript. In Proceedings of the ACM Conference on Programming Language Design and Implementa-

tion, PLDI ’09, 2009. 6

[35] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. FlowFox: a web

browser with flexible and precise information flow control. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security, CCS ’12, 2012. 1, 6, 16, 68, 69, 94

[36] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5),

1976. 4

[37] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information flow.

Communications of the ACM, 20(7), 1977. 1

[38] Dominique Devriese and Frank Piessens. Noninterference through secure multi-execution. In Pro-

ceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, 2010. 1, 2, 6, 69, 72

[39] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in JavaScript-based browser

extensions. In Proceedings of the 2009 Computer Security Applications Conference, ACSAC ’09, 2009. 6

[40] Tim Disney and Cormac Flanagan. Gradual information flow typing. In Proceedings of the 2nd

International Workshop on Scripts to Programs Evolution, STOP ’11, 2011. 1

[41] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N. Sheth. TaintDroid: An information-flow tracking system for realtime privacy monitor-

ing on smartphones. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and

Implementation, OSDI ’10, 2010. 1, 69, 71, 95

BIBLIOGRAPHY 239

[42] José Fragoso Santos, Thomas Jensen, Tamara Rezk, and Alan Schmitt. Hybrid typing of secure

information flow in a JavaScript-like language. In Proceedings of the 10th International Symposium on

Trustworthy Global Computing, TGC ’15, pages 63–78, 2016. 1

[43] Joseph A. Goguen and José Meseguer. Security policies and security models. In Proceedings of the

1982 IEEE Symposium on Security and Privacy, 1982. 1, 4

[44] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. Secure multi-

execution of web scripts: Theory and practice. Journal of Computer Security, 22(4), 2014. 75

[45] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. Value-sensitive hybrid information flow con-

trol for a JavaScript-like language. In Proceedings of the 2015 IEEE Computer Security Foundations

Symposium, CSF ’15, 2015. 1

[46] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. Information-flow security for JavaScript and its

APIs. Journal of Computer Security (JCS), 24(2), 2016. 6

[47] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JSFlow: Tracking information

flow in JavaScript and its APIs. In Proceedings of the ACM Symposium on Applied Computing, SAC ’14,

2014. 6

[48] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of JavaScript. In Proceedings

of the 2012 IEEE Computer Security Foundations Symposium, CSF ’12, 2012. 6

[49] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In Software Safety

and Security. IOS Press, 2012. 5

[50] Nevin Heintze and Jon G Riecke. The SLam calculus: programming with secrecy and integrity. In

Proceedings of the 25th ACM Symposium on Principles of Programming Languages, POPL ’98, 1998. 1

[51] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An empirical study of privacy-

violating information flows in JavaScript web applications. In Proceedings of the 2010 ACM Conference

on Computer and Communications Security, CCS ’10, 2010. 1, 6

[52] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide Fukushima,

Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforcement of information-flow properties

on android (extended abstract). In Proceedings of the European Symposium on Research in Computer

Security, ESORICS ’13, 2013. 1, 3, 69, 95

BIBLIOGRAPHY 240

[53] Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. Information flow analysis for

JavaScript. In Proceedings of the ACM Workshop on Programming Language and Systems Technologies for

Internet Clients, PLASTIC ’11, 2011. 6

[54] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,

and Robert Morris. Information flow control for standard OS abstractions. In Proceedings of 21st

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, 2007. 95

[55] Gurvan Le Guernic. Automaton-based confidentiality monitoring of concurrent programs. In Pro-

ceedings of the 2007 IEEE Computer Security Foundations Symposium, CSF ’07, 2007. 95

[56] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David Schmidt. Automata-based con-

fidentiality monitoring. In Proceedings of the 11th Annual Asian Computing Science Conference, ASIAN

’06, 2006. 1

[57] Zhou Li, Kehuan Zhang, and XiaoFeng Wang. Mash-IF: Practical information-flow control within

client-side mashups. In 2010 IEEE/IFIP International Conference on Dependable Systems & Networks,

DSN ’10, 2010. 8

[58] Heiko Mantel. On the composition of secure systems. In Proceedings of the 2002 IEEE Symposium on

Security and Privacy, SP ’02, 2002. 5

[59] McKenna McCall, Abhishek Bichhawat, and Limin Jia. Compositional information flow monitoring

for reactive programs. In Proceedings of the 2022 IEEE 7th European Symposium on Security and Privacy,

EuroSP ’22, 2022. 69

[60] McKenna McCall, Hengruo Zhang, and Limin Jia. Knowledge-based security of dynamic secrets for

reactive programs. In Proceedings of the 2018 IEEE Computer Security Foundations Symposium, CSF ’18,

2018. 13

[61] Daryl McCullough. Specifications for multi-level security and a hook-up. In Proceedings of the 1987

IEEE Symposium on Security and Privacy, SP ’87, 1987. 5

[62] Daryl McCullough. Noninterference and the composability of security properties. In Proceedings of

the 1988 IEEE Symposium on Security and Privacy, SP ’88, 1988. 5

[63] Daryl McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software Engi-

neering, 16(6), 1990. 5

BIBLIOGRAPHY 241

[64] Scott Moore, Aslan Askarov, and Stephen Chong. Precise enforcement of progress-insensitive se-

curity. In Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12,

2012. 5

[65] Scott Moore and Stephen Chong. Static analysis for efficient hybrid information-flow control. In

Proceedings of the 2011 IEEE Computer Security Foundations Symposium, CSF ’11, 2011. 1

[66] Andrew C Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification. In

Proceedings of Computer Security Foundations Workshop, CSFW ’04, 2004. 2, 11, 13, 32

[67] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification and

qualified robustness. Journal of Computer Security (JCS), 14(2), 2006. 68

[68] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical DIFC enforcement

on android. In 25th USENIX Security Symposium, USENIX ’16, 2016. 3, 95

[69] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo, and Thomas

Schmitz. A better facet of dynamic information flow control. In Proceedings of the 2018 World Wide

Web Conference, WWW ’18, 2018. 7

[70] Minh Ngo, Frank Piessens, and Tamara Rezk. Impossibility of precise and sound termination-

sensitive security enforcements. In Proceedings of the 2018 IEEE Symposium on Security and Privacy,

SP ’18, 2018. 7

[71] Willard Rafnsson and Andrei Sabelfeld. Compositional information-flow security for interactive

systems. In Proceedings of the 2014 IEEE Computer Security Foundations Symposium, CSF ’14, 2014. 5

[72] Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-grained, declassification-

aware, and transparent. Journal of Computer Security (JCS), 24(1), 2016. 8

[73] Vineet Rajani, Abhishek Bichhawat, Deepak Garg, and Christian Hammer. Information flow control

for event handling and the DOM in web browsers. In Proceedings of the 2015 IEEE Computer Security

Foundations Symposium, CSF ’15, 2015. 1, 93, 95

[74] Bob Reynders, Dominique Devriese, and Frank Piessens. Multi-tier functional reactive programming

for the web. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software, Onward! ’14, 2014. 4

[75] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Pro-

ceedings of the 2010 IEEE Computer Security Foundations Symposium, CSF ’10, 2010. 1

BIBLIOGRAPHY 242

[76] Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking information flow in dynamic

tree structures. In Proceedings of the European Symposium on Research in Computer Security, ESORICS

’09, 2009. 80, 81, 93

[77] Andrei Sabelfeld. The impact of synchronisation on secure information flow in concurrent pro-

grams. In Proceedings of the Perspectives of Systems Informatics: 4th International Andrei Ershov Memorial

Conference, PSI ’01, 2001. 95

[78] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1), 2003. 1, 5

[79] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back: Riding the roller coaster

of information-flow control research. In Proceedings of the Perspectives of Systems Informatics: 7th

International Andrei Ershov Memorial Conference, PSI ”09, 2009. 1

[80] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs. In

Proceedings of Computer Security Foundations Workshop, CSFW ’00, 2000. 95

[81] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal of Computer

Security (JCS), 17(5), 2009. 8

[82] José Fragoso Santos and Tamara Rezk. An information flow monitor-inlining compiler for securing

a core of JavaScript. In Proceedings of the 29th International Information Security and Privacy Conference,

SEC ’14, 2014. 1

[83] Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo. Faceted secure

multi execution. In Proceedings of the 2018 ACM Conference on Computer and Communications Security,

CCS ’18, 2018. 7

[84] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. Explicit secrecy: A policy

for taint tracking. In Proceedings of the 1st IEEE European Symposium on Security and Privacy, EuroSP

’16, 2016. 2, 5, 8, 9, 11, 69, 70, 72, 89, 95

[85] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imperative lan-

guage. In Proceedings of the 25th ACM Symposium on Principles of Programming Languages, POPL ’98,

1998. 95

[86] Steven Sprecher, Christoph Kerschbaumer, and Engin Kirda. SoK: All or nothing - a postmortem of

solutions to the third-party script inclusion permission model and a path forward. In Proceedings of

the 2022 IEEE 7th European Symposium on Security and Privacy, EuroSP ’22, 2022. 1, 93

BIBLIOGRAPHY 243

[87] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C Mitchell, and David Mazieres.

Addressing covert termination and timing channels in concurrent information flow systems. In

Proceedings of the 17th ACM International Conference on Functional Programming, ICFP ’12, 2012. 95

[88] Deian Stefan, Edward Z. Yang, Brad Karp, Petr Marchenko, Alejandro Russo, and David Mazières.

Protecting users by confining JavaScript with COWL. In Proceedings of the USENIX conference on

Operating Systems Design and Implementation, OSDI ’14, 2014. 1, 6, 8, 69

[89] Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-threaded information

flow in Haskell. In Proceedings of the 2007 IEEE Computer Security Foundations Symposium, CSF ’07,

2007. 95

[90] Steven Van Acker and Andrei Sabelfeld. Javascript sandboxing: Isolating and restricting client-side

JavaScript. FOSAD ’16, 2016. 93

[91] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and Tamara Rezk. Stateful

declassification policies for event-driven programs. In Proceedings of the 2014 IEEE Computer Security

Foundations Symposium, CSF ’14, 2014. 2, 6, 8, 9, 13, 14, 22, 29, 45, 68

[92] Jeffrey A Vaughan and Stephen Chong. Inference of expressive declassification policies. In Proceed-

ings of the 2011 IEEE Symposium on Security and Privacy, SP ’11, 2011. 4

[93] Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in a concurrent language. Journal

of Computer Security, 7(2-3), 1999. 95

[94] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(3), 1996. 1

[95] Dennis M. Volpano. Safety versus secrecy. In Proceedings of the 6th International Symposium on Static

Analysis, SAS ’99, 1999. 2, 5, 8, 11, 69, 70, 72, 89, 95

[96] MDN web docs. Event.istrusted, 2023. [Online; accessed 9-January-2023]. 41

[97] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and

Stephen Chong. Precise, dynamic information flow for database-backed applications. In Proceedings

of the ACM Conference on Programming Language Design and Implementation, PLDI ’16, 2016. 7

[98] A. Zakinthinos and E. S. Lee. The composability of non-interference [system security]. In Proceedings

of Computer Security Foundations Workshop, CSFW ’95, 1995. 5

BIBLIOGRAPHY 244

[99] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise enforcement of confidentiality for

reactive systems. In Proceedings of the 2013 IEEE Computer Security Foundations Symposium, CSF ’13,

2013. 7

[100] Steve Zdancewic. Challenges for information-flow security. In Proceedings of the 1st International

Workshop on the Programming Language Interference and Dependence, PLID ’04, 2004. 93

[101] Steve Zdancewic and Andrew C Myers. Robust declassification. In Proceedings of Computer Security

Foundations Workshop, CSFW ’01, 2001. 2, 11, 15, 32, 34, 47

[102] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making information

flow explicit in HiStar. In Proceedings of the USENIX conference on Operating Systems Design and

Implementation, OSDI ’06, 2006. 95

	Introduction
	Background and Related Work
	Reactive Systems
	IFC Policies and Noninterference
	Dynamic IFC Enforcement
	Declassification
	(Knowledge-based) Security Definitions
	Robust Declassification and Nonmalleable IFC

	Robust Declassification via Special Treatment for Dynamic Features
	Overview
	Dynamic Features Leak Information
	Dynamic Reactive Programs
	Extended SME for Dynamic Features
	Discussion
	Summary

	Robust Declassification via Limiting Attacker Influence
	Overview
	Motivating Examples
	SME with Dynamic Features
	Declassification
	Endorsement
	Security
	Discussion
	Summary

	Compositional IFC for Reactive Systems
	Overview
	Motivating Example
	Compositional Enforcement Framework
	Security and Weak Secrecy
	Discussion
	Summary

	Discussion and Future Work
	Alternatives to IFC
	More Realistic Web Models
	Applications to Other Reactive Settings
	Extending our Compositional Framework

	Supporting Materials for Chapter 3
	Additional Definitions
	Soundness Proofs
	Robust Declassification Proofs
	Precision Proofs

	Supporting Materials for Chapter 4
	Additional Definitions
	Proofs

	Supporting Materials for Chapter 5
	Additional Definitions
	Complete Semantics
	Security Definitions
	Proofs

	Bibliography

