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ABSTRACT
Client-side cross-site scripting (DOM XSS) vulnerabilities in web
applications are common, hard to identify, and difficult to prevent.
Taint tracking is the most promising approach for detecting DOM
XSS with high precision and recall, but is too computationally
expensive for many practical uses.

We investigate whether machine learning (ML) classifiers can
replace or augment taint tracking when detecting DOM XSS vulner-
abilities. Through a large-scale web crawl, we collect over 18 billion
JavaScript functions and use taint tracking to label over 180,000
functions as potentially vulnerable. With this data, we train a deep
neural network (DNN) to analyze a JavaScript function and predict
if it is vulnerable to DOM XSS. We experiment with a range of
hyperparameters and present a low-latency, high-recall classifier
that could serve as a pre-filter to taint tracking, reducing the cost of
stand-alone taint tracking by 3.43× while detecting 94.5% of unique
vulnerabilities. We argue that this combination of a DNN and taint
tracking is efficient enough for a range of use cases for which taint
tracking by itself is not, including in-browser run-time DOM XSS
detection and analyzing large codebases.

CCS CONCEPTS
• Security and privacy → Web application security; • Infor-
mation systems → World Wide Web; • Computing method-
ologies → Machine learning.
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1 INTRODUCTION
Web applications that fail to correctly sanitize their inputs can be
vulnerable to cross-site scripting (XSS) vulnerabilities [16], which
are becoming increasingly common [9, 15, 18, 32]. A specific type
of XSS vulnerability, client-side XSS (DOM XSS), is caused by bugs
in a website’s JavaScript code; their prevalence is rising with the
increase in complexity in client-side code [32]. In recent years, DOM
XSS vulnerabilities have been reported at high-profile organizations
such eBay, Yahoo, IBM, and Facebook [32].

DOM XSS vulnerabilities can be prevented by filtering out con-
tent using signatures and heuristics [11, 13, 29], but such defenses
can be evaded by modern attack strategies [7, 8, 17, 33]. Other
defenses detect DOM XSS vulnerabilities using static or dynamic
analyses. In principle, static analysis can detect code-injection vul-
nerabilities before they are exploited or even released. However,
static-analysis tools have difficulty reasoning about the dynamic
features of JavaScript [14, 35, 41], have high error rates [26], or may
not scale to large codebases [14], making them impractical as DOM
XSS defenses.

In contrast, dynamic analyses—specifically, taint tracking—have
shown promise for detecting DOM XSS vulnerabilities [22, 26, 38].
In dynamic taint tracking approaches, code is analyzed to detect
DOM XSS vulnerabilities at execution time. This adds substantial
overhead (16.8% increase in page load times) suggesting that such
approaches are unlikely to be adopted in many settings, e.g., as
in-browser defenses [12, 34].

Leveraging the observation that many DOM XSS vulnerabilities
are syntactically similar and of low complexity [26, 39], we propose
an alternative approach that uses machine learning (ML) to greatly
reduce the overhead imposed by dynamic taint tracking to detect
DOM XSS vulnerabilities. We also investigate the feasibility of com-
posing ML with an existing analysis. Specifically, we address two
primary research questions:

RQ1: Can ML act as a pre-filter for taint tracking to detect DOM
XSS vulnerabilities with far less overhead than taint tracking alone
while maintaining a high recall rate?

RQ2: Can ML be used on its own to detect DOM XSS vulnerabili-
ties with recall and precision comparable to or better than other
techniques?

https://doi.org/10.1145/3442381.3450062
https://doi.org/10.1145/3442381.3450062
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Figure 1: Illustrating how we collect training data, and how ML models trained on these datasets can be used in two different
ways to reduce overhead in the dynamic taint tracking pipeline.

To train and evaluate these ML classifiers, we first obtain a suffi-
cient volume of ground-truth data. We use an open-source taint-
tracking-enabled web browser from prior work [26] to collect in-
stances of DOM XSS vulnerable JavaScript functions in a two-step
process (see Fig. 1). First, we use taint tracking to identify JavaScript
functions that invoke dangerous sinks (e.g., document.write) with
seemingly unsanitized arguments. Taint tracking itself cannot con-
firm that these functions are exploitable, so we label these functions
as unconfirmed vulnerabilities (dataset #1). To prune this set of func-
tions to only those that are exploitable, we use heuristics from prior
work [26] to perform proof-of-concept exploits, and we label the
exploitable functions as confirmed vulnerabilities (dataset #2).

Our classifier trained on unconfirmed vulnerabilities can be used
as a pre-filter for taint-tracking-based DOM XSS detection (RQ1) to
classify 97.5% of unique functions as non-vulnerable, while main-
taining 94.5% unique recall of vulnerabilities. In this configuration,
taint tracking is only used on the remaining 2.5% of functions,
decreasing the vulnerability detection overhead by 3.43× when
compared to taint tracking alone.

Alternatively, our classifier trained on confirmed vulnerabilities
can be used as the sole means of judging whether a JavaScript
function is vulnerable to DOM XSS attacks (RQ2), and captures
50% of confirmed vulnerabilities at a precision of 57.8%. In general,
we have not found a tuning that delivers a combination of high
recall and high precision sufficient for such a classifier to be the
sole method of detecting DOM XSS vulnerabilities.

In exploring the classifier design space to answer these research
questions, we experimented with two model types (linear models
and deep neural networks (DNNs)); multiple representations of
source code (based on scripts, functions, or semantic distance); var-
ied model architectures (embedding sizes and DNN layer sizes); and
adjusted training regimes to compensate for imbalanced ground
truth (i.e., in the wild, non-vulnerable functions far outnumber
vulnerable ones). The contributions of this paper are:

(1)We design and train classifiers to detect DOMXSS vulnerabilities
and investigate trade-offs in inference time, precision, and recall
(Sec. 5). We find that a relatively small DNN (4 fully connected
layers of ≤ 100 units) can be an effective pre-filter for taint tracking,

reducing the overhead of detection by 3.43× over taint tracking
alone and enabling new use cases for taint tracking (Sec. 6.2).

(2) We manually examine a sample of functions in our dataset and
uncover that the performance of our classifiers may be better than
what we report (Sec. 6.3), because taint tracking fails to find unexe-
cuted vulnerable functions.

(3) We manually inspect the performance and properties of our
baseline linear models to provide an initial view into the characteris-
tic differences between DOM XSS vulnerabilities that can be found
by linear models and vulnerabilities that require DNNs (Sec. 6.3).

(4)We generate a dataset of 32 million JavaScript functions labeled
as vulnerable or not via taint tracking and proof-of-concept exploit
confirmation; we have made datasets and trained models publicly
available1.

2 BACKGROUND AND RELATEDWORK
2.1 DOM XSS vulnerabilities
Cross-site scripting (XSS) vulnerabilities occur when input is im-
properly sanitized, allowing attackers to inject arbitrary JavaScript
code into a victim’s browser. An attacker could exfiltrate private
information or compromise a victim’s machine by redirecting to a
malicious website.

In this work we focus on client-side vulnerabilities that result
from client-side manipulation of the browser’s Document Object
Model (DOM). Attackers could inject exploits into sources such as
the document.location object (the URL), the web page referrer,
or the postMessage API. When information from these attacker
controllable sources is used in sensitive code-executing functions
(known as sinks), an XSS vulnerability may be present. Examples
of such sinks include: the innerHTML property of DOM nodes, the
eval method, or javascript: URLs.

An exploitable flow from a source to a sink does not neces-
sarily imply an vulnerability, as programmers may sanitize in-
formation before use in the sensitive sink. Common sanitization
methods include built-in browser APIs such as encodeURI and

1Data and trained models available at https://doi.org/10.1184/R1/13870256
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encodeURIComponent ormanually checking that user inputmatches
a safe regular expression (e.g., alphanumeric characters).

In our work, we train a model for predicting DOM XSS vulnera-
bilities based on source code. We train separate models to predict
unconfirmed vulnerabilities (that would be flagged by taint analy-
sis and require further investigation) and confirmed vulnerabilities
(that are confirmed by executing a proof-of-concept exploit).

2.2 Content filtering
Browsers and web servers have sought to employ filters for DOM
XSS exploits. Content security policies (CSP) can restrict the al-
lowed scripts on a website [13] but are often misconfigured in a
way that does not substantially limit DOM XSS exploits [8]. An
experimental browser API based on the concept of trusted types
has been introduced [20], but this API is incompatible with legacy
applications. Web application firewall filters are another common
defense against XSS vulnerabilities, but can be bypassed by tweak-
ing the exploit to evade the filter detection patterns [7, 17].

Client-side filters (such as the XSS auditor[11]) have also been
used as a defense, but they too suffer from similar evasion at-
tacks [33]. Researchers examined a list of known DOM XSS vulner-
abilities, and showed that in 73% of cases the XSS auditor fails to
filter an attack [38].

In contrast to using such heuristics, we train ML models to learn
the filter policy and detect DOM XSS vulnerabilities. ML models
may infer deeper relations between source code and vulnerabilities
and could be more difficult for attackers to bypass.

2.3 Static analysis of JavaScript
Static analysis techniques can detect properties of interest by ana-
lyzing source code, allowing insight to all the possible execution
paths that a program may take. Several implementations of static
analysis for JavaScript are available in commercial tools includ-
ing IBM Security AppScan, Trustwave App Scanner, Coverity’s
JavaScript scanner, and Burp Suite Pro [40]. However, it is particu-
larly challenging to statically analyze JavaScript, as it is a dynamic
language and lacks strict typing information [14, 45]. Furthermore,
static analysis is prohibitively expensive for our setting, and thus
we do not consider using static analysis in our solution.

2.4 Dynamic analysis of JavaScript
Dynamic analyses are also commonly used on Javascript [22], but
only operates on observations collected during program execution
and does not have analyze non-executed code. Furthermore, such
methods incur run-time overhead [38] and require significant
engineering work to modify a complex run-time environment (in
our case, the JavaScript engine).

2.4.1 Taint tracking. The most relevant dynamic analysis for iden-
tifying DOM XSS vulnerabilities is taint tracking. This technique
flags data from potentially attacker-controlled sources as tainted
and propagates taint information at execution time. When a tainted
string is used in a sensitive sink, the taint-tracking engine flags this
flow of information as a potential DOM XSS vulnerability; we call
this an unconfirmed vulnerability.

The first tool that used taint tracking to discover DOM XSS vul-
nerabilities was Firefox-based DOMinator [30]. Later, its precision

was improved by adding byte-precise taint tracking, which attaches
taint information to specific bytes in the JavaScript engine, reducing
false positives [22, 38].

While taint tracking can effectively defend against DOM XSS
vulnerabilities at run time, this is at the cost of overhead of, e.g.,
between 7% and 17% in certain benchmarks [38]. Browser vendors
are exceptionally sensitive to performance overhead [12, 34] and
our solution provides an opportunity to mitigate this performance
degradation by using ML to selectively enable taint tracking when
a classifier decides that the code may be vulnerable.

2.4.2 Confirming potentially vulnerable flows. Because tainted data
may be sanitized by the programmer, such flows may not neces-
sarily be exploitable. Researchers use heuristics to automatically
generate exploits to confirm these vulnerabilities. In prior work,
researchers generated exploits by analyzing the context around the
tainted string [22], using a pre-configured list of exploit-causing
injections [31] or symbolic analysis [43] to confirm flows with test
injections. In our work, we leverage the above solutions to generate
labeled instances of confirmed vulnerabilities.

2.5 Machine learning in program analysis
Several projects have used ML to analyze programs in JavaScript,
successfully identifying many instances of malicious JavaScript [12,
44, 47]. However, these solutions rely on hand-engineered features
(e.g. the location of the flow, the number of functions involved in
the flow, the source and sink of the flow). We avoid using such
techniques, allowing our solution to generalize to different contexts
and to adapt to changing source code idioms. The building blocks
for program analysis from data can also be learned by training
decision trees [5]. In contrast our work opts for deep learning,
which can learn latent representations of complex data.

The most closely related work has used deep learning to an-
alyze the information flow in programs for more efficient taint
tracking [37] or vulnerability detection [24] in C. In these projects,
ML models must identify key points in the program to analyze
the information flow, relying on the highly static nature of C pro-
grams. In our work, we focus on DOM XSS vulnerabilities in the
browser, which predominantly executes dynamic JavaScript code.
This makes it difficult to confidently determine the key points of
a program and to extract data dependencies, and thus the above
solutions do not apply to our setting.

2.5.1 Vector representations of programs. Representing programs
in a form that deep neural network models can analyze is an open
issue. Prior work has explored a handful of representations [3, 4,
24, 28] but there is little agreement about what representation is
most appropriate for a given task.

Researchers have developed code2vec, which translates ASTs
into vectors for machine learning by linking start and terminal
nodes with a series of movements up and down the AST tree [4].
Tree convolutions analyze AST node information over the tree struc-
ture, in a similar way as a convolutional neural network processes
images over its pixels. Tree convolutions base the classification of
each node on the nodes that are close to it using neural network
convolutions and have been used previously to detect algorithm
performance bugs from source code [28].
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Work has also been done on analyzing graph-structured data
for use in program analysis. We also explored an approach using
gated graph neural networks [23], which have recently been used
to model certain properties of source code, such as idiomatic coding
style [3]. However, we experimentally found that these techniques
were unable to accurately model JavaScript semantics.

3 DATA COLLECTION METHODOLOGY
Wedescribe ourmethodology in collecting two ground-truth datasets
for training and evaluating our ML classifiers. We use a taint-
tracking-enabled browser to collect unconfirmed vulnerabilities
(dataset #1) in a large-scale web crawl, described in Sec. 3.1. We then
label instances of these unconfirmed vulnerabilities as confirmed
vulnerabilities (dataset #2), described in Sec. 3.2. Finally, we discuss
attributes (Sec. 3.3) and limitations (Sec. 3.4) of our data collection.

3.1 Ground-truth data collection
We describe our infrastructure for collecting ground-truth data to
train and test our vulnerability classifiers, shown in Fig. 1.

3.1.1 Taint tracking browser. We leverage amodified, taint-tracking-
enabled version of the Chromium browser from prior work [26]
to collect a series of website execution traces, identifying code
that is potentially vulnerable to DOM XSS injections. The modified
browser is driven by an extension that interacts with a server-side
database, directing crawling activities via HTTP interactions and
storing records of tainted flows.

The browser’s V8 engine andWebKit infrastructure are modified
with taint tracking to identify potentially vulnerable flows. Dur-
ing execution of each webpage’s JavaScript, the modified browser
stores: a record of all browser-executed source code, the parsed V8
representation of that source code, all tainted sink executions, and
other bookkeeping information. For each execution of a sink with
tainted data, we additionally log: the value of the tainted argument,
the specific tainted characters, whether any specific built-in encod-
ing methods were applied (e.g., escape or encodeURI), and a full
trace of the JavaScript call stack.

Since the modified browser is only able to use taint tracking
to identity potentially vulnerable code (which we define as un-
confirmed vulnerabilities), we use proof-of-concept exploits from
prior work [26] to further confirm whether these flows are indeed
vulnerable to DOM XSS injection and can be labeled as confirmed
vulnerabilities, a process described in Sec. 3.2.

3.1.2 Crawlmethodology. In total, we crawled theAlexa top 10,000 [2]
websites and visited 289,392 web pages on those websites. We be-
gan by visiting the root webpage of the website and sample 40
sublinks within the same domain for a total of 410,000 attempted
webpage visits. Not all pages were loaded during our crawl; we
obeyed robots.txt [19] directives and other webpages did not cor-
rectly load during our crawl. If an individual webpage did not load
successfully, we attempted to load another sampled webpage on the
same domain if possible. While loading webpages, the crawler first
waits for the page ready event, then waits an additional 90 seconds
for page execution. We empirically observed that 90 seconds was
sufficient to detect the vast majority of tainted sinks.

Since our crawl is non-deterministic, we aggregate results across
multiple executions. Log files from execution for our crawl are 26TB
when compressed using GZIP. Many scripts are repeated across
multiple crawls, so we remove all source code duplicates, reducing
the compressed size of our aggregated database to 382GB.

3.2 Labeling and confirming flows
We next detect which scripts contain tainted arguments to poten-
tially vulnerable sinks and where those sinks are located. If a flow
is labeled as vulnerable in any execution, we label it as vulnerable
in our aggregation. To locate the specific call to sink functions in
source code, we output an annotated stack trace of the function call
during execution, which contains the parsed AST of all executed
JavaScript. We use the AST node of the JavaScript stack frame clos-
est to the bottom of the call stack as indication of the vulnerability.
We do not use other functions in the stack trace, since we do not
have information about the location of the tainted flow’s source and
are unable to label such nodes. An overview of how ground-truth
data is transformed and labeled is shown in Fig. 2.

3.2.1 Finding unconfirmed vulnerabilities. To determine whether a
sensitive sink should be labeled as an unconfirmed vulnerability,
we observe whether the encoding methods applied to tainted data
match the context of where the taint is applied, using similar logic as
prior work [22, 26, 38]. For example, if taint tracking indicates that
the document.write function was called with a tainted argument
from a webpage’s URL without any applied encoding functions, we
would mark that flow as an unconfirmed vulnerability. However,
if the encodeURI function was later applied to the tainted bytes
before use in the sink, then we would mark the function as safe,
because the encodeURI function sanitizes the input and prevents
the vulnerability. From the results of our data crawl, we collected
approximately 32,000,000 instances of unconfirmed vulnerabilities,
occurring in approximately 180,000 distinct, unique functions.

3.2.2 Confirming vulnerabilities. For the remaining unconfirmed
vulnerabilities, we generate confirmation test injections by leverag-
ing techniques from prior work [22, 26].We combine our knowledge
of the applied encoding functions to generate a proof-of-concept
test injection for each unconfirmed vulnerability, and re-execute
the webpage with our test injection to see if the injection succeeds.
This step is necessary because developers have the broad ability to
do ad-hoc sanitization of flows without using the built-in encoding
methods, such as checking if a tainted input matches the regular
expression for a number, a technique which would neutralize a
unconfirmed vulnerability. After using the proof-of-concept ex-
ploits, we collected approximately 4,500,000 instances of confirmed
vulnerabilities, occurring in over 2,300 distinct, unique functions.

Thus, as Fig. 1 shows, we create two datasets for training ML
models: (1) a dataset of unconfirmed vulnerabilities based on the
outputs of the taint tracking browser [26], and (2) a dataset of con-
firmed vulnerabilities based on our proof-of-concept test injections.
The set of confirmed vulnerabilities is a subset of the unconfirmed
vulnerabilities; we train two separate classifiers using these datasets
and execute experiments on both.
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Table 1: Summary statistics of our two vulnerability datasets.
We present the average of all folds (see Sec. 4.2). We show
the total number (“# Total”) of functions, and measure the
total number (“# vuln”) and percentage (“% vuln”) of func-
tions that are vulnerable. “Distinct” removes duplicate func-
tions by counting based on hashes of the function content.
“Weighted” counts functions by their overall occurrence fre-
quency.

Training Testing Validation All data

C
on

fi
rm

ed

w
ei
gh

te
d # total 15B 2.0B 1.8B 19B

# vuln 3.8M 357K 354K 4.5M
% vuln 0.025% 0.018% 0.019% 0.024%

di
st
in
ct # total 383M 48M 48M 478M

# vuln 1,853 235 238 2,326
% vuln 0.00048% 0.00049% 0.00050% 0.00049%

U
nc

on
fi
rm

ed

w
ei
gh

te
d # total 15B 1.7B 1.8B 19B

# vuln 27M 2.8M 2.2M 32M
% vuln 0.18% 0.17% 0.12% 0.17%

di
st
in
ct # total 382M 48M 48M 478M

# vuln 144K 19K 18K 180K
% vuln 0.038% 0.039% 0.037% 0.038%

3.3 Properties of ground-truth dataset
After collecting ground-truth data, we wanted to understand the
degree to which frequently used scripts (such as jQuery) could
impact training and evaluation. If a small set of frequent scripts
account for a significant amount of the dataset, then the MLmodel’s
performance could be dominated by its ability to recognize those
frequent scripts. A summary of our datasets and the distribution of
vulnerabilities is shown in Table 1. We found that while our datasets
contain some frequently occurring scripts, there is also a signifi-
cant long tail of unique scripts; our dataset included 240,830,867
observations of 23,013,705 unique scripts. The dataset is signifi-
cantly one-sided: positive labels (vulnerabilities) are extremely rare
compared to negative labels (non-vulnerable functions). Only 0.17%
of all functions are unconfirmed vulnerabilities and 0.024% of all
functions are confirmed vulnerabilities. Furthermore, these propor-
tions are even smaller when considering unique scripts (0.038% and
0.0005%).

3.4 Limitations
Our browser infrastructure is based on an old version of Chromium,
version 57 (a version from August 2016). In principle, the vulnerabil-
ities that we observe may not apply to other browsers. This version
of Chromium handles encoding of values after the hash differently
than the latest version of Chromium, which may affect whether an
unconfirmed vulnerability is exploitable. However, defense mecha-
nisms in newer versions of Chromium are not ubiquitous in other
browsers, so relying on newer versions of Chromium may overlook
vulnerabilities that still affect many browsers.

Our ground-truth data is also constrained by the limitations of
the dynamic analysis used for labeling. Our data only contains
labeled AST nodes from actual executions, and we cannot make
claims about code that is not executed. However, while our datasets
contain false negatives, it does not contain false positives: all of our
2,326 confirmed vulnerabilities were demonstrated to be vulnerable
on at least one generated proof-of-concept exploit.

If any instance of a function is labeled as vulnerable, thenwe label
all instances of that function as vulnerable. However, exploiting that
vulnerability may require cross-function interactions that are only
present on some web pages. Arguably, it may still be appropriate
to flag such functions as vulnerable, since they are not safe in all
contexts. In either case, analyzing such cross-function interactions
is complex and beyond the scope of this work.

4 CLASSIFIER DESIGN
We first describe our assumptions about potential threats to our
ML model (Sec. 4.1). We then discuss our feature extraction and
data processing techniques (Sec. 4.2). Finally, we describe our im-
plementation details (Sec. 4.3) and evaluation metrics (Sec. 4.4).

4.1 Attacker capabilities: poisoning attacks and
evasion attacks

The use of ML for security tasks can expose systems to new attacks.
For example, in poisoning attacks attackers inject malicious training
data into a system [6] and in evasion attacks attackers construct
inputs that appear benign but evade detection [25, 36]. For the
purposes of our design, we do not consider such attacks.

Although an adversary could possibly establish a malicious web-
site that our web crawler then uses to collect poisoned training data,
we assume that this is prohibitively expensive for an attacker (since
we are crawling the 10,000 most popular websites) and the training
data used to train our model is not poisoned by an adversary.
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Regarding evasion attacks, our system is designed to detect acci-
dental vulnerabilities (e.g., to help protect website developers who
have control over the JavaScript on their website). If an attacker is
able to manipulate the code on a website, the website is already com-
promised and an attacker would not need to evade our detection
infrastructure. Our attacker model assumes that JavaScript code
is benign but potentially vulnerable; attackers provide malicious
input to websites to exploit DOM XSS vulnerabilities, but do not
control the system otherwise.

4.2 Feature extraction and data preparation
Before being able to train on and classify pieces of source code, we
must translate this code into a form that can be consumed by a
neural network. In this section, we describe our methodology in
translating labeled AST nodes into feature vectors for training.

4.2.1 Segmentation of code. Given a block of labeled source code,
we chose to segment the code by its function calls. For the experi-
ments presented in this work, the code located within an individual
function call is used as a single unit for training and classifica-
tion. We also attempted to segment code based on scripts, and
using segments that contained the surrounding AST nodes within a
fixed semantic distance; however, segmenting the code by functions
produced the best results for training our model. Segmenting by
entire scripts selects code snippets that are too large, while the
fixed-semantic-distance strategy produces code snippets that are
too small. Both representations prevent the classifier from learning
meaningful features when predicting vulnerabilities.

4.2.2 Extracting features and code representation. After the labeled
source code has been transformed into segments, we extract input
features for our ML model. For the experiments shown here, we use
a bag of words representation: each function is uniquely identified
by a term-frequency dictionary of the parsed AST tokens contained
within the function call. We store all of the relevant symbols and
operations (variable names, operation names, method names, prop-
erty names, etc) in this dictionary. Although variable and method
names may change, we believe that this representation is robust in
the face of small changes in source code, such as differing library
versions, because often a significant amount of the variable names
and function names are maintained across versions.

We also experimented with methodologies from prior work that
extract program slices from C [24], but found that, the highly dy-
namic nature of Javascript prevents us from confidently identifying
the key points of the program required for slicing. We also exper-
imented with prior work that used models based on gated graph
neural networks [3], but found that these techniques produced
models that were unstable and performed poorly, potentially also
due to the dynamsism of Javascript.

4.2.3 Experimental data setup. We divided our dataset into subsets:
80% “training” to train our models, 10% “validation” to evaluate
competing models during hyperparameter exploration, and 10%
“test” for measuring the final model performance. When dividing,
we split by the script that the function originated from (for each
script in our collected dataset, there is a 80% chance its function calls
would be used for training, 10% chance in testing, and a 10% chance
for validation). This split is performed to evaluate our model’s

performance on complete scripts that it has never seen before and
captures a more realistic setting in which the model is presented
with complete scripts (which are then segmented by functions).

Additionally, we would like to increase the importance of each
function based on its observed frequency in our crawl. Functions
that are defined in very common libraries are more important to
classify correctly than code that is comparatively uncommon. To
do this, we oversample frequent code instances in the training set
before shuffling the data. This is preferred over applying a weight
during training because, in our experiments, the models would not
converge when presented with extremely common functions that
massively outweighed other functions. If a common function is
observed at the end of the training epoch, the model is drastically
changed. However, by repeating instances multiple times, these
effects are smoothed out over the training period.

4.2.4 Balancing errors. Another problem in training with our data
is the massive class imbalance across labels: there are far more
non-vulnerable functions than vulnerable functions (only 0.024% of
all functions were confirmed as vulnerable). Therefore, we added
a weight to positive labels during training by penalizing the loss
function accordingly. We experimented with penalization terms
of 1, 10, 100, and 1,000, and found that 100 was optimal—with
lower penalizations the classifier would never predict functions
as vulnerable, and with a penalization term of 1,000, the classifier
would not converge.

4.2.5 Vectorizing features. We used feature hashing [46] to repre-
sent our sparse data, which allows our unbounded vocabularies to
be represented as vectors by hashing terms to specific buckets. The
downside of this technique is that it introduces ambiguity when
the hash function has collisions. In order to mitigate the effect of
collisions, we use a feature size of 218, a recommended size that
balances memory requirements and collision probability [21]. We
use an embedding layer that encodes the sparse bag of words into
a dense vector space. This embedding is the first part of our model
architecture, acts as the input to the first hidden layer, and is also
optimized during training. We experiment with varying sizes of
this embedding in Sec. 5.1.

4.3 Implementation
We build our model in TensorFlow [1] and train the model with
the Adagrad optimizer (learning rate of 0.05, batch size of 64). For
our smallest model (Fig. 5), the training time is 11K functions per
second, which translates to approximately 20 hours to train on
5% of our total data, using a 64GB virtual machine with a 16GB
NVIDIA Tesla P100 GPU.

4.4 Performance metrics
For any class imbalanced task, accuracy is not a useful metric, be-
cause a classifier could achieve near perfect accuracy by predicting
that all functions are not vulnerable.

Since we are evaluating whether or not our ML model could
be used in combination with other techniques, the precision-recall
trade-off is more useful when tuning the trade-off between accuracy
and overhead. We define precision as the proportion of predicted
vulnerabilities that are indeed labeled vulnerabilities, and recall
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Figure 3: An overview of our ML architecture and its avail-
able hyperparameters. We explore with different embed-
ding sizes, hidden layer sizes and model types.

as the proportion of labeled vulnerabilities that were correctly
predicted as vulnerabilities.

Since recall can particularly be influenced by performing well on
a frequent vulnerability, we also consider performance on distinct
vulnerabilities. We define distinct recall to be the proportion of
distinct labeled vulnerabilities correctly identified by our models,
and true recall as the proportion of all labeled vulnerabilities that
are correctly identified. When computing true recall, each function
is weighted by its true observed frequency; so true recall represents
recall on real data that the algorithm would encounter if deployed.

5 RESULTS
First, we use our validation dataset to tune parameters such as
the model type and model size (Sec. 5.1). Then, we evaluate our
best-performing models on our test data set, both for unconfirmed
and confirmed vulnerabilities (Sec. 5.2).

In this section, the results shown are the average of 3 folds for un-
confirmed vulnerabilities, and the average of 5 folds for confirmed
vulnerabilities. Since the number of confirmed vulnerabilities is
significantly lower then the number of unconfirmed vulnerabilities,
we found that 3 folds were not sufficient for confirmed vulnerabili-
ties, and thus used 5 folds for these experiments. We also found that
using the entire training dataset was not required for convergence.
We monitor the performance of our models during training, and
ultimately decide that, for each fold, using 20% of the available
training data (16% of the overall dataset) was sufficient.

5.1 Model size and type
We experimented with different sizes of deep neural network mod-
els. For these experiments, we report results for a 3-layer, fully-
connected DNN. For each architecture, we conventionally halve
the layer size after each layer, resulting in a fully connected ar-
chitecture with layer sizes of [N, N/2, N/4], where N is the size of
the first hidden layer. We also experimented with linear models
and compared their performance to our DNNs. Fig. 3 highlights
the different components of our ML architecture, and shows the
various hyper-parameters that we evaluate.

5.1.1 Embedding size. We first experimented with the size of the
embedding layer in our neural network, described in Sec. 4.2.5. The
embedding layer is a dense, fully-connected layer that translates
the sparse tokens in hashed space (218 in our implementation) and

Figure 4: Varying embedding layer sizes in predicting uncon-
firmed vulnerabilities

(a) Unconfirmed (b) Confirmed

Figure 5: Effect of varying the model hidden-layer sizes
when predicting unconfirmed (left) and confirmed (right)
vulnerabilities. Points are plotted from largest (2000) to
smallest (100), and overlap at several recall values.

outputs a dense vector to the first DNN hidden layer. Fig. 4 shows
various embedding sizes of 64, 256 and 1024 for a 3-layer DNN
with N=500, trained to predict unconfirmed vulnerabilities. Again,
we did not find a significant difference between embedding layer
sizes, and chose the smallest embedding size of 64 for all future
experiments to minimize size and inference time in our use case.

5.1.2 Model size. We explored the effect of model size by varying
the size of the hidden layers in the [N, N/2, N/4] DNN architecture.
For both unconfirmed and confirmed vulnerabilities, we trained
DNNs where N = 100, 200, 500, 1000, and 2000. The results for
unconfirmed vulnerabilities are shown in Fig. 5a and the results for
confirmed vulnerabilities are shown in Fig. 5b. As expected, the per-
formance in predicting unconfirmed vulnerabilities is significantly
better than when predicting confirmed vulnerabilities. Across both
experiments, we found that the model size also did not have a sig-
nificant impact on the performance of the data. Since decreasing
the model size does not adversely affect the prediction performance,
we choose to use the smallest evaluated model architecture with
(3 hidden layers of size 100, 50, and 25) in further experiments for
both confirmed and unconfirmed vulnerabilities.

5.1.3 Model size trade-offs. In our proposed use case, smaller mod-
els are preferred due to their low inference time and small stor-
age size. Without any optimization, the size of our chosen model
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Table 2: Model sizes and inference times for various archi-
tectures. The results for our final selected configuration (100
units, 64 unit embedding) is bolded.

Embedding
layer units

First hidden
layer units

DNN size
on disk

Inference Time
on GPU /

Desktop / Laptop
256 500 258 MB 12𝜇s / 28𝜇s / 45𝜇s
1024 500 1027 MB 13𝜇s / 50𝜇s / 105𝜇s
64 100 65 MB 11𝜇s / 17𝜇s / 34𝜇s
64 200 65 MB 11𝜇s / 19𝜇s / 36𝜇s
64 500 65 MB 11𝜇s / 23𝜇s / 39𝜇s
64 1000 67 MB 11𝜇s / 27𝜇s / 48𝜇s
64 2000 75 MB 12𝜇s / 46𝜇s / 100𝜇s

(a) Unconfirmed (b) Confirmed

Figure 6: Performance of linear (Lin) and deep neural net-
work (NN)models when predicting unconfirmed vulnerabil-
ities (left) and confirmed vulnerabilities (right).

is 65MB. Since most of our models are small enough to be fully
processed within our 12GB GPU, the inference time is largely un-
affected by model size. To better understand the overhead of our
model in other settings, we also measure the inference time on
commodity non-GPU hardware and show the results in Table 2. For
our chosen model with N = 100 and an embedding size of 64, the
average time to classify a function is 11𝜇s on our 24GB RAM, 4 core
Intel i5-6400 3.30GHz CPU with a Titan X Pascal 12GB GPU, 17𝜇s
with a 32GB RAM, 12 core Intel E-2136 4.50GHz CPU desktop, and
34𝜇s for a 8GB RAM, 8 core Intel i5-8250U 3.30GHz CPU laptop. We
ultimately relate these numbers to potential end-to-end overhead
savings when combining ML with taint tracking in Sec. 6.1.

Themodel size and inference time can be further reduced through
different model encodings, compression techniques, and quantiza-
tion. Prior work has shown that these techniques can enable deep
neural network sizes to be reduced by two orders of magnitude [27].
Recently, TensorFlow has released libraries that enable DNNs to be
compressed for inference on IoT and mobile devices [42], further
improving the overhead savings and extending the potential reach
of our solution to detect DOM XSS vulnerabilities in other domains.

5.1.4 Model types. We compared our trained DNNs to logistic
regression models, which predict vulnerabilities based solely on
a weighted linear combination of the observed code tokens (in
our 218 hash space). If linear models are able to accurately detect
vulnerabilities, it would obviate the need for using a more complex
DNN. The results in predicting unconfirmed vulnerabilities and

confirmed vulnerabilities are shown in Fig. 6. In both cases, the
neural network model far outperforms the linear model.

For example, when the prediction thresholds are set such that
50% of confirmed vulnerabilities are detected, the logistic regression
model has a precision of 6.7%, while the DNN has a precision of
44.1%. For unconfirmed vulnerabilities, the precisions are 22.4% and
82.5% respectively. In both cases, the precision of the linear model
drops to nearly 0% for recall rates over 90%, indicating a failure to
capture higher complexity vulnerabilities; this trend is discussed in
more detail in Sec. 6.3. We hence conclude that a linear model is
not competitive with a DNN at detecting DOM XSS vulnerabilities.

5.2 Final models
Using the best-performing combination of our parameters, we train
two final models, one to detect unconfirmed vulnerabilities (as
labeled by taint tracking) and one trained on confirmed vulnera-
bilities (as labeled by testing with proof-of-concept exploits). The
final models use a deep neural network with 3 layers—with 100, 50,
and 25 units, respectively—trained on 20% of the available data.

5.2.1 Detecting vulnerabilities. The final results are shown in Fig. 7.
For the model trained on unconfirmed vulnerabilities, when the
threshold is set such that the true recall is 95%, the resulting preci-
sion is 26.7%. For confirmed vulnerabilities, a true recall of 95% of
confirmed vulnerabilities exhibits an ineffective precision of 0.4%;
the performance is poor likely because confirmed vulnerabilities
are far less common than unconfirmed vulnerabilities.

Since we are more interested in the trade-off of the models’ false-
positive and false-negative rates than in high accuracy, we show the
trade-off between the raw false-positive and true-positive rates as
an ROC curve in Fig. 7. This is more meaningful when considering
using such a model in practice, since a browser vendor would tune
the model based on their tolerance towards false negatives, trading
a higher recall for a lower precision.

As we show in Sec. 6.1, the performance of the model trained
to predict unconfirmed vulnerabilities is sufficient such that it can
be combined with taint tracking for a more efficient defense than
taint tracking alone. Further, we show in Sec. 6.2 that some of the
apparent false positives in our models are actually correct predic-
tions (i.e., true positives), and are mislabeled in our dataset by the
ground truth data collection methodology.

5.2.2 Previously unseen functions. Because our evaluation involves
splitting our data into training, validation, and test datasets by
unique scripts, functions may be duplicated across the training data
and the test data. To understand the potential effect of duplication,
we tested our models’ performance on functions that did not appear
in training data. For both our unconfirmed and confirmed vulner-
ability test datasets, we removed any function that was an exact
match for a function that existed in any other script, forcing our
models to only classify previously unseen functions. Our test data
overall contains 48 million distinct functions. Once duplicated func-
tions are removed, we test on the remaining 12 million previously
unseen functions (average across all folds).

Fig. 7 shows the results when predicting on previously unseen
functions. For confirmed vulnerabilities, the performance of the
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Figure 7: Model performance for test data.

model is only slightly different when predicting on previously un-
seen data, as shown by the similar performance across all true
recall values beyond 40%. For example, when predicting confirmed
vulnerabilities at 75% recall, our model has 12.1% precision across
all vulnerabilities, and 13.7% precision when limited to previously
unseen vulnerabilities. However, for unconfirmed vulnerabilities,
there is a more pronounced effect, as shown in the large differ-
ence in performance between 40% and 80% recall when considering
unseen functions. For example, at 75% recall the model has 77.6%
precision across all vulnerabilities and 52.6% precision across previ-
ously unseen vulnerabilities, a difference of 25%.

6 DISCUSSION
We first revisit our research questions and discuss what our results
imply when using our classifiers to detect DOM XSS in practice
(Sec. 6.1). We then examine some seemingly incorrect predictions
made by our classifier and show that many predictions were marked
as incorrect due to noise in ground truth data, suggesting that our
results may be better than reported (Sec. 6.2). Finally, we compare
the behavior of our linear model with our DNNs and present po-
tential characteristics of DOM XSS vulnerabilities that are easy or
difficult to capture with simple models (Sec. 6.3).

6.1 Using ML classifiers to detect DOM XSS
Our research questions asked whether ML classifiers could help in
effectively detecting DOM XSS vulnerabilities, either in combina-
tion with taint tracking (RQ1) or as a sole defense (RQ2).

6.1.1 RQ1: A classifier as a filter for taint tracking. To examine the
potential utility of an ML classifer that selectively enables taint
tracking when an unconfirmed vulnerability is predicted, we com-
pute how many real, confirmed, vulnerabilities would be success-
fully detected by the combination of ML and taint tracking. We
use the classifier trained on unconfirmed vulnerabilities (dataset #1)
and measure the proportion of the resulting predictions that are
later confirmed by the proof-of-concept exploit.

The recall in our method is tunable: if desired, the model can
be tuned to capture a higher fraction of vulnerabilities, at the cost
of additional taint tracking overhead. Fig. 8 shows the recall of
confirmed vulnerabilities as we vary the proportion of functions
passed to taint tracking for examination. We consider use cases
where the classifier is used on all functions (weighted recall) and
when the classifier is only used on distinct functions (distinct recall).

Figure 8: The trade-off between the recall of confirmed vul-
nerabilities and the fraction of all functions (weighted or dis-
tinct) examined by taint tracking.

When our classifier is tuned such that 11.1% of total functions
are further examined by taint tracking, 99.8% of confirmed vulner-
abilities are ultimately captured. When considering only distinct
functions, the classifier can pass 2.5% of distinct functions to taint
tracking and capture 94.5% of distinct confirmed vulnerabilities.

A challenge when selectively executing taint tracking in a run-
time setting is that the source of the tainted flow needs to be iden-
tified. Prior work has explored the automatic detection of tainted
sources based on sensitive sinks [10, 48] and we leave the combina-
tion of such techniques with our classifier as future work.

Based on these results, we envision two use cases in which our
ML classifier could be deployed to reduce the overhead of taint
tracking: run-time detection and analysis of large codebases.

Run-time detection of unconfirmed vulnerabilities. We consider
the time saved when using a classifier in combination with taint
tracking as a run-time defense in a web browser, compared to using
just taint tracking.

To practically measure the performance in a run-time setting,
we consider the performance based on observed scripts. Let 𝑛func
represent the number of functions in a script, 𝑜taint represent the
added overhead from taint tracking, 𝑡func represent the average
time taken to execute a single function, and 𝑡conf represent the time
taken to perform a proof-of-concept exploit on a single function.
A fraction of the functions executed with taint tracking enabled,
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𝑝conf, will be marked as containing unconfirmed vulnerabilities. Be-
cause many of these are false positives, we must determine whether
each function is actually vulnerable through proof-of-concept ex-
ploits [26, 38]. In prior work [26], 𝑝conf = 0.0133 and 𝑡conf = 2∗𝑡func.
When considering an individual script, the added time from taint
tracking can be modeled as follows:

𝑡added = 𝑜taint · 𝑡func · 𝑛func + (2 · 𝑝conf · 𝑡func · 𝑛func) (1)

If ML is combined with taint tracking, each executed function
incurs 𝑡ML overhead for a classifier prediction, and only a fraction
of functions, 𝑝taint, is predicted to have unconfirmed vulnerabilities
and is further analyzed as above with taint tracking and proof-
of-concept exploits. If any script is predicted to contain at least
one unconfirmed vulnerability, we assume that taint tracking will
be enabled for the entire script. Thus, we estimate the fraction of
scripts passed to taint tracking to be 1− (1−𝑝taint)𝑛func , making the
added execution time of the combination of ML with taint tracking:

𝑡 ′added = (𝑡ML · 𝑛func) + (1 − (1 − 𝑝taint)𝑛func ) ∗ 𝑡added (2)

For the overhead from the combination of ML with taint tracking
(𝑡 ′added) to be lower than the overhead from taint tracking alone
(𝑡added), a large majority of scripts must not need to be analyzed
with taint tracking, yet the recall of the classifier should be high
enough to capture most vulnerabilities.

To estimate 𝑜taint and 𝑡func, we manually load the top 50 websites
from the Alexa 10K [2] and observe that the average slowdown from
the taint-tracking-enabled-browser (which looks at all executed
scripts) is 16.8%. When aggregating across all scripts, the average
time taken to execute a single function is 0.213ms. A proof-of-
concept confirmation results in a function being executed at least
one additional time, with additional overhead for customizing the
exploit [26], so we estimate 𝑡conf = 0.416ms, twice the original
execution time. When considering the analysis in Fig. 8, 𝑝taint =
0.111 for a recall of 99.8% of confirmed vulnerabilities. We also
consider that classifier results could be cached, preventing the need
to analyze duplicated functions. This would result in 𝑝taint = 0.025
for a recall of 94.5% of distinct confirmed vulnerabilities.

In Sec. 5.1 we showed that 𝑡ML varies by the hardware used. We
calculate the difference between 𝑡added and 𝑡 ′added for each of these
scenarios and report the reduction in overhead in Table 3. For a
single function, this ranges from 1.07× on our laptop to 3.43× with
caching on a desktop with a GPU machine.

As the number of functions in a script increases, the probability
that at least one function in the script will require taint tracking
also increases, decreasing the estimated savings in overhead; we
show this trend in Fig. 9. In our datasets, scripts contained 161
functions on average, with a median of 2: a small number of scripts
contain many functions, but most contain few. Our proposed so-
lution performs better for the majority of scripts, which have few
functions.

In practice, the overhead reduction is likely to be higher than
what we report. First, we estimated the in-browser taint tracking
overhead based on differences in load time, which includes fixed
costs beyond JavaScript execution; the true overhead is likely higher.
Second, the ML prediction is not dependent on JavaScript execution
and could be run in parallel with other tasks.

Table 3: Per-function reduction in browser overhead when
using our classifier as a pre-filter to taint tracking compared
to taint tracking alone.

Device Inference
Time (𝑡ML)

Savings Cached
Savings

Laptop (CPU) 34𝜇s 1.07× 1.18×
Desktop (CPU) 17𝜇s 1.91× 2.29×
Desktop (GPU) 11𝜇s 2.66× 3.43×
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Figure 9: The changes in overhead savings without caching
(top) and with caching (bottom) when considering the ex-
pected number of functions in a given script. As the number
increases, a script is more likely to require taint tracking, so
the overhead savings is reduced.

Analyzing large codebases. Another potential use of our classifier
is to enable analysis of large codebases, such as software reposito-
ries, for which dynamic analysis would be prohibitively expensive.
If, in a similar scenario as above, we analyzed all the functions in
our dataset with taint tracking, the analysis would take over 7.8
days (0.0358ms per function × 19 billion functions). In contrast,
if ML is used to discard predicted true negatives and taint track-
ing is applied only to the remaining functions, the whole process
would require less than 1 day, while maintaining a 99.8% recall of
vulnerabilities as described above.

6.1.2 RQ2: A classifier as the sole defense. If we were to use our
classifier as the sole method to detecting DOM XSS vulnerabilities,
the classifier would need a high precision and a high recall, since
false positives would likely hinder practical use. Unfortunately,
tuning our classifier trained on confirmed vulnerabilities for a high
recall produces a high false positive rate, and tuning our model for
high precision causes a large false negative rate.

For example, to capture 95% of confirmed vulnerabilities with
our classifier, the corresponding precision is 0.4%, which results
in far too many false positives for practical use. Conversely, the
classifier can be tuned to achieve a precision of 75%, but this only
captures 19.4% of confirmed vulnerabilities. For a compromise of
both precision and recall, a “good” tuning of this model could exhibit
57.8% precision at 50% recall.

For all the tunings we considered, either the precision or the
recall are insufficient for most practical uses. Hence, while we
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Table 4: Tokens corresponding to top ten most influen-
tial features of the three linear models trained on uncon-
firmed vulnerabilities. Higher weights indicate tokens that
are more influential towards predicting a vulnerability.

Token Average
Weight

1 “write” 18.45
2 “eval” 10.43
3 “<iframe src=’{src}’ width=’0’ height=’0’

style=’display:none;’></iframe>”
8.91

4 “class="student-receiver" type="group"
hex=”

7.70

5 “innerHTML” 6.93
6 “/home-page” 6.71
7 “<!–[if gt IE” 6.51
8 “focusin” 6.09
9 “]><i></i><![endif]–> ” 5.75
10 “text/html” 5.52

answer RQ1 positively, we come to the opposite conclusion for
RQ2: the classifier designs we investigated are by themselves not
yet a practical method of detecting DOM XSS vulnerabilities.

6.2 Accuracy in the face of noisy ground truth
A challenge in detecting DOM XSS vulnerabilities was the absence
of ground truth data that reliably labels vulnerable JavaScript func-
tions. We nevertheless showed (RQ1) that an ML classifier could be
trained to be an effective and efficient defense, when used in combi-
nation with dynamic taint tracking. Here we revisit the sources of
inaccuracy from ground truth data and manually examine a subset
of the classifier’s false positives and false negatives.

One source of noise in our ground truth data comes from dynamic
taint tracking; vulnerabilities that are on unexecuted paths during
data collection are mislabeled as safe, since taint tracking would
have had no opportunity to detect that they are vulnerable. Another
source of noise from our data collection is that we use separate
phases to detect unconfirmed vulnerabilities and to confirm them.
For highly dynamic web sites, content may change between the two
phases. In these false positive cases, a function that was initially
labeled as a unconfirmed vulnerability may fail to be labeled as a
confirmed vulnerability, simply because it was no longer available
on the site during the confirmation phase.

We surprisingly observed that the precision of confirmed vul-
nerabilities is low even at low recall values (as seen in Fig. 5b and
Fig. 7), where one would expect high precision at the cost of low
coverage. This indicates that even some of the model’s most confi-
dent positive predictions were incorrect. We manually investigated
ten of the model’s most confident false positives and found that
seven of the ten errors were incorrectly labeled because of the data
collection issues mentioned above; these seven “errors” were in fact
true positives. This suggests that our classifier’s performance may
be much better than what we report.

6.3 Uncovering properties of vulnerabilities
Our results in Sec. 5.1 demonstrated the ineffectiveness of linear
models in predicting DOM XSS vulnerabilities. However, we still
observed that, at a 50% recall rate, over 1 million unconfirmed vul-
nerabilities were detected by the linear model at a reasonable (21%)
precision. This suggests that some vulnerabilities have properties
that make them easier to detect than others, and in this section we
report on a manual analysis that explored such properties.

Poor performance aside, a benefit of linear models is that their
model weights correspond directly to the influence that particular
features have on the prediction output. Thus, for the three linear
models trained on unconfirmed vulnerabilities, we analyzed the
most influential features for predicting a vulnerability. Each feature
corresponds to one of the 218 hash buckets over the bag-of-words
representation, so we further analyze our test data to find the most
frequent tokens that map to these hash buckets, shown in Table 4.
Eight of the top ten tokens are shared among all three models.

We make two observations based on these findings. First, “write”
and “eval” are the most significant two tokens for all models by
a large margin. We re-compared the outputs of our linear model
and our neural network (from Fig. 6a) at their 50% recall rates, and
consider only the vulnerabilities that contain “write” or “eval”. Al-
though the total number of true positives identified by both models
is approximately the same, the linear model has a much larger false
positive rate; the linear model’s precision is 22.4%, compared to the
DNN precision of 82.5%. At these operating points, 67% of the linear
model’s unique true positives contain “write”, while only 34.7% of
the neural networks’ do. We repeated this exercise for “eval”; the
difference between the two models was minimal.

Linear models may be biased toward identifying any functions
that invoke document.write as vulnerable. This is common in prac-
tice, as we observed that 60% of our unique unconfirmed vulnera-
bilities contain “write”. Linear models are thus much more prone
to identify functions as vulnerable even when their uses of docu-
ment.write are safe, leading to high false positive rates. In contrast,
the DNN models appear to learn a more nuanced relationship for
cases with “write”.

Second, we noticed that for linear models many of the most
influential tokens contain long HTML strings that appear in the
JavaScript code as string constants (tokens 3, 4, 7, and 9 in Ta-
ble 4). We searched for these tokens across all public JavaScript
repositories on GitHub and found that these tokens occur in fre-
quently copied and imported JavaScript libraries. In all cases, a
JavaScript variable is appended to these HTML strings and the
result is directly written to the document, exposing a clear DOM
XSS vulnerability. Linear models are also well suited to identify
and capture these cases with ease, even though they do not directly
encode any problematic code semantics that would generally be
indicative of vulnerabilities.

DNN models were also able to capture these pathological cases,
but additionally achieved much higher precision than linear models.
The precision of linear models was particularly poor outside of a
small subset of vulnerabilities. This suggests that a large majority
of DOM XSS vulnerabilities are still complex enough that a DNN is
required to precisely model their characteristics.
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7 CONCLUSION
We examined two approaches for ML classifiers to detect DOM XSS
vulnerabilities in source code: (1) using ML as a filter for scripts
before using taint tracking (RQ1); and (2) using just an ML classifier
to detect DOM XSS vulnerabilities directly (RQ2). We collected and
labeled 18 billion JavaScript functions in a large-scale web crawl
and trained ML models on representations of their source code.

We found that classifiers could be trained to detect DOM XSS
vulnerabilities with sufficient recall and precision that using them as
a pre-filter for a taint-tracking-based defense substantially reduces
the overhead of DOM XSS detection. For example, the overhead of
DOM XSS detection in a web browser context could be reduced by
3.43× compared to using taint tracking alone. We argue that this
enables new uses for taint-tracking-based DOM XSS detection in
contexts with strict performance requirements.
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