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Abstract—We present überSpark (üSpark), an innovative
architecture for compositional verification of security prop-
erties of extensible hypervisors written in C and Assembly.
üSpark comprises two key ideas: (i) endowing low-level
system software with abstractions found in higher-level
languages (e.g., objects, interfaces, function-call semantics
for implementations of interfaces, access control on inter-
faces, concurrency and serialization), enforced using a com-
bination of commodity hardware mechanisms and light-
weight static analysis; and (ii) interfacing with platform
hardware by programming in Assembly using an idiomatic
style (called CASM) that is verifiable via tools aimed at
C, while retaining its performance and low-level access to
hardware. After verification, the C code is compiled using
a certified compiler while the CASM code is translated into
its corresponding Assembly instructions. Collectively, these
innovations enable compositional verification of security
invariants without sacrificing performance. We validate
üSpark by building and verifying security invariants of
an existing open-source commodity x86 micro-hypervisor
and several of its extensions, and demonstrating only minor
performance overhead with low verification costs.

1. INTRODUCTION

The modern hypervisor stack is, by necessity, extensible.
Hypervisors not only enable the old-hat style of cus-
tomization, such as modularity for device drivers, but
are further extended with convenient functionality for
security services such as attestation, debugging, trac-
ing, application-level integrity and confidentiality, trust-
worthy resource accounting, on-demand I/O isolation,
trusted path, and authorization [14], [18], [22], [49],
[53], [57], [62], [64], [65], [71], [74], [75], [77], [80],
[83]–[86]. Further, the overwhelming majority of the
deployed hypervisor codebase is written in low-level
C and Assembly, due to hardware accesses, developer
familiarity, and performance requirements.
1.1. Problem – The unbridled growth of these exten-
sible hypervisors, while enabling useful functionality,

†In the fictional Transformers universe, the AllSpark is a powerful
object capable of creating a new Transformer by bestowing ordinary
machinery with sparks – the building blocks of a Transformer. In a
similar vein, ÜBERSPARK bestows ordinary hypervisors with verifiable
objects (ÜOBJECT) for automated compositional security analysis.

raises significant security concerns. As the size and com-
plexity of these systems increase – not to mention the
number of extensions, which may be active in arbitrary
combinations – so has the incidence of security-related
bugs. Indeed exploitable bugs in extension interfaces
have led to compromises in various hypervisors ranging
from complex VMMs to micro-hypervisors [2], [3],
[26], [27], [44]. Thus, higher assurance in the security
properties offered by hypervisors is critically important.
1.2. Solution – We address this challenge by developing
überSpark (üSpark), an architecture for building exten-
sible hypervisors that: (a) is compatible with commodity
systems; (b) enables automated compositional verifica-
tion of security properties; and (c) produces performant
systems. Compatibility with commodity systems is cru-
cial to impacting developers and deployment ecosystems.
üSpark supports development and verification directly at
the C and Assembly source and enables access to more
commodity hardware features. It is thus distinct from
prior approaches that sacrifice commodity compatibility
by employing new programming languages or hardware
models [33], [36], [81]. Compositionality means that
extensible systems can be verified modularly, rapidly,
and independently as they are implemented. Specifically,
when an extension is added, üSpark does not require
complete system re-verification to re-establish proper-
ties. While this goal guides much work in high-level
languages, achieving it for low-level languages is a sig-
nificant challenge. Furthermore, it distinguishes us from
verification of full functional correctness [31], [33], [43].
We focus only on security invariants – memory separa-
tion, control-flow integrity, information flow – and other
extension properties that can be formulated as invariants.
We verify such properties directly, compositionally, and
automatically on the C and Assembly implementation.
This helps bring to commodity-compatible hypervisors
those on-going approaches, which offer full functional
correctness, but we also enable precise reasoning on
untrusted and unverified system code. Finally, the üSpark
hypervisor’s performance is close to that of a commodity
unverified system.
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Key to the power of üSpark is the enforcement of
verifiable-object abstractions to hypervisors. The basic
building block is a üobject, which encapsulates spe-
cific system resources and provides an interface for
accessing them – with a well-defined behavioral contract
comprising a use manifest along with formal behavior
specifications. A üobject may represent core components
of a hypervisor or an extension and may be concurrent
or sequential. Public methods of concurrent üobjects
are invoked in parallel by multiple cores whereas se-
quential üobjects are implemented as monitors, guarding
all method invocations via a per-üobject lock. üObjects
communicate with each other via function calls.

There are two special üobjects: prime sets up a sane
initial state, while sentinel ensures control-flow seman-
tics even when üobjects with different levels of privi-
lege and trust invoke each other. Together, they enable
compositional inductive proofs of security properties ex-
pressed as invariants over sequential üobjects via source
code analysis and hardware assumptions [8]. A third
group of special üAPI üobjects allow access to shared
resources enabling state-of-the-art tools for automatic
verification of sequential C code to be soundly applied to
verifying security properties, while still allowing multi-
threaded high-performance applications.

In keeping with our first and second design goals,
üSpark enforces verifiable-object abstractions using a
combination of commodity hardware mechanisms (page-
tables and de-privileging) and light-weight static anal-
ysis, leveraging off-the-shelf C99 source-code analy-
sis and certified-compilation tools. üObjects, including
prime and sentinel, are automatically and modularly
verified using Frama-C [41], an industrial-strength soft-
ware analysis and verification framework. We use stan-
dard and custom Frama-C plug-ins to perform static
verification checks that include: per-üobject behavioral
contracts (via a standard weakest-precondition plug-in);
abstract variable assertions that enable behavioral asserts
as well as üobject control-flow integrity (via a standard
abstract-interpretation plug-in on stack frames and other
variables); syntactic checks that ensure conformance
with a restricted C99 syntax and logical de-privileging
of üobjects (via a standard abstract syntax tree analysis
plug-in); and, composition checks that enable client
üobjects that share a common server üobject to compose
soundly (via a custom composition-check plug-in).

üSpark also provides an idiomatic use of Assembly,
called CASM, to separate it from C code during system
construction. During analysis with Frama-C, the CASM
code is replaced by a C99 hardware model which models
key commodity hardware features. Our custom Frama-
C plug-in checks that the syntactic restrictions imposed
by CASM are respected by every üobject. The verified
üobjects are then compiled into executable binaries. Dur-

ing üobject compilation, all C99 code is processed using
the certified CompCert compiler [12] while each CASM
instruction is replaced by the corresponding Assembly
instruction by our custom Frama-C plugin. The CASM
language is designed to ensure that the C and Assembly
code operate on disjoint state. Our longer-term goal is
to guarantee that the verified source code properties
carry over to the binary by leveraging the C-Assembly
separation and cleanly extending the bisimulation proof
of the CompCert compiler to encompass hardware state
and Assembly code. In addition, we aim to ensure the
semantic equivalence between the hardware model and
the corresponding Assembly instructions. Proving these
guarantees formally appears straightforward, and need
only be done once for the üSpark framework, but we
leave it to future work.

The üSpark object abstraction is distinguished from
other systems in that it allows many fine-grained objects
in privileged mode. Static analysis enforces logical de-
privileging of those objects – e.g., a hypervisor module
running in host-mode ring 0 is precluded from accessing
page-table structures, thereby being “logically” depriv-
ileged – while control transfer between them does not
involve a context switch, thereby significantly helping
with system performance, our third design goal.
1.3. Contributions – (a) We present üSpark, an innova-
tive architecture providing verifiable object abstractions
for automated compositional verification of hypervisor
security properties while targeting commodity compati-
bility and performance (§4,§5). (b) We use üSpark to in-
crementally develop and verify security properties of an
existing open-source commodity x86 micro-hypervisor
with multiple independent security extensions (hypervi-
sor and extensions realized as 11 üobjects with 7001
SLoC; 5544 and 2079 lines of annotations and hard-
ware model; §6,§7). (c) We carry out a comprehensive
evaluation showcasing verification metrics, development
effort and performance, and report on our experience (1
person yr; üobject verification times from 1–23 minutes
with a cumulative time ≈ 1hr; 2% average runtime
overhead over native micro-hypervisor applications with
guest performance unaffected; §8,§9).

2. A MOTIVATING EXAMPLE

To motivate and explain üSpark, we use as a running
example, a hypervisor that closely corresponds to our
case study. Imagine the hypervisor managing a multi-
CPU guest, and supporting optional security extensions
that implement various guest-specific and system-wide
security properties. The hypervisor manages system de-
vices used by itself, by extensions, and by the guest.
System devices execute device firmware in parallel with
the CPUs and perform DMA. The hypervisor and exten-
sions are written in C and Assembly.
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The hypervisor leverages CPU capabilities, such as
memory-mapped I/O (MMIO) and legacy I/O, for
system-to-device interaction; it initializes boot CPU
(BSP) state; it sets up memory page tables, as well as
device allocations and DMA protections (e.g., via an
IOMMU); it initializes multi-CPU support via the Local
Advanced Programmable Interrupt Controller (LAPIC)
and activates other CPUs and sets up their memory
page tables and appropriate protections. Constructing a
verified hypervisor of this sort, the developers must not
only build it and test it well, but also verify its code
against a set of general safety properties (e.g., memory
integrity) as well as functional invariants on hardware
and software state (e.g., IOMMU, LAPIC, CPU states).

Consider now adding two new verified extensions to
the hypervisor: hyperdep, which ensures that guest-
VM data pages are non-executable; and (b) sysclog,
which ensures that every system call issued by the guest
is logged via a dedicated network card to an external
trusted entity on the network. In order to preserve the
verified status of the system, the developers must prove
that: (a) memory integrity is not violated by the exten-
sions; (b) each extension provides its claimed property
to guests configured to use it; and (c) the extensions are
used in tandem by a guest if and only if they provide a
well-defined compositional property (e.g., separability).
This is non-trivial, since it requires the construction
and verification of inductive invariants that imply the
core security properties of the hypervisor, and those of
enabled extensions. Also, since extensions are optional,
verification must account for all possible configurations
– e.g., enabling either hyperdep, or sysclog, or both
– while avoiding the combinatorial blowup.

Of course, history tells us that two extensions are
never enough for any extensible system. What is more,
not all extensions come from the same developers or with
the same pedigree. Consider, for instance, an unverified,
strictly optional extension to the hypervisor; this might
be an extension that provides essential functionality, but
has not been verified, and is taken as an acceptable risk.
For our example, let us use aprvexec, an extension that
ensures that guest code pages contain only read-only,
whitelisted content. As with hyperdep and sysclog,
core hypervisor properties, and the properties of other
extensions should not be violated by running aprvexec,
and the risk of running aprvexec should only be
suffered by a guest that explicitly enables it and relies on
its presumed properties. Note that the guest itself, unless
it is verified as rigorously as the rest of the hypervisor,
is such an unverified component in the system.

3. GOALS AND ASSUMPTIONS

3.1. Goals – Our overarching goal is to enable develop-
ment of performant extensible hypervisors offering pro-

ofs of wide-ranging properties on their code, including
low-level memory safety, control-flow guarantees, and
information flow, as well as higher-level properties such
as trusted network logging (sysclog) and data execu-
tion prevention (hyperdep), going all the way up to
security properties spanning both hardware and software
states (IOMMU, LAPIC, network-card and CPU). Also,
verification must support properties over shared system
states: e.g., both hyperdep and sysclog manipulate
guest memory protections via the same guest page-
tables. Our design goals fall broadly in three categories.
3.1.1. Compositionality: When new components are
added, or existing components changed, human re-
verification effort should be limited to the changed
codebase, yet it should provide guarantees about the
entire system under all possible configurations.
3.1.2. Legacy Compatibility & Usability: Our develop-
ment and verification approach must integrate into the
existing hypervisor C and Assembly language program-
ming ecosystem, and cover the entire source code base
including commodity hardware and guest OS. We must
support extensions that are unverified in order to preserve
the legacy ecosystem. However, unverified code (e.g.,
the guest) must not violate system properties estab-
lished by verified code. Our development and verification
techniques must foster wider adoption by hypervisor
developers. We envision that entry-level developers will
rely on basic building blocks to provide simple prop-
erties while seasoned developers will harness the full
verification power to provide stronger guarantees.
3.1.3. Performance: Verification must not preclude ag-
gressive code optimizations for individual components,
including extensions, and must not adversely affect
runtime performance. Further, commodity guest OS on
multi-core hardware must be supported.
3.2. Non-goals – We do not aim for full functional
correctness (i.e., verifying that the implementation be-
haves exactly as specified in a high-level abstraction).
This separates the concerns of showing how a complex
low-level system achieves low-level formal properties
from how those low-level properties refine a high-level
abstract model; we focus on the former, since it is a hard
and as yet open problem, whereas much on-going work
tackles the latter [31], [42].
3.3. Attacker Model and Assumptions – We assume
that the attacker does not have physical access to
the CPU, memory, chipset or other verified extension-
specific system devices (our hardware TCB). Other sys-
tem devices, the guest OS, and unverified extensions are
under the attacker’s control. This is reasonable since a
majority of today’s attacks are mounted by malicious
software or untrusted system devices. We assume that
our hardware TCB is functionally correct, and we have
load-time integrity, i.e., the verified hypervisor is the one
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securely loaded onto the hardware at boot time. Finally,
we assume that the verification tools we use are sound.

4. ÜSPARK ARCHITECTURE

We next describe our architecture, and how it addresses
our goals (§3.1) via verifiable object abstractions (Fig 1)
4.1. üObjects – The basic building block in üSpark– the
“üobject” – is used to contain any system component
including verified and unverified hypervisor and guest
blobs and system devices. Logically, a üobject is a
singleton object guarding some otherwise indivisible
resources (e.g., registers, memory, devices) and imple-
menting public methods to access them. Public methods
are essentially regular function signatures but can be
restricted to specific callers (§4.2.1). Every üobject also
has a special public method, init, to set up the üobject
in a known-good initial state. A üobject may be concur-
rent or sequential. The public methods of a concurrent
üobject can be invoked in parallel on multiple cores. In
contrast, at most one core can invoke the methods of a
sequential üobject at a time, as with a traditional monitor.
When multiple cores are active, sequential execution is
enforced via per-üobject locks.

Each üobject defines its functionality using C and
Assembly. Assembly language for a verified üob-
ject is written using CASM, a dialect of C in
which Assembly instructions are encoded within regu-
lar C functions (CASM functions) via C-like pseudo-
function calls (CASM instructions1). For example, for
the x86 instruction movcr3 involving register eax

there is a corresponding CASM pseudo-function called
ci_movl_eax_cr3. Each CASM instruction pseudo-
function is defined in the üSpark hardware model
(§7.1.2) and bridges the shift between the reference
C semantics and the hardware instructions (e.g. access
to memory and to registers). During verification, each
CASM instruction is replaced by the C source code
from the hardware model. The resulting C-only program
is verified for required properties. CASM functions are
verified to respect the C application binary interface
(ABI), which is crucial for the soundness of verification.
During compilation, all C functions are processed via
a certified compiler while each CASM instruction is
replaced by the corresponding Assembly instruction. In
contrast to prior code-level verification approaches (§10),
CASM supports two-way nested C to Assembly calling
with full device modeling. This allows using various
verification techniques to prove (higher-level) properties
on device states other than just memory and numeric

1CASM syntax is similar to existing “asm” keywords supported by
traditional C compilers for integrating Assembly language instructions.
However, CASM provides a more principled way to integrate Assem-
bly instructions tailored for verification while retaining performance.

safety (§7.2). CASM also allows aggressive compiler op-
timizations of the callee C functions including inlining as
per compiler specifications, resulting in optimal runtime
performance (§8.3). We envision further optimizations
including inlining of hand-written CASM code as part
of our future work (§11.2).

Beyond defining its own functionality, a üobject is also
accompanied by a behavior contract. This consists of a
use manifest (§4.3) and a formal behavior specification
of its own public interface, which guarantee that if a
certain assumption is satisfied in how a public method
is invoked, then a property on the return values is
guaranteed to hold upon return of that method, without
mention of internal üobject state.

Every üobject is held to a number of invariants,
which together guarantee its adherence to the verifiable-
object abstraction. These invariants include memory and
(internal) control-flow integrity, so that the code can be
reasoned about; and satisfaction of the formal contract,
so that the contract alone may overapproximate the üob-
ject, thereby enabling compositional verification; as well
as correct initialization. The invariants are discharged via
assumptions on the hardware and proofs on the source
code of the üobject, and on the contract of üobjects it
interacts with (§5, §7.2).

While our use of object encapsulation is similar to ex-
isting micro-kernel architectures [42] and prior capability
systems [32], [63], üSpark is distinguished by privileged
disaggregation, i.e., multiple verified privileged üobjects
can be logically deprivileged. This enables us to achieve
the sweet spot with both high performance (there is no
hardware de-privileging overhead; §8.3.1) and compo-
sitional verification (privileged üobjects can be verified
seperately; §7.2).
4.1.1. Prime: is the first üobject to execute in a üS-
park enabled hypervisor. Prime is verified to satisfy
its contract which is: to set up the required system
interfaces and associated policies, establish operating
stacks, prepare the platform CPU cores, invoke the init
methods of other üobjects to initialize their state, and
kick-start üobject interactions.
4.2. üObject Interaction – A üobject interacts with an-
other by invoking a public method in its interface with
appropriate parameters. All verified üobjects operate on a
single stack (one per CPU core) that is set up initially by
the prime. Each unverified üobject uses its own, separate
stack. The verifiable-object abstraction requires üobject-
to-üobject control-flow integrity (otherwise returns could
land at arbitrary üobject program sites, access controls
would be violated, etc.). Therefore, üobjects must also be
verified to use their stack correctly (another invariant).
For unverified üobjects, that also means that stacks must
be switched to/from the unverified üobject stack and a
separate shadow stack must be maintained for storing
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[CPU (privileged) instructions, memory and device interfaces]
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Fig. 1: überSpark: enforces verifiable object abstractions using a com-
bination of commodity hardware and software verification mechanisms
to: (a) translate synchronous (call) and asynchronous (e.g., exceptions,
intercepts) inter-üobject control transfers, to establish pure function
call-return semantics; and (b) establish üobject resource confinement.

return addresses during control transfers. The special
sentinel üobject performs (verifiably) this functionality.
4.2.1. Sentinel: is a special üobject that mediates inter-
actions among other üobjects. Thus, an invocation of a
public method of a callee üobject by a caller üobject is
intercepted by the sentinel and dispatched only after a
number of optional runtime checks have succeeded.

These runtime checks logically ensure that the caller
may invoke a given public method on the callee ac-
cording to the üobject manifest (§4.3). For example, an
extension can be split between a top half and a bottom
half as with traditional device drivers (in our case study,
sysclog could shed its networking code into a sepa-
rate üobject, sysclognw, that only takes transmission
requests from sysclog, and is the only authorized user
of a separate NIC dedicated to logging), ensuring that
only the top half may invoke the bottom half at runtime,
while still keeping the two isolated from each other
and independently verifiable. If caller and callee are
both verified, then no runtime check is required, since
static analysis enforces the call policy (§4.3). If one is
unverified, the sentinel consults the policy dynamically
and allows or rejects the call accordingly.

Besides the runtime checks, the sentinel is respon-
sible for transfering control among üobjects. If both
are verified, the control transfer is just a function call.
But if either is unverified, the sentinel must employ
the appropriate control-transfer method for the isolation
mechanism imposed on the unverified üobject (e.g., if
using ring-based isolation, switch privilege levels and
stacks, marshal arguments, etc.). The sentinel may imple-
ment control transfers according to a number of concrete

ways (hardware virtual machines, software fault isola-
tion, etc.), while still adhering to the high-level invari-
ant for isolation. For example, in our micro-hypervisor
implementation, the sentinel traverses both ring-based
isolated üobjects, and hardware virtual machines (§6).

The sentinel is an üobject, so it adheres to the same
invariants as regular üobjects, but it is also verified to
implement its function correctly (perform the checks,
properly transfer control, etc.).
4.3. üObject Resource Confinement – üSpark imple-
ments üobject resource confinement in which distinct
system resources are: (a) managed by designated üob-
jects, (b) protected from access by unauthorized üob-
jects, and (c) regulated in their use by authorized client
üobjects. Such resources include üobject local memory
(code, data, stack), system memory (e.g., BIOS data, free
memory), CPU state and privileged instructions, system
devices and I/O regions. Every üobject includes a use
manifest in its contract that describes which resources it
may access. It is held to the property that it can only use
the resources declared in its manifest.

For verified üobjects, üSpark employs a hardware
model identifying CPU interfaces to system resources
(e.g., I/O and designated memory instructions interface
to system devices, instructions that can modify CPU
model specific register states, etc.) and static analysis to
ensure that access to those interfaces respects the üob-
ject’s manifest (§7). For example, sysclog’s manifest
shows that it may access the dedicated NIC for its remote
logging, and static analysis ensures that the code for
sysclog may access only that NIC, nor can any other
üobject access sysclog’s NIC.

In contrast, unverified üobjects are held to their use
manifests via more direct enforcement mechanisms, such
as hardware MMU and privilege protections (virtualiza-
tion, de-privileging) and software manipulations (e.g.,
SFI). Unverified üobjects can also be granted direct
access to exclusively held system devices so they can
perform I/O without any performance overhead (e.g., a
guest OS üobject is allocated all the devices except the
LAPIC and sysclog’s network card). Device üobjects
use DMA as their interface to other üobjects. üSpark uses
hardware IOMMU capabilities to ensure that device üob-
jects are restricted to perform DMA only to designated
üobject DMA memory regions.
4.3.1. üAPI üobjects: are a special set of üobjects that
encapsulate shared resources over which system proper-
ties are established (§6.4). For example, guest OS üob-
ject memory and CPU state are manipulated by multiple
extensions (hyperdep and sysclog). üSpark enforces
a composition check (§7.2.1), which for a given set of
üAPI üobjects checks if a set of “client” üobjects are
composable. Note that every üAPI üobject also performs
composability checks at runtime for invocations from
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unverified üobjects. Such composability checks reason
about the use-manifest portion of a client üobject’s
contract, which constrains how that üobject invokes the
üAPI’s public methods, ensuring some system-specific
and üAPI-specific composability guarantee, such as sep-
arability. Client üobjects must satisfy the property that
whenever they invoke a üAPI call, they obey their own
use manifest, and üSpark discharges this property via
static analysis on verified üobjects or runtime sentinel
checks for unverified üobjects.
4.4. üSpark Blueprint – üSpark also defines a hypervi-
sor blueprint (üBP), which a hypervisor implementation
is held to. The üBP is a high-level control-flow graph that
divides hypervisor execution into three phases: startup,
intercept, and exception handling which can in turn be
customized based on the actual number of system üob-
jects and their interactions (Figure 2; §6). The üBP along
with our high-level proofs (§5) enables us to abstract
the hypervisor, running on multi-core platform hardware
with system devices and DMA, as a non-deterministic
sequential program. This, in turn, allows us to prove
invariant properties of üobjects, and the hypervisor as a
whole, via sequential source-code verification. Further,
the üBP also enforces that fragile bits of the hardware
state (e.g., CPU and IOMMU) are only touched within
a monitor. This, allows us to prove invariant properties
encompassing hardware states and keeps our hardware
model simple by precluding modeling of concurrent
hardware accesses (§7.1.2).

5. ÜSPARK FORMALISM

We present a formalization of üSpark that justifies the
soundness of our analysis. For brevity, we first give an
overview of the formal reasoning followed by our high-
level verification approach and related theorems. Full
proof details can be found in our technical report [73].
5.1. üSpark Formalism Overview – üSpark reasoning
relies foundationally on a set of invariants – properties
that must hold throughout the execution of a üSpark
hypervisor (Appendix A). The invariants are divided into
üSpark system invariants and üSpark general program-
ming invariants (those that pertain specifically to üobject
C and CASM functions). Each invariant is proved by
reducing it further to a set of proof-assumptions on
hardware (PAHs) and proof-obligations on code (POCs)
using the üSpark blueprint (üBP; Fig. 2). POCs are then
discharged on all üSpark verified üobjects including the
prime and sentinel using specific verification tools and
techniques (§7). A hypervisor implementation is com-
pliant with üSpark– and therefore amenable to composi-
tional reasoning – if it satisfies all the üSpark invariants.
Full details of invariant-to-PAH/POC mappings, a one-
time effort, is described in [73]. At a high level, üSpark
invariants ensure the hypervisor implementation follows

the üBP and that prime is correct, and the first to start
in the system, and that it sets up memory protections,
stacks, and CPUs, before starting other execution con-
texts in a well-defined state. The remaining invariants
guarantee that üobjects have memory and control-flow
integrity, and the sentinel properly transfers control
among them, respecting the concurrent or sequential
designation.
5.2. Verification Approach and Theorems – There
are two tasks in verifying properties of a üSpark
hypervisor: (a) showing that it obeys the üSpark
invariants; and (b) showing that it obeys any
hypervisor/extension-specific invariant properties.
The benefit of (a) is that developers can express
system-specific properties in terms of üobjects and their
interactions with each other, yet verify those properties
separately on each individual üobject in isolation,
and on the ensemble of the behavior contracts of all
üobjects, without having to perform slow verification of
the combined source code for the whole code base.

Crucial to the model of üobject are CASM programs,
defined below. First, we define a CASM function as a
CompCert-C99 (CC99) function whose body consists
only of a block of Assembly instructions that respect
the CC99 ABI. A üobject CASM program is a CC99
program such that: (i) all Assembly code appears only
in CASM functions; and (ii) these CASM functions
preserve the caller C functions’ CPU register state.

Given a üobject CASM program, we are interested
in verifying two kinds of properties: (1) invariant prop-
erties: whether ϕ holds at every state (after every in-
struction), and (2) individual state assertions: whether ϕ
holds at specific program points. We can also specify
assumptions (i.e., preconditions), stating that we assume
ϕ holds when a function is called. Verification tools such
as Frama-C (§7) take programs annotated with properties
to be checked and decide whether the properties hold on
all execution traces of the program.

We begin by stating two üSpark theorems essential for
the correctness of our approach, which follow directly
from the üSpark programming invariants (Appendix A).

Theorem 1 (DISJOINTCASM). The union of üobject
CASM and C functions preserve the existing semantic
preservation property of the certified compiler.

Theorem 2 (EXITSENTINEL). üobject execution can
only exit via the sentinel.

The next theorem states that each üSpark execution is
an interleaving of properly nested executions of üobjects,
one on each core (a more formal definition can be
found in [73]). Intuitively, it means that üobject calls and
returns are properly nested except that the return of an
unverified üobject can be an exception, as an unverified
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Fig. 2: üSpark Hypervisor Blueprint: startup, intercept and exception handling execution phases. Rounded boxes = üobjects; Square boxes =
nested üobject calls; Arrows = intra- and inter-üobject transitions; Single-lines = serialized execution; Double-lines = concurrent execution.

üobject can lie about its return address, but will be caught
by the hardware if it steps out of the üobject memory.
This theorem enables us to view üSpark semantically
as a concurrent object-oriented program, which is then
abstracted as a non-deterministic sequential program for
verification.

Theorem 3 (NESTEDCALL). Consider a legal execution
π of üSpark and a sequential üobject s. The projection of
π on executions of s consists of a sequence of properly
nested executions of s, each on a specific core.

5.2.1. Hardware Model and Converting Assembly to C:
We use C verification tools to verify CASM functions
in üobjects by converting Assembly to C. In addition
to general-purpose registers (which are preserved to
respect the CC99 ABI) these Assembly instructions
access special hardware registers (e.g., LAPIC). Let us
denote the set of registers accessed by CASM functions
in üSpark by Rhw . We introduce a set of fresh C
variables (denoted Vhw ), one for each register; replace
each Assembly instruction accessing Rhw by one or
more CC99 statements that operate in a semantically
equivalent way over Vhw ; replace each r ∈ Vhw with vr
in assertions used for specifying hardware state during
verification. We refer to the mapping between Rhw

and Vhw , and the induced mapping from Assembly
instructions to CC99 statements, as our hardware model.
We assume that this mapping is correct. We refer to
the CC99 function obtained by transforming a CASM
function f in this manner as f̃ .
5.2.2. Abstract üSpark: We abstract üobjects as a non-
deterministic CC99 (NDCC99) program, i.e., a CC99
program with non-deterministic selection of values from
finite sets. In particular, the abstract üSpark üBP con-
sists of a set of abstract üobjects, where each abstract
üobject s̃ is obtained from the corresponding concrete
üobject s by converting each function g ∈ p(s) to an

abstract function g̃; more concretely: by replacing all
CASM functions as described above, replacing accesses
to data that other cores and devices can modify by non-
deterministic values, replacing a call to an unverified
üobject by a call to the intercept handler üobject with
non-deterministic arguments. The next theorem states
that each function g in a sequential üobject refines
its abstract version g̃ in that for each properly nested
execution of g, there is a corresponding execution of g̃.
This is crucial to the soundness of our verification.

Theorem 4 (EXECREFINE). If g is a function belonging
to a sequential üobject such that all Assembly code in g
is in a CASM function satisfying all üSpark programming
invariants, and c is any core, then for each properly
nested execution τ of g on c there is a corresponding
execution τ̃ ∈ [[g̃]] such that: τ ≡ τ̃ , where τ ≡ τ̃ lifts
the per-state equivalence to the trace.

We use C verification tools to verify POCs directly on
üBP (NDCC99 programs) of üSpark. Theorem 4 allows
us to lift the verification results to üobject source-code,
formally stated in the following theorem (we only show
the statement for invariant properties; the statement for
individual state assertions is similar).

Theorem 5 (INVCOMPOSE). Given any sequential üob-
ject s, let s̃ be the üBP abstraction of s. If an invariant
property ϕ holds on every execution of g̃(s), then ϕ is
an invariant property of every execution of s.

6. ÜSPARK HYPERVISOR IMPLEMENTATION

We applied üSpark to XMHF, an open-source micro-
hypervisor for the x86 32-bit hardware-virtualized plat-
form [72]. Originally, XMHF consists of a core hy-
pervisor and a single extension (called hypapp), that
together implement security-specific functionality. The
latest version (0.2.2) runs a Ubuntu 12.04 32-bit multi-
core guest OS with the core and hypapp at the highest
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privilege level and has been used to develop a wide
variety of security applications [53], [74], [83], [85],
[86]. Our goal is üXMHF– an incrementally developed
and verified version with deprivileged components, and
multiple hypapps. As a first step, we refactor XMHF
into: (a) verified hypervisor (vh) üobjects for prime, sen-
tinel, core, üAPIs, and verified hypapps; (b) unverified
hypervisor (uh) üobjects for unverified hypapps; and (c)
unverified guest (ug) üobjects for the OS (Figure 2); §8
quantifies this refactoring effort.
6.1. Core, Hypapp and Guest üObjects – We instan-
tiate üXMHF core using three vh üobjects: xcstrt

(startup), xcihub (handling ug üobject intercepts), and
xcehub (runtime harware exception and watchdog han-
dling). We instantiate extensions described in §2 as
separate vh and uh üobjects and add support for multiple
hypapps within xcihub. Finally, we instantiate a ug
üobject, guest for the guest OS. The xcstrt üobject
gets control from the prime üobject (§6.2), invokes all
registered hypapp üobjects for initialization, and then
transfers control to guest. The xcihub üobject gets
control from the sentinel upon any intercept (§6.3) and
in turn invokes the hypapp üobjects for guest event
processing. Upon intercept handling, xcihub resumes
execution of guest ug üobject (Figure 2).
6.2. Prime üObject – The üXMHF boot-loader uses
the GETSEC[SENTER] instruction to setup a dynamic-
root-of-trust and invokes the prime üobject in a hardware
protected execution environment with the CPUs in a
known good state and interrupts and DMA disabled.

Prime first enumerates devices and uses VT-d IOMMU
to restrict their DMA to designated memory regions. It
then initializes the vh and uh PAE page tables and the
ug 2D EPT page tables for memory protections such
that: (i) vh page tables map vh üobject memory regions,
including MMIO, with supervisor privileges, and all uh
and ug üobject memory regions as user with read-write
permissions; (ii) each uh and ug page tables marks only
its own region, including MMIO, as user and present;
(iii) for uh üobjects, all vh üobject memory regions are
marked supervisor; and (iv) for ug üobjects all vh and
uh memory regions including MMIO are marked not-
present. Prime uses disjoint CPU I/O bitmaps (which
are marked supervisor within uh and ug üobject page
tables) for uh and ug üobjects’ legacy I/O isolation.

Finally, for each CPU in the system, prime: (a) acti-
vates protected-mode with paging and hypervisor-mode
via control registers CR0 and CR4 and the VMXON instruc-
tion; (b) sets up SYSENTER MSRs, interrupt descriptor
table and VM control structure (VMCS) to transfer
control to the sentinel; and (c) loads vh page tables in
CR3 and transfers control to xcstrt core startup üobject.
6.3. Sentinel üObject – For vh to vh üobject control
transfers, the sentinel uses an indirect JMP instruction.

The SYSEXIT and SYSENTER fast system call instruc-
tions are used vh to uh control transfers and vice-versa.
In such cases, the sentinel loads the uh page tables
into the CR3 register and transfers control to the uh
üobject entry point (or return address via the SYEXIT

instruction) at the de-privileged level. The sentinel uses
the VMLAUNCH instruction for a call from a vh to ug
üobject. It handles intercepts by transferring control to
the vh xcihub üobject and upon return from xcihub

resumes the ug üobject via the VMRESUME instruction.
In both cases, it loads the ug üobject EPTs prior to the
launch. The sentinel handles exceptions by transferring
control to the vh xcehub üobject. Upon return from
xcehub execution is resumed via the IRET instruction.
6.4. üAPI üObjects – Both the core and hypapp üob-
jects use üAPI üobjects to influence the ug üobject state.
This state includes the ug üobject EPTs and VMCS.
We implement üAPI üobjects ugmpgtbl and ugcpust

which present interfaces to the ug üobject EPTs and
VMCS respectively. We also implement an additional
üAPI üobject uhcpust as an interface to shared CPU
state between vh and uh üobjects (e.g., MSRs).
6.5. üObject Runtime Library – üObjects rely on a
set of common functionality implemented in the fol-
lowing libraries: (a) libuc with memory and string
functions; (b) libucrypt with SHA-1 functionality; (c)
libustub with üobject entry and sentinel CASM stubs;
and (d) libuhw for platform hardware access.

7. ÜSPARK HYPERVISOR VERIFICATION

7.1. Verification and Development Tools – We first
describe the verification and development tools we use.
7.1.1. Static Analysis with Frama-C: Frama-C [41] is
an industrial-strength C99 static analysis and verifi-
cation toolkit, written in type-safe OCaml. It has a
modular architecture and offers different plugins for
distinct styles of analysis. We use the following Frama-C
plugins: Deductive verification via Frama-C’s Weakest-
Precondition (WP) plugin enables the verification of
assume-guarantee behavior specifications on C functions.
Those specifications are expressed in the Annotated
ANSI C Specification Language (ACSL) [25] in terms
of the C source variables and operations. The WP plugin
verifies such ACSL specifications statically on the body
of the function by discharging verification conditions via
an ensemble of external SMT solvers. Abstract interpre-
tation via Frama-C’s Value plugin analyzes a program
using a sound abstraction of its concrete semantics. It is
used to prove ACSL assertions placed in the body of the
program that express partial specifications about program
variables, and can be combined with deductive verifica-
tion. Abstract syntax tree (AST) analysis via Frama-C’s
AST plugin performs syntactic analysis on control-flow
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graphs and ASTs to enforce syntactic restrictions, e.g.,
the absence of primitives like function pointers.
7.1.2. Hardware Model: We have implemented a C99
hardware model for the commodity x86 hardware-
virtualized platform, by representing platform features
such as CPU registers and system-device states as C
variables and describing formally how the hardware
(should) behave. The hardware model is a re-usable
but trusted component. Our hardware model allows for
iterative development, modeling only portions of the
device used in proving security invariants. This design
principle, coupled with serialization enforced by the
üSpark architecture blueprint (§4.4), enables us to keep
the hardware model simple and amenable to formal
validations. Various techniques exist to validate such a
hardware model [50], [58] which we plan on exploring
as future work (§11).
7.1.3. üSpark Frama-C Plugins: We built üSpark-
specific plugins on top of Frama-C as follows: (a)
übp – enforces üSpark blueprint; (b) ühwm – embeds
hardware model during verification; (c) ücasm –
substitutes Assembly mnemonics corresponding to
CASM instructions after verification; (d) ücc – enforces
general üSpark coding rules; (e) ümf – parses üobject
manifest; and (f) ücvf – performs composition check
(§7.2.1). These üSpark-specific plugins do not impact
the robustness of the Frama-C toolset as we do not
modify the kernel or standard plugins. Further, Frama-
C’s modular architecture helps us keep üSpark-specific
Frama-C plugins small, simple, and amenable to manual
audits to ensure correctness (§8.1).
7.1.4. Frama-C and CompCert: In keeping with our
longer term goal of guaranteeing that the verified source
code properties carry over to the binary, we employ
the CompCert [11], [12], [46] certified C99 com-
piler to compile üobjects. CompCert over-specifies C99
implementation-defined and unspecified behaviors and
is formally verified to produce semantically equivalent
Assembly from a C99 program. Our choice of Frama-
C and CompCert is further justified by their semantic
compatibility. We empirically tested Frama-C against
CompCert’s C99 specifications and found that both tools
had the same treatment of C99 implementation-defined
and unspecified behaviors. Further, both tools employ
an identical byte-addressable memory model with base
addresses and offsets. Therefore, they combine naturally
into a powerful analysis and development workflow
towards producing verified system binaries.
7.1.5. Soundness Via Weakening: We weaken our execu-
tion model in two cases to enable sound reasoning. First,
since current state-of-the-art static analyzers including
Frama-C largely assume sequential execution, we treat
all reads to DMA memory and all memory reads by a
concurrent üobject as non-deterministic, for verification

1 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
2 /*sysclog*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
3 /*hyperdep*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
4 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
5 /*@assert hyperdep: (!(v&_X) && (v&_R) && (v&_W));*/
6 }

(a)
7 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
8 /* sysclog */ {v=v&7; v&=~_X; v|=_R; v|=_W;}
9 /* aprvexec */ {v=v&7; v&=~_W; v|=_R; v|=_X;}

10 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
11 /*@assert aprvexec: (!(v&_W) && (v&_R) && (v&_X));*/
12 }

(b)

Fig. 3: Composition check: (a) hyperdep and sysclog üobjects
both use ugmgtbl üAPI setentry interface to set guest mem-
ory page protections in a composable manner. (b) sysclog and
apprvexec both use setentry in a non-composable manner.

to soundly model interference from devices and other
cores. Second, we preclude use of C function pointers
and CASM indirect jump instructions, which remain
challenging for current state-of-the-art static analyz-
ers [21]. In practice (§7.2), this weakining does not stop
us from verifying important security properties, since
such properties are implemented via sequential üobjects
using non-DMA memory.
7.2. üXMHF Verification – Verification of üXMHF
consists of: (a) üobject composition check, and (b)
verifying üSpark invariants (§5) and üobject local prop-
erties. Throughout this section we use vh, uh and ug
as acronyms for verified and unverified hypervisor and
unverified guest üobjects respectively.
7.2.1. üObject Composition Check: Resources accessed
by multiple üobjects are guarded by üAPI üobjects
(§4.3.1). Here we check that all üobjects are composable
over the set of üAPIs they use. At a high level, this
is checked by constructing an assertion that captures
the conjunction of the possible values that the two
üobjects write to a shared resource, and then verifying
that this assertion is not violated. More specifically, for
every üAPI üobject, an interface stub function is first
created using its manifest. Next, the stub is populated
with invariant definitions and assertions (if any) listed
in the manifest of every vh and uh non-üAPI üob-
ject that invokes it. Figure 3a shows an example stub
for ugmpgtbl üAPI üobject setentry interface with
hyperdep and sysclog hypapps enabled. Lines 2–6
are populated using the corresponding hypapp üobject
manifests. Figure 3b shows the same stub with sysclog
and aprvexec hypapps enabled. Finally, the assertions
in the stub are verified under non-deterministic inputs.
For example, hyperdep and syclog both set the read,
write and clear the execute bits for the memory protec-
tions of the provided guest memory-page (lines 2–3) and
are therefore composable; the assertions (lines 4–6) in
Figure 3a are valid. However, sysclog and aprvexec
are not composable (Figure 3b) since aprvexec sets
the execute bit while sysclog clears the execute bit in
the protections for the provided memory-page (lines 9–
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10). Note, such composition check assertions are also
performed at runtime for üAPI invocations from uh
üobjects (§4.3.1). This composition check procedure
is üXMHF-specific, and a more general check is an
interesting direction for future work.
7.2.2. üObject Compositional Verification: As we dis-
cussed in §5, we first verify üSpark invariants via a
set of PAHs and specific POCs on all vh üobjects
including the prime and sentinel. §7.2.3 describes POC
verification in further detail. We then verify each of the
üXMHF core, hypapp and üAPI üobjects for their local
invariants. For brevity we summarize the hyperdep
üobject verification approach here. Appendix B lists the
invariants and verification approach for other üXMHF
üobjects. hyperdep preserves the following invariant
over the ugmpgtbl setentry üAPI: guest OS provided
memory pages are marked read-write and not executable.
We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections. Finally, we verify the üobject
runtime library (§6.5) for memory safety including be-
havior specifications for the memory and string functions
within libuc. Note, uh üobjects are not verified since
their properties follow from üAPI invariants. ensured by
our composition check (§7.2.1).
7.2.3. POC Verification: For brevity, we choose a sam-
pling of POCs from a few üSpark invariants (Inv4ü , Inv6ü ,
Inv6üprog, Inv7üprog, and Inv10ü ; see Appendix A and [73])
that showcase the importance of all the verification
techniques described in §7.1.1. All the üSpark invariant
POCs are verified using a combination of these tech-
niques. Note that examples described below are neces-
sary (but not sufficient since they are a sample) for the
high-level proofs; for example the NESTEDCALL theo-
rem (§5) cannot be proved if there is no non-overlapping,
unity-mapped memory (Inv4ü) or DMA protection (Inv6ü).

Figure 4 shows a POC code snippet – from the vh
üobject page-table setup function within prime – for Inv4ü
verified using deductive verification. ACSL requires-
assign-ensure clause triples (lines 4–11) are used to
specify function behavior. In this case they specify that
every memory address in the page tables is disjoint with
virtual-to-physical unity mapping. ACSL loop invariant
clause allows specification of loops with data structure
invariants (lines 17–25). Finally, ACSL ghost variables
– C statements and variables only visible in specifica-
tions – are most notably used for modular reasoning
of nested function calls. For example, line 28 invokes
a support function for obtaining the memory protec-
tion of the specified memory address. This is aliased
into a ghost variable which can then be used within
the specification (line 29). In summary, the requires-

1 //@ ghost u64 gflags[SZ_PDPT*SZ_PDT*SZ_PT];
2 /*@
3 ...
4 requires \valid(vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]);
5 ...
6 assigns vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
7 assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
8 ...
9 ensures (\forall u32 x; 0<=x< SZ_PDPT*SZ_PDT*SZ_PT ==>

10 ((u64)vhpgtbl1t[x] == (((u64)(x*SZB_4K)
11 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]))));
12 @*/
13 void gp_setup_vhmempgtbl(void){
14 u32 i, spatype, slabid=XMHF_SLAB_PRIME;
15 u64 flags;
16 ...
17 /*@
18 loop invariant 0 <= i <= (SZ_PDPT*SZ_PDT*SZ_PT);
19 loop assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)],spatype,
20 flags,i,vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)];
21 loop invariant \forall integer x; 0 <= x < i ==>
22 ((u64)vhpgtbl1t[x]) == (((u64)(x*SZB_4K)
23 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]));
24 loop variant (SZ_PDPT*SZ_PDT*SZ_PT) - i;
25 @*/
26 for(i=0; i < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){
27 spatype=_gp_getspatype(slabid, (u32)(i*SZB_4K));
28 flags=_gp_getptflags(slabid, (u32)(i*SZB_4K),spatype);
29 //@ ghost gflags[i] = flags;
30 vhpgtbl1t[i] = pae_make_pte( (i*SZB_4K),flags);
31 }
32 }

Fig. 4: Frama-C ACSL behavior specification and deductive verifica-
tion: vh üobject memory page-table setup top-level function in prime.

prime.cS:
1 ...
2 ci_movl_eax_medi();
3 ...
hwm-cpu.c:

4 void ci_movl_eax_medi(){
5 ...
6 if(uhm_cpu_r_edi >= IMMULO && uhm_cpu_r_edi >= IMMUHI)
7 uhm_immuwr(uhm_cpu_r_edi,uhm_cpu_r_eax);
8 ...
9 }
hwm-iommu.c:

10 void _gxmhfhwm_iommu_wr(u32 addr, u32 val){
11 ...
12 if (addr==IMMUCTRL){ cbuhm_immuctrlwr(val); ... }
13 ...
14 }

prime-vdrv.c:
15 void cbuhwm_immuctrlwr(u32 val){
16 //@assert !(val & IMMUTE) || (val & IMMUTE) &&
17 // gxmhfhwm_iommu_retaddr == (u32)&gp_ret);
18 }
19 ...

Fig. 5: üSpark hardware model and proving IOMMU DMA protection.

assigns-ensures clause triplet is sufficient to represent
the function behavior, and the loop invariants and ghost
variables within the function are used to prove the clause
triplet. ACSL is highly expressive with global and type
invariants, including first-order, polymorphic, recursive
and higher-order specifications [25].

Fig 5 shows a POC code snippet for Inv6ü verified
using abstract interpretation and the hardware model.
The snippet is part of the DMA protection setup function
within prime. Line 2 in Fig 5 shows üobject using a
designated CASM instruction to perform device I/O to
the IOMMU. The hardware model hooks this CASM
instruction to the IOMMU device model if the specified
I/O range falls within the IOMMU device space (lines 6–
7). The IOMMU modeling then simulates the required
logic based on the register accessed and value written
(line 12). The hardware model also invokes the appro-
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Impl Annot Verification
Component (SLoC) Time[s] Mem[GB]

üObject libraries:
libuc 151 223 101 0.80
libucrypt 88 58 35 0.05
libustub 120 97 5 0.03
libuhw 1706 749 465 0.90
prime 2043 3176 1386 1.10
sentinel 672 501 423 0.75
üXMHF üAPI üObjects:
ugmpgtbl 128 91 174 0.65
ugcpust 73 46 118 0.70
uhcpust 26 23 99 0.50
üXMHF Core üObjects:
xcstrt 97 0 53 0.12
xcihub 247 202 147 0.60
xcehub 41 0 48 0.08
üXMHF Hypapp üObjects:
sysclog 255 213 174 0.75
sysclognw 1193 273 413 0.85
hyperdep 161 31 98 0.70
aprvexec 199 – – –

Total/Avg. 7200 5544 3739 0.57
üSpark üAPI composition check 18 0.23

üSpark Hardware model SLoC = 2079

Fig. 6: üXMHF üobject SLoC and verification time/memory.

priate verification driver callbacks whenever such device
registers are written to (line 12). This ensures required
device state invariants. For example, assertions in lines
16–17 of the IOMMU control register callback ensure
that DMA page-table protections when enabled always
point to the populated DMA page tables (which are
populated by the prime in a separate function not shown).
This ensures that devices can only perform DMA to
üobject DMA memory region. Similar techniques are
used to: (a) hook designated CASM instructions for
üobject access to system memory including ug üobject
memory regions; and (b) proving intra-üobject CFI in the
presence of both C and CASM functions by ensuring that
CASM functions respect the C ABI and preserve callee
registers and stack frames (via corresponding hardware
model callbacks, assertions, and ACSL annotations).

POCs for Inv6üprog and Inv7üprog are verified by analysing
the abstract syntax trees (AST) to preclude statements
involving function pointers in C functions and to en-
sure CASM functions always end with a CASM ret

instruction respectively. The POC for Inv10ü is verified via
CFG analysis to enforce üSpark blueprint conformance.
Similar AST-based techniques are employed to: (a) em-
bed hardware model statements, (b) substitute Assembly
mnemonics, and (c) ensure soundness of the hardware
model by precluding C functions from touching hard-
ware model functions and variables and vice-versa.

8. EVALUATION

8.1. System size and Verification TCB – üXMHF is
implemented in 7001 SLoC verified privileged code split

übp ücasm ücc ümf ühwm ücvf Total

108 296 138 132 199 148 1021

Fig. 7: Frama-C üSpark specific plugins are written in OCaml and
build atop existing Frama-C kernel and standard plugins.

into 11 üobjects with 5544 lines of ACSL annotations
and 2079 lines of hardware model (Figure 6). We
also implemented an unverified hypervisor extension
(aprvexec; 199 SLoC) to illustrate how unverified and
verified hypervisor üobjects interact. Depending on the
properties, üobject verification takes 48 seconds to 23
minutes, and up to 1.1 GB of memory. Cumulative
verification time is just over an hour, comparing favor-
ably to related verification efforts [34]. Compositional
verification enables each üobject to be (re-)verified sep-
arately. The prime üobject takes the longest to verify,
but typically does not change as often as other üobjects.
Decomposing prime into multiple üobjects can further
reduce its (re-)verification time significantly.

Our verification TCB comprises the ACSL annota-
tions, the hardware model (§7.1.2), and Frama-C with
associated plugins. Modularity of üobject programs helps
keep annotations small and feasible for manual review.
Various orthogonal techniques exist to validate our hard-
ware model [50], [58] that we plan to explore as future
work. Frama-C is an industrial-strength tool used in
many critical systems today [41]; we did not encounter
any soundness bugs in these tools (§9). Frama-C üSpark
specific plugins (totaling 1021 SLoC of OCaml; Fig-
ure 7) are modular, simple, and built upon the existing
Frama-C kernel and plugins making them amenable to
manual audits. Overall, our TCB compares favorably
with other prior approaches (Figure 8).
8.2. Developer Effort – üXMHF was developed and
verified in a year by a single system developer who
was new to Frama-C/ACSL. A fraction of the time was
spent adding implementation support for multiple hy-
papps with a greater part spent on porting to the üSpark
hypervisor architecture by creating required üobjects and
adding verification related harnesses and annotations.
Annotation-to-code ratio (ACR) ranges from 0.2:1 to
1.6:1 (Figure 6). For üobjects whose properties rely
solely on üAPI’s the ACR is small (e.g., hyperdep).
üObjects with properties requiring functional correctness
(e.g., sysclog and xcihub) have relatively larger ACR.
The prime and sentinel üobjects have the highest ACR
since they discharge most of the üSpark invariants.
8.3. Performance Measurements – All performance
benchmarks were carried out on a Dell Optiplex 9020
with an Intel Core-i5 4590 quad-core processor with
4GB of memory. All üobjects were compiled with full
compiler optimizations turned on.
8.3.1. üSpark Microbenchmarks: The cost of a CASM
NULL function call is only 12 clock cycles. Sentinel
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System/TCB Compiler HW Model Annot./Specs. Verification Tools Other

Verve In TCB NS NS Boogie, BoogieASM, TAL checker, Z3 Iso-gen, boot-loader
seL4 In TCB NS In TCB Isabelle/HOL, HOL4, Myreen, Sonolar, Z3 boot-loader
Hyper-V/Vcc In TCB In TCB In TCB Vcc, Boogie, Z3 boot-loader
Ironclad Out-of TCB In TCB In TCB Boogie, BoogieASM, Dafnyspec, Symdiff, Z3 None
mCertiKOS Out-of TCB NS In TCB Coq None
üSpark Out-of TCB In TCB In TCB Frama-C, üSpark plugins, Z3, CVC3, Alt-Ergo None

Fig. 8: Development and Verification Tools Trusted Computing Base (TCB) Comparison: All systems in addition employ a preprocessor (either
built-in or stand-alone) for macro substitution and file inclusion and an assembler and linker to produce machine code; NS = Not supported

Verified– Verified–Unverified / Unverified–Verified
Verified SEG CR3 TSK HVM

2x 37x 48x 70x 278x

Fig. 9: üSpark Microbenchmarks: Sentinel üobject call overheads w.r.t
regular NULL function call in privileged mode.

CPUID RDMSR WRMSR XSETBV CRx VMCALL SIPI

100 98 98 100 100 99 99

Fig. 10: üXMHF Microbenchmarks: core intercept handling clock-
cycle latency as % of native XMHF performance without üSpark.

sysclog hyperdep aprvexec ropdet iousb ionet iodisk ioser

97 99 91 89 95 96 99 99

Fig. 11: üXMHF Hypapp and I/O Benchmarks as % of native XMHF
performance without üSpark.

SPEC ioz-read ioz-write compbench apache

100 100 100 100 100

Fig. 12: üXMHF Guest CPU and I/O Benchmarks as % of native
XMHF Guest performance without üSpark.

call overhead for verified-to-verified üobject transitions
is 2x w.r.t NULL function call (Figure 9). This is due to
control transfers to the sentinel and üobject entry points
and return addresses via JMP instructions. For transitions
involving unverified üobjects the sentinel overhead is
broken up into: (a) software overhead such as register
saving, parameter marshalling, and call-policy enforce-
ment; and (b) hardware deprivileging overhead. As seen,
segmentation and CR3-based page tables provide the
lowest overheads (37x and 48x), but are still an order
of magnitude larger than the verified-to-verified sentinel
call overhead. Hardware deprivileging adds a significant
portion (upward of 60%) to the sentinel call in this case.
These overheads are comparable to existing unverified
disaggregated systems and micro kernels (§10).
8.3.2. üXMHF Microbenchmarks: For purposes of mi-
cro benchmarking we measure the üXMHF xcihub

üobject, which handles several intercepts required for
guest execution. üXMHF delivers near native XMHF
performance in all cases (Figure 10). We attribute the
small overhead for certain intercepts to the code refac-
toring using üobjects.
8.3.3. üXMHF Guest Benchmarks: We execute both
compute-bound and I/O-bound applications for
guest benchmarking purposes. For compute-bound
applications, we use the SPEC-INT 2006 suite. For

I/O-bound applications, we use the iozone (disk reads
and writes with 4K block size and 2GB file size),
compilebench (project compilation benchmark), and
Apache web server performance (ab tool with 200,000
transactions with 20 concurrent connections). üXMHF
does not affect native XMHF’s guest performance in all
cases (Figure 12).
8.3.4. üXMHF Application Benchmarks: We use the hy-
papps described in §6.1 along with another unverified
hypapp ropdet (which captures guest branch infor-
mation for ROP detection) for hypapp performance
benchmarking. We wrote a guest üobject that interacts
with the hypapps to leverage their services as follows.
For sysclog, activate syscall logging by setting the
syscall code page to no-execute and perform sample
syscalls. For hyperdep, set a data page to no-execute
and perform data read and write operations on that
page. For aprvexec, setup a code page for approved
execution, and invoke the hypapp to approve and lock
the page against writes, before executing a sort function
on that code page. Finally, for ropdet, register a test
function over which ROP detection is to be performed,
and a invoke the test function to collect branch in-
formation. Figure 11 shows the performance overhead
for these hypapps compared to native XMHF without
üSpark. Verified sysclog and hyperdep run close to
native XMHF speeds (2% avg. overhead). Unverified
aprvexec and ropdet incur higher overheads (9% and
11% respectively). The overhead is due to üAPI invariant
checks (<10%) and the sentinel cost of deprivileging,
shadow stack and parameter marshalling (§8.3.1).

For I/O performance benchmarks, we wrote a mix of
DMA I/O (usb and net) and programmed I/O operations
(disk and serial) within a hypervisor üobject. The I/O
performance overhead (Figure 11) is anywhere from 1-
5% with the DMA-based I/O incurring more overhead.
We attribute the higher DMA-based I/O overhead to
the IOMMU page tables for DMA access. Note that
üSpark does not actively interpose on any I/O operations,
which results in a much lower overhead. These I/O
overheads also match up to existing micro hypervisor
I/O architecture overheads [67], [72], [86].

9. EXPERIENCE AND LESSONS LEARNED

9.1. Frama-C – The WP plugin’s limited casting sup-
port helped detect erroneous esoteric casts, e.g., pointer



USENIX Association  25th USENIX Security Symposium 99

to int/u8. While the Value plugin cannot propagate states
to arbitrarily large loops, the semantic unrolling option
helped propagate states only for desired functions so
memory/time resources can be well spent. WP loop
invariants are versatile in supporting unbounded loops
with nesting. WP discharges proofs more effectively
when operating over single-dimensional array accesses
for mutating assignments and invariants and simple state-
ments using shift and bit-wise operators. WP also caused
proof failures in certain cases with local variable alias-
ing of function parameters; using parameter variables
directly ameliorated the issue. We did not encounter any
soundness bugs in Frama-C and its plugins.
9.2. Verification Theories – Automated verification re-
sults vary by theory, e.g., Alt-Ergo and Z3 failed to
discharge a few verification conditions (VC) that CVC3
handled. Frama-C’s ability to combine provers was very
useful; CVC3, Z3 and Alt-Ergo together solved all the
VCs generated during verification.
9.3. Annotations – ACSL is versatile in its support for
writing partial specifications (e.g., memory safety of
SHA-1) and assertions as well as complete specifications
(e.g., page-table setup). Futher, ACSL annotations use
actual C variables and operations. This expressivity spec-
trum thus allows system programmers to easily transition
into the verification domain by initially using simple
assertions and function contracts (partial specifications)
and iteratively mastering complete specifications.
9.4. CompCert – The C99 subset handled by CompCert
suffices to implement most systems-level software con-
structs. However, struct bit fields with packing and align-
ment within struct fields are currently unsupported. We
added methods with bitwise operators to pack, unpack,
deconstruct, and align such variables in the sources.

10. RELATED WORK

10.1. Unverified monolithic – SELinux [66], AppAr-
mor [1] and FBAC [59] are some examples of OS kernel
modifications that add features to an existing (privileged)
kernel to enforce various access control policies. Such
approaches suffer from the lack of assurance and sepa-
ration: a bug in an extension or the core can exist, and
then affect other parts of the system arbitrarily.
10.2. Unverified disaggregation – Xen/Xoar [17] con-
verts Xen into deprivileged partitions. NOVA [67] de-
privileges everything (including VMM modules), except
for a small privileged micro kernel. Safe composition of
OS kernel extensions include extensible operating sys-
tems [10], [15], [20], [23], [39], [61], kernel driver isola-
tion [13], [28], [47], [48], [69], [70], [78], interposition
mechanisms [29], [35], [37], [40] and API compatability
libraries [5], [7], [9], [30], [56], [79]. Xax [19] confines
untrusted application code to an ABI for accessing OS
services. SGX [4] protects application code from (buggy)

privileged code. Disaggregation brings mere isolation but
no formal guarantees on its own.
10.3. Verified sandboxing – SFI [52], [54], [60], [76],
[82] is a software-based approach for application-level
memory isolation but lacks support for low-level privi-
leged instructions and hardware device access, which are
necessary for hypervisor and its extensions. Also, SFI
employs unverified binary rewriting which can change
the semantics of the program and break invariants nec-
essary for compositional verification. Singularity [36]
sacrifices legacy compatibility with a complete redesign
of a OS written in type-safe languages (MSIL/TAL) and
uses software mechanisms to isolate processes (SIP) and
supports only memory and type-safety properties.
10.4. Verified kernels – seL4 [43] verifies full func-
tional correctness of the C implementation (7500 LOC)
of the micro kernel by showing that it refines an abstract
specification. Their specifications don’t support abstrac-
tions among the kernel or the different kernel modules.
These interdependencies often lead to more complex
invariants which are difficult to prove (20 person years).
Further, seL4 does not allow adding properties using un-
trusted services; such additions require direct integration
into the kernel and lengthy re-verification. Furthermore,
there is no support for Assembly (ASM) or device states,
which precludes verification of low-level code interact-
ing with devices; (1200 C and 500 ASM SLoC remain
unverified). mCertiKOS [31] follows a similar approach
to seL4 but makes the abstract specification layered to
reduce the interdependencies among the kernel and var-
ious extensions and makes the verification process more
tractable for an admittedly stripped down version of the
original CertiKOS kernel (single-core, non-preemptible
custom guest OS, basic process and syscall handling).
There is no hardware model and support for ASM is
limited to only general-purpose registers. Adding extra
system instruction support and device models does not
seem trivial; even the stripped down version of the kernel
has 300 C and 170 ASM SLoC unverified. This is
attributed to memory model limitations of their method-
ology [31]. Lastly, both mCertiKOS and seL4 require the
developer to write line-for-line specifications for C/ASM
code in a different abstract language (Isabelle/HOL or
Coq/Ocaml/Lasm) with a very steep learning curve.

The VCC project [16], [45] verifies the functional
correctness of a fixed Hyper-V hypervisor codebase run-
ning a multi-CPU guest, via automated theorem proving.
However, the code annotations do not support abstrac-
tions among the core hypervisor or drivers. This leads
to complex invariants due to interdependencies; only
20% of the hypervisor code-base has been verified [16].
Further, their ASM verification methodology and lack
of a full hardware model only allows proving memory
safety and arithmetic properties for ASM functions while
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precluding compiler optimizations for the corresponding
C callee functions [51]. XMHF [72] employs the CBMC
model checker with assertions on the C code of a
micro-hypervisor to verify memory integrity. However,
multiple extensions or composing other properties on top
of memory integrity are unsupported. Further, that effort
assumes interface confinement and leaves out 422 C and
388 ASM SLoC due to limitations of CBMC with large-
loops and lack of a hardware model.
10.5. Verified System Stack – In Verve [81], a sim-
plified OS and applications are verified for type and
memory safety using a Hoare-style verification condition
(VC) generator and automated theorem proving. Iron-
clad [33] extends Verve with support for higher-level
application properties. High-level specifications (written
in Dafny) are translated to corresponding code with
VCs discharged via an automated theorem prover; the
verification took 3 person-years. Verisoft [6] integrates
hardware and software, with high-level specifications
written in C0 (a tiny subset of C semantics) and refined
down to a custom CPU semantics. The verification took
20 person-years on a simple OS with only a disk driver.
System stack verification approaches, while powerful,
sacrifice compositionality, legacy compatibility and per-
formance. Any changes to kernel code and/or extension
configuration requires lengthy re-verification (in person
years). Further, the entire system software stack has to be
re-implemented in type-safe languages such as C# and
TAL (in Verve) or in high-level Dafny specifications (in
Ironclad) or on a non-commodity CPU abstraction (in
Verisoft). Furthermore, these approaches lack support for
co-existence with unverified programs or a guest OS.

11. LIMITATIONS AND FUTURE WORK

We now discuss current limitations of our approach with
pointers to future work towards bridging these gaps.
11.1. Hardware Model – Our hardware model is cur-
rently a trusted component. However, orthogonal tech-
niques such as path-exploration lifting [50] and mecha-
nized x86-multiprocessor semantics [58] provide a solid
foundation on which we plan to build upon and validate
our hardware model in the future.
11.2. CASM and Certified Compilation – Our high-
level proofs depend on Compcert’s specification of the C
memory and register semantics and CASM’s adherence
to those semantics (discharged as invariants on the
source-code and our hardware model) to ensure that
the C and Assembly code operate on disjoint state. In
the future, we plan on leveraging recent developments
with Compcert such as the ability to compile and link
multi-module source programs [68] to cleanly extend
the bi-simulation proof of the CompCert compiler to
encompass hardware state and Assembly code. Future
work also involves proving (e.g., via bi-simulation) the

semantic equivalence between the hardware model and
the corresponding Assembly instructions and demon-
strating the semantic synergy between CompCert, CASM
and the Frama-C kernel more rigorously for proved
properties to translate to the binary.
11.3. Functional Verification – Our focus in this pa-
per is on security invariants and trace properties and
functional correctness to support such properties. We
are optimistic that liveness properties and full-functional
correctness are achievable future goals and not any more
harder than existing approaches [31], [33], [43].
11.4. Concurrency – We have shown that a practical
multi-threaded system with interesting security proper-
ties can be built by dealing with a serialized execution
model and sequential verification in lieu of complex
concurrent verification. However, we do realize the
importance of relaxing our serialized execution model
especially in high-performance computing environments
and plan on leveraging source-level multi-threaded ver-
ification (e.g., Frama-C mthread plugin [24]) to address
concurrency in the future.
11.5. Soundness of Tools – Similar to existing ap-
proaches, we assume that the verification tools such as
Frama-C with associated plugins and back-end theorem
provers such as Z3, CVC3 and Alt-Ergo are sound
(§8.1,§3.3). Discharging this assumption, while a de-
sirable goal, is currently an open and hard problem in
the face of formal methods. However, seminal break-
throughs such as certified software model-checking [55]
and formal verification of C static analyzers [38] give
us hope that proving soundness of our verification tools
will indeed be possible in the future.
11.6. Applicability – Our future work involves gener-
alizing üSpark to a more broadly applicable frame-
work for building compositionally verifiable systems.
We are exploring the applicability of üSpark to general-
purpose hypervisors (e.g., Xen and KVM), BIOS, de-
vice firmware, operating-system kernel and drivers, user-
space applications and browser extensions including
vertical integration among these stacked subsystems.
The immediate challenges we envision there include
unraveling complex data structures, supporting dynamic
memory allocations and use of indirect function calls in
addition to supporting some form of concurrency.

12. CONCLUSION

We presented überSpark, an innovative architecture en-
forcing verifiable object abstractions in low-level C and
Assembly languages and leveraging them in combination
with off-the-shelf C software verifiers and certifying
compilers to produce high assurance hypervisors for
commodity platforms. We incrementally developed and
verified a commodity x86 micro-hypervisor using üS-
park, and performed a comprehensive evaluation which
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shows automated compositional verification with modest
development effort and minimal runtime overhead.

Availability: ÜBERSPARK and ÜXMHF sources are
available at: http://uberspark.org
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APPENDIX A
ÜSPARK INVARIANTS

üSpark reasoning relies foundationally on a set of
invariants – properties that must hold throughout the
execution of a üSpark hypervisor. The invariants are
divided into üSpark system invariants (Figure 13) and
üSpark general programming invariants (those that per-
tain specifically to üSpark üobject C and CASM func-
tions; Figure 14). Each invariant is proved by reducing
it further to a set of proof-assumptions on hardware
(PAHs) and proof-obligations on code (POCs) using the
üSpark blueprint (üBP; §4–Figure 2). POCs are then
discharged on all üSpark verified üobjects including the
prime and sentinel using specific verification tools and
techniques (§7). A hypervisor implementation is com-
pliant with üSpark– and therefore amenable to composi-
tional reasoning – if it satisfies all the üSpark invariants.
Full details including a formal model of the üSpark
architecture, semantics, verification approach, associated
theorem proofs and invariant-to-PAH/POC mappings can
be found in our technical report [73].
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Inv1ü üSpark begins execution with the entry point of a
distinguished initial “prime” üobject sI in single-
core mode with just core 1 activated

Inv2ü A special “asynchronous” function startcores(s)
activates all cores i > 1 and begins executing a des-
ignated üobject s immediately thereafter; all cores
remain active thereafter for the system lifetime.

Inv3ü Asynchronous control transfers (hardware in-
terrupts, exceptions and intercepts) respect the
blueprint state execution threading and transitions

Inv4ü üObject memory regions are unity-mapped and non-
overlapping

Inv5ü üObject s accesses only its own memory
Inv6ü üObject code, data and stack regions are DMA

protected
Inv7ü üObject code is write-protected
Inv8ü Inter-üobject synchronous control-flow respect

blueprint transitions
Inv9ü Each core has its own stack at all times and stays

within the stack limits.
Inv10ü Blueprint state has state appropriate execution

threading (multi-core or single-core)
Inv11ü Locks behave like “memory fences”; any write

preceding a call to unlock is observed by any read
following the next call to lock

Fig. 13: üSpark System Invariants

Inv1üprog CASM functions preserve caller registers
Inv2üprog CASM functions establish local stack frame non-

overlapping with incoming caller stack frame
Inv3üprog CASM functions have conditional and uncondi-

tional branches local to the function
Inv4üprog CASM functions establish callee incoming stack

frame for calls to other C or CASM functions
Inv5üprog CASM functions tear down local stack frame before

returning
Inv6üprog CASM functions end with return instruction
Inv7üprog No function pointers in C functions
Inv8üprog C and CASM functions do not write to caller stack

frame params and return-address
Inv9üprog CASM functions can only encode instructions

within the domain of CASM instruction set
Inv10üprog CASM non-local control transfer instructions can

only be to fixed function entry points
Fig. 14: üSpark Programming Invariants

APPENDIX B
VERIFICATION OF ÜXMHF ÜOBJECTS LOCAL

INVARIANT PROPERTIES

We now describe our verification approach in detail
for verifying the invariant properties of the üXMHF
üobjects shown in Figure 15. For all the üobjects we
verify via deductive verification that the üobject entry
point function transfers control to the appropriate method
handler for a given public method.

We verify the üAPI üobjects via abstract interpreta-
tion. For the uhcpust üobject we verify that the write

method, in case of a write to MSR EFER, always pre-
serves the EFER bits required for üSpark functionality.

üObject Type Invariant Property

xcihub vh On intercept invoke corresponding hypapp
handler

ugcpust vh Writes to host state only by prime or sentinel
uhcpust vh No writes to host MSR EFER
ugmpgtbl vh No mapping of hypervisor memory regions
hyperdep vh Guest OS provided memory-pages are

marked read-write and not executable
sysclog vh On system call trap intercept, log syscall

information to network log buffer
sysclognw vh Log info in network log buffer and transmit

buffer when full
aprvexec uh Guest OS approved code pages are always

marked read-only and executable

Fig. 15: üXMHF Core, üAPI and Hypapp üobject invariants; vh =
verified hypervisor üobject, uh = unverified hypervisor üobject

For the ugmpgtbl üobject we verify that the setentry

method’s entry parameter does not fall within hypervisor
memory regions. Finally, for the ugcpust üobject we
verify that the write method disallows writes to any
host-specific state in the guest VMCS.

For the xcihub üobject we employ deductive verifica-
tion to verify the main method such that, for any given
intercept a special function hcbinvoke is called with
the intercept type and associated parameters. hcbinvoke
is then verified to ensure that it calls all the registered
hypapp üobjects for that intercept.

For the sysclog üobject we employ deductive veri-
fication to first verify that the init method invokes the
ugmpgtbl üobject setentry method with the syscall
page address with read and no-execute protections. We
then verify that the syscall trap handler obtains syscall
information via a call to the ugcpust üobject read

method and stores this information to the network log
buffer via a call to the sysclognw üobject log method.

We verify the sysclognw üobject via deductive ver-
ification and abstract interpretation. We use deductive
verification to verify the log method to ensure that:
(a) the buffer passed in as parameters is stored in the
network buffer data structure, and (b) when the buffer
is full, its contents are copied into the üobject dmadata
region, buffer is reset, and the network send function is
invoked. We then verify the send function via abstract
interpretation to ensure that it programs the network card
hardware to read from the dmadata region, transmit the
buffer, and wait for end of transmission signal.

We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections.

Note, aprvexec (unverified) üobject is not verified
since its properties follow from the ugmpgtbl üAPI
invariants ensured by our composition check as described
in §7.2.1.


