
Automating Compositional Analysis of
Authentication Protocols

Zichao Zhang
Carnegie Mellon University

Arthur Azevedo de Amorim
Carnegie Mellon University

Limin Jia
Carnegie Mellon University

Corina S. Păsăreanu
Carnegie Mellon University and NASA Ames

Abstract—Modern verifiers for cryptographic protocols can
analyze sophisticated designs automatically, but require the entire
code of the protocol to operate. Compositional techniques, by
contrast, allow us to verify each system component separately,
against its own guarantees and assumptions about other com-
ponents and the environment. Compositionality helps protocol
design because it explains how the design can evolve and when it
can run safely along other protocols and programs. For example,
it might say that it is safe to add some functionality to a
server without having to patch the client. Unfortunately, while
compositional frameworks for protocol verification do exist, they
require non-trivial human effort to identify specifications for the
components of the system, thus hindering their adoption.

To address these shortcomings, we investigate techniques for
automated, compositional analysis of authentication protocols,
using automata-learning techniques to synthesize assumptions
for protocol components. We report preliminary results on
the Needham-Schroeder-Lowe protocol, where our synthesized
assumption was capable of lowering verification time while also
allowing us to verify protocol variants compositionally.

I. INTRODUCTION

Cryptographic protocols are notoriously difficult to design,
yet their correctness is crucial to ensure the security of
software systems. Formal methods are thus valuable, as they
can reveal critical bugs before these systems are deployed.
Automated tools (ProVerif [8], CryptoVerif [9], Tamarin [33],
etc.) are particularly interesting, as they allow us to focus
on modeling the protocol rather than proving its correctness.
Although these tools have been applied to ambitious case
studies [7], [10], [34], [6], [20], they suffer from one important
drawback: they offer little support for compositional reasoning.
To verify a property, we must supply the entire protocol
model at once, rather than verifying each component of the
protocol against self-contained partial specifications. This is
unsatisfactory, since a non-compositional analysis works under
a closed-world assumption that provides few guarantees for
when the protocol is itself a component of a larger system—
for example, using a private key to sign and encrypt data si-
multaneously can expose vulnerabilities that are absent if only
one of the functionalities is used. Furthermore, decomposition
can help speed up verification and guide protocol design when
components are modified, or even perhaps removed, in case
we want to de-bloat an existing protocol without breaking its
security.

We envision a future where we can combine the power of
compositional reasoning with the convenience of automation.
As a first step in this direction, we consider how protocol
analysis can benefit from off-the-shelf, automated composi-
tional verification tools. To illustrate, suppose that we have
a complex system M1 ||M2, obtained by composing simpler
pieces M1 and M2. We would like to show that M1 || M2

satisfies a specification P : M1 ||M2 |= P . Rather than proving
P directly, we can resort to the following assume-guarantee
rule:

〈Q〉M1〈P 〉 〈true〉M2〈Q〉
M1 ||M2 |= P

(1)

This rule says that we can prove P by finding an assumption
Q such that (1) P holds on M1, assuming that Q holds on the
rest of the system; and (2) the component M2 guarantees that
Q holds. Though it can be challenging to craft a suitable Q
by hand, prior work [30], [16] shows that it can be inferred
with L∗ [3], an automaton learning algorithm, even for systems
with multiple components.

We report preliminary results on the analysis of the
Needham-Schroeder protocol [29] and its subsequent correc-
tion by Lowe [21] (dubbed NS and NSL, for short). We
developed models of the protocols for a version of the LTSA
model checker [24] extended with automaton learning [30],
and used this infrastructure to synthesize assumptions to verify
the protocol. Our focus is on agreement properties [35], [22],
which say that when authentication is complete the participants
are indeed talking to whom they think they are talking to.

One obstacle for the formal analysis of security protocols
is dealing with rich attacker behavior. A popular threat model
is the symbolic (or Dolev-Yao [19]) paradigm, which says that
the attacker has complete control over the network, but is
constrained by standard cryptographic assumptions. Thus, the
attacker might be able to shuffle, drop or replay messages, but
cannot decrypt a message without the corresponding key. To
ease the modeling of such threats, we developed Taglierino, a
domain-specific language for describing protocols and attacker
behavior as LTSA automata.

Taglierino requires users to bound the possible attacker
behaviors to ensure that its output is finite and it can be
analyzed by LTSA. (Any attack can in principle be found with
Taglierino if we make this bound large enough.) Though finite,

we observed that Dolev-Yao attackers produced in this way
require a large number of states (>700k) to cover interesting
behaviors. Synthesizing component assumptions directly using
such attackers leads to bloated assumptions that are expensive
to check and hard to interpret. To facilitate a compositional
analysis of NSL, we carry a first decomposition step where
we generate assumptions about the behavior of the attacker
using alphabet refinement [30]. This decomposition shows
that we can replace the attacker by a much simpler one
(3 rather than 700k states). We use this refined attacker to
generate assumptions for the initiator of the protocol. The
assumptions are small (10–20 states), so they can be examined
by decomposition and used for checking replaced components.

The rest of the document proceeds as follows. After a
quick overview of the NS protocol and how it is modeled in
Taglierino (Section II), we present our analysis of the protocol
in Section III, explaining how we generated assumptions for
the protocol initiator and used them to verify protocol variants
and detect bugs. We discuss related work in Section IV and
conclude in Section V.

II. AN OVERVIEW OF NS
The Needham-Schroder public key protocol [29] is intended

to provide mutual authentication of two agents, Alice (A) and
Bob (B). The protocol can be summarized as follows:

(1) A −→ S : A,B

(2) S −→ A : {B, pkB}skS
(3) A −→ B : {nA, A}pkB
(4) B −→ S : B,A

(5) S −→ B : {A, pkA}skS
(6*) B −→ A : {nA, nB}pkA

(7) A −→ B : {nB}pkB
Alice starts by contacting the key server S asking for Bob’s
public key pkB . The server returns this information to Alice
signed with its own secret key skS , to prove that pkB is
authentic. Then, Alice encrypts a fresh cryptographic nonce
nA and sends it to Bob, along her own identity. Bob asks
the key server for Alice’s public key pkA, and then sends
nA back to Alice along another fresh nonce nB , all of this
encrypted with Alice’s key. Finally, Alice acknowledges the
end of the handshake to Bob by sending him nB back. (The
protocol turns out to contain a vulnerability in message (6∗);
we’ll come back to this shortly.)

The intended specification for the protocol can be informally
stated as follows:
• When Alice receives Message 6, she knows that Bob

accepted her connection.
• When Bob receives Message 7, he knows that Alice has

tried to contact him.
To formalize this property, we model the behavior of the

system as a series of finite automata running in parallel. Each
automaton defines a language of traces over the following
alphabet:

agent "Alice" $ do
hostX <- receive
begin "authAB" hostX
send [alice, hostX]
sig <- receive
[pkX, host] <- checkSign spkS sig
when (host == hostX) $ do

send $ aenc pkX [na, alice]
m <- receive
[nx, ny] <- adec skA m
if (nx == na) then

send $ aenc pkX ny
else fail "nonce mismatch"

Fig. 1: Implementation of Alice in NS.

• send i(m): The agent i has sent the message m over the
network.

• recv i(m): The agent i has received the message m from
the network.

• begini(e,m): The agent i claims that the event e has
begun, using the data item m as an identifier.

• end i(e,m): The agent i claims that the event e has ended,
using the data item m as an identifier.

Messages and data items are drawn from a set Term that
contains an infinite supply of nonces, cryptographic keys,
encrypted messages, etc. To keep the models finite, we restrict
this set to a finite subset A ⊆ Term of allowed terms. Our
goal is to prove agreement [35], [22]: if an event of the form
end i(e,m) occurs in an execution trace, than the trace has
an earlier occurrence of the event beginj(e,m). For instance,
Alice might emit beginA(authAB , B) at the beginning of
the protocol to signal that she wishes to communicate with
Bob, and Bob would emit endB(authAB , B) after receiving
{nB}pkB to indicate that the connection was successful.

Each protocol participant corresponds to a finite automaton.
These automata are specified in Taglierino using a domain-
specific language similar to process calculi used in pro-
tocol verification [8], [1]. Figure 1 shows the model of
Alice in Taglierino. A preamble, not shown in the figure,
declares constants such as the nonce na, Alice’s identity
alice, Alice’s private key skA, and Server’s public signa-
ture key spkS. Alice communicates with the network using
send and receive. The first received message (hostX <-
receive) means that Alice is willing to run the protocol
with any other agent chosen by the network. Upon sending
or receiving from the network, Alice can manipulate mes-
sages using cryptographic primitives; for example, aenc and
adec stand for asymmetric encryption and decryption and
checkSign is for checking the signature.

The protocol implementation in Taglierino is compiled
down to models for the LTSA model checker [24]. In ad-
dition to the honest agents, our compiler generates another
automaton that describes how messages are transmitted in

2

the network. This transmission follows the symbolic model
of cryptography [19]: an agent i can receive a message m if
and only if the predicate knows(M,m) holds, where M is the
set of messages that have been sent to the network up to that
point. Intuitively, this amounts to assuming that an attacker can
intercept all messages sent in the network and gets to decide
what is delivered in the end, potentially tampering with the
result. The definition of knows is standard; for instance it
includes the following clauses

m ∈M
knows(M,m)

knows(M, sk(k)) knows(M, {m}pk(k))

knows(M,m)
,

which say that the attacker can always reproduce messages
it has previous seen, and also decrypt a message m if it
can extract the corresponding decryption key sk(k) from its
knowledge. The network automaton does not have begin or
end events in its alphabet, since those are controlled by the
honest agents of the system.

III. ANALYZING THE PROTOCOL

When Bob receives {nB}pkB , he thinks that Alice has
decided to contact him because there is no other way he
could have received this message: the nonce nB was freshly
generated, and only Alice has the power to open the en-
crypted message {nA, nB}pkB . Unfortunately, this reasoning
is flawed: an attack found by Lowe [21] shows that Alice could
have really meant to contact a malicious third party Mallory
(M), who uses Alice’s messages to trick Bob into believing
he is communicating with Alice directly. If Bob implements
a banking service, for example, this might allow Mallory to
gain access to Alice’s account without her permission. The
fix found by Lowe is to include Bob’s identity in one of the
messages:

(6) B −→ A : {nA, nB , B}pkA

Lowe’s analysis shows that the original sixth message does
not have enough information for Alice to know who she is
really talking to. This corrected message allows her to stop
sending message (7) when she realizes who her contact is.

In this section, we show how we can decompose the
resulting NSL protocol in a way that allows us to detect the
original flaw and also check the correctness of variants of the
protocol, at least in a bounded sense. More precisely, we start
by generating an assumption A for Alice in NSL; as a by
product of this process, we establish the correctness of NSL
through the application of (1). Then, we use A to analyze two
variants of the protocol where Alice behaves slightly different.
Since Alice is the only component that changes, we can verify
that the variants are correct simply by checking that Alice
satisfies the assumption A.

We compare the effort to verify the protocols composition-
ally and monolithically. Our results (Section III-E) show that

Let M1 and M2 be two component in the system and
P be the property we want to check. We use αM to
denote the alphabet of an component M and ΣI to
denote the interface alphabet, that is, ΣI = αM1 ∩
αM2.
Let σ be an arbitrary trace where σn denotes the nth
action on trace σ and Σ be a arbitrary set of alphabet,
we define

find(Σ, σ) =

{
σi, if σi ⊆ ΣI ∧ σi 6⊆ Σ

∅, otherwise

where i is the first index scanning from the end of
trace σ to the beginning such that the conditions hold.

1) Obtain trace σ from checking 〈true〉M1〈P 〉.
2) Initialize Σ = find(∅, σ).
3) Use the classic learning framework for Σ. If the

framework returns true with assumption Q, we
report the Q and STOP. When the framework
returns false with counterexample trace σ′. This,
however, does not necessarily means that M1 ||
M2 violates P . Real violations are discovered
by the learning framework only if the alphabet
is ΣI and thus we go to the next step.

4) If find(Σ, σ′) returns ∅, we report false and
STOP. If find(Σ, σ′) returns an action a, we
update Σ = Σ ∪ a and go to step 3.

Fig. 2: Alphabet refinement process.

Component #States #Trans. Assumption
#States #Trans.

Attacker 775030 4343487 3 178
Alice 14 163 6 69

Fig. 3: Comparison of the original component with its gener-
ated assumption, in terms of states and transitions.

compositional verification considerably outperformed mono-
lithic verification when it can reuse the assumption A; if A
needs to be regenerated, compositional verification is more
expensive. All experiments were performed with a 1.6 GHz
Intel Core i5 CPU and 8.0 GB RAM, running 64-bit Ubuntu
18.04 LTS.

A. Generating Assumptions with NSL

Our model of NSL allows all the original messages of the
protocol to be exchanged in the network, but includes other
terms that enable Lowe’s attack in the original NS: {nB}pkM ,
{pkM ,M}skS , etc. We chose these terms heuristically, by
taking the legitimate messages exchanged by Alice and Bob
and scrambling some of the parameters. In total, our model
allows 31 messages to be exchanged in the network. When
setting up the model, we make skM , Mallory’s secret key,

3

Attacker Alice
send i({nA, nB ,M}pkA) sendA({nA, nB ,M}pkA)
send i({nA, nB , B}pkM) sendA({nA, nB , B}pkM)
send i({nA, nB ,M}pkM) sendA({nA, nB ,M}pkM)
send i({nB , nB , B}pkM) sendA({nB , nB , B}pkM)
send i({nB , nB ,M}pkM) sendA({nB , nB ,M}pkM)
send i({nM , nB , B}pkM) sendA({nM , nB , B}pkM)
send i({nM , nB ,M}pkM) sendA({nM , nB ,M}pkM)

send i({nB}pkB) sendA({nB}pkB)
send i({nB}pkM) sendA({nB}pkM)

send i({B, pkB}skS) sendA({B, pkB}skS)

recv i({nA, nB ,M}pkA) recvA({nA, nB ,M}pkA)
recv i({nA, nB , B}pkM) recvA({nA, nB , B}pkM)
recv i({nA, nB ,M}pkM) recvA({nA, nB ,M}pkM)
recv i({nB , nB , B}pkM) recvA({nB , nB , B}pkM)
recv i({nB , nB ,M}pkM) recvA({nB , nB ,M}pkM)
recv i({nM , nB , B}pkM) recvA({nM , nB , B}pkM)
recv i({nM , nB ,M}pkM) recvA({nM , nB ,M}pkM)

recv i({nB}pkB) recvA({nB}pkB)
recv i({nB}pkM) recvA({nB}pkM)

recv i({B, pkB}skS) recvA({B, pkB}skS)

beginA(authAB , B)
beginA(authAB ,M)

Fig. 4: Alphabets of generated assumptions. The identifier i
ranges over A and B.

available to the attacker, while keeping all other private keys
secret. We also bounded the attacker to learn at most 4
messages in addition to its initial knowledge.

When compiled, our model had a large attacker of more than
700k states. To obtain a more tractable model, we decomposed
the system to generate an assumption for the attacker (i.e. let-
ting M1 = Alice ||Bob ||Server and M2 = Attacker in rule
(1)). To facilitate learning, we used alphabet refinement [30], a
technique that generates more compact assumptions by limit-
ing the possible interactions between components. Roughly
speaking, alphabet refinement consists in gradually adding
actions to the interface of M1 and M2 until we successfully
generate a sound assumption for the attacker or manage to
prove that the property did not hold. (Figure 2 describes this
process in more detail.)

After refinement, we further decomposed the system using
the assumption on the attacker to generate an assumption for
Alice. Figure 3 shows the size of the original components with
their generated assumption; Figure 4 shows the alphabets. The
fact that we were able to generate an assumption for Alice
means that the NSL protocol satisfies agreement. We will now
see how this generated assumption facilitates the analysis of
protocol variants.

B. Finding Lowe’s Flaw in NS

We modified Alice in NSL such that the agent identity in
message (6) is not checked. The behavior of the modified pro-
tocol is equivalent to the original NS and allows Alice, while
thinking she is contacting Mallory, to accept the message:

(6) B −→ A : {nA, nB , B}pkA

and continue with:

(7) A −→M : {nB}pkM

This behavior enables Lowe’s attack on NS, which we redis-
covered by checking the modified Alice against the assumption
generated in the previous section.

In principle, it is possible this method yields a spurious
counterexample. The automaton learning technique generates
the weakest assumption for Alice to validate agreement, but
the assumption was computed using an abstraction that has
more behaviors than the original attacker, and thus imposes
more restrictions on Alice than would be necessary. To rule out
the possibility that our counterexample is spurious, we double-
check that it can be produced by this variant of NSL. Even
when combined with the time to recheck the counterexample,
the time spent to find this bug compositionally was much
smaller than the time spent on monolithic bug finding, thus
strengthening the case for compositional verification.

C. Serverless NSL

A common simplification of NSL is to assume that Alice
knows the keys of the agents she wants to contact from the
start. This amounts to removing the communication between
Alice and Server (messages (1) and (2)). We were capable of
verifying this version of Alice against our previously generated
assumption, thus confirming that this serverless variant of NSL
is correct.

D. Interpreting the Assumptions

Figure 3 shows that assumption learning with alphabet re-
finement was capable of significantly abstracting the behavior
of the attacker and of Alice, yielding automata that are much
smaller in terms of number of states and number of transitions.
The alphabets of the assumptions (Figure 4) list the actions
that must be controlled for the property to hold; removing
them from the alphabet has the effect of allowing the attacker
to freely perform those actions, regardless of whether a send
action was triggered by an honest agent or of whether the
attacker had enough knowledge to deliver a message.

The only difference between the alphabet for Alice and for
the Attacker is that the Attacker alphabet includes actions for
Bob, whereas Alice’s includes her begin events. Most of the
controlled actions are variants of (6) encrypted with pkM . If
the attacker is free to forge such messages indiscriminately,
he is capable of learning the nonce nB even before Bob is
contacted by Alice or Mallory. When this is true, the attacker

4

Protocol Attack Compile time(ms) #States Attacker Monolithic verification Compositional verification
#States #Transitions Time(ms) #States #Transitions Time(ms)

NSL public key [21] No 2851 775030 388 2738 8 18 163 1 *
NS public key [29] Yes [21] 2674 775030 10880 102449 97 19 (3104) 164 (22979) 1 (22) **

NSL public key (variant) No 2182 775030 9792 86094 115 13 99 1

Fig. 5: Experimental results (cf. Section III-E)

has all the information needed to impersonate Alice and break
agreement. (Note that we didn’t include nB in the allowed set
of messages, so it is not possible for the attacker to learn
this value directly.) Interestingly, the expected message (6)
in a normal run of the protocol, {nA, nB , B}pkA, is not in
the alphabet. Intuitively, since the attacker does not control
pkA, the only thing he can do with this message is relaying
it to Alice. If Alice meant to talk to Bob anyway, she will
eventually trigger begin and send her response (7) to Bob,
which does not pose any harm for agreement. Otherwise, if she
meant to talk to Mallory, receiving this message will trigger a
mismatch between Bob’s identity and Mallory’s; thus, she’ll
stop running and never send (7) to Bob.

E. Results

Figure 5 summarizes the results of verifying the three
variants of NSL above. Each row describes:
• whether the variant is vulnerable to an attack;
• how long it took to compile the various automata pro-

duced by Taglierino;
• the number of states in the attacker component;
• results for monolithic verification: the number of states

and transitions of the compiled automata, as well as the
time spent to verify them;

• results for compositional verification: the number of
states and transitions of the compiled automata used to
check that Alice satisfies the generated assumption, as
well as the time to perform this check.

Note that the results of compositional verification for the
first row (*) are somewhat redundant, since the system is
automatically verified as a byproduct of generating the as-
sumptions. We included those numbers for completeness. In
each column under the results of compositional verification
for the second row (**), the first number refers to the pro-
cess of generating the counterexample, whereas the second
number refers to the process of rechecking it, as explained
in Section III-B. In all cases, we observe that compositional
verification requires substantially fewer resources than mono-
lithic verification. However, these numbers do not include the
time spent to generate Alice’s assumption, which amounts
to approximately 5 minutes, implying that the benefits of
compositional verification mostly apply when we expect to
reuse the generated assumptions for several protocol variants.

IV. RELATED WORK

Compositional verification and assume-guarantee reason-
ing [27], [32], [25], [26], [28] have been studied extensively,
as a way to address the state-space explosion problem in

model checking [15]. Progress has been made in automat-
ing compositional reasoning using learning and abstraction-
refinement techniques for iterative building of the necessary
assumptions [17], [31], [11]. Other learning-based approaches
for automating assumption generation have been proposed as
well, e.g. [12], [2], [13], [14], with many other research works
to follow.

All this work was done in the context of applying automated
compositional verification to general-purpose software. While
there have been many model checkers that target security
protocols, for example [4] surveys a number of them and
[23], [5] have been applied to Needham-Schroeder protocol,
they all verify the entire protocol at once. In fact, there is
relatively little research on compositional analysis of security
protocols, which pose special challenges due to the com-
plexity introduced by the attacker model. Among the most
prominent works in this direction is Protocol Compositional
Logic (PCL) [18], a logic and system for proving security
properties of network protocols. PCL supports compositional
reasoning about complex security protocols and has been
applied to a number of industry standards including SSL/TLS,
IEEE 802.11 i and Kerberos V5. Despite its success, PCL is
limited by the large amount of manual effort that is involved
in performing the proofs. Other tools can use the help of
humans to guide the proving effort with intermediate lem-
mas; examples include the Tamarin [33] and the CryptoVerif
provers [9]; however, this functionality still requires the entire
protocol code. It would be interesting to investigate how to
integrate the properties discovered by our framework in such
tools. Tamarin is a natural first candidate for experiments in
this area, since it works under the symbolic model, just like
Taglierion. CryptoVerif, by contrast, is used for proofs in the
computational model of cryptography, which would represent
a significant depart from our setting.

V. CONCLUSION AND FUTURE WORK

We have carried out a first experiment towards automating
the compositional verification of protocols, using the NS
and NSL protocols as a case study. Our results show that
synthesized assumptions can be used to verify variants of
the original protocol and yield faster checks. We see several
promising directions for future work. Besides trying out more
case studies, we would like to improve the performance of our
assumption generation, which right now takes a few minutes
to complete (≈ 5). It would also be interesting to use the
generated assumptions to guide the design and simplification
of other protocols, or to incorporate those in manual proofs of
correctness.

5

REFERENCES

[1] Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile
values, new names, and secure communication. CoRR abs/1609.03003
(2016), http://arxiv.org/abs/1609.03003

[2] Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification
by learning assumptions. In: Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005, Proceedings. pp. 548–562 (2005)

[3] Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-
5401(87)90052-6, https://doi.org/10.1016/0890-5401(87)90052-6

[4] Basin, D.A., Cremers, C., Meadows, C.A.: Model checking security
protocols. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.
(eds.) Handbook of Model Checking, pp. 727–762. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8 22, https://doi.org/10.1007/
978-3-319-10575-8 22

[5] Basin, D.A., Cremers, C.J.F., Horvat, M.: Actor key compro-
mise: Consequences and countermeasures. In: IEEE 27th Com-
puter Security Foundations Symposium, CSF 2014, Vienna, Aus-
tria, 19-22 July, 2014. pp. 244–258. IEEE Computer Society (2014).
https://doi.org/10.1109/CSF.2014.25, https://doi.org/10.1109/CSF.2014.
25

[6] Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler,
V.: A formal analysis of 5g authentication. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018. pp. 1383–1396.
ACM (2018). https://doi.org/10.1145/3243734.3243846, https://doi.org/
10.1145/3243734.3243846

[7] Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and refer-
ence implementations for the TLS 1.3 standard candidate. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017. pp. 483–502. IEEE Computer Society (2017).
https://doi.org/10.1109/SP.2017.26, https://doi.org/10.1109/SP.2017.26

[8] Blanchet, B.: An efficient cryptographic protocol verifier based
on prolog rules. In: 14th IEEE Computer Security Founda-
tions Workshop (CSFW-14 2001), 11-13 June 2001, Cape Bre-
ton, Nova Scotia, Canada. pp. 82–96. IEEE Computer Society
(2001). https://doi.org/10.1109/CSFW.2001.930138, https://doi.org/10.
1109/CSFW.2001.930138

[9] Blanchet, B.: A computationally sound mechanized prover for security
protocols. In: 2006 IEEE Symposium on Security and Privacy (S&P
2006), 21-24 May 2006, Berkeley, California, USA. pp. 140–154. IEEE
Computer Society (2006). https://doi.org/10.1109/SP.2006.1, https://doi.
org/10.1109/SP.2006.1

[10] Blanchet, B.: Symbolic and computational mechanized verification of
the ARINC823 avionic protocols. In: 30th IEEE Computer Secu-
rity Foundations Symposium, CSF 2017, Santa Barbara, CA, USA,
August 21-25, 2017. pp. 68–82. IEEE Computer Society (2017).
https://doi.org/10.1109/CSF.2017.7, https://doi.org/10.1109/CSF.2017.7

[11] Bobaru, M.G., Pasareanu, C.S., Giannakopoulou, D.: Automated
assume-guarantee reasoning by abstraction refinement. In: Computer
Aided Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings. pp. 135–148 (2008)

[12] Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated assume-
guarantee reasoning for simulation conformance. In: Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scot-
land, UK, July 6-10, 2005, Proceedings. pp. 534–547 (2005)

[13] Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.:
Automated assume-guarantee reasoning through implicit learning. In:
Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings. pp. 511–526 (2010)

[14] Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning
minimal separating DFA’s for compositional verification. In: Tools and
Algorithms for the Construction and Analysis of Systems, 15th Inter-
national Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings. pp. 31–45 (2009)

[15] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT press
(December 1999)

[16] Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assump-
tions for compositional verification. In: Tools and Algorithms for the
Construction and Analysis of Systems, 9th International Conference,

TACAS 2003, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. pp. 331–346 (2003). https://doi.org/10.1007/3-540-
36577-X 24, https://doi.org/10.1007/3-540-36577-X 24

[17] Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assump-
tions for compositional verification. In: Tools and Algorithms for the
Construction and Analysis of Systems, 9th International Conference,
TACAS 2003, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. pp. 331–346 (2003)

[18] Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composi-
tion logic (PCL). Electron. Notes Theor. Comput. Sci. 172, 311–
358 (2007). https://doi.org/10.1016/j.entcs.2007.02.012, https://doi.org/
10.1016/j.entcs.2007.02.012

[19] Dolev, D., Yao, A.: On the security of public key protocols. IEEE
Transactions on information theory 29(2), 198–208 (1983)

[20] Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for
secure messaging protocols and their implementations: A symbolic and
computational approach. In: 2017 IEEE European Symposium on Secu-
rity and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. pp.
435–450. IEEE (2017). https://doi.org/10.1109/EuroSP.2017.38, https:
//doi.org/10.1109/EuroSP.2017.38

[21] Lowe, G.: Breaking and fixing the needham-schroeder public-key
protocol using FDR. In: Margaria, T., Steffen, B. (eds.) Tools and
Algorithms for Construction and Analysis of Systems, Second Inter-
national Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996,
Proceedings. Lecture Notes in Computer Science, vol. 1055, pp. 147–
166. Springer (1996). https://doi.org/10.1007/3-540-61042-1 43, https:
//doi.org/10.1007/3-540-61042-1 43

[22] Lowe, G.: A hierarchy of authentication specifications. In: Proceedings
10th Computer Security Foundations Workshop. pp. 31–43. IEEE (1997)

[23] Luo, X., Chen, Y., Gu, M., Wu, L.: Model checking needham-schroeder
security protocol based on temporal logic of knowledge. In: 2009 Inter-
national Conference on Networks Security, Wireless Communications
and Trusted Computing. vol. 2, pp. 551–554 (2009)

[24] Magee, J., Kramer, J.: State models and java programs. wiley Hoboken
(1999)

[25] McMillan, K.L.: Verification of an implementation of Tomasulo’s algo-
rithm by compositional model checking. In: Computer Aided Verifica-
tion, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings. pp. 110–121 (1998)

[26] McMillan, K.L.: Circular compositional reasoning about liveness. In:
Correct Hardware Design and Verification Methods, 10th IFIP WG
10.5 Advanced Research Working Conference, CHARME ’99, Bad
Herrenalb, Germany, September 27-29, 1999, Proceedings. pp. 342–345
(1999)

[27] Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans.
Software Eng. 7(4), 417–426 (1981)

[28] Namjoshi, K.S., Trefler, R.J.: On the competeness of compositional rea-
soning. In: Computer Aided Verification, 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. pp. 139–
153 (2000)

[29] Needham, R.M., Schroeder, M.D.: Using encryption for authentication in
large networks of computers. Commun. ACM 21(12), 993–999 (1978).
https://doi.org/10.1145/359657.359659, https://doi.org/10.1145/359657.
359659

[30] Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M.,
Barringer, H.: Learning to divide and conquer: applying the l* algo-
rithm to automate assume-guarantee reasoning. Formal Methods Syst.
Des. 32(3), 175–205 (2008). https://doi.org/10.1007/s10703-008-0049-6,
https://doi.org/10.1007/s10703-008-0049-6

[31] Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M.,
Barringer, H.: Learning to divide and conquer: applying the L* algorithm
to automate assume-guarantee reasoning. Formal Methods in System
Design 32(3), 175–205 (2008)

[32] Pnueli, A.: In transition from global to modular temporal reasoning about
programs. In: Logics and Models of Concurrent Systems, NATO ASI
Series (1985)

[33] Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis
of diffie-hellman protocols and advanced security properties. In: Chong,
S. (ed.) 25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012. pp. 78–94. IEEE
Computer Society (2012). https://doi.org/10.1109/CSF.2012.25, https:
//doi.org/10.1109/CSF.2012.25

6

http://arxiv.org/abs/1609.03003
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1109/CSF.2014.25
https://doi.org/10.1109/CSF.2014.25
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/CSF.2017.7
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1109/CSF.2012.25

[34] Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wese-
meyer, S.: A symbolic analysis of ecc-based direct anonymous at-
testation. In: IEEE European Symposium on Security and Privacy,
EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. pp. 127–
141. IEEE (2019). https://doi.org/10.1109/EuroSP.2019.00019, https://
doi.org/10.1109/EuroSP.2019.00019

[35] Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols.
In: Proceedings 1993 IEEE Computer Society Symposium on Research
in Security and Privacy. pp. 178–194. IEEE (1993)

7

https://doi.org/10.1109/EuroSP.2019.00019
https://doi.org/10.1109/EuroSP.2019.00019

	Introduction
	An Overview of NS
	Analyzing the Protocol
	Generating Assumptions with NSL
	Finding Lowe's Flaw in NS
	Serverless NSL
	Interpreting the Assumptions
	Results

	Related Work
	Conclusion and Future Work
	References

