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Abstract—Interface-confinement is a common mechanism that
secures untrusted code by executing it inside a sandbox. The
sandbox limits (confines) the code’s interaction with key system
resources to a restricted set of interfaces. This practice is seen in
web browsers, hypervisors, and other security-critical systems.
Motivated by these systems, we present a program logic, called
System M, for modeling and proving safety properties of systems
that execute adversary-supplied code via interface-confinement.
In addition to using computation types to specify effects of
computations, System M includes a novel invariant type to specify
the properties of interface-confined code. The interpretation of
invariant type includes terms whose effects satisfy an invariant.
We construct a step-indexed model built over traces and prove
the soundness of System M relative to the model. System M is the
first program logic that allows proofs of safety for programs that
execute adversary-supplied code without forcing the adversarial
code to be available for deep static analysis. System M can be
used to model and verify protocols as well as system designs. We
demonstrate the reasoning principles of System M by verifying
the state integrity property of the design of Memoir, a previously
proposed trusted computing system.

I. INTRODUCTION

Software systems such as web browsers and mobile OSes,
and hypervisors are designed to provide security properties
in the presence of adversaries. These adversaries may exe-
cute concurrently with trusted programs and access shared
resources. They may also supply code to be executed with
the privileges of the trusted system. For example, apps from
different origins may execute on the same mobile OS platform;
browsers routinely execute third-party JavaScript with full
access to the page’s content; operating system kernels include
untrusted (and often buggy) device drivers; and software plat-
forms that leverage the Trusted Platform Module (TPM) [1]
execute programs loaded from an untrusted store and only
later verify the integrity of the loaded programs. Despite
executing potentially adversarial code, these systems have
security-related goals, often safety properties over traces [2].
For example, a web page must ensure that an embedded
untrusted advertisement cannot access a user’s password, and
trusted computing mechanisms must ensure that the hash chain
of the software stack stored in a PCR can only be extended
or reset to a fixed value.

One of the common mechanisms that secure execution of
untrusted code relies on is interface-confinement: untrusted
code is often run inside a sandbox that confines its interaction

with key system resources to a restricted set of interfaces.
This practice is seen in web browsers, hypervisors, and other
security-critical systems. For instance, ADsafe confines third-
party scripts to limit their access to page content [3], [4]. A
hypervisor limits an untrusted guest OS’s physical memory ac-
cesses using address translation. Similarly, the TPM provides
a set of APIs to access its PCRs, so that PCRs can only be
extended with new values, but not arbitrarily overwritten.

Motivated by these systems, we present a program logic,
called System M, for modeling and proving safety properties
of systems that securely execute adversary-supplied code via
interface-confinement. System M uses computation types to
specify effects of computations. To verify safety properties [2],
which are, by definition, predicates on traces, effects in compu-
tation types are specified by predicates over the entire trace of
the computation. We call these predicates assertions. Actually,
each assertion in System M is a pair of predicates on traces.
One predicate, the standard partial correctness assertion, holds
if the computation completes. The other, called the invariant
assertion, holds at all intermediate points of the computation,
even if the computation is stuck or divergent.

Inspired by HTT [5], we include a monad for suspended
computations. The monadic type for suspended computations
is of the form comp(x:τ.ϕ1, ϕ2), where ϕ1 is the partial
correctness assertion, τ is the type of the expression returned
by the computation, and ϕ2 is the invariant assertion.

Building on this basic infrastructure, we add a novel invari-
ant type of form inv(ϕ), to specify the properties of interface-
confined code. The semantics of this type includes only terms
that preserve the invariant ϕ on the trace, if they execute in
an environment that provides arguments preserving the same
invariant. This semantic definition captures the intuition behind
interface-confinement: the effects of interface-confined code
can be inferred by examining the effects of the interfaces.
Adversary-supplied code that can only use a set of interfaces
to generate effects satisfies the same invariant as the interfaces
(see Section III-A for more details).

The novel typing rule INV internalizes the intuition behind
the analysis of interface-confined code and assigns an invariant
type to terms that cannot perform effectful computations
except through interfaces. This rule derives properties of
untyped code provided by an adversary and, hence, enables
the typing derivation of the trusted code to include assertions



about effects of the adversarial code. The INV rule generalizes
prior work by Garg et al. on reasoning about interface-confined
adversarial code in a first-order language [6]. The main
difference is that in this paper trusted interfaces can receive
code (not just data) from the adversary and other trusted
components, and it can execute the received code. Other
frameworks like Bhargavan et al.’s contextual theorems [7]
for F7 achieve expressiveness similar to the INV rule for a
slightly limited selection of trace properties. (We compare to
related work in Section VIII.)

System M is the first program logic that allows proofs
of safety for programs that execute adversary-supplied code
with adequate precautions, without requiring deep type (static)
analysis of the adversarial code. In particular, we do not
require a proof of safety to be shipped with adversarial code,
as for example in proof-carrying code [8].

We construct a step-indexed model [9] over traces, and
prove System M sound relative to the model. System M
supports compositional proofs—security proofs of sequen-
tially composed programs are built from proofs of their sub-
programs. System M also admits concurrent composition—
properties proved of a program hold when that program
executes concurrently with other, even adversarial, programs.
Proving the soundness of System M’s reasoning principles is
challenging as System M combines dependent types with first-
order reasoning about effects. Our step-indexed model for the
invariant type and monadic type is novel. Our use of call-
by-name β-reduction and the inclusion of untyped adversary-
supplied code make the model nonstandard.

System M can be used to model and verify protocols as well
as system designs. We demonstrate the reasoning principles
of System M by manually constructing proofs of the state
integrity property—that an attacker cannot roll back the state
of trusted services—in the design of Memoir [10], a previously
proposed trusted computing platform. Our case study reveals
subtle assumptions that Memoir’s security properties depend
on, but are not explicitly mentioned in [10].

II. TERM LANGUAGE AND OPERATIONAL SEMANTICS

A. Syntax

System M’s term syntax is shown below.

Base values bv ::= tt | ff | ι | ` | n | ( )
Expressions e ::= x | bv | λx.e | fix f(x).e

| ΛX.e | e1 e2 | e · | comp(c)
Actions a ::= A | a e | a ·
Computations c ::= act(a) | ret(e)

| letc(c1, x.c2) | lete(e1, x.c2)
| if e then c1 else c2

Pure expressions, denoted e, are distinguished from effectful
computations, denoted c. An expression can be a variable, a
base value, a function, a recursive function, a polymorphic
function, a function application, a polymorphic function in-
stantiation, or a suspended computation. We use · as the place
holder for the type in a polymorphic function instantiation.
Constants can be Booleans (tt, ff), natural numbers (n ∈ N ),

thread identifiers (ι ∈ I), memory locations (` ∈ L), and
unit. System M is parameterized over a set of action symbols,
denoted A, which are instantiated with concrete actions based
for the specific application. For instance, A may be instantiated
with memory operations such as read and write.

A basic computation is either an atomic action (act(a))
or ret(e) that returns the pure expression e immediately.
letc(c1, x.c2) denotes the sequential composition of c1 and
c2, while lete(e1, x.c2) is the sequential composition of the
suspended computation to which e1 reduces and c2. In both
cases, the expression returned by the first computation is bound
to x, which may occur free in c2. We sometimes use the
alternate syntax letc x = c1; c2 and let x = e1; c2. When
the expression returned by the first computation is not used in
c2, we write c1; c2 and e1; c2. We also abbreviate act(a) to a.

B. Operational Semantics

We use System M to model systems that consist of several
components executing concurrently. Therefore, the operational
semantics of System M are small-step and allow interleaving
of concurrent threads. The following syntactic constructs are
used to to define configurations of concurrent systems.

Stack K ::= [] | x.c :: K
Thread T ::= 〈ι;K; c〉 | 〈ι;K; e〉 | 〈ι; stuck〉
Configuration C ::= σ . T1, . . . , Tn

A thread T is a unit of sequential execution. A non-stuck
thread is a triple 〈ι;K; c〉 or 〈ι;K; e〉, where ι is a unique
identifier of that thread (drawn from a set I of such identifiers),
K is the execution (continuation) stack, and c (or e) is the com-
putation (or expression) being evaluated currently. A thread
permanently enters a stuck state, denoted 〈ι; stuck〉, after
performing an illegal action, such as accessing an unallocated
memory location. An execution stack is a list of frames of the
form x.c recording the return points of sequencing statements
in the enclosing context. In a frame x.c, x binds the return
expression of the computation preceding c. A configuration
of the system, denoted C, consists of a shared state σ and a
set of all threads. σ is application-specific; we assume that it
contains at least a standard heap mapping memory locations
to expressions, but it may contain more. For example, when
modeling network protocols, σ may also contain the set of
undelivered (pending) messages on the network.

The small-step transitions for threads and system configu-
rations are shown in Figure 1. The relation σ . T ↪→ σ′ . T ′

defines the small-step transition of a single thread. C −→ C′
denotes the small-step transition for configuration C; it results
from the reduction of any single thread in C.

The rules for σ . T ↪→ σ′ . T ′ are mostly straightforward.
The rules for evaluating an atomic action (R-ACTS and R-
ACTF) rely on a function next that takes the current store σ
and an action a, and returns a new store and an expression,
which are the result of the action. If the action is illegal,
then next(σ, a) = (σ′, stuck). If the action returns a non-
stuck expression e (rule R-ACTS), then the top frame (x.c)
is popped off the stack, and c[e/x] becomes the current
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σ . T ↪→ σ′ . T ′

next(σ, a) = (σ′, e) e 6= stuck

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι;K; c[e/x]〉
R-ACTS

next(σ, a) = (σ′, stuck)

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι; stuck〉
R-ACTF

σ . 〈ι; stuck〉 ↪→ σ . 〈ι; stuck〉
R-STUCK

σ . 〈ι;x.c :: K; ret(e)〉 ↪→ σ . 〈ι;K; c[e/x]〉
R-RET

σ . 〈ι;K; lete(e1, x.c2)〉 ↪→ σ . 〈ι;x.c2 :: K; e1〉
R-SEQE1

e→β e
′

σ . 〈ι;K; e〉 ↪→ σ . 〈ι;K; e′〉
R-SEQE2

σ . 〈ι;K; comp(c1)〉 ↪→ σ . 〈ι;K; c1〉
R-SEQE3

σ . 〈ι;K; letc(c1, x.c2)〉 ↪→ σ . 〈ι;x.c2 :: K; c1〉
R-SEQC

C −→ C ′

σ . T ↪→ σ′ . T ′

σ . T, T1, . . . , Tn −→ σ′ . T ′, T1, . . . , Tn

Fig. 1. small-step reduction semantics of configurations

computation of the thread. If next returns stuck (rule R-
ACTF), then the thread enters the stuck state and permanently
remains there. When a sequencing statement lete(e1, x.c2) is
evaluated, the frame x.c2 is pushed onto the stack, and e1 is
first reduced to a suspended computation comp(c1); then c1 is
evaluated. Pure expressions are reduced using standard call-
by-name β-reduction rules (→β). This choice is explained in
Sections V-D.

Any finite execution from a configuration results in a trace
T , defined as a finite sequence of reductions. With each reduc-
tion we associate a time point u. The time point represents the
clock time (a natural number) at which the reduction happens.
Time points on a trace are monotonically increasing. A trace
annotated with time is written u0−→ C0

u1−→ C1 . . .
un−−→ Cn,

where ui < ui+1. We follow the convention that the reduction
from Ci to Ci+1 happens at time ui+1 and that its effects
occur immediately. Thus the state at time ui is the state in
Ci. Note that our operational semantics do not stipulate the
time gaps between two consecutive reductions and, hence, do
not determine the time points associated with a trace. Instead,
a trace (without time points) generated by the operational
semantics corresponds to all its annotations with time points
that satisfy monotonicity. In our assertions and proofs, we use
time points only to specify a relative order between events
on a trace, so their concrete values are irrelevant. Also, time
points are distinct from the number of steps on a trace; we use

inc = comp(letc x = read cnt ; write cnt (x+1))
get = comp(letc x = read cnt ; ret(x))
prn = λy.comp(lete = y

letc x = read cnt ; print x)
c = letc x = download(); letc y = check x;

lete = y inc get prn; ret()

Fig. 2. Example counter program

the latter as the basis for step-indexing and as an induction
measure in our soundness proofs.

III. OVERVIEW OF INTERFACE CONFINEMENT

In analyzing security properties of programs that execute
adversary-supplied code, one often encounters a partially
trusted program, whose code is unknown, but which is known
or assumed to be confined to the use of a specific set of
interfaces to perform actions on shared state. Using just the
knowledge of confinement, we can sometimes deduce the
effects of the partially trusted program. We now introduce an
example to illustrate interface confinement and its semantics.

A. Interfaces for a Counter

Consider the following example. A memory location cnt
stores a counter value, which is intended to be non-decreasing.
To ensure that the counter never decreases, we confine the
untrusted client to only the following interfaces for access to
cnt : the inc interface that increments the counter value by 1;
the get interface that returns the counter value, and the prn
interface that takes a computation as its argument, executes
the computation and then prints out the counter value. The
interfaces are shown in Figure 2.

Now, consider a use of this counter. Some thread ι runs
the computation c, whose code is also shown in Figure 2. The
computation c first downloads an untrusted expression which it
binds to x and checks that the downloaded expression contains
no actions (action check x). Next, the untrusted expression is
applied to the three interfaces for access to cnt . The untrusted
expression may combine the three given interfaces in any way
it likes. Irrespective of what the untrusted expression does,
its execution preserves the invariant that the counter value
never decreases because none of the three interfaces decrement
the counter and the untrusted expression has no actions in it
syntactically (so it cannot read or write cnt directly).

The computation c is a specific instance of a more general
scenario where a trusted component downloads code from
an untrusted, possibly adversarial source and confines the
execution of the untrusted code to a set of interfaces. The
untrusted code is checked lightly to ensure that it has no
instructions to cause side-effects, but it may combine the
provided interfaces in arbitrary ways. The guarantee we have is
that the untrusted code’s execution cannot violate any invariant
that is common to all the provided interfaces.
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B. Reasoning about Effects from Confinement

In System M, we use the type inv(ϕ) to classify expressions
whose evaluation (including the evaluation of any nested
computations c) preserves the invariant ϕ. We call this type
an invariant type. The denotation of this type, RE [[inv(ϕ)]], is
the set of expressions that preserve the invariant ϕ. The invari-
ant type is intended to classify interface-confined adversary-
supplied code, which could include ill-typed terms such as
an application of an integer to a function, so expressions of
invariant types may be, or may reduce to, stuck terms that
are not values. This makes the type inv(ϕ) very distinct from
other types in System M, and also from types in standard type
systems (which usually ensure non-stuckedness).

Although formal definitions are introduced in Section IV-B,
we observe a few salient points here. First, if a function lies
in RE [[inv(ϕ)]], then any suspended computation it returns
must also preserve the invariant ϕ. If not, then the adversary
can break the invariant by executing the returned computation.
Second, when we check that a function preserves an invariant,
we assume that any expressions in its arguments also preserve
invariant, else the function (which is possibly adversarial) must
be assumed to not execute the given expressions. This means
that if a function has type inv(ϕ), then its arguments and
its result have the same type. This introduces a circularity in
the definition of RE [[inv(ϕ)]], which we break using step-
indexing. Technically, RE [[inv(ϕ)]] is a set of pairs of the
form (k, e) where e is an expression and k is a step-index.
The intuition here is that if (k, e) ∈ RE [[inv(ϕ)]], then e’s
execution preserves the invariant ϕ and, additionally, if e
returns in less than k steps, then the result also preserves
the same invariant. The informal definition of RE [[inv(ϕ)]]
is shown below.

RE [[inv(ϕ)]] =
{(k, comp(c)) | effects of c satisfy ϕ,

and if c returns e in j steps,
(k−j, e) ∈ RE [[inv(ϕ)]]}

∪{(k, λx.e) | ∀e′, j, j<k, (j, e′)∈RE [[inv(ϕ)]]
=⇒ (j, e[e′/x]) ∈ RE [[inv(ϕ)]]}

∪{(k, nf) | nf is a stuck term that is not in
introduction form}· · ·

Observe that in the λ case, where we recursively invoke the
definition of RE [[inv(ϕ)]], the step-index j is strictly less than
the original step index k. This breaks the circularity. Also,
RE [[inv(ϕ)]] includes all normal terms, including stuck terms,
which would not be typeable in a conventional type system.

IV. TYPES AND THEIR SEMANTICS

A. Types

Figure 3 summaries System M’s types. Types for expres-
sions are denoted by τ and types for computations are denoted
by η. The computation type η is a pair consisting of a partial
correctness assertion and an invariant assertion. Assertions,
denoted ϕ, are standard first-order logical formulas interpreted
over traces. The partial correctness assertion (x:τ.ϕ) describes

Base types b ::= bool | nat | unit | ptr | time | thread
Expr types τ ::= X | b |Πx:τ1.τ2 | ∀X.τ | comp(ηc)

| any | inv(Ξ.ϕ) | FAE
Comp types η ::= (x:τ.ϕ, ϕ′)
Closed c types ηc ::= (Ξ.x:τ.ϕ1,Ξ.ϕ2)
Assertions ϕ ::= P | e1 = e2 |ϕ e | > |⊥ | ¬ϕ

| ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | ∀x:τ.ϕ | ∃x:τ.ϕ
Expressions e ::= · · · | self
Exec ctx Ξ ::= (ub : time, ue : time)

Fig. 3. Types in System M

the effect of a computation if it terminates: the computation
will produce effects that satisfy ϕ and return an expression
of type τ . The invariant assertion describes the effects of a
computation while it is still being evaluated (not returned yet).

The computation type η is parameterized by the time
interval (ub, ue] over which the computation has executed. The
assertions in η use self to refer to the ID of the thread that
executes the computation. (The expression self only appears
in assertions). A closed computation type (Ξ.x:τ.ϕ1,Ξ.ϕ2)
binds ub and ue in Ξ. For brevity, we omit the types in Ξ and
simply write (ub, ue). Expression types include type variables
(X), base types b, dependent function types (Πx:τ1.τ2), and
polymorphic function types (∀X.τ ). The type any contains
all syntactically well-formed expressions (any stands for “un-
typed”). Adversary-supplied code, such as an expression read
from memory, is initially typed any. A suspended computation
comp(c) is assigned a monadic type comp(ηc).

The invariant type that we discussed in Section III-A is
denoted inv(Ξ.ϕ). The execution context Ξ binds the time
interval during which the computation executes. We use the
type FAE for expressions that syntactically do not include any
action symbols. The adversary-supplied code in our example
(Section III-A) is typed FAE after the dynamic check.

B. Semantics

We define step-indexed semantics for types and assertions.
The step-indices are necessary for defining the semantics of
the invariant type inv(Ξ.ϕ) and for proving the soundness of
recursive function typing. The interpretation of an expression
type τ is a semantic type, written C. Each C is a set of
pairs; each pair contains a step-index and an expression. The
expression has to be in normal form, denoted nf. Expressions
in normal form cannot be reduced further under call-by-name
β-reduction. We require that C be closed under reduction of
step-indices. The set of all semantic types is denoted Type.

Type
def
= {C | C ∈ P({(j, nf) | j ∈ N}) ∧

(∀k, nf, (k, nf) ∈ C ∧ j < k =⇒ (j, nf) ∈ C)}

We define the value and expression interpretations of ex-
pression types τ (written RV[[τ ]] and RE [[τ ]]), as well as
the interpretation of computation types η (written RC[[η]])
simultaneously. Formulas are interpreted on traces. We write
T � ϕ to mean that ϕ is true on trace T .
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ι1"
ι2"
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jb!

je!

Fig. 4. The above trace consists of three threads. Solid lines illustrate steps
when a thread is executing. Dashed lines illustrate idle steps of a thread.

Interpretation of computation types The interpretation of a
computation type, RC[[η]]K,ιθ;T , is a set of step-indexed com-
putations (k, c). The substitution θ denotes a partial map
from type variables to Type. Other parameters in the RC[[η]]
relation are illustrated in Figure 4. The trace T contains c’s
execution. K=(tb, te) identifies the time interval during which
c executes. ι is the identifier of the thread that executes c. The
semantics of computation types are the intersection of two
sets—the first set contains indexed computations that satisfy
the partial correctness assertion x:τ.ϕ1, and the second set
contains computations that satisfy the invariant assertion ϕ2.

RC[[(x:τ.ϕ1, ϕ2)]]K,ιθ;T =
{(k, c) | (ι, c, T �K)⇓(e′, jb, je) and k ≥ jb ≥ je

=⇒ (je, e
′) ∈ RE [[τ ]]

E(K)
θ;T and T � ϕ1[e′/x]}

∩{(k, c) | (ι, c, T �K)⇑(jb, je) and k ≥ jb ≥ je
=⇒ T � ϕ2}

We write (ι, c, T �K)⇓(e′, jb, je) to denote that thread ι exe-
cutes c in the time interval (tb, te] on the trace T , where tb
is the first time when c becomes available to be executed by
ι, c returns e′ at time te, and jb and je are the lengths of T
from time tb and te to the end of T , respectively. We write
(ι, c, T �K)⇑(jb, je) to denote that thread ι executes c in the
time interval (tb, te] on T , where tb is the first time when c
becomes available to be executed by ι, and c has not returned
at time te (jb and je have the same meaning as before).

The partial correctness assertion requires that T satisfy
ϕ1[e′/x] and that e′ be of type τ semantically. Here the
index k has to be large enough so that the last k steps of T
contains the complete execution of c. The index of the return
expression is je, since e′ will be evaluated in the remaining
steps. Here, E (K) denotes te when K = (tb, te). (We explain
the meaning of the time point inRE [[τ ]] in the next paragraph.)
The invariant assertion requires that T satisfy ϕ2.

Interpretation of expression types The value and expression
interpretations of types are defined in Figure 5. θ and T
have the same meanings as before. t is the time after which
e reduces. The interpretation of the function type Πx:τ1.τ2
is nonstandard: the substitution for the variable x is an
expression, not a value. Since System M uses call-by-name
β-reduction, the reduction of e1 e2 need not evaluate e2 before
it is supplied to the function that e1 reduces to. Further, the
definition builds-in both step-index downward closure and
time delay: given any argument e′ that has a smaller index
j and evaluates after t′, which is later than t, the function
application belongs to the interpretation of the argument type

RV[[any]]tθ;T = {(k, nf) | k ∈ N}
RV[[X]]tθ;T = θ(X)
RV[[Πx:τ1.τ2]]tθ;T =

{(k, λx.e) | ∀j < k,∀t′ ≥ t,∀e′, (j, e′) ∈ RE [[τ1]]t
′
θ;T

=⇒ (j, e[e′/x]) ∈ RE [[τ2[e′/x]]]t
′
θ;T }∪

{(k, fix f(x).e) | ∀j < k,∀t′ ≥ t,∀e′, (j, e′) ∈ RE [[τ1]]t
′
θ;T

=⇒ (j, e[e′/x][fix f(x).e/f ]) ∈ RE [[τ2[e′/x]]]t
′
θ;T }

RV[[∀X.τ ]]tθ;T =
{(k,ΛX.e) | ∀j<k,∀C ∈ Type =⇒ (j, e) ∈ RE [[τ ]]tθ[X 7→C];T }
RV[[comp(Ξ.x:τ.ϕ1,Ξ.ϕ2)]]tθ;T =
{(k, comp(c)) | ∀K, ι, t ≤ K, let γ = [K, ι/Ξ, self]

(k, c) ∈ RC[[((x:τ.ϕ1)γ, ϕ2γ)]]K,ιθ;T }
RV[[inv(Ξ.ϕ)]]tθ;T =
{(k, nf) | nf 6= λx.e, fix f(x) = e,ΛX.e, comp(c)}
∪{(k, comp(c)) | ∀K, ι, t ≤ K, let γ = [K, ι/Ξ, self]

(k, c) ∈ RC[[((x:inv(Ξ.ϕ).ϕ)γ, ϕγ)]]K,ιθ;T }
∪{(k, λx.e) | ∀j<k,∀t′≥t,∀e′, (j, e′) ∈ RE [[inv(Ξ.ϕ)]]t

′
θ;T

=⇒ (j, e[e′/x]) ∈ RE [[inv(Ξ.ϕ)]]t
′
T }

∪{(k, fix f(x).e) |
∀j<k,∀t′ ≥ t, ∀e′, (j, e′) ∈ RE [[inv(Ξ.ϕ)]]t

′
θ;T

=⇒ (j, e1[e′/x][fix f(x).e/f ]) ∈ RE [[inv(Ξ.ϕ)]]t
′
θ;T }

∪{(k,ΛX.e) | ∀j < k =⇒ (j, e) ∈ RE [[inv(Ξ.ϕ)]]tθ;T }
RV[[FAE]]tθ;T = {(k, nf) | k ∈ N and ∅ ` nf : FAE}

RE [[τ ]]tθ;T = {(k, e) | ∀j ≤ k, ∀e′, e→j
β e

′ 9β

=⇒(k − j, e′) ∈ RV[[τ ]]tθ;T }
Fig. 5. Semantics for expression types

with the index j and time point t′.
The interpretation of the monadic type includes suspended

computations (k, comp(c)) such that (k, c) belongs to the
interpretation of computation types, defined earlier. Because
c executes after time t, the beginning and ending time points
selected for evaluating c are no earlier than t. We write t ≤ K
to denote t ≤ tb ≤ te, given K = (tb, te). The interpretation
of the any type contains all normal forms.

The semantics for the invariant type inv(Ξ.ϕ) is the union
of five sets. The first set includes all stuck terms that are not
in introduction form. These terms can neither be evaluated
further, nor can they be eliminated. As a result, there is no
need to check the assertion ϕ against the trace. For instance,
(k, 5 tt) ∈ RV[[inv(Ξ.⊥)]]tθ;T , even though ⊥ does not hold
on any trace. The next four sets include indexed functions
and suspended computations. The definitions require that these
expressions preserve an invariant if they are evaluated in a
context that preserves the same invariant.

The interpretation of FAE includes all normal forms that
syntactically do not contain any actions. We define rules Γ `
e : FAE to check that all the free variables in e are in Γ and
that e does not contain action symbols in its syntax.

We lift the value interpretation RV[[τ ]]tθ;T to the expression
interpretation RE [[τ ]]tθ;T in a standard way (bottom of Fig-
ure 5).

All our interpretations are well-defined by induction on
step-indices. Note that the definition of RV[[inv(Ξ.ϕ)]]tθ;T
appeals to the definition of RC[[((x:inv(Ξ.ϕ).ϕ)γ, ϕγ)]]K,ιθ;T
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without decrementing the step-index, but this does not lead
to a circularity because the latter invokes the definition of
RE [[inv(Ξ.ϕ)]] only at a strictly smaller step-index (a com-
putation takes at least one step to return an expression).

Formula semantics Formulas are interpreted over traces. The
trace semantics of formulas are mostly standard. We show a
few key definitions below. We assume a valuation function
ε(T ) that returns the set of atomic formulas that are true on
the trace T . We define the predicate start(e1, comp(c), e2) to
mean that the starting time of the execution of the computation
c, by the thread with ID that e1 reduces to, is e2. This predicate
is used by the type system (Section VI).

T � P ~e iff P ~e ∈ ε(T )
T � start(e1, comp(c), e2) iff e1 →∗β ι9β , e2 →∗β t9β ,

and thread ι has c as the active computation with
an empty stack at time t on T

T � ∀x:τ.ϕ iff ∀e, ( , e) ∈ [[τ ]] implies T � ϕ[e/x]
T � ∃x:τ.ϕ iff ∃e, ( , e) ∈ [[τ ]] and T � ϕ[e/x]

The universal and existential quantifiers quantify over terms
of base types. The index and θ, T , and t do not matter for the
interpretation of base types, so we write [[τ ]] as short hand for
∃θ, T , t,RE [[τ ]]tθ;T .

C. Examples

We continue our example from Section III-A. Let the
predicate mem l v t mean that at time t, memory location
l stores value v and let eval e e′ be true if e β-reduces to e′

and e′ is in normal form. The following invariant says that the
counter cnt does not decrease in the time interval [ub, ue].

ϕnd(ub, ue) = ∀t1, t2, l, v1, v2, ub≤t1<t2≤ue ∧ eval cnt l
mem l v1 t1 ∧ mem l v2 t2 ⇒ v2 ≥ v1

Consider some code e provided by the adversary. We would
like to show that e, when executed with the interfaces inc, get
and prn in some thread ι preserves this invariant. However,
this depends on other threads in the configuration as well. We
make the assumption that no other thread modifies cnt . This
is formalized by ∆1 below.

∆1=∀i, e, l, v, t, eval cnt l ∧ write i e v t ∧ eval e l⇒ eval i ι

We define the invariant ϕnd1(ub, ue) to include the assumption
that ι is the ID of the thread that executes e.

ϕnd1(ub, ue) = self=ι⇒ ϕnd(ub, ue)

Expression e preserves the above invariant:

(k, e inc get prn) ∈ RE [[inv((ub, ue).ϕnd)]]tθ;T (1)

To prove it, we need the assumption that e does not contain
any actions (to ensure that e accesses cnt only through the
three provided interfaces). This is ensured by checking that e
has the type FAE using the type system of Section V.

We can prove the following lemma.

Lemma 1. If ∅ ` e : FAE then ∀k, t, T , s.t., T � ∆1, (k, e) ∈
RE [[inv(Ξ.ϕnd)]]tθ;T .

Using the definition of RE [[inv(Ξ.ϕ)]], we can prove as a
corollary that (1) holds.

V. TYPE SYSTEM AND ASSERTION LOGIC

Typing contexts and judgments Our typing judgments use
several contexts. Θ contains type variables. The signature Σ
contains specifications for action symbols. We write α to
denote the type for partially and fully-applied actions. As these
actions can be invoked by any thread at any time, we use
the closed computation type to classify fully-applied actions
(Act(ηc)). Γ contains variable type bindings. ∆ contains
logical assertions. In computation typing, the ordered context
Ξ = (ub, ue) represent the interval (ub, ue] during which the
computation executes and self is a name for the ID of the
thread that runs that computation.

For technical convenience, we define a relation Ξ →
(Ξ0,∆0) B (Ξ1,∆1) on the five contexts Ξ,Ξ0,∆0,Ξ1,∆1

by the following single rule:

(ub, ue)→ ((ub, um), ub≤um≤ue)B ((um, ub), ub≤um≤ue)

Here um is a fresh parameter. Our typing rules use the above
relation to split an execution contexts into several adjacent
contexts, where the ∆s record ordering constraints. We write
Ξ → (Ξ0,∆0) B (Ξ1,∆1) B (Ξ2,∆2) as a short hand for
Ξ→ (Ξ0,∆0)B (Ξ′1,∆

′
1), Ξ′1 → (Ξ1,∆

′′
1)B (Ξ2,∆

′
2), ∆1 =

∆′1,∆
′′
1 , and ∆2 = ∆′1,∆

′
2.

A summary of the typing judgments is shown below.
u; Θ; Σ; Γ; ∆ ` e : τ expression e has type τ
Ξ; Θ; Σ; Γ; ∆ ` c : η computation c has type η
Ξ; Θ; Σ; Γ; ∆ ` ϕ silent ϕ holds while reductions are

non-effectful
Θ; Σ; Γ; ∆ ` ϕ true ϕ is true
Silent or non-effectful reductions are pure reductions, i.e.,

reductions of terms other than actions.

Predicates used in examples Each action has a corresponding
action predicate, which specifies when that action happens,
by which thread, and with what arguments. For instance,
the action predicate that corresponds to the read action is
Read i l v t, denoting that thread i reads location l at time t,
and the read action returns value v, (which must be the value
stored at location l at time t). We follow the convention that
the first argument of an action predicate is the ID of the thread
that executes that action and the last argument is the time at
which the action happens. Predicate noActions i t means that
thread i is silent at time t (i.e., does not perform any actions
at t). We use the following abbreviations to describe effects
during a time interval.

P@(t1, t2) = ∀t, t1<t<t2, P t
P@(t1, t2] = ∀t, t1<t≤t2, P t

Logical reasoning System M includes a proof system for first-
order logic, most of which is standard. The first-order logic
enables reasoning about the properties of traces and is used in
weakening postconditions of computations, as explained later.
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Ξ; Θ; Σ; Γ; ∆ ` a :: Act(Ξ′.x:τ.ϕ1,Ξ
′.ϕ2)

Ξ; Θ; Σ; Γ; ∆ ` ϕ silent fv(a) ∈ dom(Γ)

Ξ; Θ; Σ; Γ; ∆ ` act(a) : (x:τ.ϕ1[Ξ/Ξ′], ϕ2[Ξ/Ξ′] ∧ ϕ)
ACT

E(Ξ); Θ; Σ;B(Ξ); Γ; ∆ ` e : τ
Ξ; Θ; Σ; Γ; ∆ ` ϕ silent fv(e) ⊆ dom(Γ)

Ξ; Θ; Σ; Γ; ∆ ` ret(e) : (x:τ.((x = e) ∧ ϕ), ϕ)
RET

Θ; Σ; Ξ,Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(letc(c1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
Ξ1; Θ; Σ; Ξ ∪ Ξ0\Ξ1,Γ; ∆,∆1, ϕ0

` c1 : (x:τ.ϕP1, ϕI1)
Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : τ ; ∆,∆2, ϕ0, ϕP1

` c2 : (y : τ ′.ϕP2, ϕI2)
Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E(Ξ)/E(Ξ1)]
` ϕ0 ∧ ϕI1[E(Ξ)/E(Ξ1)]⇒ ϕI true

Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕI2 ⇒ ϕI true
Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` letc(c1, x.c2) : (y : τ ′.ϕP , ϕI)
SEQC

Fig. 6. Selected Computation Typing Rules

System M has two rules for reasoning about programs running
concurrently; which are explained in Section VI.

Silent threads The typing judgment Ξ; Θ; Σ; Γ; ∆ ` ϕ silent
specifies properties of threads while they perform only non-
effectful reductions or do not reduce at all. The judgment is
auxiliary in proofs of both partial correctness and invariant
assertions. The following rule states that if ϕ is true, then a
trace containing a thread’s silent computation satisfies ϕ.

Θ; Σ; Ξ,Γ; ∆ ` ϕ true Ξ,Γ ` ϕ ok

Ξ; Θ; Σ; Γ; ∆ ` ϕ silent
SILENT

The type system may be extended with other sound rules for
this judgment. For instance, the following is a sound rule
stating that when the a thread is silent during the interval
(ub, ue], then it performs no actions during that interval.

SILENT-NA

(ub, ue); Σ; Θ; Γ; ∆ ` noActions self@(ub, ue] silent

A. Typing Computations

Figure 6 shows selected rules for establishing partial correct-
ness postconditions and invariant properties of computations.
The judgment (ub, ue); Θ; Σ; Γ; ∆ ` c : (x:τ.ϕ1, ϕ2) means
that if in a trace T a thread with id ι begins to execute
computation c at time tb, and at time te, c returns an expression
e, then e has type τ , and T satisfies ϕ[tb, te, ι, e/ub, ue, self, x]
(recall that self is the placeholder for the ID of the thread that
runs c); and that if in a trace T a thread with id ι begins to
execute computation c at time tb, and at time te, c has not
returned, then T satisfies ϕ[tb, te, ι/ub, ue, self].

The type of an atomic action is directly derived from the
specification of the action symbol in a in rule ACT. We
elide rules for the judgment a :: Act(Ξ′.x:τ.ϕ1,Ξ

′.ϕ2), which
derives types for actions based on the specifications in Σ. The
atomic action executes within the interval specified by Ξ, so Ξ
substitutes Ξ′ in the resulting assertions. The thread executing
the atomic action is silent before the action returns, and thus,
the invariant assertion of the action is the conjunction of the
invariant specified in Σ and the effect of being silent.

For our examples, Σ includes the following specifications:

read : Πx:ptr.Act((ub, ue).y:any.ue>ub ∧ Read self x y ue
∧ noActions self@(ub, ue),

(ub, ue).>)
write : Πx:ptr.Πy:any.

Act((ub, ue).z:unit.ue>ub ∧Write self x y ue
∧ noActions self@(ub, ue),

(ub, ue).>)
check : Πx:any.

Act((ub, ue).y:FAE.ue>ub ∧ Check self x y ∧ x = y
∧ noActions self@(ub, ue),

(ub, ue).>)

To illustrate, the type for the read action takes a memory
location as argument. The partial correctness assertion states
that in the time interval (ub, ue), this thread performs no
actions, and that at time ue, an atomic read action happens.
The type of the returned expression is any, because attackers
could (in general) write untyped expressions into memory. The
invariant assertion is the trivial formula >. Using the rule ACT,
we can type the first action in the interface inc as follows (We
omit Σ and Θ for brevity).

(u1, u2); cnt : ptr; ∆1 ` read cnt :
(x:any.u1<u2 ∧ read self cnt x u2

∧ noAction self@(u1, u2),
noAction self@(u1, u2])

Rule RET assigns e’s type to ret(e). The trace T containing
the complete evaluation of ret(e) satisfies two properties,
which appear in the postcondition of ret(e). First, the return
expression, which is bound to x, is syntactically equal to e
(assertion (x = e)). Second, T satisfies any property ϕ if
ϕ silent holds. This is because reduction of ret(e) is not
effectful. Let the notation E(Ξ) denote te and B(Ξ) denote
tb when Ξ = (tb, te). Then, the return expression e is typed
at E(Ξ), because e can only be evaluated after the evaluation
of ret(e) has ended. The invariant assertion for ret(e) is ϕ,
because before ret(e) returns, the thread is silent.

Rule SEQC types the sequencing statement letc(c1, x.c2).
The execution of letc(c1, x.c2) can be divided into three
segments: (1) Silent steps that bring c1 into evaluation position,
(2) computation c1 runs, and (3) c2 runs. Segment (1) is
necessary for two reasons. First, when a computation is ready
to be executed, the thread running it may stay idle for a while
to let other programs execute. Second, this thread itself needs
a non-effectful transition to push x.c2 onto the stack. The
third premise of SEQC splits the time interval Ξ into three
connected segments Ξ0, Ξ1, and Ξ2. The logical contexts ∆
and its decorated variants contain the ordering constraints of
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between the end points of these segments. The next three
premises of SEQC derive the effect of each of these three
segments. The variable contexts in these rules need to include
the additional time point parameters that could appear free in
Γ or ∆s. Because c2 only executes after c1 finishes, when type
checking c2, the facts learned from the execution so far (ϕ0

and ϕP1) are included in the context.
Next, we verify the partial correctness and invariant as-

sertions. For invariant properties, we check that the invariant
assertions for each of the three segments logically entail the
invariant property of the sequencing statement. When c1 is
executing, we sequentially compose the effect of the silent
segment and the invariant property of c1. When c1 finishes
and c2 is executing, we sequentially compose the effect of
the silent segment, the partial correctness assertion for c1, and
the invariant assertion for c2. We substitute the ending time
point in the assertions to make the first two segments end at
the same time as the sequencing statement. Finally, the last
premise of SEQC checks that the partial correctness assertion
is logically entailed by the conjunction of the effect of the
silent segment and the partial correctness assertions from c1
and c2. The type of the return value is the same as that of the
second computation.

The following valid typing derivation uses the rule SEQC.

(ub, ue); cnt : ptr; ∆A,∆1 `
letcx = read cnt ; write cnt (x+1) : (x:unit.ϕnd1, ϕnd1)

Here, ∆A contains axioms about actions, which are shown in
Appendix C. We need to discharge several proof obligations
to apply the rule SEQC. We show one such obligation below
(we omit contexts other than ∆ for brevity). ∆1 is defined in
Section IV-C.

∆A,∆1 ` (noActions self@(ub, u1] ∧ noAction self@(u1, u2)
∧ read self cnt xu2 ∧ noAction self@(u2, ue)
∧ write self cnt (x+1)ue)⇒ ϕnd1(ub, ue)

B. Expression Typing

Our expression typing judgment u; Θ; Σ; Γ; ∆ ` e : τ is
parameterized over u, which is the earliest time point at which
e is evaluated. Most of the typing rules are standard. A subset
is listed in Figure 7.

Rule COMP assigns a monadic type to a suspended com-
putation. Since the suspended computation can only execute
after u, the assumption that the beginning time point of c is
no earlier than u can be inserted into the logical context. The
rule also builds-in weakening of postconditions.

Rule INV allows us to type an expression from the knowl-
edge that it contains no actions. This rule internalizes the intu-
ition behind interface-confinement discussed in Section III-A:
if c is a computation that is free of actions and confined to
use the interfaces f1, . . . , fn and each of the computations
f1, . . . , fn maintains a trace invariant ϕ while it executes, then
as c executes, it maintains ϕ. The last premise (Γ|FAE ` e :
FAE) checks that e is free of actions. There are two ways to
derive e : FAE. One is to use syntactic derivation rules for
Γ ` e : FAE described in Appendix E. The other is to use

Θ; Σ;u,Γ ` ∆ ok fv(e) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` e : any
ANY

Ξ; Θ; Σ;u; Γ; ∆,Ξ ≥ u ` c : (x:τ.ϕ1, ϕ2)
Θ; Σ;u,Ξ,Γ, x : τ ; ∆ ` ϕ1 ⇒ ϕ′1 true

Θ; Σ;u,Ξ,Γ; ∆ ` ϕ2 ⇒ ϕ′2 true
Θ; Σ;u,Γ ` comp(Ξ.x:τ.ϕ′1,Ξ.ϕ

′
2) ok

fv(c) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` comp(c) : comp(Ξ.x:τ.ϕ′1,Ξ.ϕ
′
2)

COMP

Γ′.Ξ.ϕ is trace composable
Γ′ ⊆ Γ ∀x ∈ dom(Γ′),Γ′(x) is a base type

∆′ ⊆ ∆ Ξ; Θ; Σ;u,Γ′; ∆′ ` ϕ silent
Ξ,Γ′ ` ϕ ok Γ|FAE ` e : FAE

u; Θ; Σ; Γ; ∆ ` e : inv(Ξ.ϕ)
INV

u; Θ; Σ; Γ; ∆ ` e : τ τ < τ ′

u; Θ; Σ; Γ; ∆ ` e : τ ′
SUB

u; Θ; Σ; Γ; ∆ ` e1 : inv(Ξ.ϕ)
u; Θ; Σ; Γ; ∆ ` e2 : inv(Ξ.ϕ)

u; Θ; Σ; Γ; ∆ ` e1 e2 : inv(Ξ.ϕ)
APPINV

u; Θ; Σ; Γ; ∆ ` e : τ
Θ; Σ;u,Γ; ∆ ` e = e′ true fv(e′) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` e′ : τ
EQ

Fig. 7. Selected expression typing rules

a dynamic check such as the action check in the example of
Section V-A. This action checks syntactically that a closed
expression does not contain any action symbols. It returns the
expression if the condition is true; otherwise, it gets stuck.

Technically, because ϕ also accepts as arguments any in-
terval on a trace (it has free variables ub, ue), we require
that ϕ be trace composable, meaning that if ϕ holds on two
consecutive intervals of a trace, then it hold across the union
of the intervals. Formally, Γ.Ξ.ϕ is trace composable if given
a substitution γ for Γ, three time points t1 , t2, and t3, s.t.
t1≤t2≤t3, (ϕ(t1, t2)γ ∧ ϕ(t2, t3)γ) ⇒ ϕ(t1, t3)γ. Further
ϕ has to hold on intervals when the current thread is silent.
This prevents us from derving arbitrary properties of untrusted
code. For instance, ϕ cannot be ⊥ as no trace can satisfy ⊥.

The rule INV itself does not stipulate any conditions on the
predicate ϕ, other than requiring that ϕ be trace composable.
However, if e expects some interfaces as arguments, then in
applying INV to e, we must choose a ϕ to match the actual
effects of those interfaces, else the application of e to the
interfaces cannot be typed.

Expressions of type inv(Ξ.ϕ) are commonly used to type
interface-confined adversary-supplied code, which can use ex-
pressions in untyped ways. Rule APPINV allows an expression
e1 of type inv(Ξ.ϕ) to be applied to another expression of
the same type. The resulting application has the same invariant
type. Note that e2 has to have an invariant type, as e1 could
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use e2 in untyped ways.
We also define a subtyping relation that allows well-typed

terms, to be assigned an invariant type. Most rules of this
relation are standard.

τ < τ
REFL

τ1 < τ2 τ2 < τ3

τ1 < τ3
TRANS

Πx:inv(Ξ.ϕ).inv(Ξ.ϕ) < inv(Ξ.ϕ)
INV1

τ < inv(Ξ.ϕ)

comp(Ξ.x:τ.ϕ,Ξ.ϕ) < inv(Ξ.ϕ)
INV2

b < inv(Ξ.ϕ)
BASE

τ < any
ANY

τ ′1 < τ1 τ2 < τ ′2

Πx:τ1.τ2 < Πx:τ ′1.τ
′
2

FUN

Rule INV1 states that a function type is a subtype of an
invariant type if both the argument and result of the function
are of that invariant type. This is sound because the semantics
of the function type are stricter than the semantics of the
invariant type. Similarly, INV2 allows a computation type to be
a subtype of an invariant type, if the effects of that computation
satisfy the invariant, and the return type of the computation is
the same invariant type. However, the converse of these two
rules does not hold. The reason is that terminating expressions
that have function (computation) types evaluate to functions
(suspended computations), while terminating expressions of
the invariant type may evaluate to any stuck terms.

Now we can type the trusted program called c in our
example (Figure 2). We explain how to type the sub-expression
y inc double prn . First, applying the COMP rule, we derive
that inc has type comp((ub, ue).x:unit.ϕnd1, (ub, ue).ϕnd1).
Then using the subtyping relation (rules BASE and INV2), we
can show that inc has the type inv((ub, ue).ϕnd1). The other
two interfaces can be typed similarly. We apply INV1 in typing
prn , which we can do because prn takes an interface of type
inv((ub, ue).ϕnd1) as an argument. Next, the postcondition
of the check action adds to the typing context y : FAE,
which matches the last premise of INV. ϕnd1(ub, ue) satisfies
the other premises of INV, so we can conclude that y :
inv((ub, ue).ϕnd1). Applying the rule APPINV three times, we
finally derive that y inc get prn has type inv((ub, ue).ϕnd1).

Our last typing rule, EQ, assigns an expression e′, the type
of e, if e is syntactically equal to e′. This rule is useful
for typing programs read from adversary-modifiable memory
locations when separate reasoning can establish that the value
stored in the location is, in fact, syntactically equal to some
known expression with a known type. Depending on the
application, such reasoning may be based on a dynamic check
(e.g., in secure boot [11] the hash of a textual reification of a
program read from adversary-accessible memory is compared
to the corresponding hash of a known program before execut-
ing the read program) or it may be based on a logical proof
showing the inability of the adversary to write the location in
question (e.g., showing that guests cannot write to hypervisor
memory). We show a concrete example in Section VII.

C. Soundness

We prove our type system sound relative to the semantic
model of Section IV-B. For instance, the soundness theorem
for expression typing states that if e is typed τ using the
syntactic typing rules under relevant typing contexts, then e
is in the semantic interpretation of τ with proper substitutions
for those typing contexts. We first define valid substitutions
for contexts. We write RT [[Θ]] to denote the set of valid
semantic substitutions for Θ, which map type variables to
C. We write RG[[Γ]]uθ;T to denote a set of substitutions for
variables in Γ. Each indexed substitution is a pair of an index
and a substitution γ for variables.

RT [[·]] = ·
RT [[Θ, X:Type]] = {θ[X 7→ C] | θ ∈ RT [[Θ]] and C ∈ Type}

RG[[·]]uθ;T = {(k; ∅)}
RG[[Γ, x:τ ]]uθ;T = {(k; γ[x 7→ e]) | (k; γ) ∈ RG[[Γ]]uθ;T

and (k, e) ∈ RE [[τγ]]uθ;T }

Theorem 2 (Soundness).
If ∀A :: α ∈ Σ, ∀T ,K, ι, k, (k,A) ∈ RA[[α]]K,ι·;T , then

1) u; Θ; Σ; Γ; ∆ ` e : τ , ∀θ ∈ RT [[Θ]], ∀t, t′, t′ ≥ t, let
γu = [t/u], ∀T , ∀k, γ, (k, γ) ∈ RG[[Γγu]]t

′

θ;T , T � ∆γγu
implies (k, eγ) ∈ RE [[τγγu]]t

′

θ;T
2) Ξ; Θ; Σ; Γ; ∆ ` c : η, ∀ K, ι, let γΞ = [K, ι/Ξ, self] ∀θ ∈
RT [[Θ]], ∀T , ∀k, γ, (k, γ) ∈ RG[[ΓγΞ]]

B(K)
θ;T , T � ∆γγΞ

implies (k, cγ) ∈ RC[[ηγγΞ]]K,ιθ;T
3) Θ; Σ; Γ; ∆ ` ϕ true, ∀ t ∀θ ∈ RT [[Θ]], ∀T ,
∀k, γ, (k, γ) ∈ RG[[Γ]]tθ;T , T � ∆γ implies T � ϕγ

Theorem 2 is proved by induction on typing derivations and
a subinduction on step-indices for the case of fixpoints. The
theorem assumes the soundness of the action specifications in
Σ, which we explain in Appendix D.

An immediate corollary of the soundness theorem is the
following robust safety theorem, which states that the invariant
assertion of a computation c’s postcondition holds even when c
executes concurrently with other threads, which may be adver-
sarial. The theorem holds because we account for adversarial
actions in the definition of RC[[η]]. A similar theorem holds
for partial correctness assertions.

Theorem 3 (Robust safety). If u1, u2; ∆ ` c : ( , ϕ), T � ∆,
T is a trace obtained by executing the parallel composition of
threads of ID (ι1, .. ιk), at time tb, the computation that thread
ιj is about to run is c, and at time te, c has not returned, then
T � ϕ[tb, te, ιj/u1, u2, self].

D. Discussion

Call-by-name reduction The use of call-by-name reduction
(instead of call-by-value reduction) simplifies our system
significantly. If we were to use a call-by-value semantics, then
the soundness of the function application rule would require
all predicates to be closed under beta reduction, which would
rule out syntactic equality from our assertion logic. If we were
to use beta-equality in the assertion logic instead of syntactic
equality, then we would not be able to prove the EQ rule sound
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using step-indexing because beta-equality does not consider
the number of reduction steps.

Interface-confinement Our interface-confinement check is
purely syntactic—we rely on the syntactic absence of state-
accessing actions in adversarial code. In many cases, interface-
confinement may not be obvious from syntactic restrictions
and it may be based on the impossibility of the adversarial
code ever obtaining references to sensitive code or data. This
is common in object capability systems, which System M
cannot model in full generality. Nonetheless, we consider our
design pragmatic because our syntactic check is very easy to
implement and it can encode capability-based protection in
many cases.

Interface-confined adversarial code is very similar to un-
known client code (or quantification over evaluation contexts),
which proof and type systems for program verification often
consider. The main difference is that in most work (with the
exception of formal systems for reasoning about protocols
such as F7 [7] and Dupressoir et al.’s work [12]), clients
of abstract data types are typed; clients will not evaluate to
stuck terms such as (true 3). In contrast, our INV rule allows
reasoning about untyped client programs. (This rule can be
applied to reasoning about typed client code as well.) INV is
absent from most existing reasoning systems, as they do not
need to consider dynamically obtained untrusted code (e.g.,
code read from untyped memory, or code received over the
network).

VI. COMPOSITION AND RELY-GUARANTEE REASONING

The typing rules introduced so far focus on one executing
program. When reasoning about distributed systems, we wish
to compose properties that are derived from typing known
programs to prove properties of the whole system. In the
following, we present System M’s principles for compositional
reasoning with multiple programs. Even though variants of
these principles have been introduced in prior first-order
systems [13], [6], we discuss them here as they are crucial
to reasoning in System M.

A. Extended example

We motivate these principles by expanding our example
from Section III-A to allow multiple programs to modify the
counter. We add locks to protect memory locations. In the
shared state, an additional data structure L maps each memory
location to the ID of the thread that holds the location’s lock.
Only the thread, whose ID is L(l) can read and write the
location l (this is enforced by the operational semantics).
Consider two threads ι1 and ι2 that sit in an infinite loop. In
each iteration, each first uses the interfaces shown in Figure 2
to access the counter, then yields the lock of cnt to the other
thread. We show the programs in Figure 8. Thread ι1 runs
c1 and ι2 runs c2. Assume that, initially, ι1 holds the lock.
We would like to show the invariant that the counter never
decreases, i.e., ϕnd(0,∞) holds. Since ι1 and ι2 share the
counter, reasoning about either one of them is not enough.

F = fix f(i) = comp(letc x = download();
letc y = check x;
y inc double prn;
yieldTo cnt i
lete = f(i); ret())

c1 = lete = F ι2; ret()
c2 = lete = F ι1; ret()

Fig. 8. Example programs of two threads accessing the counter.

We need reasoning principles to incorporate the effects of one
program while reasoning about another program.

B. Reasoning about Global Configurations

The assertions derived using System M’s typing rules are
local properties of a program. The soundness requirement
prevents us from specifying a postcondition of the read action
that depends on other threads’ or self’s actions outside the
specific time interval in which the action happens. Because
these properties are local to both the time interval and the
thread, we can compose the property of a program both
sequentially with other computations within one thread, and
in parallel with other threads. We have already seen sequential
composition in the typing rules for sequencing statements,
where the effects of the sequential composition of c1 and
c2 are simply the conjunction of the effects of c1 and c2.
In the following, we develop rely-guarantee style reasoning
principles to compose local properties of programs executing
concurrently.

First, System M includes a rule called HONEST that in-
ternalizes the invariant of a program into a logical formula,
which subsequently facilitates its composition with properties
of other programs.

Ξ; Θ; Σ; Γ; ∆ ` c : ( , ϕ)
Θ; Σ; Γ; ∆ ` start(i, comp(c), t) true

Θ; Σ ` Γ ok ∀x ∈ dom(Γ),Γ(x) is a base type
Θ; Σ; Γ; ∆ ` ∀u:time.u ≥ t⇒

ϕ[(t, u), i/Ξ, self] true

HONEST

In words: If we know that a thread i starts executing c at
time t (premise start(i, comp(c), t)) and computation c has an
invariant postcondition ϕ, then we can conclude that at any
later point u, ϕ holds for the interval (t, u]. The condition that
c be typed under a Γ that maps variables to only base types,
is required by the soundness proofs. To prove this rule sound,
we need to prove that given any substitution (n, γ) for Γ, the
trace satisfies the invariant ϕ of c. From the second premise
of HONEST, we know that c starts with an empty stack. c
can never return because there is no frame to be popped off
the empty stack. Therefore, at any time point after c starts,
the invariant of c should hold. However, the length of the
trace after c starts, denoted m, is not related to n. To use the
induction hypothesis, we need to use substitution (m, γ) for
Γ. The interpretation of base types has the property that if
(n, e) is in the interpretation of the base type τ , then (m, e)
is in the interpretation of τ . This completes the proof.
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Next, System M includes a simplified version of the rely-
guarantee reasoning principle described by Garg et al. [6] to
prove invariant properties of the form ∀t:time, ϕ(t). We list
the conditions below.

(RG1) ϕ(ti)
(RG2) ∀u,(∀u′, ti<u′<u⇒ϕ(u′))⇒ (∀i, ζ(i)⇒ψ(i, u))
(RG3) ∀u, (∀u′, ti<u′<u⇒ϕ(u′))⇒ (∀i, ζ(i)⇒ψ(i, u))

⇒ϕ(u)

The following RG rule is used to prove invariant properties.

Θ; Σ; Γ; ∆ ` RG1 true
Θ; Σ; Γ; ∆ ` RG2 true Θ; Σ; Γ; ∆ ` RG3 true

Θ; Σ; Γ; ∆ ` ∀u:time, u ≥ ti ⇒ ϕ(u) true
RG

Informally, to prove that a global invariant ϕ(u) holds at all
times u after an initial time ti, select a relevant set of threads
which affect the state that the invariant talks about (this set is
defined by the predicate ζ) and for each relevant thread, select
an invariant ψ(i, u). Now prove the following three properties.
(RG1): ϕ(ti) holds; (RG2): if ϕ holds at all time points strictly
less than u, then ψ(i, u) holds for each i ∈ ζ; and (RG3):
assuming that ψ(i, u) holds for each i ∈ ζ, ϕ(u) holds. One
may think of ψ(i, u) as the local guarantee of the thread i and
ϕ(u) as a global “rely”. Then, this rule is strongly reminiscent
of standard rely-guarantee reasoning. The rule can be proved
sound by induction over time points. For the rest of this paper,
we call ϕ(u) a global invariant, and ψ(i, u) a local guarantee
by thread i.

Using the rule RG, we show that cnt’s value never de-
creases in our extended example. Suppose that the system
starts at time 0. Assumptions about the system’s initial state
are: ∆2 = lock cnt ι1 l 0 (the lock on l is initially held by ι1),
start ι1 (comp(c1)) 0 (thread ι1 executes program c1 starting
at time 0), start ι2 (comp(c2)) 0 and ∀i, noActions i 0 (no
actions are performed by any thread at time 0). Using rule
RG, we prove a strong global invariant.

ϕnd2(u) = 0≤u⇒ (lock cnt ι1 u ∨ lock cnt ι2 u) ∧ ϕnd(0, u)

The local guarantee is defined below:

ψ(i, t) =∀x, yieldTo i x t⇒ ∃y, eval x y ∧ {i, y} ⊆ {ι1, ι2}
∧ ∀z, y,write i z y t⇒
∃t′, l, v, v′, t′<t ∧ eval z l ∧ eval y v
∧ mem l v′ t′ ∧ noWrite l@(t′, t) ∧ v′ ≤ v

The local guarantee states that thread i will yield to ι1, if i is
ι2, and to ι2, if i is ι1, and that if thread i writes to a memory
location, then the value that i writes is greater than or equal
to the value that was most recently written to that location.
The thread selector is defined as ζ(i) = (i = ι1) ∨ (i = ι2).

Given the new semantics that a lock is required for a thread
to read or write a memory location, we include axioms stating
that if a read (write) action is successful, then that thread must
have the lock at the time of the read (write).

Next, we show that RG1, RG2, and RG3 hold. RG1 can be
proved directly using the assumptions in ∆2. RG3 requires that

local guarantees of ι1 and ι2 imply the global invariant. We
can directly use first-order logic rules to prove RG3, assuming
∆2. We elide the details here.

To prove RG2, we first type c1. We use the principles
for reasoning about interface-confined code described in Sec-
tion V. The invariant we show for c1 is:

inv((ub, ue).self = ι1 ⇒ ψ[self/i]@(ub, ue])

Using the HONEST rule, we derive:

cnt : ptr; ∆A,∆2 ` ∀u, u > 0⇒ self = ι1 ⇒ ψ(ι1)@(0, u)

Similarly, we can prove

cnt : ptr; ∆A,∆2 ` ∀u, u > 0⇒ self = ι2 ⇒ ψ(ι2)@(0, u)

Combing the two, we get

cnt : ptr; ∆A,∆2 ` ∀u, i, u > 0⇒ (i = ι1) ∨ (i = ι2)
⇒ ψ(i)@(0, u)

RG2 follows immediately. Finally, the rule RG yields
∀t, ϕnd2(t).

VII. CASE STUDY

Memoir is a system that uses a Trusted Platform Module
(TPM) to implement security-sensitive services [10]. We mod-
eled Memoir-Basic, a key subset of the features of Memoir,
and verified its main security property by hand in System M.
We briefly outline this development here. We first review
Memoir and then highlight the use of System M’s novel typing
rules in our proof.

A. Overview of Memoir

Memoir provides state-integrity guarantees for stateful
security-sensitive services invoked by potentially malicious
parties. Such services often rely on untrusted storage to store
their persistent state. An example of such a service is a
password manager that responds with a stored password when
it receives a request containing a URL and a username. In
addition to the secrecy and integrity of its state, the service
would also need to prevent the attacker from invoking the
service with a valid but old state, and consequently mounting
service rollback attacks. Simply encrypting and signing the
service’s state in persistent storage cannot prevent such attacks.
Memoir solves this problem by using the TPM to provide
state integrity guarantees. Memoir relies on the following
TPM features: PCRs, late launch, and non-volatile RAM or
NVRAM [1].

Memoir has two phases: service initialization and service in-
vocation. During initialization, the Memoir module is assigned
an NVRAM block. It is also given a service to protect. The
module generates a new symmetric key that is used throughout
the lifetime of the service. It sets the permissions on accesses
to the NVRAM block to be tied to the hash stored in PCR
17, which contains the hash of the code for Memoir and the
service. To prevent rollback attacks, it uses a freshness tag
which is a chain of hashes of all the requests received so
far. The secret key and an initial freshness tag are stored in
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1 runmodule(srvc, snap, req ,Nloc) =
2 · · ·
3 extend pcr(pcr17, srvc);
4 letc s = check srvc;
5 letc (skey, freshness tag) = NVRAMread Nloc;
6 lete state = check decrypt snapshot (snap);
7 letc new tag = hash (freshness tag ||req);
8 NVRAMwrite(Nloc, (new summary , skey));
9 extend pcr(pcr17, 0);
10 letc (state ′, resp)

= (s ExtendPCR ResetPCR ...) (state, req);
11 · · ·

Fig. 9. Snippet of invocation code

the designated NVRAM location. The service then runs for
the first time to generate an initial state, which along with
the freshness tag is encrypted with the secret key and stored
on disk. This encryption of the service’s state along with the
freshness tag is called a snapshot.

After initialization, a service can be invoked by providing
Memoir with an NVRAM block Nloc, code for the service
srvc, and a snapshot snap. In Figure 9, we show a snippet
of the Memoir service invocation code, called runmodule. On
line 3, PCR 17 is extended with the code for service. On line 4,
a syntactic check ensures that the service has no free actions.
On line 5, Memoir retrieves the key and freshness tag from
the NVRAM. On lines 6-7, Memoir decrypts the snapshot and
verifies that the freshness tag in the provided state matches the
one stored in NVRAM. If the verification succeeds, Memoir
computes a new freshness tag and updates the NVRAM. Next,
on line 8, it executes the service to generate a new state and
a response. The new snapshot corresponding to the new state
and freshness tag is stored on disk.

B. Proof outline

The security property we prove about Memoir is that the
service can only be invoked on the state generated by the
last completed instance of the service. The proof proceeds by
proving the following three invariants about runmodule:
• PCR Protection (ϕin1): The value of PCR 17 contains a

certain hash h only during a late launch session running
runmodule. The hash h is the late launch signature of
runmodule extended with srvc.

• NVRAM Protection (ϕin2): After the permissions on the
NVRAM have been set to be tied to h, the permissions
on that location are never changed.

• Key Secrecy (ϕin3): If the key corresponding to the
service is available to a thread, then the thread must have
either generated it or read it from the NVRAM.

Reasoning about adversary-supplied code Each of the three
global invariants is proved using the rules RG and HONEST.
The code runmodule is typed with an invariant postcondition
corresponding to each global invariant. The crucial step in typ-
ing runmodule is typing line 10, where the service s, provided

by the adversary, is executed. When s is executed, it takes as
arguments interface functions corresponding to atomic actions
in our model and TPM interfaces. ( Appendix G contains a
complete list of the actions in our model.) Shown in Figure 9
are the two TPM interfaces for extending (ExtendPCR) and
resetting PCR (ResetPCR).

We now describe for each of the invariants: ϕin1, ϕin2, and
ϕin3, how s applied to interfaces is typed to preserve that
invariant.
Derivation of ϕin1: We show that s cannot exit the late launch
session with the state of PCR 17 being a prefix of h. As a post-
condition of line 10, we know that PCR 17 has been extended
with 0. Each of the functions in the interface provided to
s, ensures that the value of PCR 17 cannot be reversed to
be h, which can only be generated by a late launch call on
runmodule. Therefore, by the INV rule, we show the same
for (s ExtendPCR ResetPCR · · · ).
Derivation of ϕin2: As with the previous case, since the value
of PCR17 has been extended with 0, no interface provided to
s allows changing the permissions on the NVRAM location,
and we use the INV rule to assert the same property for
(s ExtendPCR ResetPCR · · · ).
Derivation of ϕin3: Once we can prove that the permissions
on Nloc are always tied to PCR 17 being h, by Nloc’s access
control mechanism, we infer that the current state of PCR
17 must be identical to h and therefore as h includes the
hash of the service Memoir was initialized with, we have
srvc = service (where = denotes syntactic equality). Here,
service is the service that Memoir was initialized with. We
make an assumption that service does not leak the secret key
when applied to the interfaces (ExtendPCR ResetPCR · · · ).
(This property could be verified either by manual audits or
automated static analysis of the service code). We then use
the EQ rule to assign the same condition to s.

C. Comparison to TLA+ Proof of Memoir

The original paper on Memoir [10] is accompanied by a
machine-checked proof of state integrity in TLA+ [14]. State
integrity is specified as a high-level, ideal transition system
that does not allow the state to be rolled back or tampered
with. Memoir is modeled as a much more detailed, low-level
transition system. Security is proved by showing that the low-
level transition system simulates the ideal transition system.

We find that their low-level model of Memoir does not
include several implementation details that are required by our
proofs. In fact, it is possible to derive straightforward attacks
on Memoir in the absence of these details. This is because
their model makes the simplifying modeling choice that the
service being protected is a constant, effect-free predicate. We
adopt a more realistic model of the service. The service in
our model is code provided by the adversary, which runs in
the same privileged late launch session as Memoir and is only
confined by the interfaces provided by the TPM hardware. The
more realistic treatment of the protected service necessitates
the following details in our modeling of Memoir:
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• On line 9 of runmodule, we need to extend the hash in
PCR 17 with some value. The postcondition of this line
allows us to prove ϕin1 and ϕin2. If the hash in PCR 17 is
not extended before calling the service, and if the service
exits the late launch session, other programs are free to
read from the NVRAM location since the value of PCR
17 matches the permission on the NVRAM location.

• On line 3, we extend the hash in PCR 17 with code for
the service. This allows us to prove that the code for the
service does not change between invocations.

• Finally, we need to assume that the code for the service
that Memoir is initialized with does not leak the secret
key, which is a possibility since the service runs in the
same privileged late launch session as Memoir. We use
this assumption in the proof for ϕin3, as an antecedent
to the EQ rule.

VIII. RELATED WORK

Hoare Type Theory (HTT) In HTT [15], [16], [17], a
monad classifies effectful computations, and is indexed by
the return type, a pre-condition over the (initial) heap, and
a postcondition over the initial and final heaps. This allows
proofs of functional correctness of higher-order imperative
programs. The monad in System M is motivated by, and sim-
ilar to, HTT’s monad. However, there are several differences
between System M’s monad and HTT’s monad. A System M
postcondition is a predicate over the entire execution trace,
not just the initial and final heaps as in HTT. It also includes
an invariant assertion which holds even if the computation
does not return. This change is needed because we wish to
prove safety properties, not just properties of heaps. Although
moving from predicates over heaps to predicates over traces in
a sequential language is not very difficult, our development is
complicated because we wish to reason about robust safety,
where adversarial, potentially untyped code interacts with
trusted code. Hence, we additionally incorporate techniques
to reason about untyped code (rules EQ and INV).

RHTT [18] is a relational extension of HTT used to reason
about access control and information flow properties of pro-
grams. That extension to HTT is largely orthogonal to ours and
the two could potentially be combined into a larger framework.
The properties that can be proved with RHTT and System
M are different. System M can verify safety properties in
the presence of untyped adversaries; RHTT verifies relational,
non-trace properties assuming fully typed adversaries.

LS2 and PCL System M is inspired by and based upon a prior
program logic, LS2, for reasoning about safety properties of
first-order order programs in the presence of adversaries [6].
The main conceptual difference from LS2 is that in System M
trusted and untrusted components may exchange code and
data, whereas in LS2 this interface is limited to data. Our INV
rule for establishing invariants of an unknown expression from
invariants of interfaces it has access to is based on a similar
rule called RES in LS2. The difference is that System M’s
rule allows typing higher-order expressions, which makes it

more complex. LS2 itself is based on a logic for reasoning
about Trusted Computing Platforms [19] and Protocol Com-
position Logic (PCL) for reasoning about safety properties of
cryptographic protocols [13].

Type systems that reason about adversary-supplied code
The idea of using a non-informative type, any, for typing
expressions obtained from untrusted sources goes back to the
work of Abadi [20]. Gordon and Jeffrey develop a very widely
used proof technique for proving robust safety based on this
type [21]. In their system, any program can be syntactically
given the type any by typing all subexpressions of the program
any. Although System M’s use of the any type is similar, our
proof technique for robust safety is different. It is semantic
and based on that in PCL—we allow for arbitrary adversarial
interleaving actions in the semantics of our computation types
(relation RC[[η]] in Section IV). Due to this generalized
semantic definition, robust safety (Theorem 3) is a trivial
consequence of soundness (Theorem 2).

Several type systems for establishing different kinds of
safety properties build directly or indirectly on the work of
Abadi [20] and Gordon and Jeffrey [21]. Prominent among
these are RCF [22] and its extensions [7], [23]. RCF is based
on types refined with logical assertions, which provide roughly
the same expressiveness as System M’s dependently-typed
computation types. By design, RCF’s notion of trace is mono-
tonic: the trace is an unordered set of actions (programmer-
specified ghost annotations) that have occurred in the past [24].
This simplified design choice allows scalable implementation.
On the other hand, there are safety properties of interest
that rely on the order of past events and, hence, cannot be
directly represented in RCF’s limited model of traces. An
example of this kind is measurement integrity in attestation
protocols [19, Theorems 2 & 4]. In contrast to RCF, we
designed System M for verification of general safety properties
(so the measurement integrity property can be expressed and
verified in System M), but we have not considered automation
for System M so far.

F? [23] extends F7 with quantified types, a rich kinding
system, concrete refinements and several other features taken
from the language Fine [25]. This allows verification of
stateful authorization and information flow properties in F?.
Quantified predicates can also be used for full functional
specifications of higher-order programs. Although we have not
considered these applications so far, we believe that System M
can be extended similarly.

The main novelty of System M compared to the above-
mentioned line of work lies in the EQ and INV rules that
statically derive computational effects of untyped adversary-
supplied code.

Code-Carrying Authorization (CCA) [26] is another ex-
tension to [21] that enforces authorization policies. CCA
introduces dynamic type casts to allow untrusted code to
construct authorization proofs (e.g., Alice can review paper
number 10). The language runtime uses logical assertions
made by trusted programs to constructs proofs present in the
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type cast. The soundness of type cast in CCA relies on the
fact that untrusted code cannot make any assertions and that
it can only use those made by trusted code. Similar to CCA,
System M also assigns untrusted code descriptive types. CCA
checks those types at runtime; whereas the INV rule assigns
types statically.

Verification of the TPM and protocols based on the TPM
Existing work on verification of TPM APIs and protocols
relying on TPM APIs uses a variety of techniques [27],
[28], [29], [30], [19]. Gurgens et al. uses automata to model
the transitions of TPM APIs [30]. Several results [27], [28],
[29] use the automated tool Proverif [31]. Proverif over-
approximates the protocol states and works with a monotonic
set of facts. Special techniques need to be applied to use
Proverif to analyze stateful protocols such as ones that use
TPM PCRs [27]. System M is more expressive: it can model
and reason about higher-order functions and programs that
invoke adversary-supplied code. Reasoning about shared non-
monotonic state is possible in System M. However, verification
using System M requires manual proofs. It is unclear whether
our Memoir case study can be verified using the techniques
introduced in [27], as it requires reasoning about higher-order
code.

A proof of safety formalized in TLA+ [14] was presented
in the Memoir paper [10]. Our model is more detailed and our
manual proof reveals subtle assumptions made by the TLA+
proof. A comprehensive comparison is in Section VII-C.

IX. CONCLUSION

System M combines invariants with an intuitive principle
to reason about the effects of interface-confined untrusted
code that executes without runtime monitoring and without
deep type analysis. System M facilitates reasoning about trace
properties of programs that interact with the adversary by
sending first-order messages, through shared state, and through
execution of attacker-supplied code. We provide sound rea-
soning principles for interface-confinement: the invariants of
interface-confined code can be established from the invariants
of the interfaces available to it. Our Memoir case study reveals
critical assumptions that the security of Memoir relies on.
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APPENDIX

A. Summary of syntactic constructs

Base values bv ::= tt | ff | ι | ` | n
Expressions e ::= x | bv | λx.e | fix f(x).e

| ΛX.e | e1 e2 | e · | comp(c)
Actions a ::= A | a e | a ·
Computations c ::= act(a) | ret(e)

| letc(c1, x.c2) | lete(e1, x.c2)
| if e then c1 else c2

Expr types τ ::= X | b | Πx:τ1.τ2 | ∀X.τ
| comp(ηc) | any | inv(Ξ.ϕ)

Comp types η ::= x:τ.ϕ | ϕ | (x:τ.ϕ, ϕ′)
Closed c types ηc ::= (Ξ.x:τ.ϕ1,Ξ.ϕ2)
Assertions ϕ ::= P | e1 = e2 | ϕ e | > | ⊥ | ¬ϕ

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ∀x:τ.ϕ | ∃x:τ.ϕ
Action Kinds α ::= Act(ηc) | Πx:τ.α | ∀X.α

Type var ctx Θ ::= · | Θ, X
Signatures Σ ::= · | Σ, A :: α
Typing ctx Γ ::= · | Γ, x : τ
Formula ctx ∆ ::= · | ∆, ϕ
Exec ctx Ξ ::= ub : time, ue : time
Exec Ctx Subst K ::= (tb, te)

B. Beta reductions (e→β e
′)

(λx.e) e2 →β e[e2/x]

(fix f(x).e) e2 →β e[e2/x][fix f(x).e/f ]

ΛX.e · →β e

e1 →β e
′
1

e1 e2 →β e
′
1 e2

e1 →β e
′
1

e1 · →β e
′
1 ·

C. Definitions used in Examples

Typing Specifications for Actions

read : Πx:ptr.Act((ub, ue).y:any.ue>ub ∧ Read self x y ue
∧ noActions self@(ub, ue), >)

write : Πx:ptr.Πy:any.
Act((ub, ue).z:unit.ue>ub ∧Write self x y ue ∧

noActions self@(ub, ue),>)
check : Πx:any.

Act((ub, ue).y:FAE.ue>ub ∧ Check self x y ∧ x = y ∧
noActions self@(ub, ue),>)

yieldTo : Πx:thread.
Act((ub, ue).y:FAE.ue > ub ∧ yeildTo self x ue ∧

noActions self@(ub, ue),>)

Axioms We list axioms that we use in the typing derivations

for the example programs here. First, we define predicate
noWritel t to mean that at time t, location l is not written
by any thread.

noWrite l t = ∀i, x, y, l′,write i x y ∧ eval x l′ ∧ l = l′ ⇒ ⊥

A1 ∀i, e, v, t, read i e v t⇒ ∃l, eval e l ∧ mem l v t
A2 ∀l, v, t, v′, t′,mem l v t ∧ mem l v′ t′ ∧

noWrite l@(t, t′]⇒ v = v′

A3 ∀i, e, e′, t,write i e e′ t⇒
∃l, v, eval e l ∧ eval e′ v ∧ mem l v t

A4 ∀l, v′, t,mem l v t⇒ mem l v′ t⇒ v = v′

A5 ∀e, v, v′, eval e v ∧ eval e v′ ⇒ v = v′

A6 ∀x, v, y, eval x v ∧ x > y ⇒ v > y
A7 ∀i, e, v, t, read i e v t⇒ ∃l, eval e l ∧ lock i l t
A8 ∀i, x, t, lock i x t⇒ noYield i x@(t, t′]⇒ lock i x t′

A9 ∀i, x, e, t, y, j, t′, lock i x t ∧ yieldTo i e y t′ ∧ eval e x
∧ eval y j ∧ noYield i x@(t, t′)⇒ lock i x j t′

D. Action Semantics

The interpretation of action types is a set of step-indexed
actions.

RA[[Act((Ξ.x:τ.ϕ1,Ξ.ϕ2))]]K,ιθ;T =

{(k, a) | let γ = [K, ι/Ξ, self]

(k, act(a)) ∈ (RC[[(x:τγ.ϕ1γ, ϕ2γ)]]K,ιθ;T }

RA[[Πx:τ.α]]K,ιθ;T =

{(k, a) | ∀e,(k, e) ∈ RE [[τ ]]
B(K)
θ;T

=⇒ (k, a e) ∈ RA[[α[e/x]]]K,ιθ;T }

RA[[∀X.α]]K,ιθ;T =

{(k, a) | ∀j ≤ k, ∀C ∈ Type

=⇒ (j, a ·) ∈ RA[[α]]K,ιθ[X 7→C];T }

E. Additional Typing Rules

No Free Action Symbols

Γ ` bv : FAE

Γ(x) = FAE

Γ ` x : FAE

Γ ` c : FAE

Γ ` comp(c) : FAE

Γ, x : FAE ` e : FAE

Γ ` λx.e : FAE

Γ, x : FAE, f : FAE ` e : FAE

Γ ` fix f(x).e : FAE

Γ ` e1 : FAE Γ ` e2 : FAE

Γ ` e1; e2 : FAE

Γ ` e : FAE

Γ ` ΛX.e : FAE

Γ ` e : FAE

Γ ` e · : FAE
Γ ` e : FAE

Γ ` ret(e) : FAE

Γ ` c1 : FAE Γ, x : FAE ` c2 : FAE

Γ ` letc(c1, x.c2) : FAE

Γ ` e1 : FAE Γ, x : FAE ` c2 : FAE

Γ ` lete(e1, x.c2) : FAE
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Typing rules for expressions

u; Θ; Σ; Γ; ∆ ` e : τ

Θ; Σ;u,Γ ` ∆ ok x : τ ∈ Γ

u; Θ; Σ; Γ; ∆ ` x : τ
E-VAR

Θ; Σ;u,Γ ` ∆ ok fv(e) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` e : any
ANY

Θ; Σ;u,Γ ` ∆ ok

u; Θ; Σ; Γ; ∆ ` bv : b
E-BASEVAL

Θ; Σ;u,Γ ` τ1 ok u; Θ; Σ; Γ, x : τ1; ∆ ` e : τ2

u; Θ; Σ; Γ; ∆ ` λx.e : Πx:τ1.τ2
E-FUN

Θ; Σ;u,Γ ` τ1 ok
u; Θ; Σ; Γ, x : τ1, f : Πx:τ1.τ2; ∆ ` e : τ2

u; Θ; Σ; Γ; ∆ ` fix f(x).e : Πx:τ1.τ2
E-FIX

u; Θ; Σ; Γ; ∆ ` e1 : Πx:τ1.τ2
u; Θ; Σ; Γ; ∆ ` e2 : τ1

u; Θ; Σ; Γ; ∆ ` e1 e2 : τ2[e2/x]
E-APP

u; Θ; Σ; Γ; ∆ ` e1 : inv(Ξ.ϕ)
u; Θ; Σ; Γ; ∆ ` e2 : inv(Ξ.ϕ)

u; Θ; Σ; Γ; ∆ ` e1 e2 : inv(Ξ.ϕ)
E-APPINV

u; Θ, X; Σ; Γ; ∆ ` e : τ

u; Θ; Σ; Γ; ∆ ` ΛX.e : ∀X.τ
E-TFUN

u; Θ; Σ; Γ; ∆ ` e : ∀X.τ1 Θ; Σ;u,Γ ` τ ok

u; Θ; Σ; Γ; ∆ ` e · : τ1[τ/X]
E-TAPP

u; Θ; Σ; Γ; ∆ ` e : τ
Θ; Σ;u,Γ; ∆ ` e = e′ true fv(e′) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` e′ : τ
EQ

Γ′.Ξ.ϕ is trace composable
Γ′ ⊆ Γ ∀x ∈ dom(Γ′),Γ′(x) is a base type

∆′ ⊆ ∆ Ξ; Θ; Σ;u,Γ′; ∆′ ` ϕ silent
Ξ,Γ′ ` ϕ ok Γ|FAE ` e : FAE

u; Θ; Σ; Γ; ∆ ` e : inv(Ξ.ϕ)
INV

u; Θ; Σ; Γ; ∆ ` e : τ τ < τ ′

u; Θ; Σ; Γ; ∆ ` e : τ ′
SUB

self ′ = fresh(self) γs = [self ′/self]
Ξ; Θ; Σ;u; Γγs; ∆γs,Ξ ≥ u ` c : (x:τ.ϕ1, ϕ2)

Θ; Σ;u,Ξ,Γγs, x : τ ; ∆γs ` ϕ1 ⇒ ϕ′1 true
Θ; Σ;u,Ξ,Γγs; ∆γs ` ϕ2 ⇒ ϕ′2 true

Θ; Σ;u,Γγs ` comp(Ξ.x:τ.ϕ′1,Ξ.ϕ
′
2) ok

fv(c) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` comp(c) : comp(Ξ.x:τ.ϕ′1,Ξ.ϕ
′
2)

COMP

Finally, the time point enables expression types to include
facts that are established by programs executed earlier. For
example, the return type of letc(a1; z.ret(comp(a2))) can be
the following, assuming that the effect of action a1 is A1 self u,
and a2 is A2 self u.

comp((ub.ue).r: unit.∃ u, ub<u≤ue ∧ A2 self u
∧ ∃j, u′, u′<u ∧ A1 j u

′, (ub, ue).>)).

We wouldn’t have been able to know that A1 happens before
A2 without the time point in the expression typing rules.

Typing rules for actions

u : b; Θ; Σ; Γ; ∆ ` a :: α

Θ; Σ; Ξ,Γ ` ∆ ok A :: α ∈ Σ

Ξ; Θ; Σ; Γ; ∆ ` A :: α

Ξ; Θ; Σ; Γ; ∆ ` a :: Πx:τ.α B(Ξ); Θ; Σ; Γ; ∆ ` e : τ

Ξ; Θ; Σ; Γ; ∆ ` a e :: α[e/x]

Ξ; Θ; Σ; Γ; ∆ ` a :: ∀X.α Θ; Σ; Ξ,Γ ` τ ok

Ξ; Θ; Σ; Γ; ∆ ` a · :: α[τ/X]

Logical reasoning rules

Θ; Σ; Γ; ∆ ` ϕ true

Ξ; Θ; Σ; Γ; ∆ ` c : ( , ϕ)
Θ; Σ; Γ; ∆ ` start(i, comp(c), t) true

Θ; Σ ` Γ ok ∀x ∈ dom(Γ),Γ(x) is a base type
Θ; Σ; Γ; ∆ ` ∀u:time.u≥t⇒

ϕ[(t, u), i/Ξ, self] true

HONEST

Θ; Σ; Γ; ∆1 ` ϕ true
Θ; Σ; Γ; ∆1, ϕ,∆2 ` ϕ′ true

Θ; Σ; Γ; ∆1,∆2 ` ϕ′ true
CUT

Θ; Σ; Γ ` ∆ ok ϕ ∈ ∆

Θ; Σ; Γ; ∆ ` ϕ true
INIT

Θ; Σ; Γ; ∆1, ϕ,∆2 ` ·
Θ; Σ; Γ; ∆1,∆2 ` ¬ϕ true

¬I
Θ; Σ; Γ; ∆ ` ¬ϕ true

Θ; Σ; Γ; ∆, ϕ ` ·
¬E

Θ; Σ; Γ; ∆ ` ϕ1 true Θ; Σ; Γ; ∆ ` ϕ2 true

Θ; Σ; Γ; ∆ ` ϕ1 ∧ ϕ2 true
∧I

i ∈ [1, 2],Θ; Σ; Γ; ∆ ` ϕ1 ∧ ϕ2 true

Θ; Σ; Γ; ∆ ` ϕi true
∧E
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i ∈ [1, 2],Θ; Σ; Γ; ∆ ` ϕi true

Θ; Σ; Γ; ∆ ` ϕ1 ∨ ϕ2 true
∨I

Θ; Σ; Γ; ∆ ` ϕ1 ∨ ϕ2 true
Θ; Σ; Γ; ∆, ϕ1,Γ

′ ` ϕ true
Θ; Σ; Γ; ∆, ϕ2,Γ

′ ` ϕ true

Θ; Σ; Γ; ∆,Γ′ ` ϕ true
∨E

Θ; Σ;x : τ,Γ; ∆ ` ϕ true

Θ; Σ; Γ; ∆ ` ∀x:τ.ϕ true
∀I

Θ; Σ;u,Γ; ∆ ` ∀x:τ.ϕ true u; Θ; Σ; Γ; ∆ ` t : τ

Θ; Σ; Γ; ∆ ` ϕ[t/x] true
∀E

Θ; Σ; y,Γ; ∆ ` ϕ[t/x] true u; Θ; Σ; Γ; ∆ ` t : τ

Θ; Σ; Γ; ∆ ` ∃x:τ.ϕ true
∃I

Θ; Σ; Γ; ∆ ` ∃x:τ.ϕ true
Θ; Σ; Γ, a:τ ; Γ; ∆, ϕ[a/x] ` ϕ′ true a /∈ fv(ϕ′)

Θ; Σ; Γ; ∆ ` ϕ′ true
∃E

Typing rules for computations We summarize the typing
rules for computations below.

u : b; Θ; Σ; Γ; ∆ ` c : η

Ξ; Θ; Σ; Γ; ∆ ` a :: Act(Ξ′.x:τ.ϕ1,Ξ
′.ϕ2)

Ξ; Θ; Σ; Γ; ∆ ` ϕ silent fv(a) ∈ dom(Γ)
Θ; Σ; Γ ` (x:τ.ϕ1[Ξ/Ξ′], ϕ2[Ξ/Ξ′] ∧ ϕ) ok

Ξ; Θ; Σ; Γ; ∆ ` act(a) : (x:τ.ϕ1[Ξ/Ξ′], ϕ2[Ξ/Ξ′] ∧ ϕ)
ACT

E (Ξ); Θ; Σ;B(Ξ); Γ; ∆ ` e : τ
Ξ; Θ; Σ; Γ; ∆ ` ϕ silent fv(e) ⊆ dom(Γ)

Ξ; Θ; Σ; Γ; ∆ ` ret(e) : (x:τ.((x ≡ e) ∧ ϕ), ϕ)
RET

SEQC
Θ; Σ; Ξ; Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(letc(c1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
Ξ1; Θ; Σ; Ξ ∪ Ξ0\Ξ1,Γ; ∆,∆1, ϕ0

` c1 : (x:τ.ϕP1, ϕI1)
Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : τ ; ∆,∆2, ϕ0, ϕP1

` c2 : (y : τ ′.ϕP2, ϕI2)
Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E (Ξ)/E (Ξ1)]
` ϕ0 ∧ ϕI1[E (Ξ)/E (Ξ1)]⇒ ϕI true

Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕI2 ⇒ ϕI true
Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` letc(c1, x.c2) : (y : τ ′.ϕP , ϕI)

SEQE
Θ; Σ; Ξ,Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(lete(e1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
E (Ξ0); Θ; Σ; Ξ,Γ; ∆,∆1, ϕ0

` e1 : comp(Ξe.x:τ.ϕP1,Ξe.ϕI1)
Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : τ ;
∆,∆2, ϕ0, ϕP1[Ξ1/Ξe] ` c2 : (y : τ ′.ϕP2, ϕI2)
Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E (Ξ)/E (Ξ1)]
` ϕ0 ∧ ϕI1[E (Ξ)/E (Ξ1)]⇒ ϕI true

Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕI2 ⇒ ϕI true
Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` lete(e1, x.c2) : (y : τ ′.ϕP , ϕI)

SEQEINV

Θ; Σ; Ξ,Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(lete(e1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
E (Ξ0); Θ; Σ; Ξ,Γ; ∆,∆1

` e1 : inv(Ξe.ϕe)
Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : inv(Ξe.ϕe);
∆,∆2, ϕ0, ϕe[Ξ1/Ξe] ` c2 : (y : τ ′.ϕP2, ϕI2)
Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E (Ξ)/E (Ξ1)]
` ϕ0 ∧ ϕe[E (Ξ)/E (Ξ1)]⇒ ϕI true

Θ; Σ; Ξ ∪ Ξ1,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕe ∧ ϕI2 ⇒ ϕI true
Θ; Σ; Ξ ∪ Ξ1,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕe ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` lete(e1, x.c2) : (y : τ ′.ϕP , ϕI)

Θ; Σ; Ξ,Γ; ∆1 ` ϕ true
Ξ; Θ; Σ; Γ; ∆1, ϕ,∆2 ` c : η

Ξ; Θ; Σ; Γ; ∆1,∆2 ` c : η
CUTC

F. Lemmas

Lemma 4 (Substitution). If C = RV[[τ1]]nθ;T then

1) ∀n′ ≥ n, RV[[τ ]]n
′

θ[X 7→C];T = RV[[τ [τ1/X]]]n
′

θ;T
2) ∀n′ ≥ n, RE [[τ ]]n

′

θ[X 7→C];T = RE [[τ [τ1/X]]]n
′

θ;T
3) ∀K ≥ n, RC[[η]]K,ιθ[X 7→C],T = RC[[η[τ1/X]]]K,ιθ,T
4) ∀K ≥ n, RA[[α]]K,ιθ[X 7→C];T = RA[[α[τ1/X]]]K,ιθ;T

Proof (sketch): By induction on the structure of τ , η, and α.

Lemma 5 (Downward-closure).
1) If (k, c) ∈ RC[[η]]Ξ,ιθ,T then ∀j<k, (j, c) ∈ RC[[η]]Ξ,ιθ,T
2) If ftv(τ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, and

(k, e) ∈ RV[[τ ]]uθ;T , then ∀j<k, (j, e) ∈ RV[[τ ]]uθ;T .
3) If ftv(τ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, and

(k, e) ∈ RE [[τ ]]uθ;T , then ∀j<k, (j, e) ∈ RE [[τ ]]uθ;T .
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Proof (sketch): By examining the definitions.

Lemma 6 (Validity of types). If ftv(τ) ⊆ dom(θ) and ∀X ∈
dom(θ), θ(X) ∈ Type, then RV[[τ ]]uθ;T ∈ Type

Proof (sketch): By Lemmas 5.

Lemma 7 (Substitutions are closed under index reduction).
If ftv(Γ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, (n, γ) ∈
RG[[Γ]]uθ;T , and j < n then (j, γ) ∈ RG[[Γ]]uθ;T .
Proof (sketch): By induction on the structure of Γ, using
Lemma 5.

Lemma 8 (Closed under delay).
1) If (k, e) ∈ RV[[τ ]]uθ;T and u′ > u then (k, e) ∈
RV[[τ ]]u

′

θ;T .
2) If (k, e) ∈ RE [[τ ]]uθ;T and u′ > u then (k, e) ∈ RE [[τ ]]u

′

θ;T .
Proof (sketch): By examining the definitions.

Lemma 9 (Substitutions are closed under delay). If (n, γ) ∈
RG[[Γ]]uθ;T and u′ > u then (n, γ) ∈ RG[[Γ]]u

′

θ;T .
Proof (sketch): By induction on the structure of Γ, using
Lemma 8.

Lemma 10 (Soundness of subtyping). If τ < τ ′ then
RE [[τ ]]nθ;T ⊆ RE [[τ ′]]nθ;T and RV[[τ ]]nθ;T ⊆ RV[[τ ′]]nθ;T .
Proof (sketch): By induction on the derivation of τ < τ ′.

We write [[Γ]] to denote the set of substitutions for Γ, when
Γ maps all of the variables in its domain to base types, as the
step-index, θ, T , and u are irrelevant in the interpretation of
base types.

Lemma 11 (Invariant confinement). Forall T , Ξ, ϕ, if
Ξ.ϕ is composable and ∀ι,K, (ι, T �K)

silent−→ implies T �
ϕ[K, ι/Ξ, self] then
For all k,

1) If Γ ` e : FAE then ∀γ, t, s.t. ∀x ∈ dom(Γ), (k, γ(x)) ∈
RE [[inv(Ξ.ϕ)]]tθ;T implies (k, eγ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T

2) If Γ ` c : FAE then ∀γ, ι,K, s.t. ∀x ∈ dom(Γ), (k, γ(x)) ∈
RE [[inv(Ξ.ϕ)]]

B(K)
θ;T implies (k, cγ) ∈

RC[[(x:inv(Ξ.ϕ).ϕ[K, ι/Ξ, self], ϕ[K, ι/Ξ, self])]]K,ιθ;T
Proof (sketch): By induction on k.
Case k = 0:
Most cases are trivial.
For 2), we directly use the assumption that T �
ϕγ1[K, ι/Ξ, self] when thread ι is silent between the time
interval K.
Case k = j + 1:
Sub-induction on the structure of e and c
We show a few key cases. Subcase: e = fix f(x) = e′

Given γ, t s.t. ∀x ∈ dom(Γ), (k, γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (1)
By inversion

Γ, x, f ` e′ : FAE (2)
Given m < k, t′ > t, (m, e1) ∈ RE [[inv(Ξ.ϕ)]]t

′

θ;T
T.S. (m, e′γ[e1/x][fix f(x) = e′γ/f ]) ∈ RE [[inv(Ξ.ϕ)]]t

′

θ;T
By I.H., m < k,

(m, fix f(x) = e′γ) ∈ RE [[inv(Ξ.ϕ)]]t
′

θ;T (3)

By I.H., (2), (3),
(m, e′γ[e1/x][fix f(x) = e′γaγb/f ])

∈ RE [[inv(Ξ.ϕ)]]t
′

θ;T (4)
By the definitions and (4)

(k, fix f(x) = e′γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (5)

Subcase: e = e1 e2

Given γ, t s.t. ∀x ∈ dom(Γ), (k, γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (1)
By inversion

Γ ` e1 : FAE and Γ ` e2 : FAE (2)
By I.H.

(k, e1γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (3)
(k, e2γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (4)

If e1γ does not reduce to a normal form in k steps,
the conclusion trivially holds
If e1γ →l v 9 and l ≤ k, by (3),

(k − l, v) ∈ RV[[inv(Ξ.ϕ)]]tθ;T (5)
If v is not a function, then the conclusion trivially holds
If v = fix f(x) = e′,
v(e2γ)→ e′[e2γ/x][v/f ]
By (3) (4) and (5) and Lemmas 5, 7, 8, 9

(k − l − 1, e′[e2γ/x][v/f ]) ∈ RE [[inv(Ξ.ϕ)]]tθ;T (6)
By (6)

(k, (e1e2)γ) ∈ RE [[inv(Ξ.ϕ)]]tθ;T
The case when v = λx.e′ is similar.

Subcase: c = letc(c1, x.c2)

Given γ, ι,K, s.t.
∀x ∈ dom(Γ), (k, γ(x)) ∈ RE [[inv(Ξ.ϕ)]]

B(K)
θ;T (1)

T.S. (k, cγ) ∈ RC[[inv(Ξ.ϕ)]]K;ι
θ;T

subcase: partial correctness assertion
By assumptions
(ι, letc(c1, x.c2)γ, T �K)⇓(er, jb, je) and k ≥ jb ≥ je
T.S. T � ϕγγΞ and (je, er) ∈ RE [[inv(Ξ.ϕ)γ]]

E(K)
θ;T

It must be the case that
∃t1, t2 such that tb ≤ t1 ≤ t2 ≤ te, and

(ι, T �(tb,t1))
silent−→ (2)

(ι, T �(t1,t2), c1γ)⇓(e1, j1, j2) (3)
(ι, T �(t2,te), c2γ[e1/x])⇓(er, j2, je) (4)
By (2) and assumptions
T � ϕ[tb, t1, ι/ub, ue, self] (5)

By (3) and I.H. on c1
(k, c1γ)

∈ RC[[(x:inv(Ξ.ϕ).ϕ, ϕ)[t1, t2, ι/ub, ue, self]]]
(t1,t2);ι
θ;T (6)

By (6) and the definitions
T � ϕ[t1, t2, ι/ub, ue, self]
and (j2, e1) ∈ RE [[inv(Ξ.ϕ)]]t2θ;T (7)

By Lemma 9 and Lemma 7
(j2, γ(x)) ∈ RE [[inv(Ξ.ϕ)]]t2θ;T (8)

By I.H. on c2
(j2, c2γ[e1/x])

∈ RC[[(y:inv(Ξ.ϕ).ϕ, ϕ)[t2, te, ι/ub, ue, self]]]
(t2,te),ι
θ;T (9)

By (9)
T � ϕ[t2, te, ι/ub, ue, self]
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and (je, er) ∈ RE [[inv(Ξ.ϕ)]]teθ;T (10)
By well-formedness of the computation type
Ξ.ϕ is composable and (5) (7) (10)
T � ϕ[tb, te, ι/ub, ue, self] (11)

By (10) and (11), the partial correctness specification holds

subcase: invariant assertion
In this case, (ι, letc(c1, x.c2)γ, T �K)⇑
There are three subcases

subcase 1: (ι, T �K)
silent−→

By (2) and assumptions
T � ϕ[tb, te, ι/ub, ue, self] (2)

subcase 2: exists t1 such that

(ι, T �(tb,t1))
silent−→ (3)

and (ι, T �(t1,te), c1γ)⇑ (4)
By (2) and assumptions
T � ϕ[tb, t1, ι/ub, ue, self] (5)

By Lemma 9, ((t1, te) ≥ tb = B(K))
(k, γ(x)) ∈ RE [[inv(Ξ.ϕ)]]t1θ;T (6)

By I.H. on c1
(k, c1γ)

∈ RC[[(x:inv(Ξ.ϕ).ϕ, ϕ)[t1, te, ι/ub, ue, self]]]
(t1,t2);ι
θ;T (7)

By (7) and the definitions
T � ϕ[t1, te, ι/ub, ue, self] (8)

By Ξ.ϕ is composable and (5) (8)
T � ϕ[tb, te, ι/ub, ue, self] (9)

subcase 3:
By assumptions
∃t1, t2 such that tb ≤ t1 ≤ t2 ≤ te
and (ι, T �(tb,t1))

silent−→ (10)
(ι, T �(t1,t2), c1γ)⇓(e1, j1, j2) (11)
(ι, T �(t2,te), c2γ[e1/x])⇑ (12)
By (10) and assumptions
T � ϕ[tb, t1, ι/ub, ue, self] (13)

By (11) and I.H. on c1
(k, c1γ)

∈ RC[[(x:inv(Ξ.ϕ).ϕ, ϕ)[t1, t2, ι/ub, ue, self]]]
(t1,t2);ι
θ;T (14)

By (14) and the definitions
T � ϕ[t1, t2, ι/ub, ue, self]
and (j2, e1) ∈ RE [[inv(Ξ.ϕ)]]t2θ;T (15)

By Lemma 9 and Lemma 7
(j2, γ(x)) ∈ RE [[inv(Ξ.ϕ)]]t2θ;T (16)

By I.H. on c2
(j2, c2γ[e1/x])

∈ RC[[(y:inv(Ξ.ϕ).ϕ, ϕ)[t2, te, ι/ub, ue, self]]]
(t2,te),ι
θ;T (17)

By (17)
T � ϕ[t2, te, ι/ub, ue, self] (18)

By well-formedness of the computation type
Ξ.ϕ is composable and (13) (15) (18)
T � ϕ[tb, te, ι/ub, ue, self] (19)

By (18) and (19), the invariant specification holds

Theorem 12 (Soundness). Assume that ∀A :: α ∈ Σ,
∀T ,K, ι, k, (k,A) ∈ RA[[α]]K,ι·;T , then

1) u; Θ; Σ; Γ; ∆ ` e : τ , ∀θ ∈ RT [[Θ]], ∀t, t′, t′ ≥ t, let
γu = [t/u], ∀T , ∀k, γ, (k; γ) ∈ RG[[Γγu]]t

′

θ;T , T � ∆γγu
implies (k; eγ) ∈ RE [[τγγu]]t

′

θ;T
2) Ξ; Θ; Σ; Γ; ∆ ` c : η, ∀ K, ι, let γΞ = [K, ι/Ξ, self] ∀θ ∈
RT [[Θ]], ∀T , ∀k, γ, (k; γ) ∈ RG[[ΓγΞ]]

B(K)
θ;T , T � ∆γγΞ

implies (k; cγ) ∈ RC[[ηγγΞ]]K,ιθ;T
3) Ξ; Θ; Σ; Γ; ∆ ` a : α, ∀θ ∈ RT [[Θ]], ∀K, ι, ∀T , ∀k, γ,

(k; γ) ∈ RG[[Γγu]]
B(K)
θ;T , T � ∆γγu implies (k; aγ) ∈

RA[[αγγu]]K,ιθ;T
4) Ξ; Θ; Σ; Γ; ∆ ` ϕ silent, ∀ K, ι, let γΞ = [K, ι/Ξ, self]

∀θ ∈ RT [[Θ]], ∀T , ∀k, γ, (k; γ) ∈ RG[[ΓγΞ]]
B(K)
θ;T , T �

∆γγΞ, and (ι, T �K)
silent−→ implies T � ϕγγΞ

5) Θ; Σ; Γ; ∆ ` ϕ true, ∀ t ∀θ ∈ RT [[Θ]], ∀T ,
∀k, γ, (k; γ) ∈ RG[[Γ]]tθ;T , T � ∆γ implies T � ϕγ

Proof (sketch): By mutual induction on the typing derivations.
Case: E-FIX

Θ; Σ;u,Γ ` τ1 ok
E ′ :: u; Θ; Σ; Γ, x : τ1, f : Πx:τ1.τ2; ∆ ` e : τ2

u; Θ; Σ; Γ; ∆ ` fix f(x).e : Πx:τ1.τ2

By induction on k.
base case: k = 0 this is trivial
inductive case: k = m+1
Given two time point t and t′ s.t. t′≥t, γu = t/u,
θ ∈ RT [[Θ]], a trace T , k, γ, s.t. (k; γ) ∈ RG[[Γγu]]t

′

θ;T ,
and T � ∆γuγ (1)
Given j < k, t′′ ≥ t′, s.t.

(j, e0) ∈ RE [[τ1γγu]]t
′′

θ;T (2)
By I.H. and j ≤ m

(j, (fix f(x).e)gamma) ∈ RE [[(Πx:τ1.τ2)γuγ]]t
′′

θ;T
By Lemma 7 and 9 and (1)

(j, γ) ∈ RG[[Γγu]]t
′′

θ;T (3)
By I.H. on E ′ and (2), (3)

(j, eγ[e0/x][fix f(x).eγuγ/f ])

∈ RE [[τ2γuγ[e0/x]]]t
′′

θ;T (4)
By (4) and definitions

(k, fix f(x).eγ) ∈ RE [[(Πx:τ1.τ2)γuγ]]t
′

θ;T (5)

Case: E-APP

E1 :: u; Θ; Σ; Γ; ∆ ` e1 : Πx:τ1.τ2
E2 :: u; Θ; Σ; Γ; ∆ ` e2 : τ1

u; Θ; Σ; Γ; ∆ ` e1 e2 : τ2[e2/x]

Given two time point t and t′ s.t. t′≥t, γu = t/u,
θ ∈ RT [[Θ]], a trace T , k, γ, s.t. (k; γ) ∈ RG[[Γγu]]t

′

θ;T ,
and T � ∆γuγ (1)
By I.H. on E2

(k, e2γ) ∈ RE [[τ1γγu]]t
′

θ;T (2)
By I.H. on E1

(k, e1γ) ∈ RE [[(Πx:τ1.τ2)γγu]]t
′

θ;T (3)
Assume (e1 e2)γ →m

β nf 9
By (3) and (2)
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(e1 e2)γ →∗β nf1(e2γ),
and (n−m, nf1) ∈ RV[[(Πx:τ1.τ2)γγu]]t

′

θ;T (4)
We consider two cases: nf1 = λx.e′1 and nf1 = fix f(x).e′1
We show the proof for the first, the second is similar.
By (4)

(n−m−1, e′1[e2γ/x]) ∈ RE [[τ2γγu[e2γ/x]]]t
′

θ;T (5)
By (4) and (5)

(n, (e1e2)γ) ∈ RE [[(τ2[e2/x])γγu]]t
′

θ;T (6)

Case: COMP

self ′ = fresh(self) γs = [self ′/self]
E1 :: Ξ; Θ; Σ;u; Γγs; ∆γs,Ξ ≥ u ` c : (x:τ.ϕ1, ϕ2)
E2 :: Θ; Σ;u,Ξ,Γγs, x : τ ; ∆γs ` ϕ1 ⇒ ϕ′1 true
E3 :: Θ; Σ;u,Ξ,Γγs; ∆γs ` ϕ2 ⇒ ϕ′2 true
Θ; Σ;u,Γγs ` comp(Ξ.x:τ.ϕ′1,Ξ.ϕ

′
2) ok

fv(c) ⊆ dom(Γ)

u; Θ; Σ; Γ; ∆ ` comp(c) : comp(Ξ.x:τ.ϕ′1,Ξ.ϕ
′
2)

Given two time point t and t′ s.t. t′≥t, γu = t/u,
θ ∈ RT [[Θ]], a trace T , k, γ, s.t. (k; γ) ∈ RG[[Γγu]]t

′

θ;T ,
and T � ∆γuγ (1)
Given K s.t. t′ ≤ K, and ι, let γ1 = [K, ι/Ξ, self]

T.S. (k, cγ) ∈ RC[[x:τ.ϕ′1γuγγ1,Ξ.ϕ
′
2γuγγ1]]K;ι

θ;T
by t′ ≤ K
T � (Ξ ≥ u)γuγ1 (2)

By I.H. on E1
(k, cγ) ∈ RC[[x:τ.ϕ1γuγγ1,Ξ.ϕ2γuγγ1]]K;ι

θ;T (3)
By I.H. on E2 if cγ returns e
T � ϕ1γuγγ1[e/x] implies T � ϕ′1γuγγ1[e/x] (4)

By I.H. on E3
T � ϕ2γuγγ1 implies T � ϕ′2γuγγ1 (5)

By (3), (4), (5)
(k, cγ) ∈ RC[[x:τ.ϕ′1γuγγ1,Ξ.ϕ

′
2γuγγ1]]K;ι

θ;T (6)

Case: INV

Γ′.Ξ.ϕ is trace composable
Γ′ ⊆ Γ ∀x ∈ dom(Γ′),Γ′(x) is a base type
∆′ ⊆ ∆ E1 :: Ξ; Θ; Σ;u,Γ′; ∆′ ` ϕ silent
E2 :: Ξ,Γ′ ` ϕ ok E3 :: Γ|FAE ` e : FAE

u; Θ; Σ; Γ; ∆ ` e : inv(Ξ.ϕ)

Given two time point t and t′ s.t. t′≥t, γu = t/u,
θ ∈ RT [[Θ]], a trace T , k, γ, s.t. (k; γ) ∈ RG[[Γγu]]t

′

θ;T ,
and T � ∆γuγ (1)
By Γ′.Ξ.ϕ is trace composable

Ξ.ϕγuγ is composable (2)
By I.H. on E1
∀ι,K, (ι, T �K)

silent−→ implies T � ϕγuγ[K, ι/Ξ, self] (3)
By (1)
∀x ∈ Γ|FAE, (k, γ(x)) ∈ RE [[FAE]] (4)

By Lemma 11 and (4),
(k, γ(x)) ∈ RE [[inv(Ξ.ϕγγu)]]t

′

θ;T (5)
Using Lemma 11 again

(k, eγ) ∈ RE [[inv(Ξ.ϕγγu)]]t
′

θ;T

Case: HONEST

E1 :: Ξ; Θ; Σ; Γ; ∆ ` c : ( , ϕ)
E2 :: Θ; Σ; Γ; ∆ ` start(i, comp(c), tb) true

Θ; Σ ` Γ ok ∀x ∈ dom(Γ),Γ(x) is a base type
Θ; Σ; Γ; ∆ ` ∀u:time.u≥t⇒

ϕ[(tb, u), i/Ξ, self] true

Given time point t, θ ∈ RT [[Θ]], a trace T , k, γ,
s.t. (k; γ) ∈ RG[[Γ]]tθ;T , and T � ∆γ

By I.H. on E2
T � start(i, comp(c), tb)γ (1)

By (1)
Thread iγ starts to execute cγ at time tbγ (2)

Let jb be the lenght of T after time tb
Because Γ only contain base types,

(jb, γ) ∈ RE [[Γ]]tbγΘ;T (3)
Given a time point te such that te ≥ tbγ,
By I.H. on E1

(jb, cγ) ∈ RC[[ , ϕγ]]
(tbγ,te),iγ
Θ;T (4)

it is the case that cγ has not returned, because it starts
on an empty stack (5)

By (4) and (5)
T � ϕγ[(tbγ, te), iγ/Ξ] (6)

By (6) and te is picked at random
T � ∀u, u ≥ tbγ ⇒ ϕγ[(tbγ, u), iγ/(Ξ, self)] (7)

Case: SEQC

Θ; Σ; Ξ,Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(letc(c1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
E1 :: Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
E2 :: Ξ1; Θ; Σ; Ξ ∪ Ξ0\Ξ1,Γ; ∆,∆1, ϕ0

` c1 : (x:τ.ϕP1, ϕI1)
E3 :: Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : τ ; ∆,∆2, ϕ0, ϕP1

` c2 : (y : τ ′.ϕP2, ϕI2)
E4 :: Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
E5 :: Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E (Ξ)/E (Ξ1)]
` ϕ0 ∧ ϕI1[E (Ξ)/E (Ξ1)]⇒ ϕI true

E6 :: Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕI2 ⇒ ϕI true
E7 :: Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1 ∪ Ξ2,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕP1 ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` letc(c1, x.c2) : (y : τ ′.ϕP , ϕI)
SEQC

Given an execution context K = (tb, te), a thread id ι,
an index k, substitutions θ, γ, and a trace T , such that
θ ∈ RT [[Θ]], let γΞ = [K, ι/Ξ, self]

(k, γ) ∈ RG[[ΓγΞ]]
B(K)
θ;T (1)

Ξ0 = (ub, u1), ∆0 = ub ≤ u1 ≤ ue
Ξ1 = (u1, u2), ∆1 = ub ≤ u1 ≤ u2 ≤ ue
Ξ2 = (u2, ue), ∆2 = ub ≤ u1 ≤ u2 ≤ ue

T.S. (k, letc(c1, x.c2)γ) ∈ RC[[(y : τ ′.ϕP , ϕI)γγΞ]]K;ι
θ;T

subcase: partial correctness assertion
By assumptions
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(ι, letc(c1, x.c2)γ, T �K)⇓(er, jb, je) and k ≥ jb ≥ je
T.S. T � ϕP γγΞ[er/y] and (je, er) ∈ RE [[τ ′γγΞ]]

E(K)
θ;T

It must be the case that
∃t1, t2 such that tb ≤ t1 ≤ t2 ≤ te, and

(ι, T �(tb,t1))
silent−→ (2)

(ι, T �(t1,t2), c1γ)⇓(e1, j1, j2) (3)
(ι, T �(t2,te), c2γ[e1/x])⇓(er, j2, je) (4)
Let γΞ0 = [t1/u1], γΞ1 = [t1, t2/u1, u2],
By assumptions
T � ∆0γΞγΞ0

, T � ∆1γΞγΞ1
, and T � ∆2γΞγΞ1

(5)
By I.H. on E1
T � ϕ0γΞγ[t1/u1] (6)

By Lemma 9, ((t1, t2) ≥ tb = B(K))
(k, γ) ∈ RG[[ΓγΞ]]t1θ;T (7)

By I.H. on E2 and (6) and (7)
(k, c1γ) ∈ RC[[(x:τ.ϕP1, ϕI1)γΞγγΞ1

]]
(t1,t2);ι
θ;T (8)

By (8) and the definitions
T � ϕP1γΞγγΞ1

[e1/x]
and (j2, e1) ∈ RE [[τγΞγΞ1

γ]]t2θ;T (9)
By Lemma 9 and Lemma 7

(j2, γ[e1/x]) ∈ RG[[τγΞγΞ1
γ]]t2θ;T (10)

By I.H. on E3
(j2, c2γ[e1/x])

∈ RC[[(y:τ ′.ϕP2, ϕI2)γΞγΞ1
γ[e1/x]]]

(t2,te),ι
θ;T (11)

By (11)
T � ϕP2γΞγΞ1

γ[e1/x][er/y]
and (je, er) ∈ RE [[τ ′γΞγΞ1

γ[e1/x]]]teθ;T (12)
By well-formedness of the computation type

(je, er) ∈ RE [[τ ′γΞγ]]teθ;T (13)
I.H. on E7, (6), (9), and (12)
T � ϕP γ[er/y] (14)

By (13) and (14), the partial correctness specification holds

subcase: invariant assertion
In this case, (ι, letc(c1, x.c2)γ, T �K)⇑
There are three subcases

subcase 1: (ι, T �K)
silent−→

By I.H. on E1
T � ϕ0γΞγ[te/u1] = ϕ0[Ξ/Ξ0]γΞγ (2)

By I.H. on E4 and (2)
T � ϕIγΞγ (3)

subcase 2: exists t1 such that

(ι, T �(tb,t1))
silent−→ (4)

and (ι, T �(t1,te), c1γ)⇑ (5)
Let γΞ1

= [t1, te/u1, u2],
By I.H. on E1
T � ϕ0γΞγ[t1/u1] (6)

By Lemma 9, ((t1, te) ≥ tb = B(K))
(k, γ) ∈ RG[[ΓγΞ]]t1θ;T (7)

By I.H. on E2 and (6) and (7)
(k, c1γ) ∈ RC[[(x:τ.ϕP1, ϕI1)γΞγγΞ1

]]
(t1,te);ι
θ;T (8)

By (8) and the definitions
T � ϕI1γΞγγΞ1

(9)

By I.H. on E5 and (6), (9)
T � ϕIγΞγ (10)

subcase 3:
By assumptions
∃t1, t2 such that tb ≤ t1 ≤ t2 ≤ te
and (ι, T �(tb,t1))

silent−→ (11)
(ι, T �(t1,t2), c1γ)⇓(e1, j1, j2) (12)
(ι, T �(t2,te), c2γ[e1/x])⇑ (13)
Let γΞ1

= [t1, t2/u1, u2],
By I.H. on E1
T � ϕ0γΞγ[t1/u1] (14)

By Lemma 9, ((t1, t2) ≥ tb = B(K))
(k, γ) ∈ RG[[ΓγΞ]]t1θ;T (15)

By I.H. on E2 and (14) and (15)
(k, c1γ) ∈ RC[[(x:τ.ϕP1, ϕI1)γΞγγΞ1 ]]

(t1,t2);ι
θ;T (16)

By (16)
T � ϕP1γΞγγΞ1

[e1/x]
and (j2, e1) ∈ RE [[τγΞγΞ1γ]]t2θ;T (17)

By Lemma 9 and Lemma 7
(j2, γ[e1/x]) ∈ RG[[τγΞγΞ1

γ]]n2

θ;T (18)
By I.H. on E3

(j2, c2γ[e1/x])

∈ RC[[(y:τ ′.ϕP2, ϕI2)γΞγΞ1
γ[e1/x]]]

(t2,te),ι
θ;T (19)

By (19)
T � ϕI2γΞγΞ1

γ[e1/x] (20)
By I.H. on E6 and (15), (17), (20)
T � ϕIγγΞ (21)

By (3), (10), and (21), the invariant specification holds

Case: SEQEINV

SEQEINV

Θ; Σ; Ξ,Γ; ∆ ` (y : τ ′.ϕP , ϕI) ok
fv(lete(e1, x.c2)) ⊆ dom(Γ)
Ξ→ (Ξ0,∆0)B (Ξ1,∆1)B (Ξ2,∆2)
E1 :: Ξ0; Θ; Σ; Ξ\Ξ0,Γ; ∆,∆0 ` ϕ0 silent
E2 :: E (Ξ0); Θ; Σ; Ξ,Γ; ∆,∆1

` e1 : inv(Ξe.ϕe)
E3 :: Ξ2; Θ; Σ; Ξ ∪ Ξ0 ∪ Ξ1\Ξ2,Γ, x : inv(Ξe.ϕe);
∆,∆2, ϕ0, ϕe[Ξ1/Ξe] ` c2 : (y : τ ′.ϕP2, ϕI2)
E4 :: Θ; Σ; Ξ,Γ; ∆ ` ϕ0[Ξ/Ξ0]⇒ ϕI true
E5 :: Θ; Σ; Ξ ∪ {B(Ξ1)},Γ; ∆,∆1[E (Ξ)/E (Ξ1)]
` ϕ0 ∧ ϕe[E (Ξ)/E (Ξ1)]⇒ ϕI true

E6 :: Θ; Σ; Ξ ∪ Ξ1,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕe ∧ ϕI2 ⇒ ϕI true
E7 :: Θ; Σ; Ξ ∪ Ξ1,Γ, x : τ ; ∆,∆2

` ϕ0 ∧ ϕe ∧ ϕP2 ⇒ ϕP true

Ξ; Θ; Σ; Γ; ∆ ` lete(e1, x.c2) : (y : τ ′.ϕP , ϕI)

Given an execution context K = (tb, te), a thread id ι,
an index k, substitutions θ, γ, and a trace T , such that
θ ∈ RT [[Θ]], let γΞ = [K, ι/Ξ, self]

(k, γ) ∈ RG[[ΓγΞ]]
B(K)
θ;T (1)

Ξ0 = (ub, u1), ∆0 = ub ≤ u1 ≤ ue
Ξ1 = (u1, u2), ∆1 = ub ≤ u1 ≤ u2 ≤ ue
Ξ2 = (u2, ue), ∆2 = ub ≤ u1 ≤ u2 ≤ ue
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T.S. (k, lete(e, x.c2)γ) ∈ RC[[(y : τ ′.ϕP , ϕI)γγΞ]]K;ι
θ;T

subcase: partial correctness assertion
By assumptions
(ι, lete(e, x.c2)γ, T �K)⇓(er, jb, je) and k ≥ jb ≥ je
T.S. T � ϕP γγΞ[er/x] and (je, er) ∈ RE [[τ ′γγΞ]]

E(K)
θ;T

It must be the case that
∃t0, t1, t′1, t2 such that tb ≤ t0 ≤ t′1 ≤ t1 ≤ t2 ≤ te, and

(ι, T �(tb,t0))
silent−→ (2)

(ι, T �(t0,t′1), eγ)⇓(comp(c1), j0, j
′
1) (3)

(ι, T �(t1,t2), c1γ)⇓(e1, j1, j2) and j′1 ≥ j1 (4)
(ι, T �(t2,te), c2γ[e1/x])⇓(er, j2, je) (5)
Let γΞ0

= [t1/u1], γΞ1
= [t1, t2/u1, u2],

By assumptions
T � ∆0γΞγΞ0 , T � ∆1γΞγΞ1 , and T � ∆2γΞγΞ1 (6)

By I.H. on E1 and ι is silent between tb and t1
T � ϕ0γΞγ[t1/u1] (7)

By I.H. on E2 and (6)
(k, eγ) ∈ RE [[inv(Ξe.ϕe)γ]]tbθ;T (8)

By (8) and (t1, t2) ≥ tb
(k, c1) ∈ RC[[(x:inv(Ξe.ϕe).ϕe, ϕe)γγΞ1 [ι/self]]]

(t1,t2);ι
θ;T (9)

By (9)
T � ϕeγγΞγΞ1

[ι/self][e1/x]
and (j2, e1) ∈ RE [[inv(Ξe.ϕe)γ]]t2θ;T (10)

By Lemma 9 and Lemma 7
(j2, γ[e1/x]) ∈ RG[[(Γ, x : τ)γΞγΞ1γ]]t2θ;T (11)

By I.H. on E2
(j2, c2γ[e1/x])

∈ RC[[(y:τ ′.ϕP2, ϕI2)γΞγΞ1γ[e1/x]]]
(t2,te),ι
θ;T (12)

By (12)
T � ϕP2γΞγΞ1

γ[e1/x][er/y]
and (je, er) ∈ RE [[τ ′γΞγΞ1γ[e1/x]]]teθ;T (13)

By well-formedness of the computation type
(je, er) ∈ RE [[τ ′γΞγ]]teθ;T (14)

By I.H. on E7 and (6), (10), (13)
T � ϕP γΞγ[er/y] (15)

By (14) and (15), the partial correctness specification holds

subcase: invariant assertion
In this case, (ι, lete(e, x.c2)γ, T �K)⇑
There are three subcases

subcase 1: (ι, T �K)
silent−→

By I.H. on E1
T � ϕ0γΞγ[te/u1] = ϕ0[Ξ/Ξ0]γΞγ (2)

By I.H. on E4 and (2)
T � ϕIγΞγ (3)

subcase 2: exists t1 such that

(ι, T �(tb,t1))
silent−→ (4)

and (ι, T �(t1,te), c1γ)⇑ (5)
Let γΞ1 = [t1, te/u1, u2],
By I.H. on E1
T � ϕ0γΞγ[t1/u1] (6)

By I.H. on E2 and (6)
(k, eγ) ∈ RE [[inv(Ξe.ϕe)γγΞ]]tbθ;T (7)

By (7)
(k, c1) ∈
RC[[(x:inv(Ξe.ϕe).ϕe, ϕe)γγΞ[t1, ι/u1, self]]]

(t1,te);ι
θ;T (8)

By (8)
T � ϕeγγΞ[t1, ι/u1, self][e1/x] (9)

By I.H. on E5 and (6), (9), and (10)
T � ϕIγΞγ (11)

subcase 3:
By assumptions
∃t1, t2 such that tb ≤ t1 ≤ t2 ≤ te
and (ι, T �(tb,t1))

silent−→ (12)
(ι, T �(t1,t2), c1)⇓(e1, j1, j2) (13)
(ι, T �(t2,te), c2γ[e1/x])⇑ (14)
Let γΞ1 = [t1, t2/u1, u2],
By I.H. on E1
T � ϕ0γΞγ[t1/u1] (15)

By I.H. on E2 and (15)
(k, eγ) ∈ RE [[inv(Ξe.ϕe)γγΞ]]tbθ;T (16)

By (16) and (t1, t2) ≥ tb
(k, c1) ∈ RC[[(x:inv(Ξe.ϕe).ϕe, ϕe)γγΞγΞ1 ]]

(t1,t2);ι
θ;T (17)

By (17)
T � T � ϕeγΞγΞ1

[e1/x]
and (j2, e1) ∈ RE [[τγΞγΞ1

γ]]t2θ;T (18)
By Lemma 9 and Lemma 7

(j2, γ[e1/x]) ∈ RG[[τγΞγΞ1γ]]t2θ;T (19)
By I.H. on E3

(j2, c2γ[e1/x])

∈ RC[[(y:τ ′.ϕP2, ϕI2)γΞγΞ1γ[e1/x]]]
(t2,te),ι
θ;T (20)

By (20)
T � ϕI2γΞγΞ1

γ[e1/x] (21)
By I.H. on E6, (15), (18), (21)
T � ϕIγ (22)

By (3), (11), and (22), the invariant specification holds

G. Proof Sketch of State Integrity for Memoir

We prove the correctness of a System M model of Memoir-
Basic, which is a key subset of the features of Memoir [10],
a TPM based state integrity mechanism.

We first describe the following features of the Trusted
Platform Module (TPM) that Memoir uses.

Platform configuration registers: (PCRs) contain 20-byte
hashes known as measurements that summarize the current
configuration of the system. The value they contain can only be
updated in two ways: (1) a reset operation which sets the value
of the PCR to a fixed default value pcrinit; (2) an extend
operation which takes as argument a value v and updates the
value of the PCR to the hash of the concatenation of its current
value with v.

Late launch: is a command that can be used to securely
load a program. After late launch, a particular PCR (PCR 17),
contains a hash chain that starts with a fixed default value
pcrll (different from pcrinit), extended with the hash of
the textual reification of the program. We call such a hash
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chain the late launch signature of the program. Combined
with the guarantees provided by a PCR, late launch provides
a mechanism for precisely identifying code.

Non-volatile RAM: (NVRAM) provides persistent stor-
age that allows access control based on PCR measurements.
Specifically, permissions on NVRAM locations can be tied to
a PCR p and value v such that the location can only be read
when the value contained in p is v.

Terms, Actions and Predicates

We use following the terms, actions and predicates that
model the TPM functionality, cryptography, and communica-
tion in our proof.

a) TPM functionality.: The TPM is modeled by the
following actions. The action reset pcr(p) resets the state of
the PCR p to some default value; extend pcr(p, h) extends
the value of p with the value h. The action verify pcr(p, h)
checks if the state of PCR p is h, otherwise aborts. The
action setNVRAMlocPerms(Nloc, p) ties the permissions for
NVRAM location Nloc to the current contents of the PCR p.
The actions NVRAMwrite(Nloc,m) and NVRAMread(Nloc)
write the message m and read from the NVRAM, respectively.
The action ll enter(e) starts a new late launch session with
computation e called on some arguments. A late launch session
is modeled by a new thread that runs e with no other thread
running in parallel. The action ll exit() exits from a late launch
session.

b) Cryptography: Symmetric encryption is modeled by
the actions gen symkey(), encrypt(k,m) and decrypt(k, c).
Message authentication codes are modeled by mac(k,m) and
verify mac(k,m,m′). Hash functions are modeled by the
action hash(m). A message m encrypted by a key k is denoted
by the term ENCk(m). Similarly, a MAC of a message
m with key k is denotedy by MAC k(m). A hash is repre-
sented by the term hash(m). The special term code hash(c)
refers to the textual reification of the computation c. The
term hash chain(m1,m2, · · · ,mk) is syntactic sugar for the
iterated hash hash(hash(hash(m1)||m2 · · · ||mk) · · · ). Here,
the term m1||m2 represents the concatenation of messages.

c) Communication: Communication is modeled by the
send(m) and receive() actions. By default, messages are not
authenticated, so the send and receive respectively do not have
a recipient and sender argument.

d) Flags: To state the overall state integrity prop-
erty, we require three flags (service init, service try and
service invoke) which are used to assert the value of variables
at a particular point.

Figure 10 contains our model for the Memoir system. The
suspended computation runmodule is expected to run in a late
launch session that models both the initialization and execution
phase of Memoir. Lines 14-26 model the initialization phase
and lines 28-40 model the execution phase. We only describe
the initialization phase here and the execution phase proceeds
similarly. During initialize the code for service is hashed
into PCR 17. Subsequently, it is checked whether PCR 17
contains a hash chain starting with -1 and followed by a

hash of the textual reification of runmodule. This ensures
that a late launch session with runmodule was initiated. A
symmetric key is then generated that acts as the encryption
and MAC key for subsequent sessions of Memoir. Then, the
permissions on Nloc, the NVRAM location allocated for the
session is tied to the current value of PCR17. An initial
history summary and the symmetric key are then written
to the NVRAM location, and then the value of PCR 17 is
extended with a dummy value so that Nloc cannot be read
unless a new runmodule session is started. The service is
then initiated to generate a state of the service that is then
encrypted and MACed along with the history summary and
sent to the adversary for persistent storage.

e) Predicates: Each action has a corresponding action
predicate. All action predicates are listed in Figure 11. Every
action predicate has an additional argument that corresponds
to the thread that performed that action. The one exception is
the action predicate LLEnter, for which the first argument j
is the thread corresponding to the late launch session.

Apart from action predicates, we have predicates which
capture state. The predicate val pcr(p, h)@u states that at
time u, the value of the PCR p is the hash h. The predicate
NVPerms(Nloc, p, h)@u states that the permissions on the
NVRAM location Nloc are set to the value of the PCR p
being the hash h. The predicate val NV(Nloc,m)@u states
that the NVRAM location Nloc contains the value m at time
u.

We have some predicates about the structure of terms. The
predicate hash prefix(h1, h2) states that the hash chain h2 can
be obtained by extending h1 with additional hashes.

Action Predicate
reset pcr(p) ResetPCR(i, p)
extend pcr(p, h) ExtendPCR(i, p, h)
verify pcr(p, h) VerifyPCR(i, p, h)
setNVRAMlocPerms(Nloc, p) SetNVPerms(i,Nloc, p)
NVRAMwrite(Nloc,m) NVWrite(i,Nloc,m)
NVRAMread(Nloc) NVRead(i,Nloc,m)
ll enter(e) LLEnter(j, e)
ll exit() LLExit(i)
gen symkey() GenSymkey(i, k)
encrypt(k,m) Encrypt(i, k,m)
decrypt(k,m) Decrypt(i, k,m)
mac(k,m) MAC(i, k,m)
verify mac(k,m,m′) verifyMAC(i, k,m,m′)
hash(k,m) Hash(i, k,m)

Fig. 11. Action Predicates

Abbreviations and Definitions

Figure 13 summarizes the abbreviations we use.

H. Proof Overview

The proof proceeds in four stages. Each step uses the
following variant RG’ of the rule RG to prove the invariant
∀t:time, (u ≥ ui) ⇒ ϕ(t), where the conditions RG1, RG2

and RG3 are as follows:
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1 runmodule =
2 let snapshot =
3 λ(state, summary, skey).comp(
4 letc enc state = encrypt(skey, service state);
5 letc auth = mac (skey, (enc state, freshness tag));
6 ret(enc state, freshness tag, auth))
7

8 let check snapshot =
9 λ((enc state, freshness tag, auth), request, history, skey).comp(
10 verify mac (skey, (enc state, freshness tag), auth);
11 letc freshness tag′ = hash (freshness tag||request);
12 if(freshness tag = history ∨ freshness tag′ = history, dec (skey, enc state), abort()))
13

14 let initialize =
15 λ(service,Nloc).comp(
16 extend pcr(pcr17, service);
17 verify pcr(pcr17, hash chain(−1, code hash(runmodule), service));
18 letc s = check service;
19 letc skey = gen symkey();
20 let history summary = 0;
21 setNVRAMlocPerms(Nloc, pcr17);
22 NVRAMwrite(Nloc, (history summary, skey));
23 extend pcr(pcr17, 0);
24 lete service state = (s ExtendPCR ResetPCR · · · ) INIT;
25 service init(skey, service, service state,Nloc);
26 lete snap = snapshot(service state, history summary, skey);
27 ret((), snap))
28

29 let execute =
30 λ(service,Nloc, snap, req).comp(
31 extend pcr(pcr17, service);
32 letc s = check service;
33 letc (skey, history summary) = NVRAMread Nloc;
34 lete service state = check snapshot(snap, request, history summary, skey);
35 letc new summary = hash (history summary||req);
36 NVRAMwrite(Nloc, (new summary, skey));
37 extend pcr(pcr17, 0);
38 service try(skey, service, service state,Nloc);
39 lete (new state, resp) = (s ExtendPCR ResetPCR · · · ) (EXEC(service state, req));
40 lete snap = snapshot(service state, history summary, skey);
41 service invoke(skey, service, service state, new state,Nloc);
42 ret(resp, snap))
43

44 λ(service,Nloc, call).comp(
45 (resp, snap)← (case call of
46 INIT⇒ initialize(service,Nloc)
47 | EXEC(snap, req)⇒ execute(service,Nloc, snap, req))
48 send(resp, snap);
49 ll exit())

Fig. 10. runmodule: A model of Memoir’s state isolation mechanism
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Action Predicate
service init(skey, service init(i, skey,

service, state,Nloc) service, state,Nloc)
service try(skey, service try(i, skey,

service, state,Nloc) service, state,Nloc)
service invoke(skey, service invoke(i, skey,

service, state, state′, Nloc) service, state, state′, Nloc)

Fig. 12. Auxiliary Action Predicates

Abbreviations

(ϕ ∧ ψ)@u = (ϕ@u) ∧ (ψ@u)
(ϕ ∨ ψ)@u = (ϕ@u) ∨ (ψ@u)
(ϕ⇒ ψ)@u = (ϕ@u)⇒ (ψ@u)

(¬ϕ)@u = ¬(ϕ@u)
>@u = >
⊥@u = ⊥

(∀x.ϕ)@u = ∀x. (ϕ@u)
(∃x.ϕ)@u = ∃x. (ϕ@u)
(ϕ@u′)@u = ϕ@u′

ϕ ◦ (u1, u2) = ∀u. (u1 < u < u2)⇒ (ϕ@u)
ϕ ◦ (u1, u2] = ∀u. (u1 < u ≤ u2)⇒ (ϕ@u)
ϕ ◦ [u1, u2) = ∀u. (u1 ≤ u < u2)⇒ (ϕ@u)
ϕ ◦ [u1, u2] = ∀u. (u1 ≤ u ≤ u2)⇒ (ϕ@u)

Fig. 13. Abbreviations

RG1 ϕ(ui)
RG2 ∀i, u ≥ ui. (ζ(i) ∧ ∀u′ ∈ [ui, u). ϕ(u′))⇒ ψ(i, u)

RG3

(ϕ(u1) ∧ ¬ϕ(u2) ∧ (ui < u1 < u2))⇒
∃i, u3. (u1 < u3 ≤ u2) ∧ ζ(i) ∧ ¬ψ(u3, i) ∧

∀u4 ∈ (u1, u3). ϕ(u4)

At a high level, the three key stages of the proof are as
follows:

1) PCR Protection: We show that the value of pcr17

contains a certain measurement h only during late launch
sessions running a session of Memoir. This invariant is
referred to as ϕin1 in Section VII.

2) NVRAM Protection: We show that after the permissions
on a location in the NVRAM has been set to h, then
the permissions on that location are never changed. This
invariant is referred to as ϕin2 in Section VII.

3) Key Secrecy: We show that if the key corresponding to
the service is available to a thread, then it must have either
generated it or read it from the NVRAM. This invariant
is referred to as ϕin3 in Section VII.

Finally, from these, we prove the overall state integrity
property for Memoir.

Next, we sketch the proofs of each of the above stages.
Each proof follows a similar structure, where we prove an
assertion using RG’. This requires using HONEST, which in
turn requires to prove an invariant type about runmodule.
Typing runmodule is largely straight forward, so in each case,
we focus on typing the call to the adversary provided service
s.

Definitions

LL(u1, u2, e, j) = LLenter(e, j)@u1 ∧ ¬LLexit(j) ◦ [u1, u2)
∧ LLexit(j)@u2

InLLSess(u, e, j) = ∃u1.(u1 ≤ u) ∧ LLenter(e, j)@u1

∧ ¬LLexit(j) ◦ [u1, u)
InSomeLLSess(u, e) = ∃j.InLLSess(u, e, j)
LLThread(j, e) = ∃u.LLenter(e, j)@u
PCRPrefix(p, s hash) = ∃h. val pcr(pcr17, h)

∧ hash prefix(h, s hash)
ExitsPCRProtected(i, u, s hash) = LLexit(i)@u⇒

¬PCRPrefix(pcr17, s hash)@u
LLChain(h, e) = hash prefix(hash chain(−1, code hash(e)), h)

Axioms

(LLExit) ∀s hash, u2, e
LLChain(s hash, e)⇒

val pcr(pcr17, s hash)@u2

∧ ¬InSomeLLSess(u2, e)⇒
∃j, u3.

LLThread(j, e)
∧ LLexit(j)@u3

∧ val pcr(pcr17, h)@u3

∧ hash prefix(h, s hash)
∧ ∀u ∈ (u1, u3).

val pcr(pcr17, s hash)@u
⇒ InSomeLLSess(u, e)

(PCRInit) val pcr(p, 0)@0
(LLHonest) LLEnter(i, e)@u⇒ ∃e′. start(i, comp(e e′), 0)

Th next two axiom schemas holds for any action a(i, t)
(LLAct1) a(i, t)@u ∧ InSomeLLSess(u, e)⇒ InLLSess(u, e, i)
(LLAct2) a(i, t)@u ∧ LLThread(i, e)⇒ InLLSess(u, e, i)

Fig. 14. Definitions and Model-specific axioms about late launch

The proofs require axioms about the above predicates,
which we state when the axioms are first required.

1) PCR Protection: In Figure 14, we list the definitions and
model specific axioms we need. The predicate LL(u1, u2, e, j)
states that thread j runs a late launch session for e between
u1 and u2, i.e. ll enter(e) was called at time u1 and ll exit()
was called at u2. The predicate InLLSess(u, e, j) states at time
u, thread j runs a late launch session for e. The predicate
InSomeLLSess(u, e) states that at time u, some thread is
running a late launch session for e. LLThread(j, e) states
that j is a thread that runs a late launch session for e.
PCRPrefix(p, s hash) states that the value contained in p
is a hash prefix of s hash. ExitsPCRProtected(i, u, s hash)
states that if a late launch thread exists at time u, the state
of PCR 17 is not a prefix of s hash at u. LLChain(h, e)
states that h is a hash chain, which if contained in PCR 17,
is evidence of a late launch session for e.

Axiom (LLExit) states that whenever outside a late launch
session, the value of PCR 17 is found to be a late launch chain
s hash, we can conclude, that some late launch session exited
with the state of PCR 17 being a prefix of s hash. (PCRInit)
states that the value of any PCR begins at 0. (LLHonest)
states that threads running a late launch for a computation
e exclusively run e with some arguments e′. (LLAct1) and
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(LLAct2) are axiom schemas that essentially state that no other
threads are active during late launch sessions.

Consider an arbitrary service s. Let s hash =
hash chain(−1, code hash(runmodule), code hash(s)).
We show that if the value of pcr17 at time u is s hash,
then it must be the case that we are in a late launch session
at time u. Formally, we show ϕin1, where:

ϕin1
def
= ∀u.val pcr(pcr17, s hash)@u

⇒ InSomeLLSess(u, runmodule). (1)

We prove this using the rule RG’ where we choose ui = 0,
and ϕ,ψ and ζ as below:

ϕ(u) = val pcr(pcr17, s hash)@u⇒
InSomeLLSess(u, runmodule)

ψ(i, u) = ExitsPCRProtected(i, u, s hash)
ζ(i) = LLThread(i, runmodule)

Condition (RG1) follows from (PCRInit) and
¬hash prefix(0, s hash). Condition (RG3) follows directly
from axiom (LLExit). To prove condition (RG2), expanding
out the definitions of ϕ, ζ and ψ above, we need to show that

∀i, u. (LLThread(i, runmodule)
∧ ∀u′ < u. (val pcr(pcr17, s hash)@u

⇒ InSomeLLSess(u, runmodule)(u′))
⇒ ExitsPCRProtected(u, i)

(2)
This can be rewritten as

∀i. (LLThread(i, runmodule)
∧ ∀u. (∀u′ < u. (val pcr(pcr17, s hash)@u′

⇒ InSomeLLSess(u′, runmodule))
⇒ ExitsPCRProtected(u, i))

(3)
Choose an arbitrary thread i such that

LLThread(i, runmodule). Therefore, we have by (LLHonest)
that for some e′, start(comp(runmodule e′), i, 0). To use
rule HONEST to show (3), we need to show that runmodule
satisfies the following invariant.

` runmodule e′ :
(∀ub < u′ < ue.(val pcr(pcr17, s hash)@u′

⇒ InSomeLLSess(u′, runmodule))
⇒ ExitsPCRProtected(u, i))

(4)
The key step in typing runmodule is to type the execution

of s supplied by the adversary using the INV rule. Essentially,
we need to show that the service cannot exit with the pcr17

containing a prefix of s hash. From the postcondition of the
check action, it is known that the service c expression has no
free conditions The service is confined to the actions provided
by the TPM and we can show that each of them has the
following computational type inv(Ξ.ϕc), where ϕc is:

Axioms

(SetPerms) SetNVPerms(i,Nloc, p)@u ∧ val pcr(p, h)@u
⇒ NVPerms(Nloc, p, h)@u

(GetPerms) (SetNVPerms(i,Nloc, p′)@u∨
NVRead(i,Nloc, p′)@u∨
NVWrite(i,Nloc, p′)@u)
∧ NVPerms(Nloc, p, h)@u⇒ val pcr(p, h)@u

(NV Perms) NVPerms(Nloc, p, h)@u1

∧ ¬NVPerms(Nloc, p, h)@u2

∧ (u1 < u2)⇒
∃u3, j.p

′, h′. (u1 < u3 ≤ u2) ∧ val pcr(p′, h′)@u3

∧ SetNVPerms(j,Nloc, p′)@u3

∧ (p 6= p′ ∨ h 6= h′)
∧ ∀u4 ∈ (u1, u3). NVPerms(Nloc, p, h)@u4

Fig. 15. Model-specific axioms about NVRAM

ϕc = ¬PCRPrefix(pcr17, s hash)@ub ⇒
∀u ∈ [ub, ue]. (InLLSess(u, runmodule, i)

⇒ ¬PCRPrefix(pcr17, s hash)@u)
(5)

Therefore, using the rule INV and repeatedly applying
APPINV, we can give (s ExtendPCR ResetPCR · · · ) the type
inv(Ξ.ϕc). We have now shown that by the end of service,
the late launch session has either terminated or the value of
pcr17 is not a prefix of s hash. Using (LLAct2), we can now
show (4).

2) NVRAM Protection: Figure 15 contains axioms govern-
ing the behavior of NVRAM. (SetPerms) states that on the
successful execution of setting permissions on NVRAM at
time u to be tied to the value of PCR p, when the value of
p at u is h, the permissions on the NVRAM location is set
to the value of PCR being h. (GetPerms) states that when the
permissions on a particular NVRAM location is tied to the
PCR p being h, then accessing that NVRAM location implies
that the value of PCR p is h at the time of access. (NVPerms)
states that if the permissions on a NVRAM location changes,
then it must have been changed via a setNVRAMlocPerms
action.

We wish to show that the permissions on the NVRAM are
always tied to the value of pcr17 being s hash:

ϕin2
def
=

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u ≥ ui). NVPerms(Nloc, pcr17, s hash)@u

(6)
Assume that for some time point ui.

SetNVPerms(i,Nloc, pcr17)∧ val pcr(pcr17, s hash))@ui
(7)

We now need to show that

∀u.(u ≥ ui)⇒ NVPerms(Nloc, pcr17, s hash)@u

Again, we prove this invariant by rely guarantee reasoning,
where we choose ϕ, ψ and ζ to be the following.
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ϕ(u) = NVPerms(Nloc, pcr17, s hash)@u
ψ(u, i) = (SetNVPerms(i,Nloc, p)

⇒ (p = pcr17) ∧ val pcr(pcr17, s hash))@u
ζ(i) = LLThread(i, runmodule)

Expanding condition (RG1), we need to show the following

NVPerms(Nloc, pcr17, s hash)@ui

This holds by Axiom (SetPerms) and (7).
Expanding condition (RG2), choose i such that

LLThread(i, runmodule). We need to show that
∀u ≥ ui.(∀u′ ∈ [ui, u). ϕ(u′)) ⇒ ψ(i, u). To use
HONEST, we need to show that runmodule satisfies the
following invariant.

` runmodule e′ :
(∀u ∈ (ub, ue]∀u′ ∈ [ui, u).

NVPerms(Nloc, pcr17, s hash)@u′ ⇒
SetNVPerms(i,Nloc, p))@u⇒
(p = pcr17) ∧ val pcr(pcr17, s hash)@u

(8)
Again, the key step in typing runmodule is to type the

execution of s supplied by the adversary using the INV rule.
Essentially, we show that the service is not allowed to set the
permissions of Nloc at all. Each action f provided by the TPM
interface can be confined to the type inv(Ξ.ϕc), where ϕc is:

ϕc = ¬PCRPrefix(pcr17, s hash)@ub ⇒
∀u ∈ [ub, ue]. (InLLSess(u, runmodule, i)

⇒ ∀p. ¬SetNVRAMPerms(i,Nloc, p)@u)
(9)

Condition (RG3) follows from (NVPerms), (GetPerms) and
(1).

In particular, we can show from (6) and (GetPerms), that
for any thread I , the following holds:

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u > ui). ReadNV(I,Nloc)@u

⇒ val pcr(pcr17, s hash)@u
(10)

And by (1) we can show that:

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u > ui)⇒ ReadNV(I,Nloc)@u

⇒ InSomeLLSess(u, runmodule)
(11)

Therefore, by (LLAct), we have that

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀I, (u > ui)⇒ ReadNV(I,Nloc)@u

⇒ InLLSess(u, runmodule, I)
(12)

This means that whenever, a thread I reads from the Nloc
at time u, it must be the case that I is in a late launch session
running runmodule at time u.

Definitions

NVContains(Nloc, s) = ∃m.Contains(m, s) ∧ val NV(Nloc,m)
Private(s,Nloc, u) = ∀u′ < u.(Send(i,m)@u⇒ ¬Contains(m, s)

∧ ∀Nloc′.(NVContains(Nloc′, s)@u′ ⇒ (Nloc′ = Nloc)))
KeepsPrivate(i, s,Nloc) = Send(i,m)⇒ ¬Contains(m, s)

∧ ∀Nloc′.(WriteNV(Nloc′,m) ∧ Contains(m, s)
⇒ Nloc = Nloc′)

NewInLL(s, e, u) = GenSymkey(i, s)@u⇒ InLLSess(u, e, i)

Axioms

(Shared) LLChain(h, e)∧
NewInLL(s, e, ui)∧
∀u > ui.NVPerms(Nloc, pcr17, h)⇒
∀(u1 > u2 > ui).
Private(s,Nloc, u1) ∧ ¬Private(s,Nloc, u2)⇒
∃i, u3.(u1 < u3 ≤ u2)

(LLThread(i, e)∧
¬KeepsPrivate(i, s,Nloc)@u3)∧
∀u ∈ (u1, u3).Private(s,Nloc, u))

(POS) (Private(s,Nloc, u) ∧ Has(i, s)@u⇒
(∃u′.(u′ < u) ∧ GenSymkey(i, s)@u′)∨
(∃u′.(u′ < u) ∧ ReadNV(i,Nloc,m)@u′

∧ Contains(m, s))
(PrivateInit) GenSymkey(s)@u⇒ Private(s,Nloc, u)
(New3) GenSymkey(i, n)@u ∧ GenSymkey(i′, n)@u′ ⇒ (i = i′) ∧ (u = u′)

Assumption about about service init :
(Init) service init(i, skey, service, state,Nloc)@ui ⇒

∃u.(u < ui)∧
start(i, comp(runmodule service Nloc INIT; ret()), u)

Fig. 16. Definitions and Model-specific axioms about Secrecy

3) Key Secrecy: Figure 16 lists the definitions and axioms
pertaining to key secrecy. The definition NVContains(Nloc, s)
states that the NVRAM location Nloc contains the secret s.
Private(s,Nloc, u) states that the secret s has not been sent
out on the network and the only NVRAM location it has been
stored in is Nloc. KeepsPrivate(i, s,Nloc) states that whenever
thread i sends a message, it does not contain the secret s.
Additionally, it only stores s in Nloc. NewInLL(s, e) states
that s was generated in a late launch session of e.

The axiom (Shared) states that if a secret is private at
time u1 and not private at u2, then it must be the case, that
at some point in between u1 and u2 some thread violated
KeepsPrivate(i, s,Nloc). (POS) states that if some thread
posseses a secret s that is private to Nloc, then it must
have been either generated in that thread or read from Nloc.
(PrivateInit) states that a secret is private at the moment it is
generated. (New3) is an axiom about non-collision of nonce
values. (Init) is a logical assumption we make that states
that service init can only be called by honest threads running
runmodule.

We now show that after initialization, if any thread j has
the key corresponding to the service, then that thread must
have read it from Nloc or that the thread j is the initialization
thread itself.
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ϕin3
def
= ∀i, ui, state, skey,Nloc

service init(i, skey, service, state,Nloc)@ui ⇒
∀j, u > ui.Has(j, skey)@u⇒ (j = i)∨
∃u′,m.(ui < u′ < u) ∧ ReadNV(j,Nloc,m)@u′

∧ Contains(m, skey)
(13)

Fix Ii, ui, skey, service, Nloc.
Assume service init(Ii, skey, service, state,Nloc)@ui

We prove (13) by another rely-guarantee proof, very similar
to the proof of Kerberos in [6]. We choose the following ϕ,
ψ and ζ.

ϕ(u) = Private(skey,Nloc, u)
ψ(i, u) = KeepsPrivate(i, skey,Nloc)@u
ζ(i) = LLThread(i, runmodule)

To show condition (RG1): ϕ(ui) we can first show using
(Init), HONEST and reasoning about ordering and atomicity of
events that:

∃u1, u2, u3, u4.(u1 < u2 < u3 < u4 < ui)
VerifyPCR(pcr17, s hash)@u1

GenSymkey(skey)@u2∧
SetNVPerms(Ii, Nloc, pcr17)@u3∧
NVWrite(Ii, Nloc, (skey, h))@u4∧
¬SetNVPerms(Ii, Nloc, p) ◦ (u3, ui]∧
¬(Extend(Ii, pcr17, t) ∨ Reset(Ii, pcr17)) ◦ (u1, u3]
¬Send(Ii,m) ◦ (u1, ui]

(14)
Now we can show using (Shared), (PrivateInit), (LLAct) and

(14) that Private(skey,Nloc, ui) holds. Essentially, at ui, s is
still private because, the thread Ii did not leak the key, and no
other thread was running in parallel.

We prove condition (RG2) we use the HONEST rule again
and we need to show that runmodule has the following type:

Π(s : any, l : ptr, snap : msg). inv(ub, ue.
∀u ∈ (ub, ub]∀u′ < u.Private(skey,Nloc, u′)⇒
KeepsPrivate(self, skey,Nloc)@u)

(15)
However, the property required of s is not derived using

INV. We first assume that Memoir was initialized with a
particular service service, which statically has the following
type:

service :
ΠExtendPCR:τExtendPCR.ΠResetPCR:τResetPCR · · ·
Πm:msg. inv(ub, ue.

(x:msg.¬Contains(m, s)⇒ ¬Contains(x, s),
KeepsPrivate(self, skey,Nloc) ◦ [ub, ue]))

(16)
This type takes as input the types

(τExtendPCR, τResetPCR, · · · ), i.e. the type of each interface
provided to the service, and asserts that the service does not
leak the key or contain it in its output if the input does not
contain the key.

We then reason by the fact that the NVRAM location Nloc
was read from and the NVRAM Protection invariant (6) that
the current state PCR 17 is s hash, and by comparing the
hashes, we know that s = service. Finally, we use the EQ
rule to assert that s has the same type as service above.

Condition (RG3) Follows from (Shared), and (12).
4) State to History Summary Correspondence: We state

without proof an invariant that the history summary has a one-
to-one correspondence with the state. This is proved through
an induction on the history summary.

∀i, ui, state, skey,Nloc
service init(i, skey, state,Nloc, ....)@ui ⇒
∀h, state, state′, j, j′u, u′.u > ui ∧ u′ > ui ⇒

MAC(j, skey, (state, h))@u∧
MAC(j′, skey, (state′, h))@u′ ⇒

(state = state′)
(17)

We can now prove the overall state integrity property for
Memoir.

5) State Integrity: Finally, the property we prove about
Memoir is as follows:

∀ui, state, state ′, skey, iinit, sinit
service init(iinit, skey, service, sinit)@ui ⇒
∀u > ui. service try(i, skey, state)@u⇒
∃j, u′ < u. ((∃s.service invoke(j, skey, s, state)@u′

∨ service try(j, skey, state)@u′

∨ service init(j, skey, state)@u′)
∧ (∀j′. ¬service invoke(j′, skey, · · · ) ◦ (u′, u]))

(18)
In the above statement, we elide unnecessary arguments in

the flag predicates. This property states that for every execution
attempt of the service with state state at time u, there exists
a prior time point u′ such that at u′ either (1) service was
invoked resulting in state state, or (2) there was an execution
attempt of the service with state state′ or (3) the service was
initialized with state state. Additionally, since time point u′,
the service has not been invoked, which would have advanced
the state of the service. This last clause rules out any rollback
attacks. Each flag is indexed with the same secret key skey
that the service was initialized with. This key ties all the flags
in the property to to the same instance of Memoir.
To prove (18), fix an i, ui, state, skey,
Assume service init(iinit, skey, service, sinit)@ui
For some u > ui assume that

service try(i, skey, state, state ′)@u. (19)

Therefore we have Has(i, skey)@u. By (13) we have that
one of the two hold:

i = iinit∨
∃u′.ui < u′ < u.ReadNV(i,Nloc,m)@u′ ∧ Contains(m, skey)

(20)
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The above equation means that either i is the initialization
thread or the key was read from the NVRAM.

We analyze each case:
• Case i = iinit:

We have from (Init) and
service init(iinit, skey, service, sinit) that

∃u.(u < ui)∧start(i, comp(runmodule service Nloc INIT; ret()), u)

With HONEST, we can show that service try does not
occur on i and we have a contradiction.

• Case ∃u′ ∈ (ui, u).ReadNV(i,Nloc,m)@u′ ∧
Contains(m, skey): In this case, by (12) We have
that LLThread(i, runmodule) Therefore, by HONEST we
can show that m must have the form (skey, h),

ReadNV(i,Nloc, (skey, h))@u′ (21)

By (NVRAMRead), we can show that the NVRAM was
written to at an earlier point on j. We have that ∃u′′ < u
such that:

WriteNV(j,Nloc, (skey, h))@u′′∧
∀j′′. ¬WriteNV(j′′,Nloc,m′) ◦ (u′′, u′]

(22)

Again, by (12) and (22) we have that

LLThread(j, runmodule) (23)

And by HONEST, as we know (22), we can derive that

mac(j, skey, (ENCskey(state′, h)) (24)

Also, from (19) and HONEST we know that the if-
condition at Line 12 of runmodule executed. This gives
us two cases:

– Case 1:

verifyMAC(i, skey, (ENCskey(state), h)) (25)

This is the case where the history summary h
matches the MACed history summary. From (25) and
(MAC), we have for some j′

mac(j′, skey, (ENCskey(state), h)) (26)

By (17) along with (25) and (27), we have state′ =
state We then have from (24) that there exists a u′

such that

service invoke(j, skey, s′, state)@u′

∨service init(j, skey, service, state)@u′
(27)

Also, from (22), we can show that
∀j′′. ¬service invoke(j′′, skey, · · · ), because a
service invokation would have been preceded by an
write to the NVRAM.

– Case 2:

verifyMAC(j, skey, (ENCskey(state), h′))
∧ h = H(req||h′) (28)

This is the case where at Line 12 of runmodule, the
current history summary is the hash of the current

request and the history summary in the snapshot.
This means that Memoir was called with exactly the
same request in the past and no other request has
completed since then. This case proceeds similarly
to Case 1.
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