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Abstract

In this paper, we propose a new programming paradigm desbigne
simplify the process of safely creating, manipulating aisgasing
of complex mutable data structures. In our system, prograrsm
construct data structures by specifying the shapes they ataam
high level of abstraction, using linear logical formulathex than
low-level pointer operations. Likewise, programmers chestaict
data structures using a new form of pattern matching, wheze t
patterns are again drawn from the syntax of linear logic.riteo
to ensure that algorithms for construction, inspection decon-
struction of heap values are well-defined and safe, we amdhe
programmer’s linear logical specifications using a moddyasis
inspired by similar analysis used in logic programming lzenges.
This mode analysis is incorporated into a broader type sy#tat
ensures the memory safety of the overall programming laggua

We have implemented the language and explored using it to ma-

nipulate a variety of data structures including lists, $re@nd an
adjacency list representation of graphs.

1. Introduction

One of the most important and enduring problems in progrargmi
languages research involves verification of programs thattcuct,
manipulate and dispose of complex heap-allocated datetstes.
Any solution to this difficult problem can be used to guarante
memory safety properties and as a foundation for the vetiiica
of higher-level program properties.
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do so by throwing away the low-level pointer manipulatioatst
ments, leaving only the high-level specifications of datacstre
shape. So rather than supporting a two-step program-teefy-v
paradigm, we support a one-step correct-by-constructioogss.

More specifically, programmers create data structures bg-sp
ifying the shapes they want in linear logic (a very closetietaof
O’Hearn’s separation logic). These linear logical fornsugae inter-
preted as algorithms that allocate and initialize datectres de-
sired by the programmer. To use data, programmers writerpatt
matching statements, somewhat reminiscent of ML-style stete-
ments, but where the patterns are again formulas in lingé.|8n-
other algorithm takes care of matching the linear logicainfala
against the available storage. To update data structureggm-
mers simply specify the structure and contents of the newesha
they desire. The run-time system reuses heap space in ataiadi
fashion. Finally, a “free” command allows programmers taltie
cate data structures as they would in an imperative landileg€.
In order to ensure that algorithms for construction, insipecand
deconstruction of heap values are well-defined and menafg-s
we analyze the programmer’s linear logical specificaticsiagia
mode analysis inspired by similar analysis used in logigmms.
This mode analysis is incorporated into a broader type sy#tat
ensures the safety of the overall programming language.

In summary, this paper makes the following contributions:

1. It develops novel algorithms used at run time to interfine@ar
logical formulas as programs to allocate and manipulate-com
plex data structures.

Over the last several years, great progress has been made on2. It develops a new mode analysis for linear logical forraula

this problem by using substructural logics to specify thapghof
heap-allocated data structures [18, 12, 16]. The key inssgthat
these logics can capture aliasing properties in a subatigmnore
concise notation than is possible in conventional logidss hiew
notation makes proofs more compact, and easier to reac an
understand. One notable example is O’Hearn, Reynolds, dadg
others’ work on separation logic [18]. These authors sydwfp-
shape invariants using a variant of the logic of bunchediagibns
(BI) [17]. They then include the Bl specifications in a Hoawgit
to verify the correctness of low-level pointer programs.
O’Hearn’s process is a highly effective way of verifying gting
pointer programs. However, if one needs to construct netwaoé
with complex data structures, there are opportunities fiops-
fying and improving the combined programming and verifimati
process. In particular, writing low-level pointer programemains
tricky in O’'Hearn’s setting. Verifying the data structurese has
created using separation logic provides strong safety anea-
ness guarantees at the end of the process, but it does ndifsimp
speed up, or prevent initial mistakes in the programmink. tas

that helps guarantee these algorithms are safe — they do not
dereference dangling pointers.

3. It shows how to incorporate these run-time algorithmssaatic
analysis into a safe imperative programming language.

4. All of the examples in this paper and more, have been imple-
mented and verified by the system.

Overall, the result is a new programming paradigm in which li
ear logical specifications, rather than low-level pointeemtions,
drive safe construction and manipulation of sophisticdiedp-
allocated data structures.

The rest of the paper is organized as follows: In Section 2 we
give an informal overview of our system, show how to define the
shape invariants of recursive data structures using lilogge, and
explain the basic language constructs that construct asmhdeuct
heap shapes. Next, in Section 3, we delve into the detailbeof t
algorithmic interpretations of the logical definitions ferap shapes
and the mode analysis for preventing illegal memory openati
In Section 4, we introduce the formal syntax, semantics, thed

In this paper, we propose a new programming paradigm de- type system for the overall language. In Section 5, we ilaist

signed to simplify the combined process of constructing gdatuc-
tures and verifying that they meet complex shape specificsitiVe

the extent of the language’s expressive power by explainavgto
define adjacency list representation of graphs. Finallydiseuss
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related work. Space constraints only allow us to sketch taenm
ideas involved in defining the formal semantics.

2. System Overview

The main idea behind our system is to give programmers thepow

of using linear logic to define and manipulate recursive datac-
tures. In this section, first, we introduce the program heapthe
basic describing formulas of the heap. Then, we explain loadet
fine recursive data structures using linear logic. Next, inmshow
to use the logical definitions to manipulate data structimesur
language. Finally, we informally explain the invariantstikeep
our system memory safe.

21 TheHeap

The program heap is

a finite partial map H H, H,
from locations to tu- froo L2 2 [0t 2 [ 5 [ 2 [ 7 0 ]!
ples of integers. Lo- vz f R

cations are themselves
integers, and O is the
special NULL pointer.

Every tuple consists

Figure 1. Memory containing a
linked list.

of a header word followed by some data. The header word stores
the size (number of elements) of the rest of the tuple. Wenofte
use the worcheapletto refer to a fragment of a larger heap. Two
heaplets ardisjointif their domains have no locations in common.

As a simple example, consider the haam Figure 1, which
we will refer to throughout this section. It is composed ofet
disjoint heapletsH;, H2, andHs. HeapH; maps location100 to
tuple (2, 3,200), where the intege? in the first field of the tuple
indicates the size of the rest of the tuple. ~

We usedom (H) to denote the set of locationsiinanddom (H)
to denote the set of starting locations of each tuplg. e write
H(l) to represent the value stored in locatiprand#({) to repre-
sent to tuple stored at locatidn For example, foH in Figure 1,
dom(H) = {100,200, 300}, andH;(100) = (3,200). We use
H; W Hy to denote the union of two disjoint heapléis and Hs.
It is undefined ifi; andH, are not disjoint.

2.2 Basic Descriptions

Programmers describe heaps and heaplets using a collegtion

domain-specific predicates together with formulas drawmftin-
ear logic. In order to describe individual tuples, prograensnuse
the predicatemode x T, wherex is the starting address artdis
the tuple contents. For exampléode 100 (3, 200)) describes

heapleti; . To describe larger structures, programmers use a multi-

plicative conjunction (identical to separation logic’s ltiplicative
conjunction %") written “,” . Formula (F1,F2) describes a heap
composed of two disjoint heapleis andHs such thati; can be
described by, andH; can be described I#,. For example, heap

H can be described bfhode 100 (3, 200), node 200 (5, 300),

node 300 (7, 0)). Programmers use additive disjunction, written

“ to combine multiple possible descriptions. Formutia;(F-) de-
scribes a heap that can be described by eithesr F,. Program-
mers may also describe finer-grained properties of thed static-
tures using integer inequality and set constraints.

In addition to using these primitive descriptions, prognaens
can create new definitions to describe shapes. In the netosec
for instance, we will show how to define lists, queues ancstree

2.3 Logical Shape Signatures

A logical shape signaturés a set of definitions that collectively de-

fines algorithms for run-time manipulation of complex datac
tures and proof rules for compile-time checking. Each stsge
nature contains three basic elememstuctive definitionswhich

define shape structure and run-time algorithaxspms which give
relations between shapes and are used during compile-yipee t
checking; andtype and mode declarationsvhich constrain the
kinds of inductive definitions allowed so as to ensure the cor
responding run-time algorithms are both memory-safe anitt we
defined. In the following subsections we explain each pathef
signature in turn.

Inductive Definitions. In order to define the basic shapes of data
structures, we borrow technology and notation from the fafld
linear logic programming [10, 14]. The inductive definitooare
written down as a series of clauses that mimic a linear logie p
gram. Each clause is composed of a head (a predicate sudbas
X), followed by the inverted linear implication “o-,” folload by
the body of the clause (a basic description that referemeekaad
or other newly defined predicates). Free variables appgarithe
head may be viewed as universal parameters to the definiitem;
variables appearing in the body are existentially quantifizefini-
tions are terminated with a period.

As an example, consider defining a null-terminated nondtarc
singly linked list starting from address The principal clause for
list Xis given by the following statement:

list X o- (X = 0); (node X (D, Y), list Y).

The body is the additive disjunction of two cases. The firsecays
thatO is a list pointer; the second one says that X is a list pointer
if it points to a pair of values D and Y such that Y is a list peint
Notice that the head and the tail of the list are separated’bgrid
therefore, they are two disjoint pieces of the heap. Thistamt
guarantees the list will be non-circular.

A closely related definitionpistseg X Y, can be used both
to reason about lists and to help us define another datasteuct
the queue. The definition faristseg X Y describes a non-circular
singly linked list segment starting from location X and exglat .
listseg X Y o- (X=Y); (not (X=Y), node X (D, Z), listseg Z Y).

The base case states thattseg X X is always true; the second
case states that ¥ points to a pair of valued® and Z such that
betweerz andy is a list segment, then betwegmandy is also a list
segment. The inequality of andY together with the disjointness
of the head and tail of the list segment guarantees nontaiityu

The next example uses théstseg predicate to define a queue.

queue X Y o- ((X = 0), (Y =0)); (listseg X Y, node Y (D,0)).
The predicatgueue X Y describes a queue whose heaxlad tall
isY. In the clause above, the first case describes the situatien w
the queue is empty and both the head and tail pointers areed. Th
second case describes the situation in which there is dtdeas
element in the queue (pointed to ). Between the head and the
tail of the queue is aistseg. For example, the hedpin Figure 1
can be viewed as a queue whose head pointer isésl¢cation
100), and tail pointer is $x.€., location 300).

We can define tree-shaped data similarly. As an example, con-
sider the following binary tree definition.

btree X o- (X = 0); (node X (D, L, R), btree L, btree R).

Axioms. Each shape signature can contain many inductive defi-
nitions. For instance, theistshape signature we will be using as

a running example through this paper will contain both thignde
tions of list andlistseg. In order to allow the system to rea-
son about the relationships between these various defigjtibe
programmer must write down additional clauses, which wieecal
ioms. For example, the following axiom relatesst to listseg.

list Y o- listseg Y Z, list Z.

Without this axiom, the type system cannot prove that oneptera
shape, such aQistseg x y, list y), isrelated to anothen{st
x). While the syntax of axioms is very similar to that for indive
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definitions, the axioms are used for compile time reasonimly, o
not generation of algorithms for construction and decaicsion
of data structures. Hence, the form that axioms can takégistis!
more liberal than that of inductive definitions.

Type and Mode Declarations. All predicates are given both types
and modes. The purpose of the types is to constrain the atéda
(e.g..either pointers or integers) that may appear in particuddagi
of a data structure. The purpose of the modes is to ensuréhthat
heap-shape pattern-matching algorithm is safe and efficien

To understand the purpose of mode declarations and mode

analysis, consider the problem of matching the prediaate x
(77,34) against the contents of some heaapLogically, the goal
of the matching algorithm is to find an addrelssuch thati(1)

= (77,34). However, without any additional information, it would
seem the only possible algorithm would involve examinirgdbn-
tents of every address in the entire héapntil one that satisfies
the constraint is found. But of course, in general, attengptd use
such an algorithm in practice is hopelessly inefficient.

On the other hand, suppose we are given a specific adtress
and we would like to match the formuladde 1’ (D,X), node X
(77,34)) against some heap We can simply look up.’ in H to
determine values far andX. The value of is subsequently used to
determine whethet(x)=(77,34). We also need to ensure the value
of X is not equal to I (otherwise the linearity constraint thatand
X point to disjoint heaplets would be violated).

When a value such as’ or X is known, it is referred to as
ground Mode declarationspecify, among other things, expecta-
tions concerning which variables are ground in which posti
Finally, mode analysiss a syntactic analysis, much like type check-
ing, that can determine whether the mode declarations areato

In our system, the modes for specifying groundness comdgitio
are the standard ones found in many logic programming lagegia
In particular, the input mode-| specifies that a term in that position

must be ground before evaluation of the predicate. The outpu
mode ¢) specifies the term in that position must be ground term

after the predicate is evaluated. The last mosleijdicates we

do not care about this position. Now, to guarantee it is jpbessi
to evaluate the predicat®de X (...) in constant time, we give
the first position X) the input mode<). Once the first argument of

thenode predicate has been constrained to have input mode, other

definitions that use it are constrained in turn. For exantpkefirst
arguments ofist X andqueue X Y must also be inputs.

Ensuring pointers are ground before lookup provides a guara
tee that lookup will occur in constant time. However, it does
guarantee that the pointer in question points to a valid lobggrct.
For example, when the matching algorithm attempts to matett-p
icatenode 1 (...) against a heaf, 1 is not necessarily a valid

address in H. A second component of our mode analysis charac-

terizes pointers as eithet (definitely not dangling) otnsf (pos-
sibly dangling) orunsf sf (possibly dangling before evaluation of
the predicate, but definitely not dangling if the predicatsticcess-
fully evaluated), and thereby helps guarantee the matchigg-
rithm does not go wrong. The last safety modes(f sf) is used
when the evaluation of the predicate has allowed us to |ésatnat
particular pointer is safe.

The complete mode for arguments of pointer type is a pair
(g, s), whereg describes the argument’s groundness property, and

s describe its safety property. Integers are not derefeceacel
hence their modes consist only of the groundness condition

As an example, the combined type and mode declaration for

lists follows. It states that the list predicate must be segpwith a
single ground, non-dangling pointer argument.

list : (+,sf) ptr(node) -> o.

listshape {

struct node : (+,sf) ptr(node) -> (- int, (-,sf) ptr(node))-> o.

listshape : (+,sf) ptr(node) -> o.
list : (+,sf) ptr(node) -> o.
listseg : (+,sf) ptr(node) -> (+,unsfsf) ptr(node) -> o.

listshape X o- list X.

list X o- (X = 0); (node X (D,Y), list Y).

listseg X Y o- (X = Y); not(X = Z), node X (D,Y), listseg Y Z.
with

list Y o- listseg Y Z, list Z.}

Figure 2. Singly Linked List Shape Signature

Putting the Declarations Together. Figure 2 is the full shape
signature forlistshape. The first definition gives the structure of
the tuples that are to be allocated in memory (the “strucyinard

is used to indicate thabde predicate will be realized as a concrete
piece of data). We also call these predicates “struct” petds.
This definition and the next three define the modes for thedii!
definitions. The next three are inductive definitions usedréate
data structures. The last definition (separated from therstirsing
the keyword “with”) gives an axiom for relating lists andttisgs.

2.4 TheProgramming Language

In this section we explain how to incorporate the logicalmigbns
of data structures into a safe, imperative programmingdagg.

2.4.1 BasicLanguage Structure

A program is composed of a collection of shape signatures and
function definitions. Program execution begins with thetiis
guished “main” function. Within each function, programseie-
clare, initialize, use and update local imperative vagal{also re-
ferred to as “stack variables”). Each such variable is gadrasic
type, which may be an integer typim¢), a shape type, or a pointer
type. The shape types, suchlastshape, are named by the shape
signatures. The pointer types, suchpas (node), specify the spe-
cific kind of tuple a pointer points to. In order to distinguithe
logical nameg, Y, Z, etc. introduced via logical pattern matching,
from the imperative variables, we precede the names of iatiper
variables with & sign. We usés to range over shape variables and
$x to range over integer or pointer variables.

2.4.2 Operationson Shapes

As discussed earlier, formulas describing the heap sertre tho
help programmers create new shapes and to deconstructas di
semble, existing shapes.

Creating Shapes. Creating data structures with certain shapes is
done using the shape assignment statement as shown below.
:= {al, a2, a3}[root al, node al (3, a2),

node a2 (5, a3), node a3 (7, 0)]
The right-hand side of a shape assignment describes the shap
be created and the left-hand side specifies the imperati@pesh
variable to be assigned. In this case, we will assume theeshap
variable$s haslistshape type (see Figure 2).

Variablesa1, a2, anda3 in the braces indicate the new tuples
to be allocated on the heap to make the formula in braces @ vali
listshape. The size of each tuple is determined by examining
the type declaration of theode predicate inistshape signature.
Each variable is subsequently bound to the address of thie-cor
sponding tuple.

Once space has been allocated, the integer data fields are ini
tialized with the values appearing in the shape descripiarally,
the location specified by theot predicate is stored into the shape
variable$s. This specialroot predicate indicates the starting ad-
dress of this shape and must always appear in all shape pléstsi

$s:listshape
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Deconstructing Shapes and Reusing Deconstructed Shapd®
deconstruct a shape, we use a pattern-matching notatioex&m-
ple, to deconstruct the list contained in the imperativéaide $s,
we might use the following pattern:

$s:[root r, node r (d, next), list next]

This pattern, when matched against the heaplet reachaintebf,
may succeed and bing next andd to values, or it may fail. If
it succeedsr will be bound to the pointer stored s, d will be
bound to integer data from the first cell of the list, arat will be
bound to a pointer to the next element in the list.

Pattern matching does not deallocate data. Consequeniy, i
somewhat similar to the unrolling of a recursive ML-styleéatgpe,
during which we change our view of the heap from an abstract
shapeé.g.,alistshape), to a more descriptive one.Q.,a pointer
to a pair of valuesi andnext, wherenext points in turn to a
list). More formally, the unrolling corresponds to revealithat the
heaplet in question satisfies the following elaborate fdamu

Jr.3d.3next. (root r, node r (d, next), list next)
Pattern matching occurs in the context of branching statésne
in our language. Here is an example of an if statement.

if $s:[root r, node r (d, next), list next]

then {free r; $s := [root next, list next]}

else print ‘‘list is empty’’
In evaluating the if statement, first we evaluate shape ipattethe
pattern match succeeds, then a substitution for the bouiables
is returned, the substitution is applied on the true brarcid
evaluation of the true branch continues. If the pattern hiatc
fails, then the false branch is taken. The variables in trepsh
pattern are not in scope in the false branch. Supgesegoints to
the first tuple in the heap displayed in Figure 1. When the shape
pattern is evaluated; will be bound to 1004 will be bound to 3,
andnext will be bound to 200. The execution will proceed with
evaluation of the true branch, where we free the first tuplthef
list, then reconstruct a list using the rest of the old liste predicate
root next specifies the root of this new shape. Operationally, the
run-time value ohext, 200, is stored in the variabfes.

2.5 An Example Program

listshape delete(listshape $s, int $k){
ptr(node) $pre := 0;
ptr(node) $p := 0;
if $s?[root x, list x]
then {$pre := x; $p := x}
else skip;
while ($s?[root x, listseg x $p,
node $p (key, next), list next,
not ($k = key) 1)
do {$pre := $p; $p := mext};
switch $s of
:[root x, y = $p, node x (d, nxt), list nxt, d = $k ]
-> {free x; $s:listshape := [root nxt, list nxt]}
|:[root x, y = $pre, z = $p, listseg x y,
node y (dy, z), node z (dz, next), list next, dz = $k]
->{free z;
$s:listshape :=
[root x, listseg x y, node y (dy, next), list next]
|- -> skip;
return $s; }

OO0 NP WN -

Figure3. list_delete

As an example of our language in action, consider the functio
delete, which removes an integer from a list. The first arqutroé
delete, $s, haslistshape type and holds the starting address
of the list. The second argumerk, is the integer to be deleted.
The algorithm uses pointep to traverse the list until it reaches

the end of the list or the data undgp is equal to the keyk to

be deleted. A second pointgpre points to the parent dfp. The

if statement between line 4 and 6 initializes bghand $pre to
point to the head of the list. The while loop between linesd &
walks down the list maintaining the invariant expressethé@while
condition in each iteration of the loop. This invariant etathat (1)

the initial part of the list is aistseg ending with pointei$p, (2)

$p points to a node that contains a key and a next pointer, (3) the
next pointer itself points to a list and (#py is not the key. When
either condition (2) or (4) is falsified, control breaks otitlee loop
(conditions (1) and (3) cannot be falsified). The switchestagnt
between line 11 and 19 deletes the node from the list (if a node
has been found). The first branch in the switch statementsadive
case when the node to be deleted is the head of the list; tbadec
branch covers the case when the node to be deleted is painibgd t
$p; the last (default) branch covers the case wéieis not present

in the list.

2.6 What Could Go Wrong

Adopting a low-level view of the heap and using linear logicle-
scribe recursive data structure gives our language treousnelx-
pressive power. However, the expressiveness calls for aallgqg
powerful type system to deliver memory-safety guarantdés.
have already mentioned some of the elements of this typersyst
including mode checking for logical declarations, and tbe of in-
ductive definitions and axioms to prove data structures tieveap-
propriate shapes. In this section, we summarize severaoger-
ties of the programming language’s overall type systemwiiald
go wrong if these properties are missing, and what mechanigen
use to provide the appropriate guarantees.

Safety of Deallocation. Uncontrolled deallocation can lead to
double freeing and dereferencing dangling pointers. We mage
sure programmers do not use the deallocation command tao soo
or too often. To provide this guarantee, our type system keep
track of and describes (via linear logical formulas) theessible
heap, in much the same way as O’'Hearn’s separation logic or
its closely related type systems [24, 25, 4, 1, 26]. In allesas
linearity constraints separate the description of one saitature
from another to make sure that the effect of deconstructimh a
reconstruction of shapes is accurately represented.

Safety of Dereferencing Pointers. Pointers are dereferenced
when a shape pattern-matching statement is evaluated.|gbe a
rithm could potentially dereference dangling pointers benying
ill-formed shape formulas. Consider the following pattern

$s: [root r, node 12 (d, 0), node r (dr, 12)]

Here there is no reason to believe “12” is a valid pointerdPre
icate mode and type checking prevents programmers fronmgyrit
such ill-formed statements.

Termination for Heap Shape Pattern Matching As we saw in the
examples, the operational semantics invokes the pattetokimg
procedure to check if the current program heap satisfieginert
shape formulas. It is crucial to have an efficient and trdetab
gorithm for the pattern-matching procedure. In our systdns
pattern-matching procedure is generated from the indeickdfini-
tions in the logic signature, and uses a bottom-up, deph&igo-
rithm. However, if the programmer defines a predicatsq X o-
Q X, then the decision procedure will never terminate. To guae
termination, we place a well-formedness restriction onitigkeic-
tive definitions that ensures a linear resource is consureéaté
the decision procedure calls itself recursively. Our iestm rules
out the bad definition of and others like it.
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Term tm = z|n|—tm|tm+ tm

Arith Pred Pa = tm=tn|tm>tn

Arith Formula A = Pa| not Pa

User-Defined Pred  Pu = Ptn

Literals L = A|Pstm(tm) |Pu

Formulas F = emp|L,F

Inductive Def/Axiom I/Ax = (Puo—F)

Groundness g = 4| —|=x

Safety Qualifier s = sf | unsf | unsf sf

Mode m = gl(gs)

Arg Type argtp = gint| (g, s) ptr(P)

Pred Type pt = o |argtp — pt | (argtp) — pt
Pred Type Decl pdecl = P : pt|structPs : pt
Shape Signature ss = P{pdecl. (Pzo—F).I. Ax}
Pred Typing Ctx = = | 2, P:pt

SS Context A = | A, P:E

Logical Rules Ctx T = | T, 1|7,Ax

Figure4. Syntax of Logical Constructs

2.7 Three Additional Caveats

For the system as a whole to function properly, programmess a
required to check the following three properties themselve

Closed Shapes. A closed shape is a shape from which no dan-
gling pointers are reachable. For example, lists, queuddraes
are all closed shapes. On the other hand,lthetseg definition
given earlier is not closed—if one traverses a heaplet destr
by alistseg, the traversal may end at a dangling pointer. Shape
signatures may contain inductive definitions likestseg, but the
top-level shape they define must be closed. If it is, then alhd
structures assigned to shape variaBlewill also be closed and alll
pattern-matching operations will operate over closed efiaphis
additional invariant is required to ensure shape patterttingg
does not dereference dangling pointers.

Soundness of Axioms. For our proof system to be sound with
regard to the semantics, the programmer-defined axioms Ineust
sound with respect to the semantics generated by the inducti
definitions. As in separation logic, checking propertieslifferent
data structures requires different axioms and programmerst
satisfy themselves of the soundness of the axioms they doite
and use. We have proven the soundness of all the axioms thediap
in this paper (and axioms relating to other shapes not inaiper).

Uniqueness of Shape Matching. Given any program heap and a
shape predicate with a known root location, at most one kéeapl
should match the predicate. For example, given the heap
Figure 1, predicatelist 200 describes exactly the portion of
H that is reachable from location 200, endingNULL (H2, Hs).
Without this property, the operational semantics would be-n
deterministic. Programmers must verify this property theilves
by hand. Once again, it holds for all shapes described irptper.

These requirements are not surprising. For instance, atimar
logic’s specialized axioms concerning lists and trees rbasteri-
fied separately as well. The requirement concerning uniggenf
shapes are very similar to thescise predicategsed in the work on
separation and information hiding [19]. These requiremeoiuld
well be the common invariants substructural logical systehould
have when used in program verification.

3. Logical Shape Signatures: Formal Semantics
3.1 Syntax

The syntactic constructs of our logic are listed in Figurétough-
out the paper we use the overbar notatibto denote a vector of
objectsxz. We usetm to range over terms. Arithmetic formulas

include arithmetic predicates, which are the equality aadig
order of terms, and their negations. We wzeto range over all
the “struct” predicates such asde, P to range over user-defined
predicate names such asst, andPu to range over fully applied
user-defined predicates. A litedialcan be either an arithmetic for-
mula or a state predicate or a user-defined predicate. WE tse
range over formulas which are eitheiip (the empty heap) or the
conjunction of a literal and another formula.

The head of a clause is a user-defined predicate and the body is
a formula. For the ease of type checking, we gather the badies
the same predicate into one definitibnThe notatiorF means the
additive disjunction of all the; in F. Axioms are also clauses.

A simple argument type is a mode followed by the type of
the argument. Argument types for predicate can either bgleim
argument types or a tuple of the simple argument types. A full
applied predicate has type(a standard way of writing the type of
logical formulas).

Context= contains all the predicate type declarations in one
shape signature. ConteXtmaps each shape name to a confext
Lastly, contextY contains all the inductive definitions and axioms
defined in the program.

3.2 Store Semantics

We usel T F to mean that heal can be described by formuia
under the inductive definitions iif. Since is fixed throughout,
we omit it from the judgments. We use the notatib(P) to denote
the inductive definitions foP. We present the formal definition of
the store semantics of our logic in Figure 5. An arithmetitrfola

A is valid if the heap is empty andis valid. HeapH satisfie®s v
(v1...vn), ifthe domain ofi contains exactly the+1 consecutive
locations starting fromr, and the first location df stores the size of
the tuple, and values; throughv, match the contents of the heap.
To give a properly inductive semantics to user-defined petds,
we index the predicates with a natural numheiThe semantics of
an unrolling of an inductive definition depends on predisatith

a strictly smaller index.

3.3 Logical Deduction

Type checking requires reasoning in linear logic with theuicx
tive definitions and axioms the user has defined. A formalckigi
deduction in our system has the form:A = F. I is the unre-
stricted context (hypotheses may be used any number of)tames
A is the linear context (hypothesis can be used exactly ohue).
tially, T will be populated by the inductive definitions and axioms
from the shape signatures.

We have proved that our logical deduction system is sourtd wit
respect to the semantics modulo the soundness of axioms.

Lemma 1 (Soundness of L ogical Deduction)
Assume the user-defined axiom6 () are sound with respect to the store
semantics defined byX(;), andY = Y, 4 andY; A = F, ando is a

HFE empiff H= 0.

HFE Aiff H = (), andA is a valid arithmetic formula.

®HE Psv (vi, -+ ,vp)iff v # 0, dom(H) = {v,o+1,---v+ n},
H(v) = n,andforalli € [1,n],H(v + i) = v;.

HE F1,F iff H= H; WHs, suchthal; F Fq, andHs F Fo.

HEFy;Foiff HE Fy OrH F Fa.

HEPOIiff 3nstHEP" v

HE P°3iff Y(P) = PZo-F,andJistH  F; [v/T], andAP €
dom(F;). where the free variables ity are considered existentially quantified.
HE P"9iff Y(P) = PTo-F,and3istHF F; [v /%] andn — 1isthe
maximum of the index number ;.

Figure5. Selected Rules of the Semantics for Formulas
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nrr: 10

mode(P) = (+4,sf) — o mode(P) = (4, unsf) — o

x:sf € I1 x:s € I1
IFPo: I mode-1 OFPo: I mode-3
mode(P) = (—,sf) — o mode(P) = (—,unsf) — o
= mode-2 = mode-4
I+ Pz : IU(x:sf) M+ Pa : IIO(z:unsf)
NEL: I TI'FF: 0T
m mode-5
MFLF: I
FPxzo— OK
mode(P) = (+,sf) — o mode(P) = (4, unsf) — o
x:isf EF @ (w:sf), 11 z:unsf FF @ (x:s), 11
FPzoF: OK mode-6 FPzoF: OK mode-7
mode(P) = (+,unsfsf) — o xwunsf - F : (a:sf),1I
mode-8
FPxo-F: OK
mode(P) = (—,sf) — o mode(P) = (—,unsf) — o
FF o (asf), 0 FF: (x:s),1I
FPwzo-F: OK mode-9 FPzoF: OK mode-10

Figure6. Selected and Simplified Mode Analysis Rules

grounding substitution for free variables in the judgmeanti Y1 o(A),
thenH EY1 F,

3.4 Pattern-Matching Algorithm

The pattern-matching algorithrig) determines if a given program
heap satisfies a formula. We implemeMt using an algorithm
similar to Prolog’s depth-first, bottom-up proof searchatgy.
When a user-defined predicate is queried, we try all the elaus
bodies defined for this predicate. In evaluating a clause/,bod
evaluate the formulas in the body in left-to-right order heyt
appearMP takes four arguments: the heHpa set of locationsS
that are not usable, a formufaand a substitution for a subset of
the free variables if. It either succeeds and returns a substitution
for all the free variables iR, and the locations used in proviEgor
fails and returngi0. The set of locations is used to handle linearity
and make sure that no piece of the heap is used twice.

For the rest of this section, we will explain the mechanisias t
guarantee the termination, correctness, and the memaeyy saff
the pattern-matching algorithm.

3.4.1 Termination Restriction

In order forMP to terminate, we require that some linear resources
are consumed when we evaluate the clause body so that tHe usab

heap gets smaller when we c#lt on the user-defined predicates
in the body. More specifically, in the inductive definitiors pred-

properties (1) and (2) aboveThe second judgment checks the
body of a definition in a contextl, that maps variables to their
safety modes. This second judgment has the form-F : 11’ and
affirms thatF is well-moded provided that variables in the domain
of IT are groundi(e., will be instantiated and available at run time)
and satisfy their associated safety mode. The output cbiifex
contains the variables that will be ground after the executf

F. Both judgments are parameterized by a funciioge that maps
each user-defined predicd®eto its declared mode. The rules also
use the notatiodlU(x:s) to denotell” such thafll’(y) = II(y)
wheny # z, andIl’'(y) = s’ wheny = x wheres’ is thestronger

of s andII(x). The modesf is stronger than the modmsf£.

Selected rules from both judgments appear in Figure 6. To un-
derstand the difference between predicates witand — modes,
compare rulesnode-land mode-2 In rule mode-1 predicateP
has+ mode and hence its argument must be in the input context
I, meaning the argument will have been instantiated and-avail
able when execution of MP reaches this point. In contrastyle
mode-2 = need not be in the input conteXt, but is added to
the output context. Now to understand propagation of safety
straints, compare rulesode-land mode-3 In rule mode-3 z:s
must be inII sinceP still has groundness modg, but sinceP’s
safety mode isinsf, s is unconstrained — it may either be of
or unsf. A predicateP that compared its argument to another
value but did not dereference it might have the mode shownl@ r
mode-3 Rulemode-5shows how mode information is passed left-
to-right from one conjunct in a formula to the next.

3.4.3 Formal Results

We have proven several key facts concerning our mode amalysi
Our first theorem states that MP terminates if the inductiiénd
tions are well-formed. Judgmeht I OK checks the termination
constraints correctly.

Theorem 2 (Termination of M P)
Ifforall T € Y,+ I OK, thenM Py (H; S;F; o) always terminates.

We have also proven thEPp is complete and correct with regard to
the semantics if all the user-defined predicates are wathéd.

Theorem 3 (Correctness of M P)
IfII+F : 1T, andvz € dom(I1). x € dom(o), andS C dom(H) then

e eitherMP(H; S;F; o) = (S’,¢’) andS’ C dom(H), o C o/, andd’ &
o/ (F), anddom(#') = (S’ — S),Va € dom(I'). z € dom(o”’),

e OrMP(H; S;F; o) = NO, and there does not exist a hadpwvhich is the
sub-heap of minus the locations in the sbt oro’, o C o', such that
H E o/(F)

Finally, we have proven the following theorem stating th& M
procedure is memory safe. We say a temmis well-moded with
respect to contextH, o, and heap, if either tm is an integer, or

icateP, there has to be at least one clause body that contains only;; is in the domain ofr, and ifII(tm) = sf theno(tm) is a valid

arithmetic formulas and struct predicates, and for clawgesse
body contains user-defined predicates, there has to besatdea
struct predicate that precedes the first user-defined fatedic the
body. We statically check these restrictions at compiletim

342 ModeAnalysis

Our mode analysis serves two important purposes: (1) itreesu
MP knows the addresses of data structures it must traveese (
those addresses are ground when they need be), and (2) iegnsu
these addresses are safe to dereference. In this sectiqmesent
selected and simplified rules for the analysis. In particwa focus

on defining two judgments. The first P = o— F OK affirms that
the inductive definition® = o— F) is well-moded, satisfying both

pointer on the heap.

Theorem 4 (Safety of MP)

Ifforall T € Y, I iswell-moded, complies with the termination constraints,
andP is a closed shape, alg E P (1), II + F : II', andvtm € dom(II).

tm is well-moded with respect td, o andH; then

e ejthenMP(Y)(Hy WHa; S;F;0) = (S’, o’), anadvP is memory safe, and
Vtm € dom(I1), tm is well-moded with respect td’, o’ andH; .
e OrMP(Y)(H; WHo; S;F;0) = NO, andMP is memory safe.

1For expository purpose, we only explain the rules for prais with a
single argument. We have proven correct the appropriatergkzrations
involving multiple arguments.
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Basic Types t = int | ptr(P)

Regular Types T = t|P

Fun Types Tf = (mX- X1y —P

Vars var = $z|=x

Exprs e = wvar|n|ete| —e

Args arg = e|8s

Shape Forms  Shp = rootwv,F

Shape Patterns pat = :[Shp] | ?[Shp]

Atoms a = A|$spat

Conj Clauses  cc = alcc,cc

Branch b = (pat — stmt)

Branches bs = b |b’|"bs

Statements stmt = skip | stmty ; stmte | $z = e
| if cc then stmt; else stmto
| while cc do stmt
| switch $s of bs | $s := {z:t} [Shp]
| freev | $s := f (arg)

Fun Bodies £b = stmt; ; fb | return $s

Local Decl ldecl = tS%z :=v|P $s

Fun Decl fdecl = P f(z1:71, @y :Ty) {1ldecl; fb}

Program prog = SS; fdecl

Values v = xz|n|8$s

Figure7. Syntax of Language Constructs

Since the program heap often contains many data strucities;
rem 4 takes the frame property into accowtis safe on a larger
heap than the one containing the sh#pas matching. Intuitively,
MP is safe because it only follows pointers reachable from tio¢ r
of a “closed shape”. The termination)¥ is crucial since the proof
is done by induction on the depth of the derivationMgf If MP
did not terminate, then the induction on the depth of thevd&on
would not be well-founded.

4. TheProgramming L anguage

(E;H;stnt) — (E";H;stmt”)
(E;H; free v) — (E;Hy; skip) whereH = H; W Hy
andHz (v) = n, dom(Hs) = {v,v+1,--- ,v+n}
(E;H; $s:P := {z}[root (v),F])
— (B[$s := v'];H'; skip)
where(H’, v") = CreateShape(H, P, {Z}[root (v), F])
CreateShape(H, P, {Z}(root n,F)) = (H',n[l/T])
where
1. k; = size(F,z;)
2. (Hl,l1) :alloc(H, kl),"' s
(Hp, ln) = alloc(Hyp—1, kn)
3. F=F[ly-ln/z1- 2pn]
4. H =Hv+i v;] for all (node v (vy - - -vg)) € F/
(E;H; if cc then stmt; else stmty) — (E;H;o(stmty))
if [cc]e = (F,0’)andMP(H;F;0;0’) = (SL;0)
(E;H; if cc then stmt; else stmty) — (F;H;stmto)
if [cc]g = (F,o)andMP(H;F; (0; o) = NO

free

assign-shape

If-t

If-f

while-t (E;H;while cc do stmt)
—— (E;H; (o(stmty) ; while {z:t} cc do stmt))
if [cc]r = (F,0’)andMP(H;F;0;0’) = (SL;0)
while-f (E;H;while cc do stmt) — (E; H; skip)

if [cc]r = (F, o) andMP(H; F; (); o) = NO

Figure 8. Selected Operational Semantics

shape assignments, free, and function calls. The swit¢enseant
branches on a shape variable against shape patterns.

A function body is a statement followed by a return instroicti
A program consists of shape signatures and a list of funciem
larations. Lastly, the values in our language are integarsables,
and shape variables.

4.2 Operational Semantics

In this section, we define the operational semantics of auage.
Most rules are straightforward. We focus on explaining thteri
esting ones that dereference the heap using pattern-mgtpho-

In this section, we explain how to embed the mode analysis and cedure or update the heap via logical formulas.

proof system into the type system, and likewise, the pattern
matching algorithm into the operational semantics, andethe
integrate the verification technique into the languageeifttro-
ducing various syntactic constructs, we define the formarap
tional semantics and explain the type system of our language

4.1 Syntax

A summary of the syntax of our core language is shown in Figure
The basic types are the integer type and the pointer typetions
take a tuple of arguments and always returns a shape type.

We user to range over logical variables in formul&s; to range
over stack variables, artk to range over shape variables. Shape
variables live on the stack and store the starting addresataf
structures allocated on the heap. We uge denote expressions
andarg to denote function arguments which can either be expres-
sions or shape variables. We use a spatiat predicate to indicate
the starting address of the shape. Shape forngiasare the mul-
tiplicative conjunction of a set of predicates, the first dfigh is
theroot predicate. A shape pattensat can be either a query pat-
tern (? [Shp|) or a deconstructive patterri$hp]). We have seen the
deconstructive pattern in the examples in Section 2. Wheanke
traverse, and read from the heap, but don't perform updates,
use the query patterr? {Shp]). These two patterns are treated the
same operationally, but differently in the type system. Toadi-
tional expressions in if statements and while loops are aseg of
a conjunctive clausec, which describes the arithmetic constraints
and the shape patterns of one or more disjoint data stracitue
is the multiplicative conjunction of atoms which can either be
arithmetic formulag\, or shape pattern${ pat).

The statements includekip, statement sequences, expres-
sion assignments, if statements, while loops, switch istaies,

The machine state for evaluating statements other than the
function call statement is a tupl¢F;H; stmt). EnvironmentE
maps stack variables to their valuékis the program heap, and
stmt is the statement being evaluated. We w(itg H; stmt) —
(E';H'; stmt’) to denote the small-step operational semantics for
these statements. Figure 8 is a list of selected rules. We w(5x)
andE($s) to denote the valug’ maps$z and$s to.We write E'( F')
to denote the formula with values substituted for variables

To deallocate a tuple, programmers supply the free statemen
with the starting address of that tuple. The heaplet to be freed is
easily identified, since the size of the tuple is stored.in

The shape assignment statements allow programmers te creat
data structures. During the execution of a shape assignstetiet
ment, the heap is updated according to the shape formuldein t
statement. In the end, the root of the new shape is storgd ifhe
core procedure iSreateShape, Which takes as arguments, the cur-
rent heap, the shape nae and the shape formula. It returns the
updated heap and the root of the new shape. In order to define th
procedure, we define functiarize(F, x) to be the appropriate size
of the tuplex points to according to the shape formala

When an if statement is evaluated, the pattern-matchingepro
dure is called to check if the conditional expression is.ttéieP
succeeds and returns a substitutigrwe continue with the evalu-
ation of the true branch with applied; otherwise, the false branch
is evaluated. Notice that the conditional expressioris not in the
form of a logical formula; therefore, we need to convextto its
equivalent formul& .., before invoking the pattern-matching pro-
cedureMP. We define[cc] e to extractF.. and a substitutiorr
from cc. Intuitively, F.. is the conjunction of all the shape formu-
las with the run-time values substituted for the stack \@esand
the root predicate dropped. For example,Af($s) = 100 and
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ccis ($s: [root r, node r (d, next), list next]) then logic
variabler must bel 00 as the clause specifies thds the “root” the
value of$s. Hence the substitution is {100/r} andF.. iS (node
r (d, next), list next).MP is called with the current program
heap, an empty set (all the locations are usable), the farmul
and the substitutios from [ cc ] &.

The while loop is very similar to the if statement. If the con-
ditional expression is true then the loop body is evaluatetithe
loop will be re-entered; otherwise, the loop is exited.

4.3 Type System

As mentioned earlier, our type system is a linear type systéra
contexts in the typing judgments not only keep track of tipesyof
the variables, but also describe the current status of anogtate:
what the valid shapes are, and what the structure of the sibtees
heap is. The contexts used in the typing judgments are litkxiv.

Variable Ctx Q = .| Q,vart
Initialized Stack Variable Ctx T = |, $s:P
Uninitialized Shape Variable Ctx © = -]106,%$s:P
Heap Ctx A = | A,Pu|A,Ps

ContextQ2 maps variables to their types. Bothand © map
shape variables to their types. During type checkingpecifies
the initialized shape variables, whit@ specifies the uninitialized
shape variables. Variables@are not currently usable, but may be
initialized later in the program. ConteX is a set of formulas that
describe the accessible portions of the heap. Cofiitetd A de-
scribe the entire program heap. For example, # $s:1istshape
andA =node 400 (11, 0), and the environment i = $s — 100,
then the current heap must satisfy formulastshape 100, node

400 (11,0)).

The main judgments in our type system are listed below.
Expression typing QFce: t
Conj Clause typing QT ke ce : (I7;0;A)

Conj Clause Modes checking IT F cc : I’
Statement typing Q;T50;A F stat @ (IY;07; A7)

Each of these judgments are also implicitly indexed by thre co
texts for shape signaturds axiomsY, and function type bindings
d. We leave these contexts implicit as they are invariantuttjio

the type checking process.

Conjunctive Clause Typing. The typing judgment for conjunc-
tive clauses, which is used in type checking if statemendsadrile
loops, has the forme; I' Fcc cc : (IV;©; A). The interesting rule is
whencc is a deconstructive shape pattern.

' =T',$s:P, TY;Fa,F= P(y) FV(F) N Qg, = 0

QT+ $s : [rooty,Fa,F| : (I'V;$s:P;F)

Here, shape variablés is deconstructed by shape pattérsot y, F 4, F),
whereF 4 is the arithmetic formulas. If pattern matching succeeds,
then there exists some substitutiersuch that the heaplet pointed
to by $s can be described by(F 4, F). Therefore, in the postcon-
dition, F appears in thé\ context providing describing formulas to
access the heafs points to; shape variabls becomes uninitial-
ized, and the type binding &fs is in the® context. The condition
that no stack variables appear freeFiensures that the formulas
are valid descriptions of the heap regardless of imperatviable
assignments. Finally, the logical derivation checks thatshape
formulas entails the desired shape. By the soundness aflodg-
duction, we know that any heaplieématched by the shape formula
also satisfie® v, wherev is the run-time value o$s.

Conjunctive Clause Mode CheckingAt run time, MP is called
on the conjunctive clausex. So we have to apply mode analysis
on cc to ensure the memory safety uP. The mode checking
for cc uses the mode checking for formulas and treatss the
multiplicative conjunction of the formulas in each atom dn.

As an example, the rule for checking the deconstructiveepais
shown below.
NO{z:sf} FF : I’

T+ $s : [rootx,F] : II'
Since$s points to a valid shape, its root pointer is a valid pointer.
Therefore the argument of theot predicate is added as a safe
pointer argument in the ground cont&Xtwhile checking the for-
mula in the shape pattern.

Statement Type Checking.The typing judgment for statements
has the form(2; T; ©; A + stmt : (I;©"; A’). A selected set of
typing rules is listed in Figure 9.

The rule for if statements first infers the types of the free-va
ables (we omit the definition of infer but it is straight-fcawd).
Then we type check the conjunctive clause The true branch is
taken whencc is proven to be true, and at that point the describ-
ing formulas from examiningc are proven to be valid; hence the
true branch is checked under the new state resulting frorckaig
cc. The false branch is checked under the original state. Th®tn
the if statement is a program merge point, so the true andcatee f
branch lead to the same state. The mode checkirg gliarantees
that whenVP is called oncc it won't access dangling pointers. The
initial TT context contains groundness and safety properties of the
arguments whenc is evaluated, and it depends on the variable con-
text . Before evaluating a statement, the run-time values should
already have been substituted for the bound variables.eTdrey;
all the variables i are ground before we evaluate. We have
no information on the validity of the pointer variables, key are
considered unsafground((2) is defined below.
ground(2) = {var | Q(var) = int} U {(var:unsf) | Q(var) = ptr(P)}

Since the only safe pointers we assume before evaluatiage
the root pointers of valid shapes, the memory safetyiofvhen
evaluatingcc is guaranteed through the safetyMsf (Theorem 4).

While loops are similar to if statements. After type chegkihe
conjunctive clause, the loop body is checked against thestees.
The resulting states should be the same as the originas statéhat
the loop can be re-entered. This means that the states umitgr w
the while loop is type checked are in effect loop invariants.

The rule for shape assignment first checks that the shape vari
able$s is uninitialized — this check prevents memory leaks. It does
so by checking thats belongs to© (notT"). The third premise in
the assignment rule checks that the shape formula enteikhépe
of the variable$s. The rest of the premises entail that the union of
the formulas used to construct this shape and the leftoverias
in A’ should be the same as the formulas given at the beginning in
A plus the new heaplets allocated. It looks complicated trxwue
allow multiple updates to the heap during assignment. Famge,
if node 1 (5,0) is available, then we allowode 1 (10, 0) to
be used in the shape assignment. This means that the heématell
used to contain 5 now contains 10.

The rule for free checks that the location to be freed is among
the accessible portion of the heap. After freeing, the fdante-
scribing the freed heaplet is deleted from the context, amchever
be accessed again.

4.4 Type Safety

The machine state for evaluating function bodies requireadx
ditional control stackS, which is a stack of evaluation contexts
waiting for the return of function calls. The typing judgntdor
machine state has the forin (E's; H; S; £b) OK. We proved the
following type-safety theorem for our language.

Theorem 5 (Type Safety)

if = (E;H; S; £b) OK then eithe( E; H; S; £b) = (e; H; e; halt)

or existsE’, H', S’, £b’ such tha( E; H; S; £b) — (E’;H'; S’; £b’) and
F (E';H; S’ £b') OK
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Q' = infer(cc) Q' , 4T Fcc: (IV,0, A’
Q,07;0,0;A,A" - stmty ¢ (T7;07;A)
Q0 A F stmty ¢ (T7;0"; A7)

IT = ground(£2) MEcc: I

(FN‘ o A//)

Q;T;0; AF if cc then stmt; else stmty :

Q' = infer(cc) Q, QT Fcc: (I,0,A)
Q10,0 A, A" Fstat ¢ (T560;A)
II = ground(R2) Mk cc: I

Q;T;0; A while cc do stmt : (I'; ©; A)

while

Q' = infer(z,F) ©=0",(8s:P) T;F = P(v)
A, ={Psz;€|Psxz; e €F} A=A A
F=A,,Ar VPuPuc A”iffPuc Ap
VPstme € A” iff Pstme’ € Ap

O;T;0; A $s:P := {T}[root (v),F] : (T",$s:P;0"; A")
A= (Psvey---ey), A
O T50; A F free (v) @ (I;0; A7)

assign-shape

free

Figure9. Selected Statement Typing Rules

5. A Further Example

To demonstrate the expressiveness of our language, we toeled
shapes and operations of various commonly used data se&sctu
such as singly/doubly linked circular/non-circular listsinary
trees, and graphs represented as adjacency lists. In tttisrse
we will explain how to define adjacency lists, the most intérey
and complex of the data structures we have studied.

In Figure 10, the
data structure on the
left is an adjacency
list representation of
the directed graph on
the right. Each node
in the graph is repre-
sented as a tuple com-
posed of three fields.
The first field is a data
field; the second field is a pointer to another node in the grapth
the last field is a pointer to the adjacency list of outgoingesd In
this example, node is represented by the tuple starting at address
100, b is represented by the one starting at 200, and ¢ issemed
by the one starting at 300. In this data structure, each ngmee-
senting a graph node is pointed to from the previous nodefrand
the node’s incoming edges. For example, nedeuple starting at
address 300) is pointed to by the next pointer from nedand
from the adjacency list of both nodeandb.

410

300 0

&

Figure 10. An adjacency list.

o[ oo}l

The Shape Signature. We present the key parts of the shape
signature of an adjacency list in Figure 11. The tuples ssaréng
nodes have a different size than the tuples representingsedg
hence we need two struct predicat@saphnode to store node
information, anckdjnode to store edge information.

Beginning at the bottom of Figure 11, we see the definition of
predicateadjlist X B. This predicate describes the list of outgo-
ing edges from a node. The argumergoints to the beginning of
the list and the argumemt represents the set of nodes contained
therein. Since definitions involving sets appear freqyentir lan-
guage includes built-in support for them. In particular¢hdtes the
empty set, [n] denotes a singleton set, s1 U s2 denotes tha ahi
two sets an@1<=s2 denotes the subset relation. The definition of a
adjlist shows how to use this notation to build an edge ligetber
with a set representing its contents.

The predicate(nodelist X A B) is valid whenx points to a
graph data structure in whiahis the complete set of graph nodes

1 graphshape{
2 struct graphnode: ...
3 struct adjnode: ...

graphshape X o- graph X.
graph X o- nodelist X A B, B <= A.
nodelist X ABo- X =0, A=[], B=[];
graphnode X <d, next, adjl>,
adjlist adjl G, nodelist next Al Bi,
A =1[X] UA1l, B=B1UG.
adjlist X B o- X = 0, B = [];
adjnode X <n, next>,
adjlist next B1, B = [n] U B1.

Figure11. Shape Signature for Graph

ands is the subset of nodes that have at least one incoming edge.
For example, the adjacency list in Figure 10 can be described
by adjlist 100 [100,200,300] [200,300]. The base case for the
definition of nodelist is trivial. In the second caseg,is a graph
node that has some datga pointemext pointing to the next graph
node fodelist next A1 B1), and a pointerdjl pointing to the
outgoing edges of (adjlist adjl G). The set of graph nodes is
the union ofa1 and [x1, and the set of nodes that has at lease one
incoming edges is the union efands.

Predicategraph X is defined in terms of predicat&delist.
X points to an adjacency list representation of a graphpbints
to anodelist and all the edges point to valid graph nodes<é
B). This last constraints guarantees that one cannot reawling
pointers while traversing the graph.

Graph Operations. We have coded and verified the most impor-
tant operations on graphs, including insertion and dedetfdboth
nodes and edges. Space constraints prevent us from prestrgi
complete examples here. However, we will remark that thetmos
interesting operation is node deletion, since nodes mayhequl

to by arbitrarily many edges. Properly deleting a node megirst
that all edges pointing to it are deleted. When no edges remai
the node n to be deleted appears inmséut not sets of a valid
(nodelist X A B) predicate. This fact provides sufficient informa-
tion that one can then delete the node and reform the grapfi; co
dent it contains no dangling pointers. The type system wesrifiis
last step of the algorithm is indeed correct. Alternatiyéfiypro-
grammers attempt to delete a node while edges remain pgintin
to it, they will find it impossible to convince the system tliae
remaining data structure satisfies the definition of a gréppar-
ticular, the set constraint on line 11 of Figure 18 ,<= A) will fail.

6. Related Work

Several researchers have used declarative specificafioomplex
data structures to generate code and implement patterchimgt
operations. For example, Klarlund and Schwartzbach used 2n
order monadic logic to describgraph typesa generalization of
ML-style data types [13]. Similarly, Fradet and Le Métagevel-
opedshape type$5] by using context-free graph grammars. Both
of these works were highly inspirational to us. However,cspa
reserved for one of Klarlund’s graph types can not be reused i
construction of another type, nor can graph types be ded#dc
Fradet's shape types, while interesting, did not come widca-

ity for expressing relations between different shapeslamm our
axioms, and consequently it appears that they cannot becffeed
tively inside while loops or other looping constructs. Rerh more
important than the differences in expressive power, is dloe that
our language has the promise of synergy with new verificagéoh-
nigues based on substructural logics and with modern tygtess
for resource control, including those in Vault [3] and Cyw&q7, 9].
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More generally, there are many, many different varieties of
static analysis aimed at verifying programs that manigufatint-
ers. Some of them use logical techniques and some of themtdo no
These analysis range from standard alias analysis to datafial-
ysis to abstract interpretation to model checking to shayadyais
(see Sagiv et al.'s work [21], for example). We distinguisihselves
from this large and important volume of work by noting thataee
not verify low-level statements that explicitly derefecerpointers.
Instead, we aim to replace low-level pointer manipulati@hjch
requires verification, with higher-level data structuredfication,
which is “correct by construction.”

As noted in the introduction, we follow in the intellectuabt-
steps of O’Hearn, Reynolds, Yang and others, who have dasdlo
the theory and implementation of separation logic and useal i
verify low-level pointer programs [20, 11, 12]. However, algose
to pursue our research starting with a foundation in linegicl as
opposed to the logic of bunched implications, which undertiep-
aration logic. One motivating factor for doing so was thespree
of readily available linear logic programming language8, [14]
and automated theorem provers [2, 15], which we have used to e
periment with ideas and to implement a prototype for our leug.

The fragment of linear logic that we choose to use as the

base logic to describe shapes has the same no-weakeningand n

contraction properties as the multiplicative fragmentegaration
logic (linear logic and the logic of bunched implicationg]1the
basis for separation logic coincide exactly on this fragthewe
call our logic “linear” since its proof theory uses two corite
(one the linear and one unrestricted) and hence it sharesathe
structure as Girard’'s work [6]. Bunched implications angasa-
tion logic have an additive implication and an additive comtion,
which do not appear in our logic. We can simulate the additive
when they are used to manipulate “pure formulas” (those fierm
las and that do not refer to the heap), but not when they am use
to describe storage (which can be useful to describe ceatiis-
ing patterns). In the future, we plan to explore extendiregsystem
with either linear logic’s additive conjunction or relateiéas found

in linear type systems [23, 3, 22, 25, 8, 16, 26].

7. Conclusion

We have developed a new programming paradigm that uses lin-

ear logical formulas as specifications for defining and maaijng
heap-allocated recursive data structures. A key compaofetfite
new system is an algorithm for heap-shape pattern matctig,
rived in part from an understanding of the operation of liegic
programming languages. To ensure the safety of patterrhingtc
we extended the mode analysis found in many logic programmin
languages to check for dangling pointers. Lastly, we irzttgt
all these new ideas into an imperative programming language
which we have developed a prototype interpreter and typekene
Our new language will facilitate safe construction, detartsion
and deallocation of sophisticated heap-allocated datatsties.
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