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Abstract
In this paper, we propose a new programming paradigm designed to
simplify the process of safely creating, manipulating and disposing
of complex mutable data structures. In our system, programmers
construct data structures by specifying the shapes they want at a
high level of abstraction, using linear logical formulas rather than
low-level pointer operations. Likewise, programmers deconstruct
data structures using a new form of pattern matching, where the
patterns are again drawn from the syntax of linear logic. In order
to ensure that algorithms for construction, inspection anddecon-
struction of heap values are well-defined and safe, we analyze the
programmer’s linear logical specifications using a mode analysis
inspired by similar analysis used in logic programming languages.
This mode analysis is incorporated into a broader type system that
ensures the memory safety of the overall programming language.
We have implemented the language and explored using it to ma-
nipulate a variety of data structures including lists, trees, and an
adjacency list representation of graphs.

1. Introduction
One of the most important and enduring problems in programming
languages research involves verification of programs that construct,
manipulate and dispose of complex heap-allocated data structures.
Any solution to this difficult problem can be used to guarantee
memory safety properties and as a foundation for the verification
of higher-level program properties.

Over the last several years, great progress has been made on
this problem by using substructural logics to specify the shape of
heap-allocated data structures [18, 12, 16]. The key insight is that
these logics can capture aliasing properties in a substantially more
concise notation than is possible in conventional logics. This new
notation makes proofs more compact, and easier to read, write and
understand. One notable example is O’Hearn, Reynolds, Yangand
others’ work on separation logic [18]. These authors specify heap-
shape invariants using a variant of the logic of bunched implications
(BI) [17]. They then include the BI specifications in a Hoare logic
to verify the correctness of low-level pointer programs.

O’Hearn’s process is a highly effective way of verifying existing
pointer programs. However, if one needs to construct new software
with complex data structures, there are opportunities for simpli-
fying and improving the combined programming and verification
process. In particular, writing low-level pointer programs remains
tricky in O’Hearn’s setting. Verifying the data structuresone has
created using separation logic provides strong safety and correct-
ness guarantees at the end of the process, but it does not simplify,
speed up, or prevent initial mistakes in the programming task.

In this paper, we propose a new programming paradigm de-
signed to simplify the combined process of constructing data struc-
tures and verifying that they meet complex shape specifications. We

do so by throwing away the low-level pointer manipulation state-
ments, leaving only the high-level specifications of data structure
shape. So rather than supporting a two-step program-then-verify
paradigm, we support a one-step correct-by-construction process.

More specifically, programmers create data structures by spec-
ifying the shapes they want in linear logic (a very close relative of
O’Hearn’s separation logic).These linear logical formulas are inter-
preted as algorithms that allocate and initialize data structures de-
sired by the programmer. To use data, programmers write pattern-
matching statements, somewhat reminiscent of ML-style case state-
ments, but where the patterns are again formulas in linear logic. An-
other algorithm takes care of matching the linear logical formula
against the available storage. To update data structures, program-
mers simply specify the structure and contents of the new shapes
they desire. The run-time system reuses heap space in a predictable
fashion. Finally, a “free” command allows programmers to deallo-
cate data structures as they would in an imperative languagelike C.
In order to ensure that algorithms for construction, inspection and
deconstruction of heap values are well-defined and memory-safe,
we analyze the programmer’s linear logical specifications using a
mode analysis inspired by similar analysis used in logic programs.
This mode analysis is incorporated into a broader type system that
ensures the safety of the overall programming language.

In summary, this paper makes the following contributions:

1. It develops novel algorithms used at run time to interpretlinear
logical formulas as programs to allocate and manipulate com-
plex data structures.

2. It develops a new mode analysis for linear logical formulas
that helps guarantee these algorithms are safe – they do not
dereference dangling pointers.

3. It shows how to incorporate these run-time algorithms andstatic
analysis into a safe imperative programming language.

4. All of the examples in this paper and more, have been imple-
mented and verified by the system.

Overall, the result is a new programming paradigm in which lin-
ear logical specifications, rather than low-level pointer operations,
drive safe construction and manipulation of sophisticatedheap-
allocated data structures.

The rest of the paper is organized as follows: In Section 2 we
give an informal overview of our system, show how to define the
shape invariants of recursive data structures using linearlogic, and
explain the basic language constructs that construct and deconstruct
heap shapes. Next, in Section 3, we delve into the details of the
algorithmic interpretations of the logical definitions forheap shapes
and the mode analysis for preventing illegal memory operations.
In Section 4, we introduce the formal syntax, semantics, andthe
type system for the overall language. In Section 5, we illustrate
the extent of the language’s expressive power by explaininghow to
define adjacency list representation of graphs. Finally, wediscuss
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related work. Space constraints only allow us to sketch the main
ideas involved in defining the formal semantics.

2. System Overview
The main idea behind our system is to give programmers the power
of using linear logic to define and manipulate recursive datastruc-
tures. In this section, first, we introduce the program heap and the
basic describing formulas of the heap. Then, we explain how to de-
fine recursive data structures using linear logic. Next, we show how
to use the logical definitions to manipulate data structuresin our
language. Finally, we informally explain the invariants that keep
our system memory safe.

2.1 The Heap

H
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Figure 1. Memory containing a
linked list.

The program heap is
a finite partial map
from locations to tu-
ples of integers. Lo-
cations are themselves
integers, and 0 is the
special NULL pointer.
Every tuple consists
of a header word followed by some data. The header word stores
the size (number of elements) of the rest of the tuple. We often
use the wordheapletto refer to a fragment of a larger heap. Two
heaplets aredisjoint if their domains have no locations in common.

As a simple example, consider the heapH in Figure 1, which
we will refer to throughout this section. It is composed of three
disjoint heaplets:H1, H2, andH3. HeapH1 maps location100 to
tuple (2, 3, 200), where the integer2 in the first field of the tuple
indicates the size of the rest of the tuple.

We usedom(H) to denote the set of locations inH, and ¯dom(H)
to denote the set of starting locations of each tuple inH. We write
H(l) to represent the value stored in locationl, and H̄(l) to repre-
sent to tuple stored at locationl. For example, forH in Figure 1,

¯dom(H) = {100, 200, 300}, and H̄1(100) = (3, 200). We use
H1 ⊎ H2 to denote the union of two disjoint heapletsH1 and H2.
It is undefined ifH1 andH2 are not disjoint.

2.2 Basic Descriptions

Programmers describe heaps and heaplets using a collectionof
domain-specific predicates together with formulas drawn from lin-
ear logic. In order to describe individual tuples, programmers use
the predicatenode x T, wherex is the starting address andT is
the tuple contents. For example,(node 100 (3, 200)) describes
heapletH1. To describe larger structures, programmers use a multi-
plicative conjunction (identical to separation logic’s multiplicative
conjunction “∗”) written “,” . Formula (F1, F2) describes a heap
composed of two disjoint heapletsH1 andH2 such thatH1 can be
described byF1, andH2 can be described byF2. For example, heap
H can be described by(node 100 (3, 200), node 200 (5, 300),

node 300 (7, 0)). Programmers use additive disjunction, written
“;”, to combine multiple possible descriptions. Formula (F1; F2) de-
scribes a heap that can be described by eitherF1 or F2. Program-
mers may also describe finer-grained properties of their data struc-
tures using integer inequality and set constraints.

In addition to using these primitive descriptions, programmers
can create new definitions to describe shapes. In the next section,
for instance, we will show how to define lists, queues and trees.

2.3 Logical Shape Signatures

A logical shape signatureis a set of definitions that collectively de-
fines algorithms for run-time manipulation of complex data struc-
tures and proof rules for compile-time checking. Each shapesig-
nature contains three basic elements:inductive definitions, which

define shape structure and run-time algorithms;axioms, which give
relations between shapes and are used during compile-time type
checking; andtype and mode declarations, which constrain the
kinds of inductive definitions allowed so as to ensure the cor-
responding run-time algorithms are both memory-safe and well-
defined. In the following subsections we explain each part ofthe
signature in turn.

Inductive Definitions. In order to define the basic shapes of data
structures, we borrow technology and notation from the fieldof
linear logic programming [10, 14]. The inductive definitions are
written down as a series of clauses that mimic a linear logic pro-
gram. Each clause is composed of a head (a predicate such aslist
X), followed by the inverted linear implication “o-,” followed by
the body of the clause (a basic description that references the head
or other newly defined predicates). Free variables appearing in the
head may be viewed as universal parameters to the definition;free
variables appearing in the body are existentially quantified. Defini-
tions are terminated with a period.

As an example, consider defining a null-terminated non-circular
singly linked list starting from addressX. The principal clause for
list X is given by the following statement:

list X o- (X = 0); (node X (D, Y), list Y).

The body is the additive disjunction of two cases. The first case says
that0 is a list pointer; the second one says that X is a list pointer
if it points to a pair of values D and Y such that Y is a list pointer.
Notice that the head and the tail of the list are separated by “,”, and
therefore, they are two disjoint pieces of the heap. This constraint
guarantees the list will be non-circular.

A closely related definition,listseg X Y, can be used both
to reason about lists and to help us define another data structure,
the queue. The definition forlistseg X Y describes a non-circular
singly linked list segment starting from location X and ending at Y.

listseg X Y o- (X=Y); (not (X=Y), node X (D, Z), listseg Z Y).

The base case states thatlistseg X X is always true; the second
case states that ifX points to a pair of valuesD and Z such that
betweenZ andY is a list segment, then betweenX andY is also a list
segment. The inequality ofX andY together with the disjointness
of the head and tail of the list segment guarantees non-circularity.

The next example uses thelistseg predicate to define a queue.

queue X Y o- ((X = 0), (Y = 0)); (listseg X Y, node Y (D,0)).

The predicatequeue X Y describes a queue whose head isX and tail
is Y. In the clause above, the first case describes the situation when
the queue is empty and both the head and tail pointers are 0. The
second case describes the situation in which there is at least one
element in the queue (pointed to byY). Between the head and the
tail of the queue is alistseg. For example, the heapH in Figure 1
can be viewed as a queue whose head pointer is $s (i.e., location
100), and tail pointer is $x (i.e., location 300).

We can define tree-shaped data similarly. As an example, con-
sider the following binary tree definition.

btree X o- (X = 0); (node X (D, L, R), btree L, btree R).

Axioms. Each shape signature can contain many inductive defi-
nitions. For instance, thelistshape signature we will be using as
a running example through this paper will contain both the defini-
tions of list andlistseg. In order to allow the system to rea-
son about the relationships between these various definitions, the
programmer must write down additional clauses, which we call ax-
ioms. For example, the following axiom relateslist to listseg.

list Y o- listseg Y Z, list Z.

Without this axiom, the type system cannot prove that one complete
shape, such as(listseg x y, list y), is related to another (list
x). While the syntax of axioms is very similar to that for inductive
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definitions, the axioms are used for compile time reasoning only,
not generation of algorithms for construction and deconstruction
of data structures. Hence, the form that axioms can take is slightly
more liberal than that of inductive definitions.

Type and Mode Declarations. All predicates are given both types
and modes. The purpose of the types is to constrain the sorts of data
(e.g.,either pointers or integers) that may appear in particular fields
of a data structure. The purpose of the modes is to ensure thatthe
heap-shape pattern-matching algorithm is safe and efficient.

To understand the purpose of mode declarations and mode
analysis, consider the problem of matching the predicatenode X

(77,34) against the contents of some heapH. Logically, the goal
of the matching algorithm is to find an addressl such that̄H(l)
= (77,34). However, without any additional information, it would
seem the only possible algorithm would involve examining the con-
tents of every address in the entire heapH until one that satisfies
the constraint is found. But of course, in general, attempting to use
such an algorithm in practice is hopelessly inefficient.

On the other hand, suppose we are given a specific addressl’
and we would like to match the formula (node l’ (D,X), node X

(77,34)) against some heapH. We can simply look upl’ in H to
determine values forD andX. The value ofX is subsequently used to
determine whether̄H(X)=(77,34). We also need to ensure the value
of X is not equal to l’ (otherwise the linearity constraint thatl’ and
X point to disjoint heaplets would be violated).

When a value such asl’ or X is known, it is referred to as
ground. Mode declarationsspecify, among other things, expecta-
tions concerning which variables are ground in which positions.
Finally,mode analysisis a syntactic analysis, much like type check-
ing, that can determine whether the mode declarations are correct.

In our system, the modes for specifying groundness conditions
are the standard ones found in many logic programming languages.
In particular, the input mode (+) specifies that a term in that position
must be ground before evaluation of the predicate. The output
mode (-) specifies the term in that position must be ground term
after the predicate is evaluated. The last mode (*) indicates we
do not care about this position. Now, to guarantee it is possible
to evaluate the predicatenode X (...) in constant time, we give
the first position (X) the input mode (+). Once the first argument of
thenode predicate has been constrained to have input mode, other
definitions that use it are constrained in turn. For example,the first
arguments oflist X andqueue X Y must also be inputs.

Ensuring pointers are ground before lookup provides a guaran-
tee that lookup will occur in constant time. However, it doesnot
guarantee that the pointer in question points to a valid heapobject.
For example, when the matching algorithm attempts to match pred-
icatenode l (...) against a heapH, l is not necessarily a valid
address in H. A second component of our mode analysis charac-
terizes pointers as eithersf (definitely not dangling) orunsf (pos-
sibly dangling) orunsf sf (possibly dangling before evaluation of
the predicate, but definitely not dangling if the predicate is success-
fully evaluated), and thereby helps guarantee the matchingalgo-
rithm does not go wrong. The last safety mode (unsf sf) is used
when the evaluation of the predicate has allowed us to learn that a
particular pointer is safe.

The complete mode for arguments of pointer type is a pair
(g, s), whereg describes the argument’s groundness property, and
s describe its safety property. Integers are not dereferenced and
hence their modes consist only of the groundness conditiong.

As an example, the combined type and mode declaration for
lists follows. It states that the list predicate must be supplied with a
single ground, non-dangling pointer argument.

list : (+,sf) ptr(node) -> o.

listshape {
struct node : (+,sf) ptr(node) -> (- int, (-,sf) ptr(node))-> o.
listshape : (+,sf) ptr(node) -> o.

list : (+,sf) ptr(node) -> o.
listseg : (+,sf) ptr(node) -> (+,unsfsf) ptr(node) -> o.

listshape X o- list X.

list X o- (X = 0); (node X (D,Y), list Y).
listseg X Y o- (X = Y); not(X = Z), node X (D,Y), listseg Y Z.
with

list Y o- listseg Y Z, list Z.}

Figure 2. Singly Linked List Shape Signature

Putting the Declarations Together. Figure 2 is the full shape
signature forlistshape. The first definition gives the structure of
the tuples that are to be allocated in memory (the “struct” keyword
is used to indicate thatnode predicate will be realized as a concrete
piece of data). We also call these predicates “struct” predicates.
This definition and the next three define the modes for the inductive
definitions. The next three are inductive definitions used tocreate
data structures. The last definition (separated from the others using
the keyword “with”) gives an axiom for relating lists and listsegs.

2.4 The Programming Language

In this section we explain how to incorporate the logical definitions
of data structures into a safe, imperative programming language.

2.4.1 Basic Language Structure

A program is composed of a collection of shape signatures and
function definitions. Program execution begins with the distin-
guished “main” function. Within each function, programmers de-
clare, initialize, use and update local imperative variables (also re-
ferred to as “stack variables”). Each such variable is givena basic
type, which may be an integer type (int), a shape type, or a pointer
type. The shape types, such aslistshape, are named by the shape
signatures. The pointer types, such asptr(node), specify the spe-
cific kind of tuple a pointer points to. In order to distinguish the
logical namesX, Y, Z, etc. introduced via logical pattern matching,
from the imperative variables, we precede the names of imperative
variables with a$ sign. We use$s to range over shape variables and
$x to range over integer or pointer variables.

2.4.2 Operations on Shapes

As discussed earlier, formulas describing the heap serve both to
help programmers create new shapes and to deconstruct, or disas-
semble, existing shapes.

Creating Shapes. Creating data structures with certain shapes is
done using the shape assignment statement as shown below.

$s:listshape := {a1, a2, a3}[root a1, node a1 (3, a2),
node a2 (5, a3), node a3 (7, 0)]

The right-hand side of a shape assignment describes the shape to
be created and the left-hand side specifies the imperative shape
variable to be assigned. In this case, we will assume the shape
variable$s haslistshape type (see Figure 2).

Variablesa1, a2, anda3 in the braces indicate the new tuples
to be allocated on the heap to make the formula in braces a valid
listshape. The size of each tuple is determined by examining
the type declaration of thenode predicate inlistshape signature.
Each variable is subsequently bound to the address of the corre-
sponding tuple.

Once space has been allocated, the integer data fields are ini-
tialized with the values appearing in the shape description. Finally,
the location specified by theroot predicate is stored into the shape
variable$s. This specialroot predicate indicates the starting ad-
dress of this shape and must always appear in all shape descriptions.
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Deconstructing Shapes and Reusing Deconstructed Shapes.To
deconstruct a shape, we use a pattern-matching notation. For exam-
ple, to deconstruct the list contained in the imperative variable$s,
we might use the following pattern:

$s:[root r, node r (d, next), list next]

This pattern, when matched against the heaplet reachable from $s,
may succeed and bindr, next andd to values, or it may fail. If
it succeeds,r will be bound to the pointer stored in$s, d will be
bound to integer data from the first cell of the list, andnext will be
bound to a pointer to the next element in the list.

Pattern matching does not deallocate data. Consequently, it is
somewhat similar to the unrolling of a recursive ML-style datatype,
during which we change our view of the heap from an abstract
shape (e.g.,alistshape), to a more descriptive one (e.g.,a pointer
to a pair of valuesd and next, wherenext points in turn to a
list). More formally, the unrolling corresponds to revealing that the
heaplet in question satisfies the following elaborate formula:

∃r.∃d.∃next.(root r, node r (d, next), list next)

Pattern matching occurs in the context of branching statements
in our language. Here is an example of an if statement.

if $s:[root r, node r (d, next), list next]
then {free r; $s := [root next, list next]}
else print ‘‘list is empty’’

In evaluating the if statement, first we evaluate shape pattern. If the
pattern match succeeds, then a substitution for the bound variables
is returned, the substitution is applied on the true branch,and
evaluation of the true branch continues. If the pattern matching
fails, then the false branch is taken. The variables in the shape
pattern are not in scope in the false branch. Suppose$s points to
the first tuple in the heapH displayed in Figure 1. When the shape
pattern is evaluated,r will be bound to 100,d will be bound to 3,
andnext will be bound to 200. The execution will proceed with
evaluation of the true branch, where we free the first tuple ofthe
list, then reconstruct a list using the rest of the old list. The predicate
root next specifies the root of this new shape. Operationally, the
run-time value ofnext, 200, is stored in the variable$s.

2.5 An Example Program

1 listshape delete(listshape $s, int $k){
2 ptr(node) $pre := 0;

3 ptr(node) $p := 0;
4 if $s?[root x, list x]
5 then {$pre := x; $p := x}
6 else skip;
7 while ($s?[root x, listseg x $p,

8 node $p (key, next), list next,
9 not($k = key) ])

10 do {$pre := $p; $p := next};
11 switch $s of
12 :[root x, y = $p, node x (d, nxt), list nxt, d = $k ]

13 -> {free x; $s:listshape := [root nxt, list nxt]}
14 |:[root x, y = $pre, z = $p, listseg x y,

15 node y (dy, z), node z (dz, next), list next, dz = $k]
16 ->{free z;
17 $s:listshape :=

18 [root x, listseg x y, node y (dy, next), list next]
19 | -> skip;

20 return $s; }

Figure 3. list delete

As an example of our language in action, consider the function
delete, which removes an integer from a list. The first argument of
delete, $s, haslistshape type and holds the starting address
of the list. The second argument,$k, is the integer to be deleted.
The algorithm uses pointer$p to traverse the list until it reaches

the end of the list or the data under$p is equal to the key$k to
be deleted. A second pointer$pre points to the parent of$p. The
if statement between line 4 and 6 initializes both$p and$pre to
point to the head of the list. The while loop between lines 7 and 10
walks down the list maintaining the invariant expressed in the while
condition in each iteration of the loop. This invariant states that (1)
the initial part of the list is alistseg ending with pointer$p, (2)
$p points to a node that contains a key and a next pointer, (3) the
next pointer itself points to a list and (4)key is not the key. When
either condition (2) or (4) is falsified, control breaks out of the loop
(conditions (1) and (3) cannot be falsified). The switch statement
between line 11 and 19 deletes the node from the list (if a node
has been found). The first branch in the switch statement covers the
case when the node to be deleted is the head of the list; the second
branch covers the case when the node to be deleted is pointed to by
$p; the last (default) branch covers the case when$k is not present
in the list.

2.6 What Could Go Wrong

Adopting a low-level view of the heap and using linear logic to de-
scribe recursive data structure gives our language tremendous ex-
pressive power. However, the expressiveness calls for an equally
powerful type system to deliver memory-safety guarantees.We
have already mentioned some of the elements of this type system,
including mode checking for logical declarations, and the use of in-
ductive definitions and axioms to prove data structures havethe ap-
propriate shapes. In this section, we summarize several keyproper-
ties of the programming language’s overall type system, what could
go wrong if these properties are missing, and what mechanisms we
use to provide the appropriate guarantees.

Safety of Deallocation. Uncontrolled deallocation can lead to
double freeing and dereferencing dangling pointers. We must make
sure programmers do not use the deallocation command too soon
or too often. To provide this guarantee, our type system keeps
track of and describes (via linear logical formulas) the accessible
heap, in much the same way as O’Hearn’s separation logic or
its closely related type systems [24, 25, 4, 1, 26]. In all cases,
linearity constraints separate the description of one datastructure
from another to make sure that the effect of deconstruction and
reconstruction of shapes is accurately represented.

Safety of Dereferencing Pointers.Pointers are dereferenced
when a shape pattern-matching statement is evaluated. The algo-
rithm could potentially dereference dangling pointers by querying
ill-formed shape formulas. Consider the following pattern:

$s: [root r, node 12 (d, 0), node r (dr, 12)]

Here there is no reason to believe “12” is a valid pointer. Pred-
icate mode and type checking prevents programmers from writing
such ill-formed statements.

Termination for Heap Shape Pattern Matching As we saw in the
examples, the operational semantics invokes the pattern-matching
procedure to check if the current program heap satisfies certain
shape formulas. It is crucial to have an efficient and tractable al-
gorithm for the pattern-matching procedure. In our system,this
pattern-matching procedure is generated from the inductive defini-
tions in the logic signature, and uses a bottom-up, depth-first algo-
rithm. However, if the programmer defines a predicateQ asQ X o-

Q X, then the decision procedure will never terminate. To guarantee
termination, we place a well-formedness restriction on theinduc-
tive definitions that ensures a linear resource is consumed before
the decision procedure calls itself recursively. Our restriction rules
out the bad definition ofQ and others like it.
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Term tm : : = x | n | −tm | tm + tm

Arith Pred Pa : : = tm = tm | tm > tm
Arith Formula A : : = Pa | not Pa

User-Defined Pred Pu : : = P tm
Literals L : : = A | Ps tm (tm) | Pu
Formulas F : : = emp | L, F
Inductive Def / Axiom I/Ax : : = (Pu o− F)
Groundness g : : = + | − | ∗
Safety Qualifier s : : = sf | unsf | unsf sf
Mode m : : = g | (g, s)
Arg Type argtp : : = g int | (g, s) ptr(P)
Pred Type pt : : = o | argtp → pt | (argtp) → pt
Pred Type Decl pdecl : : = P : pt | struct Ps : pt

Shape Signature SS : : = P{ pdecl. (P x o− F). I. Ax}

Pred Typing Ctx Ξ : : = · | Ξ, P:pt
SS Context Λ : : = · | Λ, P:Ξ
Logical Rules Ctx Υ : : = · | Υ, I | Υ, Ax

Figure 4. Syntax of Logical Constructs

2.7 Three Additional Caveats

For the system as a whole to function properly, programmers are
required to check the following three properties themselves.

Closed Shapes. A closed shape is a shape from which no dan-
gling pointers are reachable. For example, lists, queues and trees
are all closed shapes. On the other hand, thelistseg definition
given earlier is not closed—if one traverses a heaplet described
by alistseg, the traversal may end at a dangling pointer. Shape
signatures may contain inductive definitions likelistseg, but the
top-level shape they define must be closed. If it is, then all data
structures assigned to shape variables$s will also be closed and all
pattern-matching operations will operate over closed shapes. This
additional invariant is required to ensure shape pattern matching
does not dereference dangling pointers.

Soundness of Axioms. For our proof system to be sound with
regard to the semantics, the programmer-defined axioms mustbe
sound with respect to the semantics generated by the inductive
definitions. As in separation logic, checking properties ofdifferent
data structures requires different axioms and programmersmust
satisfy themselves of the soundness of the axioms they writedown
and use. We have proven the soundness of all the axioms that appear
in this paper (and axioms relating to other shapes not in the paper).

Uniqueness of Shape Matching. Given any program heap and a
shape predicate with a known root location, at most one heaplet
should match the predicate. For example, given the heapH in
Figure 1, predicatelist 200 describes exactly the portion of
H that is reachable from location 200, ending inNULL (H2, H3).
Without this property, the operational semantics would be non-
deterministic. Programmers must verify this property themselves
by hand. Once again, it holds for all shapes described in thispaper.

These requirements are not surprising. For instance, separation
logic’s specialized axioms concerning lists and trees mustbe veri-
fied separately as well. The requirement concerning uniqueness of
shapes are very similar to theprecise predicatesused in the work on
separation and information hiding [19]. These requirements could
well be the common invariants substructural logical systems should
have when used in program verification.

3. Logical Shape Signatures: Formal Semantics
3.1 Syntax

The syntactic constructs of our logic are listed in Figure 4.Through-
out the paper we use the overbar notationx to denote a vector of
objectsx. We usetm to range over terms. Arithmetic formulas

include arithmetic predicates, which are the equality and partial
order of terms, and their negations. We usePs to range over all
the “struct” predicates such asnode, P to range over user-defined
predicate names such aslist, andPu to range over fully applied
user-defined predicates. A literalL can be either an arithmetic for-
mula or a state predicate or a user-defined predicate. We useF to
range over formulas which are eitheremp (the empty heap) or the
conjunction of a literal and another formula.

The head of a clause is a user-defined predicate and the body is
a formula. For the ease of type checking, we gather the bodiesof
the same predicate into one definitionI. The notationF means the
additive disjunction of all theFi in F. Axioms are also clauses.

A simple argument type is a mode followed by the type of
the argument. Argument types for predicate can either be simple
argument types or a tuple of the simple argument types. A fully
applied predicate has typeo (a standard way of writing the type of
logical formulas).

ContextΞ contains all the predicate type declarations in one
shape signature. ContextΛ maps each shape name to a contextΞ.
Lastly, contextΥ contains all the inductive definitions and axioms
defined in the program.

3.2 Store Semantics

We useH �
Υ F to mean that heapH can be described by formulaF,

under the inductive definitions inΥ. SinceΥ is fixed throughout,
we omit it from the judgments. We use the notationΥ(P) to denote
the inductive definitions forP. We present the formal definition of
the store semantics of our logic in Figure 5. An arithmetic formula
A is valid if the heap is empty andA is valid. HeapH satisfiesPs v

(v1...vn), if the domain ofH contains exactly then+1 consecutive
locations starting fromv, and the first location ofH stores the size of
the tuple, and valuesv1 throughvn match the contents of the heap.
To give a properly inductive semantics to user-defined predicates,
we index the predicates with a natural numbern. The semantics of
an unrolling of an inductive definition depends on predicates with
a strictly smaller index.

3.3 Logical Deduction

Type checking requires reasoning in linear logic with the induc-
tive definitions and axioms the user has defined. A formal logical
deduction in our system has the form:Γ; ∆ =⇒ F. Γ is the unre-
stricted context (hypotheses may be used any number of times) and
∆ is the linear context (hypothesis can be used exactly once).Ini-
tially, Γ will be populated by the inductive definitions and axioms
from the shape signatures.

We have proved that our logical deduction system is sound with
respect to the semantics modulo the soundness of axioms.

Lemma 1 (Soundness of Logical Deduction)
Assume the user-defined axioms (ΥA) are sound with respect to the store
semantics defined by (ΥI ), andΥ = ΥI , ΥA andΥ; ∆ =⇒ F, andσ is a

• H � emp iff H = ∅.
• H � A iff H = ∅, andA is a valid arithmetic formula.
• H � Ps v (v1, · · · , vn) iff v 6= 0, dom(H) = {v, v + 1, · · · v + n},

H(v) = n, and for alli ∈ [1, n], H(v + i) = vi.
• H � F1, F2 iff H = H1 ⊎ H2, such thatH1 � F1, andH2 � F2.
• H � F1; F2 iff H � F1 or H � F2.
• H � P v iff ∃n st.H � Pn v
• H � P0 v iff Υ(P) = P x o- F, and∃i st. H � Fi [ v / x ], and∄P ∈

dom(Fi). where the free variables inFi are considered existentially quantified.
• H � Pn v iff Υ(P) = P x o- F, and∃i st.H � Fi [ v / x ] andn − 1 is the

maximum of the index number inFi.

Figure 5. Selected Rules of the Semantics for Formulas
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Π ⊢ F : Π′

mode(P) = (+, sf) → o
x:sf ∈ Π

Π ⊢ P x : Π
mode-1

mode(P) = (+, unsf) → o
x:s ∈ Π

Π ⊢ P x : Π
mode-3

mode(P) = (−, sf) → o

Π ⊢ P x : Π∪̄(x:sf)
mode-2

mode(P) = (−, unsf) → o

Π ⊢ P x : Π∪̄(x:unsf)
mode-4

Π ⊢ L : Π′ Π′ ⊢ F : Π′′

Π ⊢ L, F : Π′′
mode-5

⊢ P x o− OK

mode(P) = (+, sf) → o

x:sf ⊢ F : (x:sf), Π

⊢ P x o- F : OK
mode-6

mode(P) = (+, unsf) → o

x:unsf ⊢ F : (x:s),Π

⊢ P x o- F : OK
mode-7

mode(P) = (+, unsf sf) → o x:unsf ⊢ F : (x:sf), Π

⊢ P x o- F : OK
mode-8

mode(P) = (−, sf) → o
⊢ F : (x:sf), Π

⊢ P x o- F : OK
mode-9

mode(P) = (−, unsf) → o
⊢ F : (x:s), Π

⊢ P x o- F : OK
mode-10

Figure 6. Selected and Simplified Mode Analysis Rules

grounding substitution for free variables in the judgment,andH �
ΥI σ(∆),

thenH �ΥI F.

3.4 Pattern-Matching Algorithm

The pattern-matching algorithm (MP) determines if a given program
heap satisfies a formula. We implementMP using an algorithm
similar to Prolog’s depth-first, bottom-up proof search strategy.
When a user-defined predicate is queried, we try all the clause
bodies defined for this predicate. In evaluating a clause body, we
evaluate the formulas in the body in left-to-right order as they
appear.MP takes four arguments: the heapH, a set of locationsS
that are not usable, a formulaF, and a substitutionσ for a subset of
the free variables inF. It either succeeds and returns a substitution
for all the free variables inF, and the locations used in provingF, or
fails and returnsNO. The set of locations is used to handle linearity
and make sure that no piece of the heap is used twice.

For the rest of this section, we will explain the mechanisms that
guarantee the termination, correctness, and the memory safety of
the pattern-matching algorithm.

3.4.1 Termination Restriction

In order forMP to terminate, we require that some linear resources
are consumed when we evaluate the clause body so that the usable
heap gets smaller when we callMP on the user-defined predicates
in the body. More specifically, in the inductive definitions for pred-
icateP, there has to be at least one clause body that contains only
arithmetic formulas and struct predicates, and for clauseswhose
body contains user-defined predicates, there has to be at least one
struct predicate that precedes the first user-defined predicate in the
body. We statically check these restrictions at compile time.

3.4.2 Mode Analysis

Our mode analysis serves two important purposes: (1) it ensures
MP knows the addresses of data structures it must traverse (i.e.,
those addresses are ground when they need be), and (2) it ensures
these addresses are safe to dereference. In this section, wepresent
selected and simplified rules for the analysis. In particular, we focus
on defining two judgments. The first⊢ P x o− FOK affirms that
the inductive definition (P x o− F) is well-moded, satisfying both

properties (1) and (2) above.1 The second judgment checks the
body of a definition in a contextΠ, that maps variables to their
safety modess. This second judgment has the formΠ ⊢ F : Π′ and
affirms thatF is well-moded provided that variables in the domain
of Π are ground (i.e., will be instantiated and available at run time)
and satisfy their associated safety mode. The output context Π′

contains the variables that will be ground after the execution of
F. Both judgments are parameterized by a functionmode that maps
each user-defined predicateP to its declared mode. The rules also
use the notationΠ∪̄(x:s) to denoteΠ′ such thatΠ′(y) = Π(y)
wheny 6= x, andΠ′(y) = s′ wheny = x wheres′ is thestronger
of s andΠ(x). The modesf is stronger than the modeunsf.

Selected rules from both judgments appear in Figure 6. To un-
derstand the difference between predicates with+ and− modes,
compare rulesmode-1and mode-2. In rule mode-1, predicateP
has+ mode and hence its argument must be in the input context
Π, meaning the argument will have been instantiated and avail-
able when execution of MP reaches this point. In contrast, inrule
mode-2, x need not be in the input contextΠ, but is added to
the output context. Now to understand propagation of safetycon-
straints, compare rulesmode-1and mode-3. In rule mode-3, x:s
must be inΠ sinceP still has groundness mode+, but sinceP’s
safety mode isunsf, s is unconstrained – it may either be ofsf
or unsf. A predicateP that compared its argument to another
value but did not dereference it might have the mode shown in rule
mode-3. Rulemode-5shows how mode information is passed left-
to-right from one conjunct in a formula to the next.

3.4.3 Formal Results

We have proven several key facts concerning our mode analysis.
Our first theorem states that MP terminates if the inductive defini-
tions are well-formed. Judgment⊢ I OK checks the termination
constraints correctly.

Theorem 2 (Termination of MP)
If for all I ∈ Υ, ⊢ I OK, thenMPΥ(H; S; F; σ) always terminates.

We have also proven thatMP is complete and correct with regard to
the semantics if all the user-defined predicates are well-formed.

Theorem 3 (Correctness of MP)
If Π ⊢ F : Π′, and∀x ∈ dom(Π). x ∈ dom(σ), andS ⊂ dom(H) then

• eitherMP(H; S; F; σ) = (S′, σ′) andS′ ⊂ dom(H), σ ⊂ σ′, andH′ �

σ′(F), anddom(H′) = (S′ − S), ∀x ∈ dom(Π′). x ∈ dom(σ′),
• Or MP(H; S; F;σ) = NO, and there does not exist a heapH′ which is the

sub-heap ofH minus the locations in the setS, or σ′, σ ⊂ σ′, such that
H′ � σ′(F)

Finally, we have proven the following theorem stating that MP
procedure is memory safe. We say a termtm is well-moded with
respect to contextsΠ, σ, and heapH, if either tm is an integer, or
it is in the domain ofσ, and ifΠ(tm) = sf thenσ(tm) is a valid
pointer on the heapH.

Theorem 4 (Safety of MP)
If for all I ∈ Υ, I is well-moded, complies with the termination constraints,
andP is a closed shape, andH1 � P(l), Π ⊢ F : Π′, and∀tm ∈ dom(Π).
tm is well-moded with respect toΠ, σ andH1 then

• eitherMP(Υ)(H1⊎H2;S; F; σ) = (S′, σ′), andMP is memory safe, and
∀tm ∈ dom(Π′), tm is well-moded with respect toΠ′, σ′ andH1.

• Or MP(Υ)(H1 ⊎ H2; S; F;σ) = NO, andMP is memory safe.

1 For expository purpose, we only explain the rules for predicates with a
single argument. We have proven correct the appropriate generalizations
involving multiple arguments.
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Basic Types t : : = int | ptr(P)
Regular Types τ : : = t | P

Fun Types τf : : = (τ1 × · · · × τn) → P

Vars var : : = $x | x
Exprs e : : = var | n | e + e | −e
Args arg : : = e | $s
Shape Forms Shp : : = root v, F
Shape Patterns pat : : = : [Shp] | ?[Shp]
Atoms a : : = A | $s pat
Conj Clauses cc : : = a | cc, cc
Branch b : : = ( pat → stmt)
Branches bs : : = b | b ′|′ bs
Statements stmt : : = skip | stmt1 ; stmt2 | $x := e

| if cc then stmt1 else stmt2
| while cc do stmt

| switch $s of bs | $s := {x:t} [Shp]
| free v | $s := f ( arg )

Fun Bodies fb : : = stmt1 ; fb | return $s
Local Decl ldecl : : = t $x := v | P $s
Fun Decl fdecl : : = P f(x1 : τ1, · · · xn : τn) { ldecl; fb }
Program prog : : = SS; fdecl
Values v : : = x | n | $s

Figure 7. Syntax of Language Constructs

Since the program heap often contains many data structures,Theo-
rem 4 takes the frame property into account:MP is safe on a larger
heap than the one containing the shapeMP is matching. Intuitively,
MP is safe because it only follows pointers reachable from the root
of a “closed shape”. The termination ofMP is crucial since the proof
is done by induction on the depth of the derivation ofMP. If MP
did not terminate, then the induction on the depth of the derivation
would not be well-founded.

4. The Programming Language
In this section, we explain how to embed the mode analysis and
proof system into the type system, and likewise, the pattern-
matching algorithm into the operational semantics, and thereby
integrate the verification technique into the language. After intro-
ducing various syntactic constructs, we define the formal opera-
tional semantics and explain the type system of our language.

4.1 Syntax

A summary of the syntax of our core language is shown in Figure7.
The basic types are the integer type and the pointer type. Functions
take a tuple of arguments and always returns a shape type.

We usex to range over logical variables in formulas,$x to range
over stack variables, and$s to range over shape variables. Shape
variables live on the stack and store the starting address ofdata
structures allocated on the heap. We usee to denote expressions
andarg to denote function arguments which can either be expres-
sions or shape variables. We use a specialroot predicate to indicate
the starting address of the shape. Shape formulasShp are the mul-
tiplicative conjunction of a set of predicates, the first of which is
theroot predicate. A shape patternpat can be either a query pat-
tern (? [Shp]) or a deconstructive pattern (:[Shp]). We have seen the
deconstructive pattern in the examples in Section 2. When weonly
traverse, and read from the heap, but don’t perform updates,we
use the query pattern (? [Shp]). These two patterns are treated the
same operationally, but differently in the type system. Thecondi-
tional expressions in if statements and while loops are composed of
a conjunctive clausecc, which describes the arithmetic constraints
and the shape patterns of one or more disjoint data structures. cc
is the multiplicative conjunction of atomsa, which can either be
arithmetic formulasA, or shape patterns ($s pat).

The statements includeskip, statement sequences, expres-
sion assignments, if statements, while loops, switch statements,

(E; H; stmt) 7−→ (E′; H′; stmt′)
free (E; H; free v) 7−→ (E; H1; skip) whereH = H1 ⊎ H2

andH2(v) = n, dom(H2) = {v, v + 1, · · · , v + n}
assign-shape (E; H; $s:P := {x}[root (v), F])

7−→ (E[$s := v′]; H′; skip)
where(H′, v′) = CreateShape(H, P, {x}[root (v), F])

CreateShape(H, P, {x}(rootn, F)) = (H′, n [ l / x ])
where
1. ki = size(F, xi)
2. (H1, l1) = alloc(H, k1), · · · ,

(Hn, ln) = alloc(Hn−1, kn)
3. F′ = F [ l1 · · · ln / x1 · · · xn ]
4. H′ = H[v + i := vi] for all (node v (v1 · · · vk)) ∈ F′

If-t (E; H; if cc then stmt1 else stmt2) 7−→ (E; H; σ(stmt1))
if J cc KE = (F, σ′) andMP(H; F; ∅; σ′) = (SL;σ)

If-f (E; H; if cc then stmt1 else stmt2) 7−→ (E; H; stmt2)
if J cc KE = (F, σ) andMP(H; F; ∅; σ) = NO

while-t (E; H; while cc do stmt)
7−→ (E; H; (σ(stmt1) ; while {x:t} cc do stmt))
if J cc KE = (F, σ′) andMP(H; F; ∅; σ′) = (SL;σ)

while-f (E; H; while cc do stmt) 7−→ (E; H; skip)
if J cc KE = (F, σ) andMP(H; F; ∅; σ) = NO

Figure 8. Selected Operational Semantics

shape assignments, free, and function calls. The switch statement
branches on a shape variable against shape patterns.

A function body is a statement followed by a return instruction.
A program consists of shape signatures and a list of functiondec-
larations. Lastly, the values in our language are integers,variables,
and shape variables.

4.2 Operational Semantics

In this section, we define the operational semantics of our language.
Most rules are straightforward. We focus on explaining the inter-
esting ones that dereference the heap using pattern-matching pro-
cedure or update the heap via logical formulas.

The machine state for evaluating statements other than the
function call statement is a tuple:(E;H; stmt). EnvironmentE
maps stack variables to their values.H is the program heap, and
stmt is the statement being evaluated. We write(E; H; stmt) 7−→
(E′; H′; stmt′) to denote the small-step operational semantics for
these statements. Figure 8 is a list of selected rules. We writeE($x)
andE($s) to denote the valueE maps$x and$s to.We writeE(F )
to denote the formula with values substituted for variables.

To deallocate a tuple, programmers supply the free statement
with the starting addressv of that tuple. The heaplet to be freed is
easily identified, since the size of the tuple is stored inv.

The shape assignment statements allow programmers to create
data structures. During the execution of a shape assignmentstate-
ment, the heap is updated according to the shape formulas in the
statement. In the end, the root of the new shape is stored in$s. The
core procedure isCreateShape, which takes as arguments, the cur-
rent heap, the shape nameP, and the shape formula. It returns the
updated heap and the root of the new shape. In order to define this
procedure, we define functionsize(F, x) to be the appropriate size
of the tuplex points to according to the shape formulaF.

When an if statement is evaluated, the pattern-matching proce-
dure is called to check if the conditional expression is true. If MP
succeeds and returns a substitutionσ, we continue with the evalu-
ation of the true branch withσ applied; otherwise, the false branch
is evaluated. Notice that the conditional expressioncc is not in the
form of a logical formula; therefore, we need to convertcc to its
equivalent formulaFcc, before invoking the pattern-matching pro-
cedureMP. We defineJ cc KE to extractFcc and a substitutionσ
from cc. Intuitively, Fcc is the conjunction of all the shape formu-
las with the run-time values substituted for the stack variables and
the root predicate dropped. For example, ifE($s) = 100 and
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cc is ($s : [root r, node r (d, next), list next]) then logic
variabler must be100 as the clause specifies thatr is the “root” the
value of$s. Hence the substitutionσ is {100/r} andFcc is (node

r (d, next), list next). MP is called with the current program
heap, an empty set (all the locations are usable), the formula Fcc,
and the substitutionσ from J cc KE .

The while loop is very similar to the if statement. If the con-
ditional expression is true then the loop body is evaluated and the
loop will be re-entered; otherwise, the loop is exited.

4.3 Type System

As mentioned earlier, our type system is a linear type system. The
contexts in the typing judgments not only keep track of the types of
the variables, but also describe the current status of program state:
what the valid shapes are, and what the structure of the accessible
heap is. The contexts used in the typing judgments are listedbelow.

Variable Ctx Ω : : = · | Ω, var:t
Initialized Stack Variable Ctx Γ : : = · | Γ, $s:P
Uninitialized Shape Variable Ctx Θ : : = · | Θ, $s:P
Heap Ctx ∆ : : = · | ∆, Pu | ∆, Ps

ContextΩ maps variables to their types. BothΓ and Θ map
shape variables to their types. During type checking,Γ specifies
the initialized shape variables, whileΘ specifies the uninitialized
shape variables. Variables inΘ are not currently usable, but may be
initialized later in the program. Context∆ is a set of formulas that
describe the accessible portions of the heap. ContextΓ and∆ de-
scribe the entire program heap. For example, ifΓ = $s:listshape
and∆ = node 400 (11, 0), and the environment isE = $s 7→ 100,
then the current heap must satisfy formula (listshape 100, node

400 (11,0)).
The main judgments in our type system are listed below.

Expression typing Ω ⊢e e : t

Conj Clause typing Ω; Γ ⊢cc cc : (Γ′; Θ; ∆)
Conj Clause Modes checking Π ⊢ cc : Π′

Statement typing Ω; Γ; Θ; ∆ ⊢ stmt : (Γ′; Θ′; ∆′)

Each of these judgments are also implicitly indexed by the con-
texts for shape signaturesΛ, axiomsΥ, and function type bindings
Φ. We leave these contexts implicit as they are invariant through
the type checking process.

Conjunctive Clause Typing. The typing judgment for conjunc-
tive clauses, which is used in type checking if statements and while
loops, has the formΩ; Γ ⊢cc cc : (Γ′; Θ;∆). The interesting rule is
whencc is a deconstructive shape pattern.

Γ = Γ′, $s:P, Υ; FA, F =⇒ P(y) FV(F) ∩ Ω$s = ∅

Ω; Γ ⊢ $s : [root y, FA, F] : (Γ′; $s:P; F)

Here, shape variable$s is deconstructed by shape pattern(root y, FA, F),
whereFA is the arithmetic formulas. If pattern matching succeeds,
then there exists some substitutionσ such that the heaplet pointed
to by $s can be described byσ(FA, F). Therefore, in the postcon-
dition, F appears in the∆ context providing describing formulas to
access the heap$s points to; shape variable$s becomes uninitial-
ized, and the type binding of$s is in theΘ context. The condition
that no stack variables appear free inF ensures that the formulas
are valid descriptions of the heap regardless of imperativevariable
assignments. Finally, the logical derivation checks that the shape
formulas entails the desired shape. By the soundness of logical de-
duction, we know that any heapletH matched by the shape formula
also satisfiesP v, wherev is the run-time value of$s.

Conjunctive Clause Mode CheckingAt run time, MP is called
on the conjunctive clausescc. So we have to apply mode analysis
on cc to ensure the memory safety ofMP. The mode checking
for cc uses the mode checking for formulas and treatscc as the
multiplicative conjunction of the formulas in each atom incc.

As an example, the rule for checking the deconstructive pattern is
shown below.

Π∪̄{x:sf} ⊢ F : Π′

Π ⊢ $s : [rootx, F] : Π′

Since$s points to a valid shape, its root pointer is a valid pointer.
Therefore the argument of theroot predicate is added as a safe
pointer argument in the ground contextΠ while checking the for-
mula in the shape pattern.

Statement Type Checking.The typing judgment for statements
has the formΩ; Γ;Θ;∆ ⊢ stmt : (Γ′; Θ′;∆′). A selected set of
typing rules is listed in Figure 9.

The rule for if statements first infers the types of the free vari-
ables (we omit the definition of infer but it is straight-forward).
Then we type check the conjunctive clausecc. The true branch is
taken whencc is proven to be true, and at that point the describ-
ing formulas from examiningcc are proven to be valid; hence the
true branch is checked under the new state resulting from checking
cc. The false branch is checked under the original state. The end of
the if statement is a program merge point, so the true and the false
branch lead to the same state. The mode checking ofcc guarantees
that whenMP is called oncc it won’t access dangling pointers. The
initial Π context contains groundness and safety properties of the
arguments whencc is evaluated, and it depends on the variable con-
text Ω. Before evaluating a statement, the run-time values should
already have been substituted for the bound variables. Therefore,
all the variables inΩ are ground before we evaluatecc. We have
no information on the validity of the pointer variables, so they are
considered unsafe.ground(Ω) is defined below.
ground(Ω) = {var |Ω(var) = int} ∪ {(var:unsf) |Ω(var) = ptr(P)}

Since the only safe pointers we assume before evaluatingcc are
the root pointers of valid shapes, the memory safety ofMP when
evaluatingcc is guaranteed through the safety ofMP (Theorem 4).

While loops are similar to if statements. After type checking the
conjunctive clause, the loop body is checked against the newstates.
The resulting states should be the same as the original states, so that
the loop can be re-entered. This means that the states under which
the while loop is type checked are in effect loop invariants.

The rule for shape assignment first checks that the shape vari-
able$s is uninitialized – this check prevents memory leaks. It does
so by checking that$s belongs toΘ (not Γ). The third premise in
the assignment rule checks that the shape formula entails the shape
of the variable$s. The rest of the premises entail that the union of
the formulas used to construct this shape and the leftover formulas
in ∆′ should be the same as the formulas given at the beginning in
∆ plus the new heaplets allocated. It looks complicated because we
allow multiple updates to the heap during assignment. For example,
if node l (5,0) is available, then we allownode l (10, 0) to
be used in the shape assignment. This means that the heap cellthat
used to contain 5 now contains 10.

The rule for free checks that the location to be freed is among
the accessible portion of the heap. After freeing, the formula de-
scribing the freed heaplet is deleted from the context, and can never
be accessed again.

4.4 Type Safety

The machine state for evaluating function bodies requires an ad-
ditional control stackS, which is a stack of evaluation contexts
waiting for the return of function calls. The typing judgment for
machine state has the form⊢ (Es; H; S; fb)OK. We proved the
following type-safety theorem for our language.

Theorem 5 (Type Safety)
if ⊢ (E; H; S; fb)OK then either(E; H; S; fb) = (•; H; •; halt)
or existsE′, H′, S′, fb′ such that(E; H; S; fb) 7−→ (E′; H′; S′; fb′) and
⊢ (E′; H′;S′; fb′) OK
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Ω′ = infer(cc) Ω′, Ω; Γ ⊢ cc : (Γ′, Θ′, ∆′)
Ω′, Ω; Γ′; Θ, Θ′; ∆, ∆′ ⊢ stmt1 : (Γ′′; Θ′′; ∆′′)

Ω; Γ; Θ; ∆ ⊢ stmt2 : (Γ′′; Θ′′; ∆′′)
Π = ground(Ω) Π ⊢ cc : Π′

Ω; Γ; Θ; ∆ ⊢ if cc then stmt1 else stmt2 : (Γ′′; Θ′′; ∆′′)
if

Ω′ = infer(cc) Ω′, Ω; Γ ⊢ cc : (Γ′, Θ′, ∆′)
Ω′, Ω; Γ′; Θ, Θ′; ∆, ∆′ ⊢ stmt : (Γ; Θ; ∆)

Π = ground(Ω) Π ⊢ cc : Π′

Ω; Γ; Θ; ∆ ⊢ while cc do stmt : (Γ; Θ; ∆)
while

Ω′ = infer(x, F) Θ = Θ′, ($s : P) Υ; F =⇒ P(v)
∆x = {Ps xi e | Ps xi e ∈ F} ∆ = ∆′, ∆′′

F = ∆x, ∆F ∀Pu, Pu ∈ ∆′′ iff Pu ∈ ∆F

∀Ps tm e ∈ ∆′′ iff Ps tm e′ ∈ ∆F

Ω; Γ; Θ; ∆ ⊢ $s:P := {x}[root (v), F] : (Γ′, $s:P; Θ′; ∆′)
assign-shape

∆ = (Ps v e1 · · · ek), ∆′

Ω; Γ; Θ; ∆ ⊢ free (v) : (Γ; Θ; ∆′)
free

Figure 9. Selected Statement Typing Rules

5. A Further Example
To demonstrate the expressiveness of our language, we codedthe
shapes and operations of various commonly used data structures
such as singly/doubly linked circular/non-circular lists, binary
trees, and graphs represented as adjacency lists. In this section,
we will explain how to define adjacency lists, the most interesting
and complex of the data structures we have studied.
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300

0

410 510

510410

610

200 300

300610 a

cb

(a)

(b)

(c)

Figure 10. An adjacency list.

In Figure 10, the
data structure on the
left is an adjacency
list representation of
the directed graph on
the right. Each node
in the graph is repre-
sented as a tuple com-
posed of three fields.
The first field is a data
field; the second field is a pointer to another node in the graph, and
the last field is a pointer to the adjacency list of outgoing edges. In
this example, nodea is represented by the tuple starting at address
100, b is represented by the one starting at 200, and c is represented
by the one starting at 300. In this data structure, each tuplerepre-
senting a graph node is pointed to from the previous node, andfrom
the node’s incoming edges. For example, nodec (tuple starting at
address 300) is pointed to by the next pointer from nodeb, and
from the adjacency list of both nodea andb.

The Shape Signature. We present the key parts of the shape
signature of an adjacency list in Figure 11. The tuples representing
nodes have a different size than the tuples representing edges;
hence we need two struct predicates:graphnode to store node
information, andadjnode to store edge information.

Beginning at the bottom of Figure 11, we see the definition of
predicateadjlist X B. This predicate describes the list of outgo-
ing edges from a node. The argumentX points to the beginning of
the list and the argumentB represents the set of nodes contained
therein. Since definitions involving sets appear frequently, our lan-
guage includes built-in support for them. In particular [] denotes the
empty set, [n] denotes a singleton set, s1 U s2 denotes the union of
two sets ands1<=s2 denotes the subset relation. The definition of a
adjlist shows how to use this notation to build an edge list together
with a set representing its contents.

The predicate(nodelist X A B) is valid whenX points to a
graph data structure in whichA is the complete set of graph nodes

1 graphshape{
2 struct graphnode: ...
3 struct adjnode: ...

...
10 graphshape X o- graph X.

11 graph X o- nodelist X A B, B <= A.
12 nodelist X A B o- X = 0, A = [], B = [];

13 graphnode X <d, next, adjl>,
14 adjlist adjl G, nodelist next A1 B1,
15 A = [X] U A1, B = B1 U G.

16 adjlist X B o- X = 0, B = [];
17 adjnode X <n, next>,

18 adjlist next B1, B = [n] U B1.
... }

Figure 11. Shape Signature for Graph

andB is the subset of nodes that have at least one incoming edge.
For example, the adjacency list in Figure 10 can be described
by adjlist 100 [100,200,300] [200,300]. The base case for the
definition of nodelist is trivial. In the second case,X is a graph
node that has some datad, a pointernext pointing to the next graph
node (nodelist next A1 B1), and a pointeradjl pointing to the
outgoing edges ofX (adjlist adjl G). The set of graph nodes is
the union ofA1 and[X], and the set of nodes that has at lease one
incoming edges is the union ofG andB1.

Predicategraph X is defined in terms of predicatenodelist.
X points to an adjacency list representation of a graph ifX points
to a nodelist and all the edges point to valid graph nodes (A <=

B). This last constraints guarantees that one cannot reach dangling
pointers while traversing the graph.

Graph Operations. We have coded and verified the most impor-
tant operations on graphs, including insertion and deletion of both
nodes and edges. Space constraints prevent us from presenting the
complete examples here. However, we will remark that the most
interesting operation is node deletion, since nodes may be pointed
to by arbitrarily many edges. Properly deleting a node requires first
that all edges pointing to it are deleted. When no edges remain,
the node n to be deleted appears in setA but not setB of a valid
(nodelist X A B) predicate. This fact provides sufficient informa-
tion that one can then delete the node and reform the graph, confi-
dent it contains no dangling pointers. The type system verifies this
last step of the algorithm is indeed correct. Alternatively, if pro-
grammers attempt to delete a node while edges remain pointing
to it, they will find it impossible to convince the system thatthe
remaining data structure satisfies the definition of a graph.In par-
ticular, the set constraint on line 11 of Figure 11, (B <= A) will fail.

6. Related Work
Several researchers have used declarative specifications of complex
data structures to generate code and implement pattern-matching
operations. For example, Klarlund and Schwartzbach used 2nd-
order monadic logic to describegraph types, a generalization of
ML-style data types [13]. Similarly, Fradet and Le Métayerdevel-
opedshape types[5] by using context-free graph grammars. Both
of these works were highly inspirational to us. However, space
reserved for one of Klarlund’s graph types can not be reused in
construction of another type, nor can graph types be deallocated.
Fradet’s shape types, while interesting, did not come with afacil-
ity for expressing relations between different shapes similar to our
axioms, and consequently it appears that they cannot be usedeffec-
tively inside while loops or other looping constructs. Perhaps more
important than the differences in expressive power, is the fact that
our language has the promise of synergy with new verificationtech-
niques based on substructural logics and with modern type systems
for resource control, including those in Vault [3] and Cyclone [7, 9].
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More generally, there are many, many different varieties of
static analysis aimed at verifying programs that manipulate point-
ers. Some of them use logical techniques and some of them do not.
These analysis range from standard alias analysis to data flow anal-
ysis to abstract interpretation to model checking to shape analysis
(see Sagiv et al.’s work [21], for example). We distinguish ourselves
from this large and important volume of work by noting that wedo
not verify low-level statements that explicitly dereference pointers.
Instead, we aim to replace low-level pointer manipulation,which
requires verification, with higher-level data structure specification,
which is “correct by construction.”

As noted in the introduction, we follow in the intellectual foot-
steps of O’Hearn, Reynolds, Yang and others, who have developed
the theory and implementation of separation logic and used it to
verify low-level pointer programs [20, 11, 12]. However, wechose
to pursue our research starting with a foundation in linear logic as
opposed to the logic of bunched implications, which underlies sep-
aration logic. One motivating factor for doing so was the presence
of readily available linear logic programming languages [10, 14]
and automated theorem provers [2, 15], which we have used to ex-
periment with ideas and to implement a prototype for our language.

The fragment of linear logic that we choose to use as the
base logic to describe shapes has the same no-weakening and no-
contraction properties as the multiplicative fragment of separation
logic (linear logic and the logic of bunched implications [17], the
basis for separation logic coincide exactly on this fragment). We
call our logic “linear” since its proof theory uses two contexts
(one the linear and one unrestricted) and hence it shares thesame
structure as Girard’s work [6]. Bunched implications and separa-
tion logic have an additive implication and an additive conjunction,
which do not appear in our logic. We can simulate the additives
when they are used to manipulate “pure formulas” (those formu-
las and that do not refer to the heap), but not when they are used
to describe storage (which can be useful to describe certainalias-
ing patterns). In the future, we plan to explore extending the system
with either linear logic’s additive conjunction or relatedideas found
in linear type systems [23, 3, 22, 25, 8, 16, 26].

7. Conclusion
We have developed a new programming paradigm that uses lin-
ear logical formulas as specifications for defining and manipulating
heap-allocated recursive data structures. A key componentof the
new system is an algorithm for heap-shape pattern matching,de-
rived in part from an understanding of the operation of linear logic
programming languages. To ensure the safety of pattern matching,
we extended the mode analysis found in many logic programming
languages to check for dangling pointers. Lastly, we integrated
all these new ideas into an imperative programming language, for
which we have developed a prototype interpreter and type checker.
Our new language will facilitate safe construction, deconstruction
and deallocation of sophisticated heap-allocated data structures.
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