
A Program Logic for Verifying
Secure Routing Protocols

(Technical Report)

Chen Chen1, Limin Jia2, Hao Xu1, Cheng Luo1,
Wenchao Zhou3, and Boon Thau Loo1

1 University of Pennsylvania {chenche,haoxu,boonloo}@cis.upenn.edu
2 Carnegie Mellon University liminjia@cmu.edu

3 Georgetown University wzhou@cs.georgetown.edu

Abstract. The Internet, as it stands today, is highly vulnerable to at-
tacks. However, little has been done to understand and verify the formal
security guarantees of proposed secure inter-domain routing protocols,
such as Secure BGP (S-BGP). In this paper, we develop a sound pro-
gram logic for SANDLog—a declarative specification language for secure
routing protocols—for verifying properties of these protocols. We prove
invariant properties of SANDLog programs that run in an adversarial
environment. As a step towards automated verification, we implement a
verification condition generator (VCGen) to automatically extract proof
obligations. VCGen is integrated into a compiler for SANDLog that can
generate executable protocol implementations; and thus, both verifica-
tion and empirical evaluation of secure routing protocols can be carried
out in this unified framework. To validate our framework, we (1) encoded
several proposed secure routing mechanisms in SANDLog, (2) verified
variants of path authenticity properties by manually discharging the gen-
erated verification conditions in Coq, and (3) generated executable code
based on SANDLog specification and ran the code in simulation.

1 Introduction

In recent years, we have witnessed an explosion of services provided over the
Internet. These services are increasingly transferring customers’ private infor-
mation over the network and used in mission-critical tasks. Central to ensuring
the reliability and security of these services is a secure and efficient Internet
routing infrastructure. Unfortunately, the Internet infrastructure, as it stands
today, is highly vulnerable to attacks. The Internet runs the Border Gateway
Protocol (BGP), where routers are grouped into Autonomous Systems (AS)
administrated by Internet Service Providers (ISPs). Individual ASes exchange
route advertisements with neighboring ASes using the path-vector protocol. Each
originating AS first sends a route advertisement (containing a single AS number)
for the IP prefixes it owns. Whenever an AS receives a route advertisement, it
adds itself to the AS path, and advertises the best route to its neighbors based
on its routing policies. Since these route advertisements are not authenticated,

SANDlog(Program(

Annota/ons(

SANDlog(Compiler(

Code((
genera/on(

Verifica/on(
condi/on(
genera/on(

Executable(
protocol(

Proof(
obliga/ons(

Theorem(
prover(

Simulator(
(Emulator)(

The round objects are code

(proofs), which are the in-

put or output of the frame-

work. The rectangular ob-

jects are software compo-

nents of the framework.

Fig. 1. Architecture of a unified framework for implementing and verifying secure routing protocols.

ASes can advertise non-existent routes or claim to own IP prefixes that they do
not. These faults may lead to long periods of interruption of the Internet; best
epitomized by recent high-profile attacks [9, 22].

In response to these vulnerabilities, several new Internet routing architec-
tures and protocols for a more secure Internet have been proposed. These range
from security extensions of BGP (Secure-BGP (S-BGP) [17], ps-BGP [26], so-
BGP [27]), to “clean-slate” Internet architectural redesigns such as SCION [28]
and ICING [20]. However, none of the proposals formally analyzed their security
properties. These protocols are implemented from scratch, evaluated primarily
experimentally, and their security properties shown via informal reasoning.

Existing protocol analysis tools [7, 11, 13] are rarely used in analyzing routing
protocols because they are considerably more complicated than cryptographic
protocols: they often compute local states, are recursive, and their security prop-
erties need to be shown to hold on arbitrary network topologies. As the number
of models is infinite, model-checking-based tools, in general, cannot be used to
prove the protocol secure.

To overcome the above limitations, we explore a novel proof methodology
to verify these protocols. We augment prior work on declarative networking
(NDLog) [19] with cryptographic libraries to provide compact encoding of se-
cure routing protocols. We call this extension SANDLog (stands for Secure and
Authenticated Network DataLog). It has been shown that such a Datalog-like
language can be used for implementing a variety of network protocols [19]. We
develop a program logic for reasoning about SANDLog programs that run in an
adversarial environment. Based on the program logic, we implement a verifica-
tion condition generator (VCGen), which takes as inputs the SANDLog program
and user-provided annotations, and outputs intermediary proof obligations as a
Coq file, where proof can be filled. VCGen is integrated into the SANDLog
compiler, an cryptography-augmented extension to the declarative networking
engine RapidNet [24]. The compiler is able to translate our SANDLog specifica-
tion into executable code, which is amenable to implementation and evaluation.
Both verification and empirical evaluation of secure routing protocols can be
carried out in this unified framework (Figure 1).

We summarize our technical contributions:

1. We define a program logic for verifying SANDLog programs in the presence
of adversaries (Section 3). We prove that our logic is sound.

2. We implement VCGen for automatically generating proof obligations and
integrate VCGen into a compiler for SANDLog (Section 4).

2

3. We encode S-BGP and SCION in SANDLog, verify path authenticity prop-
erties of these protocols, and run them in simulation (Section 5).

2 SANDLog

We introduce the syntax and operational semantics of SANDLog, which extends
the Network Datalog (NDLog) [19] with a library for cryptographic functions.
The complete definitions can be found in our TR.

2.1 Syntax

SANDLog’s syntax is summarized below. A SANDLog program is composed of
a set of rules, each of which consists of a rule head and a rule body. A rule
head is a tuple. A rule body consists of a list of body elements which are either
tuples or atoms. Atoms include assignments and inequality constraints. The
binary operator bop denotes inequality relations. Each SANDLog rule specifies
that if all the tuples in the body are derivable and all the constraints specified
by the atoms in the body are satisfied, then the head tuple is derivable. These
features are shared between NDLog [19] and SANDLog. Unique to SANDLog, are
the cryptographic functions denoted fc, implemented as a library. This library
includes commonly used functions such as signature generation and verification.

Crypt func fc ::� f sign asym | f verify asym � � � Atom a ::� x :� t | t1 bop t2
Terms t ::� x | c | ι | fp~t q | fcp~t q Body Elem B ::� ppagBq | a
Arg List ags ::� � | ags, x | ags, c Rule Body body ::� � | body, B
Body Args agB ::� @ι, ags Rule r ::� ppagHq :� body
Head Args agH ::� agB |@ι, ags, Faggxxy, ags Program progpιq ::� r1, � � � , rk

To support distributed execution, SANDLog assumes that each node has
a unique identifier denoted ι. A SANDLog program prog is parametrized over
the identifier of the node it runs on. A location specifier, written @ι, specifies
where a tuple resides and is the first argument of a tuple. We require all body
tuples to reside on the same node as the program. A rule head can specify a
location different from its body tuples. When executing such a rule, the derived
head tuple is sent to the specified remote node. Finally, SANDLog supports
aggregation functions (denoted Faggxxy), such as max and min, in the rule head.

We list all available cryptographic functions in Table 1. Note that we cur-
rently do not implement all cryptographic operations, such as symmetric en-
cryption and MD5, because they are not used in our encoding yet. However, it
is not hard to include them when needed.

Function name Description

f sign asym(info, key) Create a signature of info using key

f verify asym(cipher, key) Decrypt a cipher with key

f mac(info, key) Create a message authentication code of info using key

f verifymac(info, MAC, key) Verify info against MAC with key
Table 1. Cryptographic functions in SANDLog

3

Example Program. The following program computes the best path between
each pair of nodes in a network. s is the location parameter of the program. It
stores three tuples: linkp@s, d, cq means that there is a direct link from s to d
with cost c; pathp@s, d, c, pq means that p is a path from s to d with cost c; and
bestPathp@s, d, c, pq states that p is the lowest-cost path between s and d.

sp1 pathp@s, d, c, pq :� linkp@s, d, cq, p :� rs, ds.
sp2 pathp@z, d, c, pq :� linkp@s, z, c1q, pathp@s, d, c2, p1q, c :� c1� c2, p :� z::p1.
sp3 bestPathp@s, d,minxcy, pq :� pathp@s, d, c, pq.

Rule sp1 computes all one-hop paths based on direct links. Rule sp2 expresses
that if there is a link from s to z of cost c1 and a path from s to d of cost c2,
then there is a path from z to d with cost c1+c2 (for simplicity, we assume links
are symmetric, i.e. if there is a link from s to d with cost c, then a link from d
to s with the same cost c also exists). Finally, rule sp3 aggregates all paths with
the same pair of source and destination (s and d) to compute the best path. The
arguments that appear before the aggregation denotes the group-by keys.

2.2 Operational Semantics

The operational semantics of SANDLog adopts a distributed execution model.
Each node runs a designated program, and maintains a database of derived
tuples in its local state. Nodes can communicate with each other by sending
tuples over the network. The evaluation of the SANDLog programs follows the
PSN algorithm [18], and maintains the database incrementally. The semantics
introduced here is similar to that of NDLog except that we make explicit, which
tuples are derived, which are received, and which are sent over the network. This
addition is crucial to specifying and proving protocol properties. The constructs
needed for defining the operational semantics of SANDLog are presented below.

Table Ψ ::� � |Ψ, pn, P q Network Queue Q ::� U
Update u ::� �P | � P Local State S ::� pι, Ψ,U , progpιqq
Update List U ::� ru1, � � � , uns Configuration C ::� QB S1, � � � ,Sn
We write P to denote tuples. The database for storing all derived tuples on

a node is denoted Ψ . Because there could be multiple derivations of the same
tuple, we associate each tuple with a reference count n, recording the number
of valid derivations for that tuple. An update is either an insertion of a tuple,
denoted �P , or a deletion of a tuple, denoted �P . We write U to denote a list of
updates. A node’s local state, denoted S, consists of the node’s identifier ι, the
database Ψ , a list of unprocessed updates U , and the program prog that ι runs. A
configuration of the network, written C, is composed of a network update queue
Q, and the set of the local states of all the nodes in the network. The queue Q
models the update messages sent across the network.

Figure 2 presents an example scenario of executing the shortest-path program
shown in Section 2.1. The network consists of three nodes, A, B and C, connected
by two links with cost 1. In the current state, all three nodes are aware of their
direct neighbors, i.e., link tuples are in their databases ΨA, ΨB and ΨC . They have
constructed paths to their neighbors (i.e., the corresponding path and bestPath

4

A" B" C"

SA"="{A,""
"""""""""ψA"="{link(@A,B,1),"
""""""""" "path(@A,B,1,[A,B]),"
""""""""" "bestPath(@A,B,1,[A,B])}"
"""""""""UA"="[],"
"""""""""progA"="sp}"
"

SB"="{B,""
"""""""""ψB"="{link(@B,A,1),"link(@B,C,1),"
"""""""""""""path(@B,A,1,[B,A]),"path(@B,C,1,[B,C]),"
"""""""""" "bestPath(@B,A,1,[B,A]),""
"""""""""""""bestPath(@B,C,1,[B,C])}"
"""""""""UB"="[],"
"""""""""progB"="sp}"
"

SC"="{C,""
"""""""""ψC"="{link(@C,B,1),"
""""""""" "path(@C,B,1),"
"""""""""" "bestPath(@C,B,1,[C,B]),}"
"""""""""UC"="[],"
"""""""""progC"="sp}"
"

Q"="[+path(@A,C,2,[A,B,C]),"+path(@C,A,2,[C,B,A])]"

cost"="1" cost"="1"

Fig. 2. An Example Scenario.

S ãÑ S 1,U

Uin � r�p1p@ι,~tq, ...,�pmp@ι,~tqs @j P r1,ms, pjp@ι,~tq P BaseOfpprogq
Uext � r�q1p@ι1,~tq, ...,�qkp@ιk,~tqs @j P r1, ks, qjp@ιj ,~tq P BaseOfpprogq, ιj � ι

pι,H, rs, progq ãÑ pι,H,Uin, progq,Uext

Init

pUin,Uextq � fireRulespι, Ψ, u,∆progq

pι, Ψ, u :: U , progq ãÑ pι, Ψ Z u,U � Uin, progq,Uext

RuleFire

C tÝÑ C1 Si ãÑ S 1
i,U @j P r1, ns ^ j � i, S 1

j � Sj
QB S1, � � �Sn τÝÑ Q � U B S 1

1, � � �S 1
n

NodeStep

Q � Q1 `Q1 � � � `Qn @j P r1, ns S 1
j � Sj �Qj

QB S1, � � �Sn τÝÑ Q1 B S 1
1, � � �S 1

n

DeQueue

Fig. 3. Operational Semantics

fireRulespι, Ψ, u,∆progq � pUin,Uextq

fireRulespι, Ψ, u, rsq � prs, rsq
Empty

fireSingleRpι, Ψ, u,∆rq � pΨ 1,Uin1,Uext1q
fireRulespι, Ψ 1, u,∆progq � pUin2,Uext2q

fireRulespι, Ψ, u, p∆r,∆progqq � pUin1 � Uin2,Uext1 � Uext2q
Seq

Fig. 4. Definition of fileRules.

tuples are stored). In addition, node B has applied sp2 and generated updates
+path(@A,C,2,[A,B,C]) and +path(@C,A,2,[C,B,A]), which are currently queued and
waiting to be delivered to their destinations (node A and C respectively).

Top-level Transitions. The small-step operational semantics of a node is de-
noted S ãÑ S 1,U . From state S, a node takes a step to a new state S 1 and gener-
ates a set of updates U for other nodes in the network. The small-step operational
semantics of the entire system is denoted C τ

ÝÑ C1, where τ is the time of the tran-
sition step. A trace T is a sequence of transitions:

τ0ÝÑ C1
τ1ÝÑ C2 � � �

τnÝÑ Cn�1. We
assume that the effects of a transition take place at time τi (reflected in Ci�1).
Figure 3 defines the rules for these two transition relations.

5

– Global state transition (C t
ÝÑ C1). Rule NodeStep states that the system

takes a step when one node takes a step. As a result, the updates generated by
node i are appended to the end of the network queue. We use � to denote the
list append operation. Rule DeQueue applies when a node receives updates
from the network. We write Q1`Q2 to denote a merge of two lists. Any node
can dequeue updates sent to it and append those updates to the update list
in its local state. Here, we overload the � operator, and write S �Q to denote
a new state, which is the same as S, except that the update list is the result
of appending Q to the update list in S.

– Local state transition (S ãÑ S 1,U). Rule Init applies when the program
starts to run. Here, only base rules–rules that do not have a rule body–
can fire. The auxiliary function BaseOf (prog) returns all the base rules in
prog . In the resulting state, the internal update list (Uin) contains all the
insertion updates located at ι, and the external update list (Uext) contains
only updates meant to be stored at a node different from ι. Rule RuleFire

(Figure 4) computes new updates based on the program and the first update
in the update list. It uses a relation fireRules, which processes an update
u, and returns a pair of update lists, one for node ι itself, the other for
other nodes. Rules for fireRules can be found in Appendix ??.After u is
processed, the database of ι is updated with the update u (Ψ Z u). The Z
operation increases (decreases) the reference count of P in Ψ by 1, when u
is an insertion (deletion) update �P (�P). Finally, the update list in the
resulting state is augmented with the new updates generated from processing
u.

Continue the example scenario, node A dequeues +path(@A,C,2,[A,B,C]), and
puts it into the unprocessed update list UA (rule DeQueue). Node A then fires
all rules that are triggered by the update, and generates new updates Uin and
Uext (Uin and Uext denote updates to local (internal) states and remote (external)
states respectively.) In the resulting state, the local state of node A is updated:
path(@A,C,2,[A,B,C]) is inserted into ΨA, and UA now includes Uin. The network
queue is updated to include Uext (rule NodeStep).

Incremental Maintenance. Now we explain in more detail how the database
is maintained incrementally by processing updates one at a time. Following the
strategy proposed in [18], the local database is maintained incrementally by
processing updates one at a time. The rules are rewritten into ∆ rules, which
can efficiently generate all the updates triggered by one update. For any given
rule r , containing k body tuples, k ∆ rules of the following form are generated,
one for each i P r1, ks.

∆ppagHq :� pν1pagB1q, ..., p
ν
i�1pagBi�1q, ∆pipagBiq, pi�1pagBi�1q, ..., pkpagBkq, a1, ..., am

∆pi in the body denotes the update currently being considered. ∆p in the
head denotes new updates that are generated as the result of firing this rule. Here
pν denotes the set of tuples whose name is p and includes the current update
being considered. p is drawn only from the set of tuples that does not include
the current update. For example, the ∆ rules for sp2 are:

6

sp2a ∆pathp@z, d, c, pq :� ∆linkp@s, z, c1q, pathp@s, d, c2, p1q, c :� c1� c2, p :� z::p1.
sp2b ∆pathp@z, d, c, pq :� linkνp@s, z, c1q,∆pathp@s, d, c2, p1q, c :� c1� c2, p :� z::p1.

Rules sp2a and sp2b are ∆ rules triggered by updates of the link and path relation,
respectively. For instance, when node A processes +path(@A,C,2,[A,B,C]), only rule
sp2b is fired. In this step, pathν includes the tuple path(@A,C,2,[A,B,C]), while path

does not. On the other hand, linkν and link denote the same set of tuples, because
the update is a path tuple, and thus does not affect tuples with a different name.
The difference between pν and p is only manifested when a rule body contains
more than one p.

Rule Firing. We present in Figure 5 a selected set of rules for firing a single ∆
rule given an insertion update. fireSingleR is used in the base case of fireRules.
We write Ψν to denote the table resulted from updating Ψ with the current
update: Ψν � Ψ Z u.

When the tuple to be inserted already exists, we do not need to further prop-
agate the update (Rule InsExists). Instead, the reference count is increased. In
this case, both update lists are empty. Rule InsNew handles the case where new
updates are generated by firing rule r . We use an auxiliary function ρpΨν , Ψ, r, i,~tq
to extract the complete list of substitutions that allows the rule r to fire. Here
i and ~t indicate that qip~tq is the current update, where qi is the ith body tuple
of rule r. Every substitution σ in that set is a general unifier of the body tuples
and constraints. Formally:

(1) σp~tq � σpagBiq, (2) @j P r1, i� 1s, D~s,~s � σpagBjq and qjp~sq P Ψ
ν

(3) @j P ri� 1, ns, D~s,~s � σpagBjq and qjp~sq P Ψ (4) @k P r1,ms, σraks is true

We write ras to denote the constraint that a represents. When a is an assignment
(i.e., x :� fp~tq), ras is the equality constraint x � fp~tq; otherwise, ras is a.

We use a selection function sel to decide which substitution to propagate. It
is needed when multiple tuples with the same key are derived using this rule.
In NDLog run time, similar to a relational database, a key value of a stored
tuple pp~tq uniquely identifies that tuple. When a different tuple pp~t1q with the
same key is derived, the old value pp~tq and any tuple derived using it need to be
deleted. For instance, the first two arguments of path are its key. pathpA,B, 1q
and pathpA,B, 2q cannot both exist in the database. When multiple tuples with
the same key are derived at the same time, we need to make a decision as to
which one to keep. We use a genUpd function to generate appropriate updates
based on the selected substitutions. It may generate deletion updates in addition
to an insertion update of the new value. Use the previous example, assume that
pathpA,B, 3q is in Ψν . If we were to choose pathpA,B, 1q because it appears earlier
in the update list, then genUpd returns t�pathpA,B, 1q,�pathpA,B, 3qu. We omit
the details of the definitions of sel and genUpd here, as there are many possible
strategies for implementing these two functions. The only relevant part to the
logic we introduce later is that the substitutions used for an insertion update
come from the ρ function, and that the substitutions satisfy the property we
defined above.

The rest of the rules deal with generating an aggregate tuple. To efficiently
implement aggregates, for each tuple p that has an aggregate function in its

7

arguments, there is an internal tuple pagg that records all candidate values of p.
When there is a change to the candidate set, the aggregate is re-computed. In
our example (Figure 2), bestpathagg maintains all candidate path tuples. We omit
these auxiliary tuples from the figure for brevity.

We require that the location specifier of a rule head containing an aggregate
function be the same as that of the rule body. With this restriction, the state of
an aggregate is maintained in one single node. If the result of the aggregate is
needed by a remote node, we can write an additionally rule to send the result
after the aggregate is computed. The aggregation rules for fireSingleR return a
new table Ψ 1 because of updates to these candidate sets pagg.

Rule InsAggNew applies when the aggregate is generated for the first time.
We only need to insert the new aggregate value to the table. Additional rules
are required to handle aggregates where the new aggregate is the same as the
old one or replaces the old one. We omit these rules due to space constraints.

We revisit the example in Figure 2. Upon receiving +path(@A,C,2,[A,B,C]), ∆
rule sp2b will be triggered and generate a new update +path(@B,C,3,[B,A,B,C]),
which will be included in Uext as it is destined to a remote node B (rule In-
sNew). The ∆ rule for sp3 will also be triggered, and generate a new update
+bestPath(@A,C,2,[A,B,C]), which will be included in Uin (rule InsAggNew). Af-
ter evaluating the ∆ rules triggered by the update +path(@A,C,2,[A,B,C]), we have
Uin � t+bestPath(@A,C,2,[A,B,C])u and Uext � t+path(@B,C,3,[B,A,B,C])u. In ad-
dition, bestpathagg, the auxiliary relation that maintains all candidate tuples for
bestpath, is also updated to reflect that a new candidate tuple has been generated.
It now includes bestpathagg(@A,C,2,[A,B,C]).

Rule InsAggSame applies when the new aggregates is the same as the old one.
In this case, only the candidate set is updated, and no new update is propagated.
Rule InsAggUpd applies when there is a new aggregate value. In this case, we
need to generate a deletion update of the old tuple before inserting the new one.

Figure 6 summaries the deletion rules. When the tuple to be deleted has
multiple copies, we only reduce its reference count. The rest of the rules are the
dual of the corresponding insertion rules.

Discussion. The semantics introduced here will not terminate for programs with
a cyclic derivation of the same tuple, even though set-based semantics will. Most
routing protocols do not have such issue (e.g., cycle detection is well-adopted in
routing protocols). Our prior work [21] has proposed improvements to solve this
issue. It is a straightforward extension to the current semantics and is not crucial
for demonstrating the soundness of the program logic we develop.

The operational semantics is correct if the results are the same as one where
all rules reside in one node and a global fixed point is computed at each round.
The proof of correctness is out of the scope of this paper. We are working on
correctness definitions and proofs for variants of PSN algorithms. Our initial
results for a simpler language can be found in [21]. SANDLog additionally al-
lows aggregates, which are not included in [21]. The soundness of our logic only
depends on the specific evaluation strategy implemented by the compiler, and is
orthogonal to the correctness of the operational semantics. Updates to the oper-

8

fireSingleRpι, Ψ, u,∆rq � pΨ 1,Uin,Uextq

qip~tq P Ψ

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ, rs, rsq
InsExists

∆r � ∆pp@ι1, agsq :� � � � ,∆qipagBiq � � �
qip~tq R Ψ ags does not contain any aggregate

Σ � ρpΨν , Ψ, r, i,~tq Σ1 � selpΣ,Ψνq U � genUpdpΣ,Σ1, p, Ψνq
if ι1 � ι then Ui � U ,Ue � rs otherwise Ui � rs,Ue � U

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ,Ui,Ueq
InsNew

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � qip~tq R Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r, i,~tq

Ψ 1 � Ψ Z tpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, rs, rsq
InsAggSame

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � qip~tq R Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r, i,~tq

Ψ 1 � Ψ Z tpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � pp@ι, ~sq pp@ι, ~s1q P Ψ
~s and ~s1 share the same key but different aggregate value

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, r�pp@ι, ~s1q,�pp@ι, ~sqs, rsq
InsAggUpd

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � qip~tq R Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r,~tq

Ψ 1 � Ψ Z tpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � pp@ι, ~sq Epp@ι, ~s1q P Ψ
such that ~s and ~s1 share the same key but different aggregate value

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, r�pp@ι, ~sqs, rsq
InsAggNew

Fig. 5. Insertion rules for evaluating a single ∆ rule

ational semantics is likely to come in some form of additional bookkeeping in the
representation of tuples, which we believe will not affect the overall structure of
the program logic; as these metadata are irrelevant to the logic.

3 A Program Logic for SANDLog

Inspired by program logic for reasoning about cryptographic protocols [11, 14],
we define a program logic for SANDLog. The properties we are interested in
are safety properties, which should hold throughout the execution of SANDLog
programs interacting with attackers.

Attacker Model. We assume connectivity-bound network attackers, a variant
of the Dolev-Yao network attacker model. An attacker can send and receive
messages to and from its neighbors. We assume a symbolic model of the crypto-
graphic functions: an attacker can operate cryptographic functions to which it

9

pn, qip~tqq P Ψ n ¡ 1

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ, rs, rsq
DelExists

∆r � ∆pp@ι1, agsq :� � � � ,∆qipagBiq � � �
p1, qip~tqq P Ψ ags does not contain any aggregate

tσ1, � � � , σku � selpρpΨν , Ψ, r, i,~tq, Ψνq
U � r�pp@ι1, σ1pagsqq, � � � ,�pp@ι1, σkpagsqqs

if ι1 � ι then Ui � U ,Ue � rs otherwise Ui � rs,Ue � U
fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ,Ui,Ueq

DelNew

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � p1, qip~tqq P Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r, i,~tq

Ψ 1 � Ψztpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, rs, rsq
DelAggSame

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � p1, qip~tqq P Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r, i,~tq

Ψ 1 � Ψztpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � pp@ι, ~sq pp@ι, ~s1q P Ψ
~s and ~s1 share the same key but different aggregate value

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, r�pp@ι, ~s1q,�pp@ι, ~sqs, rsq
DelAggUpd

∆r � ∆pp@ι, agsq :� � � � ,∆qipagBiq � � � p1, qip~tqq P Ψ
ags contains an aggregate Fagg tσ1, � � � , σku � ρpΨν , Ψ, r, i,~tq

Ψ 1 � Ψztpaggp@ι, σ1pagsqq, � � � , paggp@ι, σkpagsqqu
Aggpp, Fagg, Ψ

1q � NULL

fireSingleRpι, Ψ,�qip~tq,∆rq � pΨ 1, r�pp@ι, ~s1qs, rsq
DelAggNone

Fig. 6. Deletion rules for evaluating a single ∆ rule

has the correct keys, such as encryption, decryption, and signature generation.
This model does not allow an attacker to eavesdrop or intercept packets. This
makes sense in the application domain that we consider, as attackers are ma-
licious nodes in the network that participate in the routing protocol exchange.
All the links we consider represent dedicated physical cables that connect neigh-
boring nodes, which are hard to eavesdrop without physical intrusion.

This attacker model manifests in our formal system in two places: (1) the
network is modeled as connected nodes, some of which run the SANDLog pro-
gram that encodes the prescribed protocol and others run arbitrary SANDLog
programs; (2) assumptions about cryptographic functions are admitted as ax-
ioms.

Syntax. We use first-order logic formulas, denoted ϕ, as property specifications.
The atoms, denoted A, include predicates and term inequalities.

10

Σ;Γ $ progpiq : ti, tb, teu.ϕpi, tb, teq

@p P hdOfpprogq, ϕp is closed under trace extension
@r P rlOfpprogq, r � hp~vq :� p1p~s1q, ..., pmp~smq, q1p~u1q, ..., qnp~unq, a1, ..., ak
Σ;Γ $ @i,@t,@~y©

jPr1,ks

rajs^
©

jPr1,ms

ppjp~sjq@pi, tq^ϕpj pi, t, ~sjqq^
©

jPr1,ns

recvpi, tppqj , ~ujqq@t

� ϕhpi, t, ~vq where ~y � fvprq

Σ;Γ $ progpiq : ti, yb, yeu.
©

pPhdOfpprogq

@t,@~x, yb ¤ t ye ^ pp~xq@pi, tq � ϕppi, t, ~xq
Inv

Σ;Γ $ ϕ Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq Σ;Γ $ honestpι, progpιq, tq

Σ;Γ $ @t1, t1 ¡ t, ϕpι, t, t1q
Honest

Fig. 7. Selected Rules in Program Logic

Atoms A ::� P p~tq@pι, τq | sendpι, tppP, ι1,~tqq@τ | recvpι, tppP,~tqq@τ
| honestpι, progpιq, τq | t1 bop t2

Predicate P p~tq@pι, τq means that tuple P p~tq is derivable at time τ by node
ι. The first element in ~t is a location identifier ι1, which may be different from
ι. When a tuple P pι1, ...q is derived at node ι, it is sent to ι1. This send action is
captured by predicate sendpι, tppP, ι1,~tqq@τ . Predicate recvpι, tppP,~tqq@τ denotes
that node ι has received a tuple P p~tq at time τ . honestpι, progpιq, τq means that
node ι starts to run program progpιq at time τ . Using these atoms and first-order
logic connectives, we can specify security properties such as authenticity.

Logical Judgments. The logical judgments use two contexts: context Σ con-
tains all the free variables and Γ contains logical assumptions.

(1) Σ;Γ $ ϕ (2) Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

Judgment (1) states that ϕ is provable given the assumptions in Γ . Judgment
(2) is an assertion about SANDLog programs. We write ϕp~xq when ~x are free in
ϕ. ϕp~tq denotes the resulting formula of substituting ~t for ~x in ϕp~xq. Recall that
prog is parametrized over the identifier of the node it runs on. The assertion of an
invariant property for such a program is parametrized over not only the node ID
i, but also the starting point of executing the program (yb) and a later time point
ye. Judgment (2) states that any trace T containing the execution of program
prog by a node ι, starting at time τb, satisfies ϕpι, τb, τeq, given any time point τe
later than τb. Intuitively, the trace contains several threads running concurrently,
only one of them runs the program, and the others can be malicious. Since τe
is any time after τb (the time prog starts), ϕ is an invariant property of prog .
For example, ϕpi, yb, yeq could specify that whenever i derives a path tuple, every
link in the path must exist in the past.

Inference Rules. The inference rules of our program logic include all standard
first-order logic ones (e.g. Modus ponens), omitted for brevity. We explain two
key rules (Figure 7) in our proof system.

Rule Inv derives an invariant property of a program prog . The invariant
property states that if a tuple p is derived by this program, then some property

11

ϕp must be true; formally: @t,@~x, yb ¤ t ye ^ pp~xq@pi, tq � ϕppi, t, ~xq, where p
is the tuple name of a rule head of prog , and ϕppi, t, ~xq is an invariant property
associated with pp~xq. For example, let p be path, and ϕppi, t, ~xq be that every
link in argument path must exist in the past. Rule Inv states that the invariant
of the program is the conjunction of all the invariants of the tuples it derives.

We require that the invariants ϕp be closed under trace extension (the first
premise of Inv). Formally: T (ϕpι, t, ~sq and T is a prefix of T 1 then T 1 (
ϕpι, t, ~sq. For instance, the property that node ι has received a tuple P before
time t is closed under trace extension; the property that node ι never sends P to
the network is not closed under trace extension. This restriction has not affected
our case studies: the invariants used in verification only assert what happened
in the past, or facts independent of time (e.g., arithmetic constraints).

Intuitively, the premises of Inv need to establish that (1) when p is a base
tuple — its derivation is independent of any other tuples — ϕ holds; and (2)
when p is derived using other tuples, ϕ holds. The second (last) premise of Inv

does precisely that. It checks every rule in prog and proves that the body tuples
and the invariants associated with the body tuples together imply the invariant
of the head tuple. For example, for sp1, to show that the invariant associated
with path is true, we can use the fact that there is a link tuple, that the invariant
associated with that link tuple is true, and that the constraint p � rs, ds is true.
This is sound because we are inducting over the derivation tree of the head tuple.

This premise looks complicated because the body tuples need to be treated
differently depending on whether they are derived locally, received from the
network, or constraints. For each rule r in prog , we assume that the body of r
is arranged so that the first m tuples are derived by prog , the next n tuples are
received from the network, and constraints constitute the rest of the body. The
right-hand-side of the implication of the last premise is the invariant associated
with tuple h. A rule head is only derivable when all of its body tuples are
derivable and constraints satisfied. For tuples that are derived earlier by prog
(denoted pj), we can safely assume that their invariants hold at time t. All
received tuples (qj) should have been received prior to rule firing. Finally, the
atoms (constraints, denoted aj) should be true. Recall that we write rx :� fp~tqs
to rewrite the assignment statement into an equality check x � fp~tq. The left-
hand-side of that implication is a conjunction of formulas denoting the above
conditions. When r only has a rule head, this premise is reduced to the right-
hand-side of that implication, which is case (1) mentioned above.

The last (second) premise of Inv can be automatically generated given a
SANDLog program and all the corresponding ϕps. In Section 4 we detail the
implementation of the verification condition generator for Coq.

The Honest rule proves properties of the entire system based on invariants of
a SANDLog program. If ϕpi, yb, yeq is the invariant of prog , and a node ι runs the
program prog at time tb, then any trace containing the execution of this program
satisfies ϕpι, tb, teq, where te is a time point after tb. SANDLog programs never
terminate: after the last instruction, the program enters a stuck state.

12

T (P p~tq@pι, τq iff Dτ 1 ¤ τ , C is the configuration on T prior to time τ 1,
pι, Ψ,U , progpιqq P C, at time τ 1, pι, Ψ,U , progpιqq ãÑ pι, Ψ 1,U 1 � Uin, progpιqq,Ue,

and either P p~tq P Uin or P p~tq P Ue

T (sendpι, tppP, ι1,~tqq@τ iff C is the configuration on T prior to time τ ,

pι, Ψ,U , progpιqq P C, at time τ , pι, Ψ,U , progpιqq ãÑ S 1,Ue and P p@ι1,~tq P Ue

T (recvpι, tppP,~tqq@τ iff Dτ 1 ¤ τ , C τ 1

ÝÑ C1 P T ,

Q is the network queue in C, P p~tq P Q, pι, Ψ,U , progpιqq P C1 and P p~tq P U
T (honestpι, progpιq, τq iff at time τ , node ι’s local state is (ι, [], [], prog (ι))

Γ (progpiq : ti, yb, yeu.ϕpi, yb, yeq iff Given any trace T such that T (Γ ,
and at time τb, node ι’s local state is (ι, [], [], progpιq)
given any time point τe such that τe ¥ τb, it is the case that T (ϕpι, τb, τeq

Fig. 8. Trace-based semantics

Soundness. We prove the soundness of our logic with regard to the trace se-
mantics. First, we define the semantics for our logical judgments in Figure 8.
Formulas are interpreted on a trace T . We elide the rules for first-order logic
connectives. A tuple P p~tq is derivable by node ι at time τ , if P p~tq is either an
internal update or an external update generated at a time point τ 1 no later than
τ . A node ι sends out a tuple P pι1,~tq if that tuple was derived by node ι. Be-
cause ι1 is different from ι, it is sent over the network. A received tuple is one that
comes from the network (obtained using DeQueue). Finally, an honest node ι
runs prog at time τ , if at time τ the local state of ι is the initial state with an
empty table and update queue.

The semantics of invariant assertion states that if a trace T contains the
execution of prog by node ι (formally defined as the node running prog is one
of the nodes in the configuration C), then given any time point τe after τb, the
trace T satisfies ϕpι, τb, τeq. This definition allows prog to run concurrently with
other programs, some of which may be controlled by the adversary.

The program logic is proven to be sound with regard to the trace semantics.

Theorem 1 (Soundness) 1. If Σ;Γ $ ϕ, then for all grounding substitution
σ for Σ, given any trace T , T (Γσ implies T (ϕσ;

2. If Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq, then for all grounding substitution
σ for Σ, Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ.

Proof of soundness can be found in Appendix B.

4 Verification Condition Generator

As a step towards automated verification, we implement a verification condition
generator (VCGen) to automatically extract proof obligations from a SANDLog
program. VCGen is implemented in C++ and fully integrated to RapidNet [24],
a declarative networking engine for compiling SANDLog programs. We target
Coq, but other interactive theorem provers such as Isabelle HOL are possible.

More concretely, VCGen generates lemmas corresponding to the last premise
of rule Inv. It takes as inputs: the abstract syntax tree of a SANDLog program
sp, and type annotations tp. The generated Coq file contains the following:

13

(1) definitions for types, predicates, and functions; (2) lemmas for rules in the
SANDLog program; and (3) axioms based on Honest rule.

Definition. Predicates and functions are declared before they are used. Each
predicate (tuple) p in the SANDLog program corresponds to a predicate of the
same name in the Coq file, with two additional arguments: a location speci-
fier and a time point. For example, the generated declaration of the link tuple
linkp@node, nodeq is the following

Variable link: node Ñ node Ñ node Ñ time Ñ Prop.
For each user-defined function, a data constructor of the same name is gen-

erated, unless it corresponds to a Coq’s built-in operator (e.g. list operations).
The function takes a time point as an additional argument.

Lemmas. For each rule in a SANDLog program, VCGen generates a lemma in
the form of the last premise in inference rule Inv (Figure 7). Rule sp1 of example
program in Section 2.1, for instance, corresponds to the following lemma:

Lemma r1: forall(s:node)(d:node)(c:nat)(p:list node)(t:time),

link s d c s t Ñ p = cons (s (cons d nil)) Ñ p-path s t s d c p t.

Here, cons is Coq’s built-in list appending operation. and p-path is the in-
variant associated with predicate path.

Axioms. For each invariant ϕp of a rule head p, VCGen produces an axiom of the
form: @i, t, ~x,Honestpiq � pp~xq@pi, tq � ϕppi, ~xq. These axioms are conclusions of
the Honest rule after invariants are verified. Soundness of these axioms is backed
by Theorem 1. Since we always assume that the program starts at time �8, the
condition that t ¡ �8 is always true, thus omitted.

5 Case Studies

We investigate two secure routing protocols: S-BGP and SCION. All SANDLog
specifications and Coq proofs can be found online at http://netdb.cis.upenn.
edu/forte2014/.

5.1 S-BGP

Encoding. Secure Border Gateway Protocol (S-BGP) provides security guar-
antees such as origin authenticity and route authenticity over BGP through PKI
and signature-based attestations. The SANDLog encoding of S-BGP (progsbgp)
is presented in Appendix C. All honest nodes in a network – nodes that follow
S-BGP protocol – run this code. Our SANDLog encoding includes all neces-
sary details of S-BGP’s route attestation mechanisms. S-BGP requires that each
node sign the route information it advertises to its neighbor, which includes
the path, the destination prefix (IP address), and the identifier of the intended
neighbor. Along with the advertisement, a node sends its own signature as well
as all signatures signed by previous nodes on the subpaths. Upon receiving an
advertisement, a node verifies all signatures.

Key tuples generated at each node executing progsbgp are listed in Figure 9.
Here n is the parameter representing the identifier of the node that runs progsbgp.

14

linkp@n, n1q there is a link between n and n1.
routep@n, d, c, p, slq p is a path to d with cost c.

sl is the signature list associated with p.
prefixp@n, dq n owns prefix (IP addresses) d.
bestRoutep@n, d, c, p, slq p is the best path to d with cost c.

sl is the signature list associated with p.
verifyPathp@n, n1, d, p, sl, a path p to d needs verifying against signature list sl.

pOrig, sOrigq p is a sub-path of pOrig, and s is a sub-list of sOrig.
signaturep@n,m, sq n creates a signature s of message m with private key.
advertisementp@n1, n, d, p, slq n advertises path p to neighbor n1 with signature list sl.

Fig. 9. Tuples for progsbgp

All tuples except advertisement are stored at node n. An advertisement tuple en-
codes a route advertisement that, once generated, is sent over the network to
one of n’s neighbors. We summarize progsbgp encoding in Table 2.

Empirical Evaluation. We use RapidNet [24] to generate low-level implemen-
tation from SANDLog encoding of S-BGP and SCION. We validate the low-level
implementation in the ns-3 simulator [1]. Our experiments are performed on a
synthetically generated topology consisting of 40 nodes, where each node runs
the generated implementation of the SANDLog program. The observed execu-
tion traces and communication patterns match the expected protocol behavior.
We also confirm that the implementation defends against known attacks such as
adversely advertising non-existent routes.

Property Specification. We focus on route authenticity, encoded as ϕauth1

below. It holds on any execution trace of a network where some nodes run S-
BGP, and those who do not are considered malicious.

ϕauth1 =@n,m, t, d, p, sl,
Honestpnq ^ advertisementpm,n, d, p, slq@pn, tq � goodPathpt, p, dq

Formula ϕauth1 asserts a property goodPathpt, p, dq on any advertisement tuple
generated by an honest node n. We define Honestpnq to mean that n’s private
key has not been compromised and that n runs S-BGP. Formally: Honestpnq �
honestpn, progsbgppnq,�8q. Here, the starting time is set to be the earliest pos-
sible time point. SANDLog’s semantics allows a node to begin execution at any

Rule Summary Head Tuple

r1: Generate a route for prefix of own. routep@n, d, c, p, slq
r2: Generate a best route for destination. bestRoutep@n, d, c, p, slq
r3: Receive advertisement from neighbor. verifyPathp@n, n1, d, p, sl, pOrig, sOrigq
r4: Recursively verify signature list. verifyPathp@n, n1, d, p, sl, pOrig, sOrigq
r5: Generate a route for verified path. routep@n, d, c, p, slq
r6: Generate a signature for new route. signaturep@n,m, sq
r7: Send route advertisement to neighbors. advertisementp@n1, n, d, p, slq

Table 2. Summary of progsbgp encoding

15

time after the specified starting time, so using �8 gives us the most flexibility.
goodPathpt, p, dq defined below asserts that all links in path p reaching the desti-
nation IP prefix d must have existed at a time point no later than t. This means
that every pair of adjacent nodes n and m in path p had in their databases:
tuple link(@n, m) and link(@m, n) respectively.

Honestpnq � Dt1, t1 ¤ t ^ prefixpn, dq@pn, t1q

goodPathpt, n :: nil , dq

Honestpnq � Dt1, t1 ¤ t ^ linkpn, n1q@pn, t1q goodPathpt, n :: nil , dq

goodPathpt, n1 :: n :: nil , dq

Honestpnq � Dt1, t1 ¤ t ^ linkpn, n1q@pn, t1q ^ Dt2, t2 ¤ t ^ linkpn, n2q@pn, t2q
goodPathpt, n :: n2 :: p2, dq

goodPathpt, n1 :: n :: n2 :: p2, dq

The base case is when p has only one node, and we require that d be one
of the prefixes owned by n (i.e., the prefix tuple is derivable). When p has two
nodes n1 and n, we require that the link from n to n1 exist from n’s perspective,
assuming that n is honest. The last case checks that both links (from n to n1

and from n to n2) exist from n’s perspective, assuming n is honest. In the last
two rules, we also recursively check that the subpath also satisfies goodPath. By
changing the recursive definition of goodPath, we can verify different properties
like whether a link was authorized to use even if it existed. Furthermore, finer
granularity of S-BGP encoding allows us to assume more axioms about the net-
work, thus verifying more properties based on ϕauth1. By varying the definition
of goodPath, we can specify different properties such as one that requires each
subpath be authorized by the sender. ϕauth1 is a general topology-independent
security property.

Verification. To use the authenticity property of the signatures, we include
the following axiom Asig in the logical context Γ . This axiom states that if s is
verified by the public key of n1, and the node n1 is honest, then n1 must have
generated a signature tuple. Predicate verifypm, s, kq@pn, tq, generated by VCGen
when function f verify in SANDLog returns true, means node n verified at time
t that s is a valid signature of message m according to key k.

Asig = @m, s, k, n, n1, t, verifypm, s, kq@pn, tq ^ publicKeyspn, n1, kq@pn, tq ^
Honestpn1q � Dt1, t1 t ^ signaturepn1,m, sq@pn1, t1q

We first prove that progsbgp has an invariant property ϕI :
(a) �; � $ progsbgppnq : ti, yb, yeu.ϕIpi, yb, yeq

with ϕIpi, yb, yeq �
�
pPhdOfpprogsbgpq

@t ~x, yb ¤ t ye ^ pp~xq@pi, tq � ϕppi, t, ~xq.

Here, every ϕp in ϕI denotes the invariant property associated with each
head tuple in progsbgp, and needs to be specified by the user. For instance,
the invariant associated with the advertisement tuple is denoted ϕadvertisement:
ϕadvertisementpi, t, n

1, n, d, p, slq � goodPathpt, p, dq.
The proof of (a) is carried out in Coq; we manually discharged all lemmas

generated by VCGen. Next, applying the Honest rule to (a), we can deduce
ϕ � @n t,Honestpnq � ϕIpn, t,�8q. ϕ is injected into the assumptions (Γ) by

16

VCGen, and is safe to be used in any future proof. Finally, ϕ � ϕauth1 is also
proven in Coq by applying standard first-order logic rules.

We provide more details of how to prove (a). Instead of proving (a) directly,
we first prove a stronger invariant ϕI1 of progsbgp,
(a1) �; � $ progsbgppiq : ti, yb, yeu.ϕI1

(a1) only differs from (a) in invariants for head tuples. And we have:
ϕsignaturepi, t, n,m, sq � Dn

1, d,m � d :: n1 :: p ^ ϕlink2pp, n, d, n
1, tq

ϕadvertisementpi, t, n
1, n, d, p, slq � ϕlink2pp, n, d, tq

All head tuples p other than signature and advertisement have invariants:
ϕ1ppi, yb, yeq � ϕlink1pp, n, d, tq

Formulas ϕlink1pp, n, d, tq and ϕlink2pp, n, d, tq are defined as follows:

ϕlink1pp, n, d, tq = Dp1, p � n :: p1 ^
pp1 � nil � prefixpn, dq@pn, tqq ^ @p2,m1, p1 � m1 :: p2 � linkpn,m1q@pn, tq

ϕlink2pp, n, d, n
1, tq= linkpn, n1q@pn, tq ^

Dp1, p � n :: p1 ^ pp1 � nil � prefixpn, dq@pn, tqq
^ @p2,m1, p1 � m1 :: p2 � linkpn,m1q@pn, tq

The first invariant ϕlink1pp, n, d, tq states that n is the first node on the path
p, and the link from n to the next node on p exists. The second sub-invariant
ϕlink2pp, n, d, n

1, tq extends the first one by including the receiving node n1 as
an argument, asserting that the link between n and n1 also exists. These two
invariants match the non-recursive conditions in the definition of goodPath.

We also prove ϕI1 using Inv rule. Using Honest rule on (a1) and keeping the
only clause related to signature, we derive the following:

(a2) �; � $@n,@t,Honestpnq ^ signaturepn,m, sq@pn, tq �
Dn1, d,m � d :: n1 :: p ^ ϕlink2pp, n, d, n

1, tq

Now (a2) has connected an honest node’s signature to the existence of links
related to it. Combining (a2) and the axiom Asig in Section 4, we can use ϕI1
whenever a signature sig of a node n is properly verified in progsbgp. Since the
verification of signature list is performed recursively, this fills in the recursive
part in the definition of goodPath.

The complete proof can be found in the Coq file. One technical challenge is
that in proving that invariants specified in ϕI are maintained by rules r3 and r4,
the direction in which we check the signature list is different from the direction in
which the route is created: we verify the signature for the longest path first. The
definition of the invariant for tuple verifyPath is non-trivial. It needs to convey
that part of a path p has been verified, and part of it (namely q in the formal
definition below) still needs to be verified. To do so, we use an implication,
stating that if the path to be verified satisfies the invariant goodPath, then the
entire path satisfies the invariant goodPath, formally defined as follows:

ϕverifyPathpt, p, q, dq � Dl, p � l��q ^ goodPathpt, q, dq � goodPathpt, p, dq
The construction of the invariant ϕverifyPath and the proofs that rules r3 and

r4 maintain this invariant demonstrates that rule Inv is general enough to handle
complicated recursions in the program.

17

Given a route advertisement of a path p made by an honest node, property
ϕauth1 only associates each honest node n in p to the existence of links to its
neighbors. S-BGP satisfies a stronger property that additionally associates the
generated route by each honest node in p to the sub-path it heads in p.

We define a stronger property goodPath2pt, p, dq below. The meaning of the
variables remains the same as before.

Honestpnq � Dt1, t1 ¤ t ^ prefixpn, dq@pn, t1q

goodPath2pt, n :: nil , dq

Honestpnq � Dt1, c, s, t1 ¤ t ^ linkpn, n1q@pn, t1q ^ routepn, d, c, n :: nil , slq@pn, t1q
goodPath2pt, n :: nil , dq

goodPath2pt, n1 :: n :: nil , dq

Honestpnq � Dt1, t1 ¤ t ^ linkpn, n1q@pn, t1q ^
Dt2, c, s, t2 ¤ t ^ linkpn, n2q@pn, t2q ^
routepn, d, c, n :: n2 :: p2, slq@pn, t1q

goodPath2pt, n :: n2 :: p2, dq

goodPath2pt, n1 :: n :: n2 :: p2, dq

Compare the above definition with the one for goodPath, the last two rules
additionally assert the existence of a route tuple. The predicate routepn, d, c, n ::
p1, slq@pn, t1q states that node n generates a route tuple for path n :: p1 at
time t1, and that sl is the signature list that authenticates the path n :: p1. This
property ensures that an attacker cannot use n’s route advertisement for another
path p1, which happens to share the two links that n connects to, to fake a route
advertisement. For instance, p � n1 :: n :: n2 :: p1 and p1 � n1 :: n :: n2 :: p2
and p1 � p2 . If however, a protocol only requires a node n to sign the links to
its neighbors, this would have been a valid attack.

5.2 SCION

SCION [28] is a clean-slate design of Internet architecture that offers more flex-
ible route selection and failure isolation, in addition to route authenticity. In
SCION, autonomous domains (AD) – networks under the same administration
responsibility, such as a country or company – are grouped into a trust domain
(TD). TD core, typically a top-tier ISP in each TD, provides routing service
inside and across the border of TD. A TD core periodically generates path con-
struction beacons to its customer ADs to initiate the process of path construc-
tion. Each endpoint AD, upon receiving a beacon, (1) verifies the information
inside the beacon, (2) if it is one of the path along which this AD is willing to
forward packets, attaches itself to the end of the received path, constructing a
new beacon b, and (3) forwards b to its customer ADs. After receiving a set of
beacons, an endpoint AD, if not part of TD core, selects k paths and uploads
them to the TD core, thus finishing path construction. When later an AD n
intends to send a packet to n1, it first queries the TD core for the paths that n1

has uploaded, and then constructs a forwarding path based on the query result.
In this way, each end AD n1 has a say in the choice of forwarding path.

18

Path construction beacon plays an important role in SCION’s routing. A
beacon is a sequence of objects. Each object comprises four fields: an interface
field, a time field, an opaque field and a signature. The interface field contains
a list of ADs, representing the path. It also includes each AD’s interfaces to
neighbors, called ingress and egress. Ingress is the incoming interface and egress
is the outgoing interface. They are used to eliminate forwarding table look-up
during data forwarding phase. The time field registers the time when beacon is
received. The opaque field, while sharing “ingress” and “egress” with interface
field, adds a message authentication code (MAC) of them using AD’s private
key. The opaque field is only computed and forwarded, but not used, in path
construction phase. It will be later included in all data packet that tries to
traverse the AD. We will return to opaque field in Section 5.3. The signature
is that of all the above threes fields along with the previous signature from the
preceding AD. In addition, signature includes a certificate authenticating the
identity of current AD.

We list the definitions of several relevant tuples in SCION encoding in Fig-
ure 10. coreTD determines whether an AD is TD core. provider and consumer state
the provider/consumer relation between each pair of neighbor ADs. The bea-

conIni and beaconFwd are path construction beacons for beacon initialization and
beacon dissemination respectively. verifiedbeacon stores a valid (verified) beacon.
upPath contains information about a legitimate path to the TD core, includ-
ing an interface field, an opaque field list and a time list. pathUpload contains
information about a specific path to be uploaded to the TD core.

coreTDp@n, c, td , ctf q c is the core of TD td with certificate ctf attesting to that fact
providerp@n,m, igq m is n’s provider, with traffic into n through interface ig
customerp@n,m, egq m is n’s customer, with traffic out of n through interface eg
beaconInip@m,n, td , itf , containing a path, is initialized by n and sent to m.

itf , tl , ol , sl , sgq tl is a list of time stamps,
ol is a list of opaque fields, whose meaning is not relevant here.
sl is list of signatures for route attestation.
sg is a signature for certain global information,
which is not relevant here.

verifiedBeaconp@n, td, itf is the stored interface fields from n to the TD core in td.
itf, tl, ol, sl, sgq Rest of the fields have the same meaning as those in beaconIni

beaconFwdp@m,n, td , itf is forwarded to m with corresponding signature list sl
itf , tl , ol , sl , sgq. Rest of the fields have the same meaning as those

in beaconIni
upPathp@n, td , itf , opqU is a list of opaque fields indicating a path.

opqU , tlq Rest of the fields have the same meaning as those in beaconIni.
pathUploadp@m,n, src is the node (AD) who initiated the path upload process.

src, c, itf , opqD , c is TD core of an implicit TD.
opqU , ptq opqD is the opaque fields uploaded.

pt indicates the next opaque field in opqU to be checked.
itf and opqU have the same meaning as those in upPath.

Fig. 10. Tuples for SCION

19

coreTDpad , c, td, ctf q@pad , tq
Honestpcq � Dt1, t1 ¤ t ^ customerpc, n, cegq@pc, t1q

goodInfopt, td , ad ,nil , c :: ceg :: n :: nilq

coreTDpad , c, td, ctf q@pad , tq
Honestpnq � Dt1, t1 ¤ t ^ providerpn, c,nigq@pn, t1q ^ customerpn,m,negq@pn, t1q

^ Dtd1, tl, ol, sg, s, verifiedBeaconpn, td1, c :: ceg :: n :: nig :: nil, tl,
ol, s :: nilq@pn, t1q

goodInfopt, td, ad ,nil , pc :: ceg :: n :: nilqq

goodInfopt, td , ad , s :: nil , c :: ceg :: n :: nig :: neg :: m :: nilq

Honestpnq � Dt1, t1 ¤ t ^ providerpn, h,nigq@pn, t1q ^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, ol, sg, s, sl, verifiedBeaconpn, td1, p1��h :: hig :: heg :: n :: nig ,

tl, ol, s :: slq@pn, t1q.
goodInfopt, td, ad , sl , p1 ��h :: hig :: heg :: n :: nilq

goodInfopt, td , n, s :: sl , p1��h :: hig :: heg :: n :: nig :: neg :: m :: nilq

Fig. 11. Definitions of goodInfo

SCION also satisfies similar route authenticity properties as S-BGP. Each
path in SCION is composed of two parts: up path and down path. We only prove
the properties for the up paths. The proof for the down paths can be obtained by
switching the role of provider and customer. The definition of route authenticity
on up path, denoted ϕauthS, is very similar to ϕauth2 of S-BGP. Tuples provider

and customer in SCION are counterparts of the link tuple in S-BGP, and beaconIni

and beaconFwd correspond to advertisement.

ϕauthS = @n,m, t, td , itf , tl , ol , sl , sg ,
honestpnq ^
pbeaconInip@m,n, td , itf , tl , ol , sl , sgq@pn, tq
_ beaconFwdp@m,n, td , itf , tl , ol , sl , sgq@pn, tqq
� goodInfopt , td ,n, sl , itf q

Formula ϕauthS asserts a property goodInfopt, td , n, sl , itf q on any beacon tuple
generated by node n, which is either a TD core or an ordinary AD. Predicate
goodInfopt, td ,n, sl , itf q takes five arguments: t represents the time, td is the
identity of the TD that the path lies in, n is the node that verifies the beacon
containing the interface field itf , and sl is the signature list associated with
the path. goodInfopt, td ,n, sl , itf q makes sure that each AD in a path, which
is represented by the interface field itf , does have a link to its provider and
customer, as stated in the path. Also, for each AD, there always exists a verified
beacon for a path up to, but excluding it (TD core does not have any providers).
The definition of goodInfo is shown in Figure 11.

The definition of goodInfo considers three cases. The base case is when a
TD core c initializes an interface field c :: ceg :: n :: nig :: nil and sends it

20

to AD n. We require that c be a TD core and n be its customer. The next
two cases are similar, they both require the current AD n have a link to its
preceding neighbor, represented by provider, as well as one to its down stream
neighbor, represented by customer. In addition, a verifiedBeacon tuple should exist,
representing an authenticated route stored in database, with all signatures inside
properly verified. The difference of these two cases is caused by two possible types
of the preceding AD: TD core and non-TD core. The proof strategy is exactly
the same as that used in proof of goodPath about S-BGP. To prove ϕauthS, we
first prove progscion has an invariant property ϕI :

(b) �; � $ progscionpnq : ti, yb, yeu.ϕIpi, yb, yeq
where ϕ1Ipi, yb, yeq �

�
pPhdOfpprogscionq

@t,@~x, yb ¤ t ye ^ pp~xq@pi, tq � ϕppi, t, ~xq.

For instance, the invariant for beaconIni and beaconFwd are as follows.
ϕbeaconInipi, t,m, n, td , itf , tl , ol , sl , sgq � goodInfopt, td , n, sl , itf q
ϕbeaconFwdpi, t,m, n, td , itf , tl , ol , sl , sgq � goodInfopt, td , n, sl , itf q
(b) can be proved using Inv rule, whose premises are also verified in Coq. Ap-

plying Honest rule to (b), we can deduce ϕ1 � @n, t1,Honestpnq � ϕ1Ipn, t
1,�8q,

which directly implies ϕauthS.

5.3 Comparison: S-BGP & SCION

In terms of practical route authenticity, there is little difference between what
S-BGP and SCION can offer. This is not surprising, as the kind of information
that S-BGP and SCION sign at path construction phase is very similar. Though
both use layered-signature to protect the routing information, ASes in S-BGP
only sign the path information and a layered signature in S-BGP is a list of
signatures. On the other hand, ADs in SCION sign the previous signature so a
layered signature in SCION a nested signature. Consider an AS n in S-BGP that
signed the path p twice, generating two signatures: s and s1. An attacker, upon
receiving a sequence of signatures containing s, can replace s with s1 without
being detected. This attack is not possible in SCION, as attackers cannot extract
signatures from a nested signature.

SCION provide stronger security guarantee than S-BGP in the data forward-
ing phase. SCION, enables an AD to verify its willingness to carry traffic through
specific interfaces. SCION attaches each data packet with a list of opaque fields.
These opaque fields are extracted from beacons received during path construction
phase, which are MACs of an AD’s ingress and egress. An AD, upon receiving
a data packet, will re-compute the MAC of intended ingress and egress, along
with opaque field of previous neighbor. This MAC is compared with the one
contained in the opaque field embedded in the packet. If they are the same, the
AD knows that it has agreed to receiving/sending packets from/to its neigh-
bors. Otherwise, it drops the data packet. The formal definition of data path
authenticity in SCION can be expressed as ϕauthD.

ϕauthD = @m,n, t, src, core, itf , opqD , opqU , pt ,

21

pt � 0

goodFwdPathpt ,n, opqU , ptq

Honestpnq � Dt1,m, td, ctf, t1 ¤ t
^ coreTDpn, n, td, ctf q@pn, t1q
^ customerpn,m, cegq@pn, t1q

goodFwdPathpt ,n, opq1��rceg :: mac :: nils :: nil ,
lengthpopq1��rceg :: mac :: nils :: nilqq

0 pt ^ pt lengthpopq1��rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil ^
Honestpnq � Dt1, h,m, t1 ¤ t

^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, verifiedBeaconpn, td1, h :: ceg :: n :: nig ,

tl, rceg :: mac :: nils :: nil, sl , sgq@pn, t1q

goodFwdPathpt ,n, opq1��rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil , ptq

0 pt ^
pt lengthpopq1��rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils��opq2q ^
Honestpnq � Dt1, h,m, t1 ¤ t

^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, p1, p2, verifiedBeaconpn, td1, p1��h :: hig :: heg :: n :: nig ,

tl, p2��rhig :: heg :: mac :: nils :: nil, sl , sgq@pn, t1q

goodFwdPathpt ,n, opq1��rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils��opq2, ptq

Fig. 12. Definitions of goodFwdPath

honestpnq ^
pathUploadp@m,n, src, core, itf , opqD , opqU , ptq@pn, tq �
goodFwdPathpt ,n, opqU , ptq

Formula ϕauthD asserts property goodFwdPathpt ,n, opqU , ptq on any tuple
pathUpload sent by a customer AD to its provider. There are four arguments in
goodFwdPathpt ,n, opqU , ptq: t is the time. n is the node who sent out pathUpload

tuple. opqU is a list of opaque fields for forwarding. pt is a pointer to opqU . Ex-
cept time t , all arguments in goodFwdPathpt ,n, opqU , ptq are the same as those in
pathUpload, whose arguments are described in Figure 10. goodFwdPathpt ,n, opqU , ptq
states that whenever an AD receives a packet, it should connect to its provider
and customer, as indicated by the opaque field in the packet. In addition, it must
have verified a beacon with a path containing this neighboring relationship. The
property is also an invariant for other tuples such as pathLookup and upMessage.

The definition of goodFwdPathpt ,n, opqU , ptq is given in Figure 12. There are
four cases. The base case is when pt is 0. Since pt points to the next opaque
field to be checked, nothing is currently verified. In this case goodFwdPath holds
trivially. If pt is equal to the length of opaque field list, meaning all opaque fields

22

have been verified already, then based on SCION specification, the last opaque
field should be that of the TD core. Being a TD core requires a certificate
(coreTD), and a neighbor customer along the path (customer). When pt does
not point to the head or the tail of the opaque field list, node n should have
a neighbor provider(provider), and a neighbor customer(customer). It must also
have received and processed a verifiedBeacon during path construction. The last
two cases both cover this scenario, with the only difference being that the node
n’s provider might be a TD core.

SCION uses MAC for integrity check during data forwarding, so we use
the following axiom about about MAC. It states that if message msg ’s MAC,
computed by n with n 1’s private key k , is m and node n 1 is honest, then n1 must
have generated such a mac tuple at an earlier time t 1.

Amac = @msg,m, k, n, n1, t,
verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, n1, kq@pn, tq ^
Honestpn1q � Dt1, t1 t ^ macpn1,msg,mq@pn1, t1q

In SCION, each node should not share its own private key with other nodes.
This means, for each specific MAC, only the node who generated it can verify
its validity. This fact simplifies the axiom:

A1
mac = @msg,m, k, n, t,

verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, kq@pn, tq ^
Honestpnq � Dt1, t1 t ^ macpn,msg,mq@pn, t1q

The rest of the proof follows the same strategy as that of goodPath and
goodInfo. We prove invariant property of progscion which implies ϕauthD.

Though S-BGP does not explicitly state the process of data forwarding, we
can still compare its IP-based forwarding to SCION’s forwarding mechanism.
Like BGP, an AS running S-BGP maintains a routing table on all BGP speaker
routers that connect to peers in other domains. The routing table is an ordered
collection of forwarding entries, each represented as a pair of xIP prefix, next
hopy. Upon receiving a packet, the speaker searches its routing table for IP
prefix that matches the destination IP address in the IP header of the packet,
and forwards the packet on the port corresponding to the next hop based on
table look-up. Whenever a packet arrives, an AS that runs S-BGP will forward
it to the next hop, based on forwarding table look-up. This next hop must have
been authenticiated, because only after an S-BGP update message has been
properly verified, will the AS insert the next hop into the forwarding table.

However, SCION provides stronger security guarantees over S-BGP in terms
of last hop of the packet. An AS running S-BGP has no way of detecting whether
a received packet is from legitimate neighbor ASes – those neighbor ASes that
have received an update message advertising the path. Imagine that an AS n
has two neighbor ASes, m and m 1. n knows a route to an IP prefix p and is only
willing to advertise the route to m. Ideally, any packet from m 1 through n to p
should be rejected by n. However, this may not happen in practice. As long as
its IP destination is p, a packet will be forwarded by n, regardless of whether

23

it is from m or m 1. On the other hand, SCION routers are able to discard such
packets by verifying the MAC, since the MAC of the ingress and egress cannot
be forged.

6 Related Work

Cryptographic Protocol Analysis. The analysis of cryptographic proto-
cols [11, 25, 16, 23, 13, 6, 4, 14] has been an active area of research. Compared with
cryptographic protocols, secure routing protocols have to deal with arbitrary net-
work topologies and the programs of the protocols are more complicated: they
may access local storage and commonly include recursive computations. Most
model-checking techniques are ineffective in the presence of those complications.

Verification of Trace Properties. A closely related body of work is logic for
verifying trace properties of programs (protocols) that run concurrently with
adversaries [11, 14]. We are inspired by their program logic that requires the
asserted properties of a program to hold even when that program runs concur-
rently with adversarial programs. One of our contributions is a general program
logic for a declarative language SANDLog, which differs significantly from an
ordinary imperative language. The program logic and semantics developed here
apply to other declarative languages that use bottom-up evaluation strategy.

Networking Protocol Verification. Recently, several papers have investi-
gated the verification of route authenticity properties on specific wireless rout-
ing protocols for mobile networks [2, 3, 10]. They have showed that identifying
attacks on route authenticity can be reduced to constraint solving, and that the
security analysis of a specific route authenticity property that depends on the
topologies of network instances can be reduced to checking these properties on
several four-node topologies. In our own prior work [8], we have verified route au-
thenticity properties on variants of S-BGP using a combination of manual proofs
and an automated tool, Proverif [7]. The modeling and analysis in these works
are specific to the protocols and the route authenticity properties. Some of the
properties that we verify in our case study are similar. However, we propose a
general framework for leveraging a declarative programming language for verifi-
cation and empirical evaluation of routing protocols. The program logic proposed
here can be used to verify generic safety properties of SANDLog programs.

There has been a large body of work on verifying the correctness of vari-
ous network protocol design and implementations using proof-based and model-
checking techniques [5, 15, 12]. The program logic presented here is customized
to proving safety properties of SANDLog programs, and may not be expressive
enough to verify complex correctness properties. However, the operational se-
mantics for SANDLog can be used as the semantic model for verifying protocols
encoded in SANDLog using other techniques.

7 Conclusion and Future Work

We have designed a program logic for verifying secure routing protocols speci-
fied in a declarative language SANDLog. We have integrated verification into a

24

unified framework for formal analysis and empirical evaluation of secure rout-
ing protocols. As future work, we plan to expand our use cases, for example, to
investigate mechanisms for securing the data (packet forwarding) plane [20]. In
addition, as an alternative to Coq, we are also exploring the use of automated
first-order logic theorem provers to automate our proofs.

References

1. ns 3 project: Network Simulator 3, http://www.nsnam.org/
2. Arnaud, M., Cortier, V., Delaune, S.: Modeling and verifying ad hoc routing pro-

tocols. In: Proceedings of CSF (2010)
3. Arnaud, M., Cortier, V., Delaune, S.: Deciding security for protocols with recursive

tests. In: Proceedings of CADE (2011)
4. Bau, J., Mitchell, J.: A security evaluation of DNSSEC with NSEC3. In: Proceed-

ings of NDSS (2010)
5. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for

distance vector routing protocols. J. ACM 49(4) (2002)
6. Blanchet, B.: Automatic verification of correspondences for security protocols. J.

Comput. Secur. 17(4) (Dec 2009)
7. Blanchet, B., Smyth, B.: Proverif 1.86: Automatic cryptographic protocol verifier,

user manual and tutorial, http://www.proverif.ens.fr/manual.pdf
8. Chen, C., Jia, L., Loo, B.T., Zhou, W.: Reduction-based security analysis of inter-

net routing protocols. In: WRiPE (2012)
9. CNET: How pakistan knocked youtube offline, http://news.cnet.com/

8301-10784_3-9878655-7.html

10. Cortier, V., Degrieck, J., Delaune, S.: Analysing routing protocols: four nodes
topologies are sufficient. In: Proceedings of POST (2012)

11. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311–358 (2007)

12. Engler, D., Musuvathi, M.: Model-checking large network protocol implementa-
tions. In: Proceedings of NSDI (2004)

13. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyzer: grammar generation. In: Proceedings of FMSE (2005)

14. Garg, D., Franklin, J., Kaynar, D., Datta, A.: Compositional system security with
interface-confined adversaries. ENTCS 265, 49–71 (September 2010)

15. Goodloe, A., Gunter, C.A., Stehr, M.O.: Formal prototyping in early stages of
protocol design. In: Proceedings of ACM WITS (2005)

16. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11i and TLS. In: Proceedings of CCS (2005)

17. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (S-
BGP). IEEE Journal on Selected Areas in Communications 18, 103–116 (2000)

18. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language,
Execution and Optimization. In: SIGMOD (2006)

19. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P.,
Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. In: Communi-
cations of the ACM (2009)

20. Naous, J., Walfish, M., Nicolosi, A., Mazieres, D., Miller, M., Seehra, A.: Verifying
and enforcing network paths with ICING. In: Proceedings of CoNEXT (2011)

25

21. Nigam, V., Jia, L., Loo, B.T., Scedrov, A.: Maintaining distributed logic programs
incrementally. In: Proceedings of PPDP (2011)

22. One Hundred Eleventh Congress: 2010 report to congress of the u.s.-china economic
and security review commission (2010), http://www.uscc.gov/annual_report/

2010/annual_report_full_10.pdf

23. Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In: Pro-
ceedings of CSFW (1997)

24. RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimenta-
tion: http://netdb.cis.upenn.edu/rapidnet/

25. Roy, A., Datta, A., Derek, A., Mitchell, J.C., Jean-Pierre, S.: Secrecy analysis in
protocol composition logic. In: Proceedings of ESORICS (2007)

26. Wan, T., Kranakis, E., Oorschot, P.C.: Pretty secure BGP (psBGP). In: Proceed-
ings of 12th NDSS (2005)

27. White, R.: Securing bgp through secure origin BGP (soBGP). The Internet Pro-
tocol Journal 6(3), 15–22 (2003)

28. Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen, D.G.: Scion:
Scalability, control, and isolation on next-generation networks. In: Proceedings of
Oakland S&P (2011)

26

A First-order logic rules

The syntax of the logic formulas is shown below.

Atoms A ::� P p~tq@pι, τq | sendpι, tppP, ι1,~tqq@τ | recvpι, tppP,~tqq@τ
| honestpι, prog, τq | t1 bop t2

Formulas ϕ ::� J |K |A |ϕ1 ^ ϕ2 |ϕ1 _ ϕ2 |ϕ1 � ϕ2 | ϕ | @x.ϕ | Dx.ϕ
Variable Ctx Σ ::� � |Σ, x Logical Ctx Γ ::� � |Γ, ϕ

Σ;Γ $ ϕ Σ;Γ, ϕ $ ϕ1

Σ;Γ $ ϕ1
Cut

ϕ P Γ

Σ;Γ $ ϕ
Init

Σ;Γ, ϕ $ �

Σ;Γ $ ϕ
 I

Σ;Γ $ ϕ

Σ;Γ, ϕ $ �
 E

Σ;Γ $ ϕ1 Σ;Γ $ ϕ2

Σ;Γ $ ϕ1 ^ ϕ2

^I

i P r1, 2s, Σ;Γ $ ϕ1 ^ ϕ2

Σ;Γ $ ϕi
^E

i P r1, 2s, Σ;Γ $ ϕi

Σ;Γ $ ϕ1 _ ϕ2

_I

Σ;Γ $ ϕ1 _ ϕ2 Σ;Γ, ϕ1 $ ϕ Σ;Γ, ϕ2 $ ϕ

Σ;Γ $ ϕ
_E

Σ, x;Γ $ ϕ

Σ;Γ $ @x.ϕ
@I

Σ;Γ $ @x.ϕ

Σ;Γ $ ϕrt{xs
@E

Σ;Γ $ ϕrt{xs

Σ;Γ $ Dx.ϕ
DI

Σ;Γ $ Dx:τ.ϕ Σ, a;Γ, ϕra{xs $ ϕ1 a R fvpϕ1q

Σ;Γ $ ϕ1
DE

B Proof of Theorem 1

By mutual induction on the derivation E . The rules for standard first-order logic for-
mulas are straightforward. We show the case when E ends in the Honest rule.

Case: The last step of E is Honest.

E =

E1 :: Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq
E2 :: Σ;Γ $ honestpι, progpιq, tq

Σ;Γ $ @t1, t1 ¡ t, ϕpι, t, t1q
Honest

Given σ, T s.t. T (Γσ, by I.H. on E1 and E2

(1) Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ
(2) T (phonestpι, progpιq, tqqσ

By (2),
(3) at time tσ, ισ starts to run program (pprogqσ)

By (1) and (3), given any T s.t. T ¡ tσ
(4) T (ϕσpισ, tσ, T q

Therefore,
(5) T (p@t1, t1 ¡ t, ϕpι, t, t1qqσ

27

Case: E ends in Inv rule.
Given T , σ such that T (Γσ, and at time τb, node ι’s local state is (ι, [], [],
progpιq), given any time point τe such that τe ¥ τb,
let ϕ � p

�
pPhdOfpprogq @t,@~x, τb ¤ t τe ^ pp~xq@pι, tq � ϕppι, t, ~xqqσ

we need to show T (ϕ
By induction on the length of T

subcase: |T | � 0, T has one state and is of the form
τÝÑ C

By assumption (ι, [], [], rprogsι) P C
Because the update list is empty, Eσ1, s.t. T (ppp~xq@pι, tqqσσ1

Therefore, T (ϕ trivially.
subcase: T � T 1 τÝÑ C

We examine all possible steps allowed by the operational semantics.
To show the conjunction holds, we show all clauses in the conjuction are true by
construct a generic proof for one clause.
case: DeQueue is the last step.

Given a substitution σ1 for t and ~x s.t. T (pτb ¤ t τe ^ pp~xq@pι, tqqσσ1

By the definitions of semantics, and DeQueue merely moves messages around
(1) ppp~xqqσσ1 is on trace T 1

(2) T 1 (pτb ¤ t τe ^ pp~xq@pι, tqqσσ1

By I.H. on T 1,
(3) T 1 (p@t,@~x, τb ¤ t τe ^ pp~xq@pι, tq � ϕppι, t, ~xqqσ

By (2) and (3)
(4) T 1 (ϕppι, t, ~xqσσ1

By ϕp is closed under trace extension and (4),
T (ϕppι, t, ~xqσσ1

Therefore, T (ϕ by taking the conjunction of all the results for such p’s.
case: NodeStep is the last step. Similar to the previous case, we examine every

tuple p generated by prog to show T (ϕ. When p was generated on T 1, the
proof proceeds in the same way as the previous case. We focus on the cases
where p is generated in the last step.
We need to show that T (p@t,@~x, τb ¤ t τe ^ pp~xq@pι, tq � ϕppι, t, ~xqqσ
Assume the newly generated tuple is ppp~xq@pι, τpqqσσ1, where τp ¥ τ
We need to show that T (pϕppι, τp, ~xqqσσ1

subcase: Init is used
In this case, only rules with an empty body are fired (r � hp~vq :� .).
By expanding the the last premise of the Inv rule, and ~v are all ground terms,

(1) E1 :: Σ;Γ $ @i,@t, ϕhpi, t, ~vq
By I.H. on E1

(2) T (p@i,@t, ϕhpi, t, ~vqqσ
By (2)
T (pϕhpι, τp, ~yqqσσ1

subcase: RuleFire is used.
We show one case where p is not an aggregate and one where p is.

subsubcase: InsNew is fired
By examine the ∆r rule,

(1) exists σ0 P ρpΨν , Ψ, r, k, ~sq such that ppp~xq@pι, tqqσσ1 � ppp~vq@pι, tqqσ0

(2) for tuples (pj) that are derived by node ι, ppjp~sjqqσ0 P Ψν or ppjp~sjqqσ0 P Ψ
By operational semantics, pj must have been generated on T 1

(3)T 1 (ppjp~sjq@pι, τpqqσ0

By I.H. on T 1 and (3), the invariant for pj holds on T 1

28

(4) T 1 (pϕpj pι, τp, ~sjqqσ0

By ϕp is closed under trace extension
(5) T (ppjp~xjq@pι, τpq ^ ϕpj pι, τp, ~sjqqσ0

For tuples (qj) that are received by node ι, using similar reasoning as above
(6) T (precvpi, tppqj , ~sjqq@τpqσ0

(7) For constraints (aj), T (ajσ0

By I.H. on the last premise in Inv and (5) (6) (7)
(8) T (pϕppi, τp, ~vqqσ0

By (1) and (8), T (pϕppi, τp, ~yqqσσ1

subsubcase: InsAggNew is fired.
When p is an aggregated predicaete, we additionally prove that
every aggregate candidate predicate pagg has the same invariant as p.
That is (1) T (p@t,@~x, τb ¤ t τe ^ paggp~xq@pι, tq � ϕppι, t, ~xqqσ
The reasoning is the same as the previous case.

We additionally show that (1) is true on the newly generated paggp~tq.

C S-BGP encoding

r1 route(@N,Prefix,Cost,Path,SigList) :-

prefixs(@N,Prefix), List := f_empty(), Cost := 0,

Path := f_prepend(N,List), SigList := f_empty().

r2 bestRoute(@N,Prefix,a_MIN<Cost>,Path,SigList) :-

route(@N,Prefix,Cost,Path,SigList).

r3 verifyPath(@N,Neighbor,Prefix,PathToVerify,SigList,OrigPath,OrigSigList) :-

advertisements(@N,Neighbor,Prefix, ReceivedPath,SigList),

link(@N,Neighbor),

PathToVerify := f_prepend(N,ReceivedPath),

OrigPath := PathToVerify, OrigSigList := SigList,

f_member(ReceivedPath,N) == 0,

Neighbor == f_first(ReceivedPath).

r4 verifyPath(@N,Neighbor,Prefix,PathTemp,SigList1,OrigPath,OrigSigList) :-

verifyPath(@N,Neighbor,Prefix,PathToVerify,SigList,OrigPath,OrigSigList),

f_size(SigList) > 0, f_size(PathToVerify) > 1,

PathTemp := f_removeFirst(PathToVerify),

Node2 := f_first(PathTemp), publicKeys(@N,Node2,PubKey),

SigInfo := f_first(SigList),

InfoToVerify := f_prepend(Prefix,PathToVerify),

f_verify(InfoToVerify,SigInfo,PubKey) == 1,

SigList1 := f_removeFirst(SigList).

r5 route(@N,Prefix,Cost,OrigPath,OrigSigList) :-

verifyPath(@N,Node,Prefix,PathToVerify,SigList,OrigPath,OrigSigList),

f_size(SigList) == 0, f_size(PathToVerify) == 1,

Cost:= f_size(OrigPath) - 1.

r6 signature(@N,InfoToSign,Sig) :-

bestRoute(@N,Prefix,Cost,BestPath,SigList),

link(@N,Neighbor), privateKeys(@N,PrivateKey),

PathToSign := f_prepend(Neighbor,BestPath),

InfoToSign := f_prepend(Prefix,PathToSign),

Sig := f_sign(InfoToSign,PrivateKey).

29

r7 advertisements(@Neighbor,N,Prefix,BestPath, NewSigList) :-

bestRoute(@N,Prefix,Cost,BestPath,SigList),

link(@N,Neighbor),

PathToSign := f_prepend(Neighbor,BestPath),

InfoToSign == f_prepend(Prefix,PathToSign),

signature(@N,InfoToSign,Sig),

NewSigList := f_prepend(Sig,SigList).

30

