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Abstract—In recent years, there have been strong interests
in the networking community in designing new Internet ar-
chitectures that provide strong security guarantees. However,
none of these proposals back their security claims by formal
analysis. In this paper, we use a reduction-based approach to
prove the route authenticity property in secure routing protocols.
These properties require routes announced by honest nodes in
the network not to be tampered with by the adversary. We
focus on protocols that rely on layered signatures to provide
security: each route announcement is associated with a list
of signatures attesting the authenticity of its subpaths. Our
approach combines manual proofs with automated analysis. We
define several reduction steps to reduce proving route authenticity
properties to simple conditions that can be automatically checked
by the Proverif tool. We show that our analysis is correct with
respect to the trace semantics of the routing protocols.

I. INTRODUCTION

In recent years, there have been strong interests in the net-
working community in designing new Internet architectures to
address pressing security concerns. These range from security
extensions to Internet routing [1], [2], [3], to “clean-slate”
redesigns [4], [5]. One of the limitations of these proposals
is that these new designs lack formal security proofs – these
protocols are evaluated primarily via experimental evaluations
and their security guarantees shown via informal reasoning.

This paper aims to develop techniques for proving security
guarantees of the secure routing protocols. As a step towards
eventually analyzing new Internet architectures, this paper
focuses primarily on secure extensions to the current Internet
architecture. The Internet runs a routing protocol called the
Border Gateway Protocol (BGP), where routers are grouped
into various Autonomous Systems (AS) administrated by In-
ternet Server Providers (ISP). Individual ASes exchange route
advertisements with neighboring ASes using the path-vector
protocol. Each originating AS first sends a route advertisement
(containing a single AS number) for the destination addresses
that it owns. Whenever an AS receives a route advertisement,
it will add itself to the AS path, and then advertise the best
route to its neighbors based on routing policies.

Since these route advertisements are not authenticated, ASes
can lie and advertise non-existent routes, or claim to own
destination addresses that they do not. These faults may be
a consequence of harmless misconfigurations, or malicious
activities, e.g. traffic hijacking or violations of business agree-
ments. They may lead to long periods of interruption of the

Internet. These faults violate the route authenticity property,
which requires that routes announced by honest ASes in the
network not to be tampered with by the adversary.

There have been a variety of proposed mechanisms [6]
that aim to provide or improve the route authenticity of the
Internet routing. For example, Secure BGP (S-BGP) [1] and
pretty secure BGP [2] use cryptographic functions to sign
routing information to prevent malicious routers from altering
the routing information. Many such proposals rely on some
form of layered signatures to provide security: each route
announcement is associated with a list of signatures attesting
the authenticity of its subpaths [7], [2], [4], [5]. Intuitively,
attackers do not have the private keys of honest nodes, and
therefore cannot forge the signatures that were created by the
honest nodes. Consequently, route announcements sent out by
the honest nodes cannot be tampered with by the attacker. We
formalize this intuition and prove route authenticity proper-
ties on variants of S-BGP, a comprehensive routing security
solution for BGP that uses layered signatures.

We define several reduction steps to reduce the route authen-
ticity proofs to checking conditions that are simple enough
to be either discharged manually or by an automated tool
Proverif [8]. The reduction steps are generic to the class of
routing protocols that we study. We show that our analysis
is correct with respect to the trace semantics of the routing
protocols. Our analysis either proves that a given property
is met, or provides evidence of an attack. This provides a
basis for comparing different protocols based on their security
guarantees, costs of deployment and performance.

This paper makes the following contributions:

• We model routing protocols as transition systems, and
formally define route authenticity properties in a first-
order temporal logic (Section II).

• We define reduction steps that reduce the proof of route
authenticity to conditions that can be either automati-
cally checked or manually discharged. We have formally
proven the correctness of our reduction steps (Section III).

• We use Proverif, an automated tool, to check the most
complicated conditions, and present case study results
(Section IV).

Detailed definitions and proofs can be found in the com-
panion technical report [9].978-1-4673-2447-2/12/$31.00 c© 2012 IEEE
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Malicious Node M ::= (u, I, U)
Honest Node H ::= (u, I,RtTb,Q)
Signature σ ::= sign((d, p), sk(u))
Protocol P ::= (forig, fupd, fck, fa, δ)
Transition Function δ ∈ States × Actions→ States
Routing state S ::= ∅ | S,M | S,H
Update r ::= (p, ur, d,Σ)

Fig. 1. Constructs for Modeling Routing Protocols

II. SPECIFICATIONS OF SECURE VARIANTS OF BGP
We explore two variants of the S-BGP protocol, each

with different security guarantees. We abstractly model the
protocols as transition systems, which encode the underlying
path-vector protocol used in BGP. Details of BGP’s import and
export policies are omitted from the model, since they are not
directly relevant to our security analysis. We formally define
route authenticity properties, which serves as a basis for our
security analysis of these two protocol variants in Section III.

A. Formal Model for Routing Protocols

Syntax. We use a graph G = (V,E) to represent the network
topology, where V is the set of nodes (ASes) and E is the
set of links. Gu represents the sub-graph of G that contains
all the nodes and links directly connected to u. A node is
either honest, which runs the prescribed routing protocol;
or malicious, modeled using the Dolev-Yao attacker model:
attackers can deconstruct terms, construct terms from known
ones, including generating signatures using the private keys it
knows. We write A to denote the set of malicious nodes. We
assume that the topology (G) and the set of malicious nodes
(A) do not change during the execution of the protocol.

The syntactic constructs for modeling the routing protocols
are summarized in Figure 1. M denotes the state of a malicious
node, where u is the unique ID (AS number) for the node, I
is its initial knowledge and U is the set of route updates it
has learned so far. The initial knowledge I includes the public
and private keys that the attacker knows, and other relevant
information it needs to know to run the routing protocol.
H denotes the state of an honest node. In addition to a node

ID, and initial knowledge, an honest node uses a routing table
RtTb to store known routes to different destinations and a
queue Q to store the set of update messages to be processed.

We write Hu (or Mu) to denote the local state of an honest
(or a malicious) node of ID u. A global state in the routing
protocol S consists of all the nodes in the network.

A path p is a list of nodes [u1, · · ·un]. σ denotes digital
signatures. The signature of a pair of a path p and a destination
prefix d signed by u’s private key is written sign((d, p), sk(u)).
A list of signatures ([σ1, · · · , σn]) is written Σ. r denotes a
route update message, where p is the path, d is the destination,
ur is the recipient node of this update, and Σ is a set
of signatures associated with this update. The secure BGP
protocols are parameterized over the following functions:
• forig(d, us, ur) computes a route update that originates

at node us with the destination prefix d for node ur.
• fupd(r, us, ur) computes a new route update from node
us to node ur based on a route r that us has received.

• fck (r) checks the validity of all the signatures in r.
It returns true if r has the correct format and all the
signatures are valid.

• fa(Gu, r, u) is a check on r by node u. fa uses fck as
a sub-routine, and additionally checks that r is sent from
a direct neighbor. We assume that each node u knows
its direct neighborhood Gu by using a separate neighbor
discovery process which we assume is correct.

We say a route update is valid when fck (r) = true. Actions
are denoted α. The action relevant for our security analysis is
the send action sendA(u, v, r), which denotes node u sends
node v a route update r. The transition function δ maps a pair
of a state and an action to another state (δ(S, a) = S′). A trace
T is a sequence of state transitions: S0

α1−→ S1 · · ·
αn−→ Sn. We

write R[(A, G,P, S0)] to denote the set of traces of executing
the protocol P on a topology G given the set of malicious
nodes A, and an initial state S0.

We write K(Mu) to denote all the knowledge that a mali-
cious u can derive based on the standard Dolev-Yao attacker
model. K(Mu) can be defined straightforwardly by a set of
inference rules.

Transition function. δ allows three transitions: (1) an honest
node originates a route r and r is inserted into the queue of
the destination node; (2) an honest node u processes a route
announcement r, and either discards it, or generates a new
update rnew , in which case, u’s routing table is updated, and
the queue of the intended recipient of rnew is also updated;
and (3) a malicious node sends out an announcement. For each
transition, we additionally allow every malicious node to know
the route announcement. The formal definitions of δ can be
found in the companion technical report [9].

Two S-BGP variants. Both variants associate a route an-
nouncement r with a list of signatures: one for each subpath
in r. They differ in the signature format. The signature in
Protocol 1 does not contain the receiving node of the route.
We define the auxiliary functions for Protocol 2 below. We use
verify(σ, t, pk(u)) to represent the signature checking function
that returns true if σ = sign(t, sk(u)), and we write l1@l2 to
denote the concatenation of two lists l1 and l2.
forig(d, us, ur) = ([us, ur], ur, d, [sign((d, [us]), sk(us))])
fupd((p, d, us,Σ), us, ur)

= (p@[us], d, ur,Σ@[sign((d, p@[us, ur]), sk(us))])
fck ([u], ur, d, [σ]) = true iff verify(σ, (d, [u, ur]), pk(u)) = true
fck (p@[u], ur, d,Σ@[σ]) = true iff fck (p, u, d,Σ) = true
and verify(σ, (d, p@[u, ur]), pk(u)) = true
fa(r, v) = fck (r) and uv ∈ E where r = (p@[u], d, v,Σ)

B. A Logic for Expressing Route Authenticity Properties

We present the syntax and semantics of a first-order logic
for specifying the route authenticity properties.

Syntax. Figure 2 summarizes the syntax of formulas. Pred-
icates, written P , include link (u1, u2) representing links in
the topology, honest (u) stating u is honest, and several
predicates on the send action. Route-dependent predicates,
written PR(r, i), are parameterized over a route update r and
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Predicates P ::= link (u1, u2) | honest (u) | send (u, r) | sendTo (u1, u2, r) | sent (u, r) | sentTo (u1, u2, r)
Route-dependent Pred PR(r, i) ::= linkPrev (r, i) | linkNext (r, i) | honestR (i) | sentR (r, i) | sentToR (r, i)
Route-dependent Form FR(r, i) ::= PR | ¬FR(r, i) | FR(r, i) ∧ FR(r, i) | FR(r, i) ∨ FR(r, i)
Universal Form F∀(r) ::= ∀i.FR(r, i)
Formula ϕ ::= P | F∀ | ϕ ∧ ϕ | ϕ ∨ ϕ | | ϕ ⊃ ϕ | ¬ϕ | ∀x.ϕ | ∃x.ϕ

Fig. 2. Syntax of Formulas

a natural number i indexing into a position in the path in r.
A node can be uniquely determined by r and i. For instance
if r = ([u1 · · ·un], ur, d,Σ), then the ith node of the path in
r is ui. Instead of relying on recursively-defined predicates,
universally quantified route-dependent formulas can concisely
specify properties that are true on every subpath in a route
update. The route authenticity properties demonstrate how
these route-dependent formulas are used.

Formulas ϕ are the standard first-order logic formulas that
make use of the predicates and route-dependent formulas. To
express trace properties, we use one temporal connective �.
Formula �ϕ means that ϕ is true in every state on the trace
before the current state.

Semantics. We write A, G, T � ϕ to mean that ϕ holds in the
last state of T , given the topology G and the set of malicious
nodes A. Below is a summary of the interesting rules.
A, G, T � send (u, r) iff u is an honest node implies
T = T ′ α−→ S and α = sendA(u, v, r)
A, G, T � linkPrev (r, i) iff i = 1 or (Ji− 1Kr, JiKr) ∈ E
A, G, T � sentToR (r, i) iff r = (p, ur, d,Σ), u = JiKr,
u is an honest node implies there exists an action
sendA(u, v, r′) ∈ T , v = Ji+ 1Kr and r′ = (p′, v, d,Σ′),
|p′| = i and p′ is a subpath of p
A, G, T � ∀i, FR(r, i)

iff ∀i ∈ [1, |p|],A, G, T � FR(r, i), where r = (p, ur, d,Σ)

Predicate send (u, r) is true if the action leading to the
current state is node u sending a route update r. When u
is a malicious node, send (u, r) is vicariously true, since there
is little meaning to assert what a malicious node has sent out.
Predicate sent and sentTo only require the send action to exist
on the trace, as opposed to send and sendTo that require the
send action to be the last action on the trace.

The rules for route-dependent predicates use JiKr to denote
the ith node in the path of the update r. When n is the length
of the route, the (n + 1)th node is the recipient node of this
update: Jn+ 1K(p,ur,d,Σ) = ur.

Predicate linkPrev (r, i) is true when there is a link between
the (i−1)th (the previous node) and ith node in the path in r.
Predicate linkNext (r, i) is true when there is a link between
the ith and (i + 1)th node (the next node). The semantics
of sentR and sentToR are similarly defined by using i to
index nodes and subpaths in r. A universally quantified route-
dependent formula is true if for all the nodes i in the path of
r, FR(r, i) is true.

Route authenticity property. The route authenticity prop-
erties RouteAuth are of the form �ϕI , where ϕI requires
route announcements r from an honest node to satisfy certain
properties (F∀(r)):

ϕI = ∀u∀r, honest (u) ∧ send (u, r) ⊃ F∀(r)

We only care about routes sent out by honest nodes since

a malicious nodes can send out any message. We call ϕI
an invariant as it has to hold on all states of the trace. The
invariant ϕI depends on the concrete definitions of F∀(r). For
instance, ∀i, linkPrev (r, i) ∧ linkNext (r, i) requires that all
the links in a route update exist in the network topology.

III. SECURITY ANALYSIS OF ROUTING PROTOCOLS

There are two main ideas in our approach to verifying route
authenticity. First, the property of a route sent out by an honest
node u depends on the property of the routes u receives. There-
fore, the proof needs to induct on the length of the execution
traces to avoid circular dependencies. One main reduction step
is to apply Rely-Guarantee reasoning principles, and break the
induction into the base case (invariants holds initially) and the
inductive case (transitions maintain the invariants). Second,
both the protocol code and the attacker are analyzed, so that
from a failed proof, an attack trace can be easily generated.
Leveraging the security properties of the layered signatures,
we are able to finitely enumerate all possible scenarios of an
attacker’s attempts to generate an attack route update.

Section III-A provides an overview of the reduction steps.
We focus on explaining how to check whether malicious
nodes can generate attack route updates in Section III-B. In
Section III-C, we discuss how the conditions resulting from
the reduction steps are verified, and how attack scenarios
are generated. The soundness proofs can be found in the
companion technical report [9].

A. Reduction steps

We summarize our reduction steps in Figure 3. These re-
duction steps form a proof tree proving that route authenticity
property holds on all execution traces of a protocol (specified
at the root of the tree), if all the leaf conditions can be verified.
Each reduction step is represented as a reversed derivation
(from conclusion to premises) in the tree.

First, we narrow down the traces to consider to those where
attackers send and store route updates that pass the check
fck (r). This is sound because ill-formed updates will be
discarded by the honest nodes right away.

Second, proving the ϕI is reduced to establishing a stronger
invariant ϕSI (defined below). Formula ϕSI specifies properties
of the internal states: all the route updates r stored in the
routing table of an honest node must satisfy the required
property F∀(r), and that any route update in the queue of an
honest node must also satisfy F∀(r) if it passes the validity
check. Further, for malicious nodes, any route update that a
malicious node receives must satisfy F∀(r) as well.

ϕSI = ∀u,(honest (u) ⊃
((∀r ∈ RtTbu, F∀(r)) ∧ (∀r ∈ Qu, fa(r, u) ⊃ F∀(r)))

∧ (malicious (u) ⊃ (∀r ∈ Uu, F∀(r))
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C1 :
last link of the route
generated by an honest
node satisfies FR(r, n)

C2 : ϕSI holds initially

C1 :
last link of the route
generated by an honest
node satisfies FR(r, n)

routes generated by an
honest node satisfy F∀(r)

C3 C4 C5

routes generated by a malicious
node satisfy F∀(r)

routes updates satisfy F∀(r)

ϕSI holds across transitions
Stronger invariants holds on all execution traces where

attackers only send out valid route updates
∀T ∈ Rck [(A, G,P, S0)],A, G, T � �ϕSI

Route authenticity holds on all execution traces where
attackers only send out valid route updates
∀T ∈ Rck [(A, G,P, S0)],A, G, T � �ϕI

Route authenticity holds on all execution traces
∀T ∈ R[(A, G,P, S0)],A, G, T � �ϕI

Fig. 3. Reduction Steps

The invariant ϕSI and that the last link in the new route
update generated by an honest node satisfies the property
FR(r, n) imply path authenticity.

Third, we reduce proving ϕSI is an invariant to: ϕSI holds
initially (C2) and ϕSI is maintained (an inductive step).

The predicates used in specifying properties of routes talk
about past events, and therefore, have the property that if they
are true on a trace, then they are true on any extension of the
trace. This allows us to check the invariant only on parts of
the new state that differ from the preceding state. Therefore,
in the fourth step, for the inductive condition, we only need
to check that the newly generated updates r satisfies F∀(r).

Next, we split the cases and consider honest nodes and
malicious nodes separately. An honest node only updates its
routing table with a route update directly taken from the queue
and has passed the validity check fa(r). ϕSI holds at the
current state ensures that the new route update in the routing
table indeed satisfies F∀; and that the last link generated by
an honest node satisfies FR(rnew, n) implies that the honest
nodes maintain the invariant. The next section details how to
prove that malicious nodes cannot break the invariant.

B. Malicious Node Maintains the Invariant

Two challenges remain in checking whether a malicious
node can violate the invariant ϕSI : (1) given a route announce-
ment r, how can we effectively check that F∀(r) holds; (2)
how can we identify all possible route announcements that an
attacker can generate.

To address the first challenge, we leverage the fact that ϕSI
holds before the attacker generating a route update, and define
local checks that only depend on the attacker’s current state.
For the second challenge, we quantify the attacker’s capability
and reduce the check to a finite set of scenarios where the
attacker exactly knows one route update of length 2.

Local checks. We define semantics for formulas based on local
states. We write A, G,Mu � FR(r, i) to mean that a route-
dependent formula is true given the state of a malicious node
u. The interesting cases are the rules for the predicate sentR
and sentToR . Predicate sentR (r, i) is true locally if there is a
route announcement r′ in U , and the common prefix between

r and r′ includes the prefix of r of length i. For example,
assume that the route announcement ([u1, u2], d, urecv,Σ) is
in U , then sentR (([u1, u2, v1, ...], d, vrecv,Σ

′), 2) is true. The
rule for sentToR is similar. Checking whether a formula is
true based on local states is simple and can be automated.

The local semantics are sound with regard to the trace
semantics, if the invariant ϕSI satisfies Condition 3, which
ensures that if a route update from an honest node exists in U
then there is a corresponding send action on the trace. (Here
` is the logical entailment)

Condition 3 (Invariant)
• if sentR (r, i) is a subformula of FR, then FR(r, i) `

honest (i) ⊃ sentR (r, i)
• if sentToR (r, i) is a subformula of FR, then FR(r, i) `

honest (i) ⊃ sentToR (r, i)

All the route announcements the attacker knows satisfy
∀i.FR(r, i), as specified by ϕSI , together with the above
condition, we know that each honest node appearing in the
route announcement has sent out the announcement for that
subpath. Therefore, if sentR is true based on the local checks,
it is true on the trace.

Finite scenarios. An attacker has very limited capabilities to
generate well-formed route updates: it can do so only by (1)
constructing r without using any known route announcement,
or (2) using a prefix of the list of signatures in an existing
route announcement and adding more signatures signed using
the secret keys that it knows. This makes it possible to
enumerate all possible scenarios based on a fixed set of
network topologies and initial knowledge of the adversary. We
proved that checking Condition 4 is enough to prove that all
the route updates that an attacker can generate satisfy F∀(r)
in protocol 2. The conditions for protocol 1 is similar and the
only difference is that the topologies are listed in Figure 4,
and that the signatures do not include the recipient node.

When supplied with one route update of length 2, an
attacker would be able to perform all possible operations.
Further, Condition 4 only checks that the section of the new
route that differs from the existing route satisfies FR(r, j).
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u2#u1# m1# u3#(2)#

(3)# u2#u1# m1# u3#

u2#u1# m1# u3#(1)#

u2#u1# m1# m2# u3#(1)#

u2#u1# m1# m2# u3#(2)#

Fig. 4. Possible
Topologies where m1

is a malicious node

u2#u1# m1# u3#(2)#

(3)# u2#u1# m1# u3#

u2#u1# m1# u3#(1)#

u2#u1# m1# m2# u3#(1)#

u2#u1# m1# m2# u3#(2)#

Fig. 5. Possible Topologies where
m1 is a malicious node, and it knows
the private key of m2

This is because the invariant ϕSI ensures that existing sections
satisfy FR(r, i). This condition can be finitely checked.

Condition 4 (New-Malicious)
Let r0 = ([u1, u2],m1, d,Σ),
Σ = [sign((d, [u1, u2]), sk(u1)), sign((d, [u1, u2,m1]), sk(u2))],
I = {sk(m1), sk(m2), u1, u2, u3, pk(u1), pk(u2), pk(u3)},
Mm1 = (m1, I, {r0}),
∀G ∈ G (shown in Figure 5), ∀r ∈ K(Mm1

), if fck (r) = true
then ∀j ≥ i A, G, {([u1, u2],m1, d,Σ)} � FR(r, j), where i
is the length of the longest common prefix between r0 and r.

For Condition 4 to be sufficient to ensure that the attacker
cannot generate any attack trace in any network topology, we
need to justify why it is correct to only consider a route
[u1, u2], where u1 and u2 has a direct link between them.
We again leverage the invariant ϕSI . The following condition
requires that the invariants for Protocol 1 include the property
that for any honest node, the link to the previous node exists
(I); and for Protocol 2, links to the previous and the next node
of an honest node exist (II).

Condition 5 (Local to Trace)
(i) FR(r, i) ` honest (i) ⊃ linkPrev (r, i)

(ii) FR(r, i) ` honest (i) ⊃ (linkPrev (r, i) ∧ linkNext (r, i))

These two conditions ensure that the attacker cannot gen-
erate any attack trace. Intuitively, for each attack trace, a
boolean assignment for the predicates in ¬FR(r, i) makes it
true in some topology. The scenarios in Condition 4 enu-
merate all possible boolean assignments (constrained by ϕSI )
to the predicates in FR(r, i). For instance, for honest (i) =
true, linkPrev (r, i) = true, and linkNext (r, i) = false,
for Protocol 2, topology (1) in Figure 4, the route update
([u1, u2,m1,m2],m2, d,Σ) will have the above boolean as-
signment for i = 3. Assignments such as honest (i) = true,
linkPrev (r, i) = false will be discarded because Condition 5
ensures that such scenario need not be considered.

C. Summary and Discussion

The proof of route authenticity is reduced to checking the
leaf conditions in Figure 3. Condition 1 is checked by careful
examination of definitions of the protocol. Condition 2 holds
since all the routing tables and queues are empty in the initial
states. Condition 3 and Condition 5 are checked by manual
inspection of the strong invariant ϕSI . Condition 4 is checked
using Proverif, which we discuss in Section IV.

Finally, we discuss how to generate attack traces from failed
checks of Condition 4. Whenever Condition 4 is not true, it
must be the case that the attacker can come up with a valid

FR(r, i) Prot. 1 Prot. 2
(Fig 4) (Fig 5)

Prop.(1) honest (i) ⊃ (linkPrev (r, i) ∧
sentR (r, i)) valid valid

Prop.(2) honest (i) ⊃ (linkPrev (r, i) ∧ T(1);T(2);T(3):
linkNext (r, i) ∧ sentToR (r, i)) ([u1],m1, d,−) valid

Fig. 6. Analysis Results of Protocol 1 and Protocol 2

route (fck (r) = true), but there is an index i such that FR(r, i)
is not true. However, this route itself may not be an attack
trace since an honest node may reject r after checking fa(r),
which is true only if the sender of r is a direct neighbor of v.
For a route update r such that fck (r) = true, but fa(r, v) =
false, it must be the case that the link between the sender
of r to v doesn’t exists. Let r = (p@[u], v, d,Σ), then the
attacker can send r to another colluding attacker node u1,
which has a link to an honest node v1. u1 can generate a
route r′ = (p@[u, u1], v1, d,Σ@[sign((d, p@[u, u1]), sk(u1))])
that the honest node v1 will accept, but does not satisfy F∀.
Thus r′ is an attack route even though r is not.

IV. CASE STUDY

We present our analysis results of the two variants of S-
BGP. Our analysis of checking Condition 4 is facilitated by
Proverif [8], an automated cryptographic protocol verifier. The
encoding is available at http://netdb.cis.upenn.edu/sbgp.tar.gz.

We encode the protocol as a π-calculus process, where the
capabilities of an attacker are hard-coded as a process, as
opposed to Proverif’s standard attacker model1. As described
in Condition 4, we provide the attacker process with a route
update of length 2 and query whether the attacker can construct
any route update violating the property F∀(r).

Table 6 summaries results of the security analysis. Each
row contains the results of verifying one specific property
(FR(r, i)) listed in the second column. Recall that the top-level
formula (Section II-B) is of the form: �(∀u∀r, honest (u) ∧
send (u, r) ⊃ ∀i, FR(r, i)). For each protocol, we list the
attack route update–the route update that does not satisfy
∀i, FR(r, i)–and the topology in which this route update is
generated. The topology is indexed by the number as presented
in Figure 4 and 5. We omit the signature list from the route
update, which can be straightforwardly deduced.

Prop (1) requires that the incoming link to an honest node
must exist and that route announcement is made by the honest
node. It is possible that even if there is a physical link in the
network, the link may not be included in a route announcement
as it is not part of the best routing path to the destination prefix.

This property holds for both protocols because an honest
node only accepts routes from its direct neighbors, and route
announcements are cryptographically authenticated.

Prop (2) additionally requires that the outgoing link from an
honest node must exist. This property highlights the difference
between the security guarantees of Protocol 1 and Protocol 2.

The attack scenario for Protocol 1 is that the attacker reuses
a subset of the signatures in an existing update: though there

1The reason is that the routing protocols are recursive in nature, and our
attempts to directly use Proverif’s attacker model cause non-termination.
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is no link between u1 and m1 and u1 did not send the route
announcement to m1, m1 can still extract the u1’s signature
from the route announcement from u2. However, this property
holds for Protocol 2. An honest node only announces routes
to its neighbors, and this information is protected by digital
signatures. This property does not prevent worm-hole attacks:
two malicious nodes can collude to introduce non-existent
links. Assuming no collusion, Protocol 2 guarantees that links
in a valid route announcement exist in the topology. Protocol
1 provides weaker security guarantees: one attacker by itself
can introduce non-existent links.

V. RELATED WORK

Prior work on formal network verification (e.g. [10], [11],
[12]) have focused primarily on functional correctness of the
protocols, but not security properties. Compared to work on
analyzing cryptographic protocols [13], [14], [15], [16], [17],
[18], [19], secure routing protocols have to deal with arbitrary
network topologies and the security properties are recursive.
Most model-checking techniques are ineffective in proving
these recursive security properties. Our proof techniques bare
similarities with prior proof-based techniques for analyzing
cryptographic protocols [14], [16]. The novelty lies in the
reduction steps and combining manual and automated proofs
to prove security properties for any arbitrary network topology.

Recent work [20], [21], [22] aim to verify similar route
authenticity properties on wireless routing protocols for mobile
networks Identifying these attacks are reduced to constraint
solving. It is further shown that the security analysis of a
specific route authenticity property solely based on topology
on these wireless routing protocols can be reduced to checking
these properties on several four-node topologies [22].

There are several key differences between our paper and
the above body of work. First, wireless protocols are typical
reactive in nature, where routes are requested on demand by
the sender in a highly mobile environment. A route is valid
in this case as long as an actual physical path exists between
sender and receiver. In the BGP setting, given that each AS
advertises a path based on its routing policies, our route
authenticity property not only rely on the network topology,
but also whether a node has announced a route in the past.

Second, the technique presented in [22] would not directly
work for us, since the attack route we care about include
those that exist in the topology, but not announced because of
routing policy. Even though our proof technique also reduces
the attack scenarios to a handful of scenarios, it differs greatly
from their approach. Our technique makes use of the properties
of the signature list and invariant properties that is assumed
to hold in the current state, and therefore, we are able to use
non-recursive conditions to identify attacks (or prove security).

VI. CONCLUSION

We presented a reduction-based techniques that enables
the route authenticity property of S-BGP to be automatically
checked for any arbitrary network topology. Our case study
using Proverif demonstrates the utility of our approach on

two variants of S-BGP. Our work provides not only a formal
account for the path authenticity properties, but also a formal
proof that these properties hold on certain routing protocols.
As our future work, we plan to apply our framework for
analyzing recent clean-slate designs of secure Internet routing
infrastructures (e.g. SCION [4] and ICING [5]).
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