
An Operational Semantics for Network Datalog
Vivek Nigam1, Limin Jia2, Anduo Wang1, Boon Thau Loo1, Andre Scedrov1

1 University of Pennsylvania, Philadelphia, USA
2 Carnegie Mellon University, Pittsburgh, USA

Abstract

Network Datalog (NDlog) is a recursive query language that extends Datalog by allowing pro-
grams to be distributed in a network. In our initial efforts to formally specify NDlog’s operational
semantics, we have found several problems with the current evaluation algorithm being used, includ-
ing unsound results, unintended multiple derivations of the same table entry, and divergence. In this
paper, we make a first step towards correcting these problems by formally specifying a new opera-
tional semantics for NDlog and proving its correctness for the fragment of non-recursive programs.
We also argue that if termination is guaranteed, then the results also extend to recursive programs.
Finally, we identify a number of potential implementation improvements to NDlog.

1 Introduction

Declarative networking [10, 11, 12, 13] is based on the observation that network protocols deal at their
core with using basic information locally available, e.g., neighbor tables, to compute and maintain dis-
tributed states, e.g., routes. In this framework, network protocols are specified using a declarative logic-
based recursive query language called Network Datalog (NDlog), which can be seen as a distributed
variant of Datalog [21]. In prior work, it has been shown that traditional routing protocols can be spec-
ified in a few lines of declarative code [13], and complex protocols such as Chord distributed hash
table [23] in orders of magnitude less code [12] compared to traditional imperative implementations.
This compact and high-level specifications enable rapid prototype development, ease of customization,
optimizability, and the potentiality for protocol verification. When executed, NDlog programs result in
efficient implementations, as demonstrated in open-source implementations [20, 22].

An inherent feature in networking is the change of local states due to usually small and incremental
changes in the network topology. For example, a node might need to change its local routing tables
whenever a preferred connection becomes available or when it is no longer available. Reconstructing
a node’s local state from scratch whenever there is a change in topology is impractical, as it would
incur unnecessarily high communication overhead. For instance, in the path-vector protocol used in
Internet routing, recomputation from-scratch would require all nodes to exchange all routing information,
including those that have been previously propagated.

Therefore in declarative networking, nodes maintain their local states incrementally as new route
messages are received from their neighbors. In literature, there are well known techniques for maintain-
ing databases incrementally [8], in the form of materialized views, based on the traditional semi-naı̈ve
(SN) [3] evaluation strategy for Datalog programs. In order to accommodate these techniques to a dis-
tributed setting, Loo et al. in [10] proposed a pipelined semi-naı̈ve (PSN) evaluation strategy for NDlog
programs. PSN relaxes SN by allowing a node to change its local state by following a local pipeline of
update messages. These messages specify the insertions and deletions scheduled to be performed to the
node’s local state.

Due to the complexity of combining incremental database view maintenance with data and rule
distribution, until now, there is no formal specification of PSN nor a correctness proof. As PSN allows
each node to compute its local fixed point and disregard global update ordering, PSN does not necessarily
preserve the semantics of the centralized SN algorithm. However, in a distributed setting, centralized SN

1



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

evaluation is not practical. Therefore, studying the correctness properties of a distributed SN evaluation
is crucial to the correctness of declarative networking.

In this paper, we aim to give formal treatment of the operational semantics of PSN and to prove its
correctness. In the process, we identify several problems with PSN, namely, that it can yield unsound
results; it can diverge; and it can compute the same derivation multiple times. In order to address these
deficiencies, we present a new evaluation algorithm for NDlog called PSNν and prove its correctness for
the fragment of non-recursive programs. We formalize both PSNν and SN algorithms computations by
using the same set of transition rules. Then, we show that a PSNν execution for a distributed NDlog
program derives the same facts as an SN execution for the same Datalog program in a centralized setting.
This property is proved by showing that a PSNν computation run can be transformed into an SN com-
putation run and vice-versa without affecting the resulting state. We also argue that the same reasoning
is applicable to proving correctness of PSNν for recursive programs provided that PSNν terminates in
the presence of messages inserting and deleting the same tuple. Finally, we identify several potential
implementation improvements by using PSNν .

The rest of the paper is organized as follows. In Section 2, we review the basics of NDlog and of
a simple SN algorithm used to maintain states incrementally in a centralized setting. Then, in Section
3 we review the PSN algorithm, explain the problems of PSN, and informally introduce PSNν . In
Section 4, we formalize the operational semantics of PSNν in the form of a transition system and prove
its correctness with respect to the SN algorithm. We have also formalized the operational semantics
of NDlog in linear logic with subexponentials [19]. However, due to space constraints, we omit the
formalisms from this paper, but details can be found in the extended version of this paper [18]. The
linear logic encoding has many advantages over the state transition system presented here, which we
discuss in Section 5. Finally in Section 6, we comment on related work and conclude by pointing to
future work in Section 7.

2 Preliminaries

In this section, we review the language Network Datalog (NDlog) [10], which extends Datalog programs
by allowing one to distribute Datalog rules in a network. Moreover, we also review an algorithm that
maintains views incrementally in a centralized setting. This algorithm based on the semi naı̈ve evaluation
strategy will be used as the basis for showing correctness of the distributed algorithm that we propose
later in Section 3.

2.1 Background: Datalog

We first review some standard definitions of Datalog, following [21]. A Datalog program consists of a
(finite) set of logic rules and a query. A rule has the form h(~t) :- b1(~t1), . . . ,bn(~tn), where the commas
are interpreted as conjunctions and the symbol :- as reverse implication; h(~t) is an atom called the
head of the rule; b1(~t1), . . . ,bn(~tn) is a sequence of atoms and function relations called the body; and
the~ts are vectors of variables and ground terms. Any free variable in a Datalog rule are is assumed to
be universal quantified. Function relations are simple operations such as boolean, or arithmetic (e.g.,
X1 < X2), or list manipulations operations (e.g., f concat(S,P2)). Semantically the order of the elements
in the body does not matter, but it does have an impact on how programs are evaluated (usually from left
to right). The query is a ground atom. We say that a predicate p depends on q if there is a rule where
p appears in its head and q in its body. The dependency graph of a program is the transitive closure
of the dependency relation using its rules. We say that a program is (non)recursive if there are (no)
cycles in its dependency graph. As a technical convenience, we assume that if predicates have different

2



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

arities, then they have different names1. We classify the predicates that do not depend on any predicates
as base predicates, and the remaining predicates as derived predicates. Consider the following non-
recursive Datalog program where p,s, and t are derived predicates and u,q, and r are base predicates:
{p :- s, t, r; s :- q; t :- u; q :-; u :-}. The set of all the ground atoms that are derivable
from this program, called view or state, is the multiset {s, t, q, u}. In this particular example, each
predicate is supported by only one derivation. If we added, however, the clause s :- u to this program,
then the resulting view program would change to {s, s, t, q, u} where s appears twice, as there are
two different ways to derive it: one by using q and another by using u.

Datalog’s predicates (atoms) correspond to tuples in databases, and logical conjunction is equivalent
to a join operation in database. For the rest of the paper, these terms are used interchangeably.

2.2 Network Datalog by Example

To illustrate NDlog programs, we provide an example based on a simplified version of the path-vector
protocol, a standard routing protocol used for computing paths between any two nodes in the network.
This protocol is used as a basis for Internet routing today, where different autonomous systems (or Inter-
net Service Providers) exchange routes using this protocol.
r1 path(@S,D,P,C) :- link(@S,D,C), P=f_init(S,D).

r2 path(@S,D,P,C) :- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2, P=f_concat(S,P2), f_inPath(P2,S)=false.

The program takes as input link(@S,D,C) tuples, where each tuple represents an edge from the node
itself (S) to one of its neighbors (D) of cost C. NDlog supports a location specifier in each predicate,
expressed with “@” symbol followed by an attribute. This attribute is used to denote the source location
of each corresponding tuple. For example, link tuples are stored based on the value of the S attribute.

Rules r1-r2 recursively derive path(@S,D,P,C) tuples, where each tuple represents the fact that
there is a path P from S to D with cost C. Rule r1 computes one-hop reachability, given the neighbor
set of S stored in link(@S,D,C). Rule r2 computes transitive reachability as follows: if there exists a
link from S to Z with cost C1, and Z knows a path P2 to D with cost C2, then S can reach D via the
path f concatPath(S,P2) with cost C1+C2. Rules r1-r2 utilize two list manipulation functions: P=
f init(S,D) initializes a path vector with two nodes S and D, while f concatPath(S,P2) prepends S

to path vector P2. To prevent computing paths with cycles, rule r2 uses the function f inPath, which
returns true if S is in the path vector P. Notice that although this function seems to contain a negation, it
is in fact implemented without using it: if we assume nodes to be specified using natural numbers, then
one can write a specification for f inPath that does not use negation, but that uses the inequalities < and
>.

To implement the path-vector protocol in the network, each node runs the exact same copy of the
above program, but only stores tuples relevant to its own state. What is interesting about this program
is that predicates in the body of rule r2 have different location specifiers indicating that they are stored
on a different node. To improve performance and eliminate unnecessary communication, we use a rule
localization [10] rewrite procedure that transforms a program into an equivalent one where all elements
in the body of a rule have the same location, but the head of the rule may reside at a different location than
the body predicates. We call a rule non-local when two body atoms have different location specifiers.
For instance, the clause r1 above is local, while the clause r2 is not. The rule localization procedure
rewrites the clause r2 to the following two clauses that are local:
r2-1: path(@S,D,P,C) :- link(@S,Z,C1), aux(@S,Z,D,P2,C2), C=C1+C2, P=f_concat(S,P2), f_inPath(P2,S)=false.

r2-2: aux(@S,Z,D,P,C) :- path(@Z,D,P,C), link(@Z, S).

1One can easily rewrite predicate names and distinguish them by using their arities.

3



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

Here, the predicate aux is a new predicate, that is, it does not appear in the original alphabet of predicates.
As specified in the rule r2-1, this predicate is used to inform all neighbors, S, of the node Z of the
existence of a path P with cost C from a node Z to a node D. It is not hard to show, by induction on the
height of derivations, that this program is equivalent to the previous one in the sense that a path tuple is
derivable using one program if and only if it is derivable using the other. For the rest of this paper, we
assume that such localization rewrite has been performed.

2.3 Maintaining Views Incrementally

Given a datalog program and a set of base tuples or facts, one derives all possible facts that can be derived
from the logic program by using bottom-up evaluation algorithms [21]. For instance, the view of the path
example above would consist of all possible paths in the network. However, consider now that there is
a change on the set of base facts, for instance, when a new link in the network has been established or
an old link has been broken. In this case, one would need to update the view of the database in order to
accommodate the changes in the base predicates. One way of doing so is to forget all derived tuples and
rederive the new view from scratch. Since the changes to base predicates do not necessarily affect the
derivations of all facts in the original view of the database, starting from scrath might involve repeating
unecessarily the same work. A better way is to maintain a view incrementally, where one only takes into
account the facts that are affected by the changes to the base predicates, while the rest of the facts remain
untouched.

Algorithm 1 is such an algorithm based on the traditional Semi-naı̈ve (SN) evaluation strategy that
maintains a database incrementally when given a set of changes to base predicates [8]. Semi-naı̈ve (SN)
evaluation iteratively updates the view until a fixed point is reached. Tuples computed for the first time
in the previous iteration are used as input in the current iteration; and new tuples that are generated for
the first time in the current iteration are then used as input to the next iteration.

First, we create for each rule h(~t) :- b1(~t1), . . . ,bn(~tn) in a Datalog program the following delta in-
sertion and deletion rules, where we use the names INS and DEL to denote an insertion and deletion,
respectively:

ins(h(~t)) :- bν
1 (~t1), . . . ,bν

i−1(~ti−1),∆bi(~ti),bi+1(~ti+1), . . . ,bn(~tn)
del(h(~t)) :- bν

1 (~t1), . . . ,bν
i−1(~ti−1),∆bi(~ti),bi+1(~ti+1), . . . ,bn(~tn)

We start initially with two copies of the view, one marked with ν , corresponding to the predicates
with the ν superscript, and another not marked with ν . Then, given a set of insertions, Ik, and deletions,
Dk, for each base predicate, pk, Algorithm 1 uses the delta-rules above to incrementally maintain the
view. Intuitively, an update of a predicate, bi, is removed from one of these sets and it is stored in
its corresponding delta predicate, ∆bi. Then, any update derived by any delta-rule in one iteration is
processed in the following iteration until no more updates are derived. The operations insert and remove,
respectively, inserts and removes (non-deterministically) an element from a set, while the operation flush
removes all elements from one set and inserts them into another set. The algorithm proceeds as follows:
If we are in, say, the ith +1 iteration, then the contents of the table without ν corresponds to the view at
the ith−1 iteration and the contents of the table with ν to the view at the ith iteration. The ith +1 iteration
consists of executing the delta-rules for all updates in Ik and Dk: First, one picks (non-deterministically)
an element from either the set of insetions, Ik, or of deletions, Dk, and uses accordingly the set of insertion
or deletion delta rules. Then, whenever an insertion or deletion rule is fired, we store the derived tuple
in Iν

k and Dν
k respectively. Finally, once all rules have been executed, we change the view accordingly

and proceed to the next iteration, but now using the updates stored in Iν
k and Dν

k , which correspond
to the updates derived in iteration ith + 1. This is done by the instructions in the for loop which use
set-operations.

Algorithm 1 maintains correctly the view of a Datalog program [8] whenever there is exactly one

4



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

Algorithm 1 SN-algorithm.
while ∃Ik.size > 0 or ∃Dk.size > 0 do

while ∃Ik.size > 0 or ∃Dk.size > 0 do
∆tk← Ik.remove (resp. ∆tk← Dk.remove)
Iaux
k .insert(∆tk) (resp. Daux

k .insert(∆tk))
execute all insertions (resp. deletion) delta-rules for tk:

∆pi+1
k ← pν

1 , . . . , pν
i−1,∆tk, pk+1, . . . , pn

for all derived tuples p ∈ ∆pi+1
k do

Iν
k .insert(p) (resp. Dν

k .insert(p))
end for

end while
for all predicates p j do

p j← (p j ∪ Iaux
j )\Daux

j ; pν
j ← (p j ∪ Iν

j )\Dν
j ; I j← Iν

j . f lush; D j← Dν
j . f lush;

Daux
j ← /0; Iaux

j ← /0;∆pi+1
j ← /0

end for
end while

derivation for any tuple. This limitation is due to the use of set semantics. Despite of this limitation,
Algorithm 1 captures most of the programs used until now in declarative networking. For instance,
we can use it to maintain the datalog program for path vector program described above since any path

tuple is supported by just one derivation. There are other more complicated algorithms that can also
maintain views of programs where tuples have multiple supporting derivations. However, formalizing
these algorithms seems to be a non-trivial task and is left for future work.

3 Network Datalog Program Execution

Maintaining views incrementally in a distributed setting, however, generates many challenges. While in
the centralized setting one can enforce a high degree of synchronization, in a distributed setting this is
in general not the case. For example, in Algorithm 1 one processes older updates always before newer
ones. On the other hand, in a distributed setting an agent is not usually required to stop processing a
newer update until all other agents in the system have processed older updates. Such synchronization
would make the system unfeasible in practice [10].

Guaranteeing desirable properties, such as termination, in such an asynchronous setting is usually
much harder than in centralized setting. We review in this section the distributed evaluation algorithm
currently used by NDlog called pipelined semi-naı̈ve (PSN). We identify some problems with this algo-
rithm and then propose a new evaluation algorithm called PSNν .

3.1 Problems in Pipelined Semi-naı̈ve Evaluation

In order to maintain incrementally the states of nodes or agents in a distributed setting and at the same
time avoid synchronization among them, Loo et al. in [10, 11] proposed PSN. In PSN, each agent has
a queue of messages scheduling insertions and deletions of tuples to the agents’s local state. An agent
proceeds in a similar fashion as in Algorithm 1; it dequeues one update; then executes its corresponding
insertion or deletion delta-rules; and then for each derived tuple, it sends a message which is to be stored
at the end of the queue of the node specified by derived tuple’s location specifier (@).

However, when a message reaches a node, it is not only stored at the end of the node’s queue, but
also immediately used to update the node’s local state, that is, the tuple in the message is immediately
inserted into or deleted from the node’s view. We now demonstrate that updating a node’s view by using
messages before they are dequeued can yield unsound results. Consider the following NDlog program,

5



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

@1: {}[] {p}[ins(p)] {p}[ins(p)] {p}[]
@2: {r,s,t}[ins(r)] {r,s,t}[] {r}[del(s),del(t)] {r}[]
@3: {}[del(q)] -- ins(r)--> {}[del(q)] -- del(q),del(u)--> {}[] ---->* {}[]
@4: {}[del(u)] {}[del(u)] {}[] {}[]

Figure 1: PSN computation-run resulting in an incorrect final state. The ith row depicts the evolution of the view,
in curly-brackets, and the queue, in brackets, of node i. The updates in the arrows are the ones dequeued by PSN
and used to update the view of the nodes. We also elide the @ in the predicates and updates.

which is the same program shown in Section 2.1, but now distributed over four nodes. The view of this
program is {s@2, t@2, q@3,u@4}:

p@1 :- s@2, t@2, r@2 s@2 :- q@3 t@2 :- u@4 q@3 :- u@4 :-

Consider as well the PSN computation-run depicted in Figure 1, which uses the messages inserting
the tuple r@2 and deleting the tuples q@3 and u@4. Notice that in the first state these updates have already
been used to update the view of the nodes as described in PSN. In the final transitions, none of the
updates deleting s or t trigger the deletion of p because the bodies of the respective deletion rules are
not satisfied since t and u are no longer in node 2’s view. Hence, the predicate p is entailed after PSN
terminates although it is not supported by any derivation.

The second problem that we identify is that unlike SN, PSN does not avoid redundant computations.
This is because in PSN a delta-rule is fired by using the contents currently stored in a node’s view, and
not distinguishing, as in SN, its two previous states, which in SN is accomplished by using the predicates
p and pν . For example, the NDlog rule p@1 :- t@1, t@1 would be rewritten into the following two
insertion rules, where we elide the @ symbols: ins(p) :- ∆t, t and ins(p) :- t, ∆t. Thus if we
dequeue an update inserting the tuple t, both rules are fired, and two instances inserting p are added to
the queue of node 1.

Finally, the third problem that we identify is divergence. Consider the simple NDlog program com-
posed of two rules: p@1 :- a@1 and p@1 :- p@1; and that the queue of node 1 is [ins(a),del(a)].
The insertion (resp. deletion) of a will cause an insertion (resp. deletion) of p to be added at the end of
the queue. Because of the second rule, the insertion and deletion of p will propagate indefinitely many
insertions and deletions of p and therefore causing PSN to diverge.

In the informal description of PSN, presented in [10, 11], many assumptions were used, such as that
messages are not lost; a Bursty Model, that is, the network eventually quiesces (does not change) for a
time long enough for all the system to reach a fixed point; that message channels are FIFO, hence no
reordering of messages is allowed; and that timestamps are attached to tuples in order to evaluate delta
rules. Even under these strong assumptions, the problems in PSN mentioned above persist. What is
more troublesome is that this design is reflected in the current implementation of NDlog and therefore,
all NDlog programs exhibit those flaws.

In the next section, we propose a new evaluation algorithm, called PSNν , which not only corrects
these problems, but also does not require the last two assumptions (FIFO channels and use of times-
tamps). The removal of these two assumptions not only simplifies the implementation, but also po-
tentially leads to improved performance, since the implementation no longer requires receiver-based
network buffers to guarantee in-order delivery of messages.

3.2 New Pipelined Semi-naı̈ve Evaluation

At a high-level, PSNν works as follows: Instead of using queues to store unprocessed updates, we
use a single bag, denoted as U , that specifies the asynchronous behavior in the distributed setting by
abstracting the order in which updates are used. Thus in this abstraction, we do not need to take into
account the @ specifiers since all messages go to U . One processes NDlog rules into delta-rules exactly as
in the SN algorithm, so that the multiple derivation problem does not occur. Then, one PSNν -iteration is

6



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

completed by executing in a sequence the following three basic commands, which preserve the invariant
that before and after a PSNν -iteration the views of the tables with ν and without ν are the same:
pick – One picks (non-deterministically) any update, u, from the bag U , except if u is a deletion of an
atom that is not (yet) in the view. Then, if u is an insertion of predicate p, one inserts the corresponding
pν to the ν table, otherwise if it is a deletion of the same predicate, one deletes pν from the ν table;
fire – After picking an update, one executes all the delta-rules corresponding to u. If a rule is fired, then
one inserts the derived tuple into the bag U .
update – Once all delta-rules are executed, one updates the view according to u: if u is an insertion or
deletion of predicate p, one inserts it into or delete it from the view without ν .

The execution of an SN-iteration can also be specified with the use of the same three basic commands
above. However, instead of applying just one sequence of the three commands, the ith + 1 SN-iteration
is composed of three phases: first, all elements in U are picked using the pick command. The resulting
contents in the ν table is updated with the updates derived in the previous iteration. Hence, the contents
of the ν table correspond exactly to the view at the ith iteration, while the contents in table without ν
corresponds exactly to the view at the ith− 1 iteration, as in Algorithm 1. Then one executes the delta-
rules for all updates picked in the previous phase, deriving and storing new updates in the bag U . After
this phase, U contains the updates derived at the ith +1 iteration. Finally, in the third phase, one executes
eagerly the update command which then updates the contents in table without ν to match the contents
of the table with ν .

4 Transition rules for the basic commands

As previously discussed, differently from a centralized setting where one is allowed to enforce a great
deal of synchronization on how updates are processed, in a distributed setting, it is no longer possible to
do so. As a consequence, in a distributed setting, traditional ways to define semantics of logic programs,
such as by using fixed point operators, e.g., Tp operators, do not closely correspond to the operational
semantics of bottom-up evaluations. For instance, SN is closely related to the Tp operator since at the
end of each iteration the set of derived facts by these methods coincide. In a distributed setting, however,
this is not the case since newer updates can be processed before older updates. This paper, therefore,
takes a different approach and formalizes the operational semantics by using, instead, a transition system
that can explain both the centralized and the distributed algorithms. Then we show that any trace in one
can be transformed into the other, showing hence that the distributed algorithm is correct with respect to
the centralized one.

In order to formalize the operational semantics of the basic commands, we introduce the following
basic definitions. An update is a tuple 〈u, p〉, where u is either INS or DEL denoting, respectively, an
insert or a delete update, and p is the fact that is being inserted or deleted from the database.

Definition 1. A state of the system is a tuple of the form 〈K ,U ,P,E 〉, where K is a multiset of facts,
and U ,P , and E are all multisets of updates.

Intuitively, the multiset K contains both the view with and without ν , the multiset U is the bag
of updates which have to be used to update an agent’s view, the multiset P contains the updates that
have been picked and are scheduled to be used to fire delta rules, and finally the multiset E contains the
updates that have been already used to fire delta rules, but not yet used to update the view.

The transition rules specifying the operational semantics for the basic commands are depicted in
Figure 2. The first two rules, pickI and pickD, specify the pick command. One moves, respectively,
an insertion and an deletion update from the bag of updates U to the bag of picked updates P , and
depending on the type of the update, a fact, pν(~t), is either inserted into or deleted from the view. The

7



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

〈INS, p(~t)〉 ∈U

〈K ,U ,P,E 〉 −→R 〈K ∪{pν(~t)},U \{〈INS, p(~t)〉},P ∪{〈INS, p(~t)〉},E 〉
pickI

〈DEL, p(~t)〉 ∈U and pν(~t) ∈K

〈K ,U ,P,E 〉 −→R 〈K \{pν(~t)},U \{〈DEL, p(~t)〉},P ∪{〈DEL, p(~t)〉},E 〉
pickD

u ∈P and F = firRules(u,K ,R)
〈K ,U ,P,E 〉 −→R 〈K ,U ∪F ,P \{u},E ∪{u}〉 fire

〈INS, p(~t)〉 ∈ E

〈K ,U ,P,E 〉 −→R 〈K ∪{p(~t)},U ,P,E \{〈INS, p(~t)〉}〉
updateI

〈DEL, p(~t)〉 ∈ E

〈K ,U ,P,E 〉 −→R 〈K \{p(~t)},U ,P,E \{〈DEL, p(~t)〉}〉
updateD

Figure 2: Transition rules specifying the operational semantics for the basic commands. Here, we only
use multiset operations; R is the set of rules in the program, and firRules(u,K ,R) is a function that
returns the set of all updates, F , that can be fired using the update u, the view K , and the set of delta
rules obtained from R.

third rule, fire, specifies the command fire, where we make use of the function firRules. Intuitively, this
function takes an update, 〈u, p(~t)〉, the current view, K , and the set of rules, R, as input and returns the
set of all updates, F , obtained from firing delta-rules that contain ∆p in its body. This set is then added
to the set U of updates that have to be processed later. Finally, the last two rules, updateI and updateD,
specify the operation of updating the view. Similar to the rules for pick, they either insert into or delete
from the view a fact p(~t).

Notice that, in the rules for pick, one is not allowed to pick a delete update of a tuple that is not
(yet) in the view of the database. This restriction is imposed in order to maintain the count of tuples
consistent. Intuitively, a delete update is generated to delete a tuple that is present in the view. However,
due to the asynchronous behavior of the system, it can be the case that this tuple is not yet present in the
view because the insert update that was going to do so has not yet been processed. Therefore, an agent
needs to wait until the view contains the element being deleted before processing a delete update.

A computation run using a program R is simply a valid sequence of applications of these transition
rules. We call the first state of a computation run the initial state and its last state the resulting state.
Clearly, when all three multisets U ,P, and E are empty, computation can no longer proceed (until
a new change in the environment triggers new updates to base predicates). In this case, we say that
all updates have been processed and the final view is obtained. In particular, we are interested in the
computation runs that correspond to execution runs of SN and of PSNν , defined below.

Definition 2. A computation run is a complete execution if it can be partitioned into a sequence of
transitions of both pickI and pickD, followed by a sequence of transitions of fire, and finally a sequence
of transitions of update, such that the multiset of tuples, T , used by the sequence of pickI and pickD
transitions is the same being used by the sequence of fire and update transitions. A complete iteration
is an SN-iteration if T contains all updates at the initial state that are in U . A complete iteration is a
PSNν -iteration if T contains only one update.

Definition 3. We call a computation run a PSNν -execution (respectively SN-execution) if it can be par-
titioned into a sequence of PSNν -iterations (respectively SN-iterations) and where in the last state all
updates have been processed.

A computation run corresponding to an iteration of SN first picks all updates that appear in the initial

8



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

{s,t,q,u} {r,s,t,q,u} {r,s,t}
{ins(r),del(q),del(u)} --ins(r)--> {ins(p),del(q),del(u)} --del(q)--> --del(u)--> {ins(p),del(s),del(t)}

{r,s,t} {r} {r}
{ins(p),del(s),del(t)} --del(s)--> --del(t)--> {ins(p),del(p)} --ins(p)--> --del(p)--> {}

Figure 3: A PSNν -execution run. Here we elide some of the intermediary states.

state in U , then deduces from them new updates by using the fire command, and updates the view using
the same updates by using the update command. The new updates that are generated remain untouched
until all old updates have been processed. Such iteration corresponds exactly to the inner while loop in
Algorithm 1. On the other hand, a computation run corresponding to an iteration of PSNν picks only one
update at a time and executes all three commands before picking another update.

In Figure 3, a PSNν -execution is depicted that uses the same initial condition as in the computation
run depicted in Figure 1. Unlike the previous PSN computation, here, the final state is consistent since
the resulting state contains only the fact r and not p. In order to relate this execution to the distributed
setting, we just need to attach the location specifier @ to the facts appearing in the set of updates, e.g.,
ins(p@1), and in the view, e.g., r@2. So, in the final state the views of all agents are empty except the
view of agent 2, which has r@2.

Although we use a single bag to store updates, in reality, agents in NDlog have their own buffers
containing incoming updates. The use of a single bag, however, is enough for the purpose of showing
that, despite of its asynchronous behavior, PSNν is sound and complete with respect to SN. Updates are
picked non-deterministically from the bag of updates, U , and in PSNν -executions, only one update is
processed at a time. Therefore in PSNν -executions, one processes in an atomic step any update even if
the update chosen is not the oldest one in the bag of updates. This contrasts with SN-executions where
one is required to process all old updates before new ones are picked. We could easily extend our model,
however, to accommodate the location of data by using a different bag for each agent and attach location
specifiers to programs, updates, and facts. However, this would make the correctness proof unecessarily
more complicated.

The following theorem establishes that PSNν is sound and complete with respect to SN.

Theorem 4. Let R be a non-recursive Datalog program, and let S be an initial state. Then there is a
PSNν -execution from S to a final state S ′ using R if and only if there is an SN-execution from S to
the same final state S ′ also using R.

Proof (Sketch) We prove the theorem above by showing that: 1) we can permute two PSNν -iterations;
2) we can merge a complete-iteration and a PSNν -iteration into a larger complete-iteration; and 3) con-
versely we can split a larger complete-iteration into a smaller complete-iteration and a PSNν -iteration.
Given a PSNν -execution, we construct an SN-execution by induction as follows: we use the first oper-
ation to permute downwards the PSNν -iteration that picks any element in the initial state’s U set, then
repeat it with its subexecution. The resulting execution has all PSNν -iterations in the same order as in an
SN-execution. We merge them into SN-iterations by applying the second operation repeatedly. For the
converse direction, given an SN-execution, we apply repeatedly the third operation to split SN-iterations
and obtain a PSNν -execution. The complete proof appears in the extended version of this paper [18]. 2

Corollary 5. For non-recursive programs, a query is entailed by using PSNν iff it is entailed by using
SN.

In the proof of Theorem 4, we perform three different operations when transforming a PSNν -
execution into an SN one. While performing these operations, however, it can happen that new rules
are fired. In particular, this happens when we permute a PSNν -iteration that uses a deletion update over
a PSNν -iteration that uses an insertion update. The updates generated in all cases are necessarily con-
flicting, that is, are pairs of insertions and deletions of the same tuple. In the general case, we cannot

9



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

guarantee that PSNν terminates when processing such conflicting updates, but we can guarantee its ter-
mination if the program is non-recursive since these programs do not contain dependency cycles and
therefore the propagation of updates will eventually end.

However, if we can guarantee such termination for PSNν , then the proof works exactly in the same
way. For example, our path example, shown in Section 2, which is a recursive program, is such type
of program. Because of the use of the function f inPath, one does not compute paths that contain
cycles. This restriction alone is enough to guarantee termination of PSNν : the number of path-updates
propagated by conflicting updates inserting and deleting the same link tuple is finite. Therefore we can
use the same reasoning above to show that PSNν is correct for this program.

Extending this work to larger classes is left for future work. We discuss more on this at the end of
this paper.

5 Linear Logic with Subexponentials

Although in this paper we make use of a transition system to model NDlog’s operational semantics,
mainly for presentation issues, we in fact have formalized all definitions above in terms of logic. More
specifically, we encode the transition system used above in linear logic [7] extended with subexponentials
[19]. The details of the encoding can be found in the technical report [18]. Since linear logic is a
precise and well-established language, used already for both specifying and reasoning about semantics
of programming languages, we expect to capitalize on the existing work to improve the correctness result
above to wider classes of NDlog programs. Moreover, linear logic also provides us with a finer detail
on how data is manipulated, for instance, the function firRules is also specified in greater detail in our
linear logic specification.

We have also observed that linear logic when extended with subexponentials seems to be a suitable
framework for specifying systems where resources/data move from one place to another. We briefly
discuss this matter.

In linear logic, due to the exponentials that control the availability of the structural rules, one distin-
guishes between two kinds of formulas: the linear ones and the unbounded ones. Linear formulas can be
interpreted as resources that can only be used once, while the unbounded formulas can be interpreted as
program instructions that can be used as many times as needed. Under this resource aware interpretation
of linear logic, one can specify, for example, systems where agents manipulate the state of the world.
A state is specified as a collection of linear formulas and an action of an agent is specified by a set of
unbounded formulas. This distinction among formulas is reflected on syntax by using two different con-
texts one for the linear formulas and another for unbounded formulas. Thus in plain linear logic, there is
no natural means to distinguish resources that are located in one place from another. All resources are
placed in the same linear context.

However, the linear logic exponentials are not canonical [4]. In fact, we can assume a system with as
many exponential-like operators, called subexponentials [19], as we need which may or may not allow
weakening and/or contraction. Thus with subexponentials, instead of only two contexts as in linear logic,
one can accommodate as many contexts as one needs. For instance, one can use a particular (linear)
context to store resources, that is, linear formulas, that belong to some agent and in another context to
store the resources available to another agent. This tight correspondence between distributed systems
and linear logic with subexponentials seems to be interesting and it seems worth to further pursue more
connections, in particular, involving verification techniques.

10



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

6 Related Work

Navarro et al. proposed in [17] an operational semantics for a variation of the NDlog language that also
includes rules with events. However, their semantics also computes unsound results and therefore it is
not suitable as an operational semantics for NDlog. For instance, besides the problems we identify for
PSN, one is also allowed in their work to pick an update that deletes an element without checking if
this element is present in the view, which may also yield unsound results. Moreover, in their operational
semantics no incremental maintenance algorithm is incorporated. Therefore, users of their language are
required to implement themselves how states are updated when incoming updates arrive at any node and
furthermore prove its correctness.

Although here we focus on declarative networking, maintaining states incrementally in a distributed
setting can also be useful when programming robots. As nodes in a network, robots are usually in an
environment that changes incrementally, for example, objects move from one place to another. Since
robots perform actions by taking into account the facts that they believe to be true at that moment, for
the robot to perform sound actions, their internal knowledge bases have to be maintained correctly and
efficiently whenever they detect changes in the environment. Ashley-Rollman et al. proposed a language
designed for programming robots and inspired by NDlog called MELD [2]. Although the operational
semantics of their language seems to agree with PSNν , we are not aware of any formal specification of
its operational semantics nor of any correctness proof. We believe that their language will also benefit
from the insights and results obtained here.

Adjiman et al. in [1] use classical propositional logic to specify knowledge bases of agents in a peer-
to-peer setting. They prove correct a distributed algorithm that computes the consequences of inserting
a literal, that is, an atom or its negation, to a node (or peer). Since they use resolution in their algorithm,
they are able to deduce not only the atomic formulas that are derivable when an insertion is made, but
propositional formulas in general. A fundamental difference from our apppraoch seems to be that while
they are mainly interested in finding the consequences resulting from inserting a formula, here, we are
interested in efficiently maintaining a set of consequences that was previously derived. In particular,
after a set of consequences is derived using a first insertion, it is not clear in their approach how to update
these consequence when a second insertion is made.

Linear logic has previously been used to specify concurrent systems [14, 15]. For instance, one is
able to encode in linear logic many formalisms that are used to specify distributed sytems, for example
the π-calculus, Petri-nets, Concurrent ML, and other distributed systems. Linear logic has also been
used to specify access control policies [6]. One is able, for instance, to express policies that are not
permanent but consumable, for example, a one-time access to a room. In a proof-authorization code
framework, whenever a client, such as a mobile phone, requests a server for access to some resource,
it attaches a linear logic proof demonstrating that his request follows from the given policies. In all of
these approaches, however, it does not seem possible to encode located resources in a natural way as
when using linear logic with subexponentials. In particular, it seems that in plain linear logic one always
needs to rely on terms, such as lists or constants, to encode the notion of located resources. Here on the
other hand, we encode located resources in the level of propositions by using subexponentials.

7 Conclusions and Future Work

In this paper, we have developed a new PSN algorithm, PSNν , which is key to specifying the operational
semantics of NDlog programs. We have proven that PSNν is correct with regard to the centralized SN
by showing that an SN execution can be transformed into a PSNν execution and vice versa. In the
extended version of this paper, we have given a well-defined operational semantics for PSNν using
linear logic with subexponentials. Furthermore, PSNν lifts restrictions such as FIFO channels from

11



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

NDlog implementations and leads to potential performance improvements of protocol execution.
This work is part of a bigger effort to formally analyze network protocol implementations [5, 24].

The results in this paper lay a solid foundation toward closing the gap between verification and imple-
mentation. An important part of our future work is to formalize low-level NDlog implementations so that
verification results on high-level specifications can be applied to low-level implementations.

In our correctness proof, we limited ourselves to the fragment of non-recursive programs. The main
problem of including larger classes of programs is that we cannot necessarily guarantee termination of
PSNν using recursive programs in the presence of conflicting updates, that is, updates inserting and
deleting the same fact. However, if we can guarantee such termination for PSNν , then the proof works
exactly in the same way. Moreover, since the SN algorithm that we use in this paper is only shown to be
correct when tuples have at most one supporting derivation, the correctness of PSNν is also restricted to
this fragment. Given these restrictions, we believe that there are many directions to extend the class of
programs considered in this paper:

• Non-recursive programs where facts can have multiple supporting derivations: It seems possible to
modify Algorithm 1 in such a way that the resulting algorithm also works correctly for this class of
programs. For instance, instead of using set semantics, one could attempt to use multiset semantics,
where one not only keeps track of which facts have been deduced, but also of the number of derivations
supporting it. Then extending PSNν to accommodate this change seems to be straighforward. The
programming language MELD seems to go a step further in this direction and also store the depth of
the derivations supporting a fact. This allows one to perform further optimizations of the operational
semantics of their language, such as deciding whether or not to process an update according to the depth
of the derivation supporting it.

• Recursive programs where tuples have a finite number of supporting derivations: As discussed before,
we conjecture that if all facts have always a finite number of supporting derivations, then we can guar-
antee termination of PSNν whenever SN terminates and they would yield the same result. The proof
would work exactly in the same way. Some work on the problem of determining when all facts derived
from a Datalog program have a finitely many supporting derivations has appeared in literature [16]. It
seems possible to adapt such approach to a distributed setting when using provenance mechanisms [9].

• Recursive programs where tuples can have infinitely many supporting derivations: It seems that in this
case one cannot avoid divergence unless some level of synchronization among agents is allowed: Before
processing an insert update, an agent would need to confirm with its neighbor agents that all previous
updates have already been processed. If this is the case, then the agent checks its current bag of updates
and cancels up any conflicting updates. Another idea is to use provenance mechanisms [9] as suggested
in the previous case. Fortunately, however, until now no real applications required such type of programs.

Finally, we still need to investigate precisely how to handle aggregates and negation in a distributed
setting. It seems to be possible to incorporate well-known techniques [8] that maintain states in the
centralized setting into PSNν .

We plan to continue pursuing all of these directions in the near future.

Acknowledgments: Scedrov, Loo, Nigam, and Wang were partially supported by AFOSR MURI ”Col-
laborative policies and assured information sharing”. Additional support for Scedrov and Nigam from
ONR Grant N00014-07-1-1039 and from NSF Grants CNS-0524059 and CNS-0830949. Wang was also
partially supported by NSF CAREER CNS-CNS-0845552.

References
[1] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and Laurent Simon. Dis-

tributed reasoning in a peer-to-peer setting: application to the semantic web. J. Artif. Int. Res., 25(1):269–314,

12



An Operational Semantics for Network Datalog Nigam, Wang, Loo, Scedrov, and Jia

2006.
[2] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.

Meld: A declarative approach to programming ensembles. In IROS, pages 2794–2800. IEEE, 2007.
[3] I. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach to Recursive Query Evalu-

ation. Journal of Logic Prog, 4(3):259–262, 1987.
[4] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials: Uncovering the

dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt
Gödel Colloquium, volume 713, pages 159–171. Springer, 1993.

[5] Formally Verifiable Networking. http://netdb.cis.upenn.edu/fvn/.
[6] Deepak Garg, Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter. A linear logic of

authorization and knowledge. In ESORICS, pages 297–312, 2006.
[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[8] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Peter

Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993, pages 157–166. ACM Press, 1993.

[9] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo. Recursive com-
putation of regions and connectivity in networks. In ICDE, pages 1108–1119. IEEE, 2009.

[10] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD, 2006.

[11] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking. In Communications of the
ACM (CACM), 2009.

[12] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Implementing Declarative Overlays. In SOSP, 2005.

[13] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative Routing: Exten-
sible Routing with Declarative Queries. In SIGCOMM, 2005.

[14] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent linear logic program-
ming. In Pedro Barahona and Amy P. Felty, editors, PPDP, pages 35–46. ACM, 2005.

[15] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Computer Science, 165(1):201–
232, September 1996.

[16] Inderpal Singh Mumick and Oded Shmueli. Finiteness properties of database queries. In Australian Database
Conference, pages 274–288, 1993.

[17] Juan A. Navarro and Andrey Rybalchenko. Operational semantics for declarative networking. In PADL,
pages 76–90, 2009.

[18] Vivek Nigam, Limin Jia, Anduo Wang, Boon Thau Loo, and Andre Scedrov.
An operational semantics for network datalog. Extended version available at
http://netdb.cis.upenn.edu/fvn/ndlogsemantics.pdf, January 2010.

[19] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials. In PPDP,
pages 129–140, 2009.

[20] P2: Declarative Networking System. http://p2.cs.berkeley.edu.
[21] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive Database Systems. Journal

of Logic Programming, 23(2):125–149, 1993.
[22] RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimentation.

http://netdb.cis.upenn.edu/rapidnet/.
[23] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable

P2P Lookup Service for Internet Applications. In SIGCOMM, 2001.
[24] Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and Prithwish Basu. Formally

Verifiable Networking. In SIGCOMM HotNets-VIII, 2009.

13


