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ABSTRACT
Network provenance, which records the execution history
of network events as meta-data, is becoming increasingly
important for network accountability and failure diagnosis.
For example, network provenance may be used to trace the
path that a message traversed in a network, or to reveal
how a particular routing entry was derived and the parties
involved in its derivation. A challenge when storing the
provenance of a live network is that the large number of ar-
riving messages may incur substantial storage overhead. In
this paper, we explore techniques to dynamically compress
distributed provenance stored at scale. Logically, compres-
sion is achieved by grouping equivalent provenance trees
and maintaining only one concrete copy for each equiva-
lence class. To efficiently identify the equivalent provenance,
we (1) introduce distributed event-based linear programs
(DELPs) to specify distributed network applications, and
(2) statically analyze DELPs to allow for quick detection
of provenance equivalence at runtime. Our experimental
results demonstrate that our approach leads to significant
storage reduction and query latency improvement over al-
ternative approaches.
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1. INTRODUCTION
Network administrators require the capability to identify

the root causes of device malfunction and performance slow-
downs in data centers or across wide-area networks, and also
to determine the sources of security attacks. Such capabili-
ties often utilize network provenance, which allows the user
to issue queries over network meta-data about the execu-
tion history. In recent years, network provenance has been
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successfully applied to various network settings, resulting
in proposals for distributed provenance [28], secure network
provenance [26], distributed time-aware provenance [27] and
negative provenance [23]. These proposals demonstrate that
database-style declarative queries can be used for maintain-
ing and querying distributed provenance at scale.
One of the main drawbacks of the existing techniques is

their potentially significant storage overhead, when network
provenance is incrementally maintained as network events
occur continuously. This is particularly challenging for the
data plane of networks that deals with frequent and high-
volume incoming data packets. When there are streams of
incoming packet events, the provenance information can be-
come prohibitively large. While there is prior work on prove-
nance compression in the database literature [3], the work
was not designed for distributed settings. Our paper’s con-
tributions are:
System Model. We propose a new network program-
ming model, which specifies distributed event-based linear
programs (DELPs), using a restricted variant of the Net-
work Datalog language in declarative networking [12]. Each
DELP is composed of a set of rules triggered by events,
and executes until a fixpoint is reached. Unlike traditional
event-condition-action rules, a DELP has the option of des-
ignating slow changing tuples, which do not change while
a distributed fixpoint computation is happening, but are
still amenable to update at intervals. An example of a slow
changing tuple could be a routing entry in a router. We
show, through two example applications (packet forwarding
and DNS resolution), that this model is general enough to
cover a wide range of network applications.
Distributed Provenance Compression. Based on the
DELP model, we propose two techniques to store prove-
nance information efficiently. Our first technique relies on
materializing only the tuples that the administrators are in-
terested in. We propose a distributed querying technique
that can reconstruct the entire provenance tree from the re-
duced provenance information that is maintained. Our sec-
ond technique combines multiple provenance trees together,
based on a notion of equivalence classes. In each equiva-
lence class, the provenance trees are identical except a few
pre-defined nodes. We compress these equivalent trees by
maintaining only one concrete copy for the shared prove-
nance part, along with the delta information for each indi-
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vidual provenance tree. We also propose to efficiently iden-
tify equivalence between provenance trees by simply inspect-
ing the values of input events’ attributes, thus reducing the
computation overhead in a distributed environment.
Implementation and Evaluation. We implement a pro-
totype of our distributed compression scheme based on the
RapidNet declarative networking engine [14]. We enhance
RapidNet to include a rule rewrite engine that maintains
provenance at runtime. Provenance queries are implemented
as distributed recursive queries over the maintained prove-
nance information. We deploy and evaluate our prototype
using two popular network applications – i.e., packet for-
warding and DNS resolution – and the performance results
show that the compression techniques achieve orders of mag-
nitude reduction in storage and significant reduction in query
lantency, with only negligible network overhead added to
each monitored network application at runtime.

2. BACKGROUND
We first provide an introduction to Network Datalog (ND-

log) [12], a declarative networking programming language
we use to model network applications in the distributed sys-
tem, then we introduce the concept of distributed network
provenance [28, 27].

2.1 Network Datalog
r1 packet(@N, S, D, DT ) :− packet(@L, S, D, DT ),

route(@L, D, N).
r2 recv(@L, S, D, DT ) :− packet(@L, S, D, DT ), D == L.

Figure 1: An NDlog program for packet forwarding

To illustrate NDlog, we show an example query (Figure 1)
that recursively forwards packets in a network. A typical
NDlog program is composed of a set of rules. Each rule
takes on the format p :− q1, q2, ...qn, where p is a relation
called the rule head, and qis are rule bodies that are either
relational atoms, arithmetic atoms or user-defined functions.
Relations and rules of an NDlog program can be deployed
in a distributed fashion. To logically specify the location of
each relation, an “@” symbol – called the location specifier
– is prepended to the first attribute of each relation.
Each node in the network maintains a relational database

storing base tuples (i.e., tuples that are input by the user)
and/or derived tuples (i.e., tuples that are generated by the
NDlog program). During program execution, when all the
rule bodies of a rule r have corresponding tuples in the local
database, r will be triggered, generating the head tuple.
If the location specifier of the head tuple is different from
that of the bodies (e.g., r1 in Figure 1), the head tuple will
be transmitted through the network to the remote node. In
the example program of Figure 1, r1 forwards a local packet
(packet) at a node L to a node N by looking up the packet’s
destination D in the local routing table (route). r2 receives
a packet and stores it locally in the recv table, if the packet
is destined to the local node (D == L).

2.2 Distributed Network Provenance
Data provenance [8] can be used to explain why and how

a given tuple is derived. Based on data provenance, prior
work [28] also proposes network provenance, which faithfully
records the execution of (possibly erroneous) applications in
a (possibly misconfigured) distributed system. This allows

n1 n2 n3

route

L D N

@n1 n3 n2

route

L D N

@n2 n3 n3

Figure 2: An example deployment of packet for-
warding. Node n1 and node n2 has a local route
table indicating routes towards node n3 .

the network administrators to inspect the derivation history
of system states. For example, suppose there is a direct
link between n1 and n3 in Figure 2. If the user prefers
the routing with the shortest paths, the routing entry of
n1 in Figure 2 would have been erroneous – a correct entry
should be route(@n1, n3, n3). The provenance engine, ag-
nostic of this error, would record the packet traversal on the
path n1 → n2 → n3 . The user can later use this recorded
provenance as explanation on why the packet took a partic-
ular route, eventually leading to further investigation into
the route table at n1 .
Network provenance is typically represented as a directed

tree rooted at the queried tuple. Figure 3 shows the prove-
nance tree of a tuple recv(@n3, n1, n3, “data”). This prove-
nance tree records the traversal of packet(@n1, n1, n3, “data”)
from node n1 to n3 in Figure 2. There are two types of
nodes in a typical provenance tree: the rule nodes and the
tuple nodes. The rule nodes (i.e., the oval nodes in Fig-
ure 3) stand for the rules that are triggered in the program
execution, while the tuple nodes (i.e., the square nodes in
Figure 3) represent tuples that trigger/are derived by the
rule execution. Note that the root of a provenance tree is
always a tuple node that represents the queried tuple.
To maintain the provenance, traditional database work [10]

often stores data provenance along with the target tuple for
efficient provenance querying. Such centralized provenance
maintenance turns out to be very costly for network prove-
nance – which is typically constructed in a distributed fash-
ion – in terms of the extra bandwidth needed to ship the
provenance information.
ExSPAN [28], a representative distributed provenance en-

gine, maintains the provenance information in a distributed
relational database. There are two (distributed) tables in
the database: a prov table and a ruleExec table. The prov
table records the rule triggering of a derived tuple, while the
ruleExec table maintains the body tuples triggering a spe-
cific rule. Table 1 shows an example distributed database
storing the provenance tree in Figure 3. The Loc attribute
in the prov table and the RLoc attribute in the ruleExec
table indicate the location of each tuple.
ExSPAN uses a recursive query to retrieve the provenance

tree of a queried tuple. For example, to query the prove-
nance tree of recv(@n3, n1, n3, “data”) (Figure 3), ExSPAN
first computes the hash value vid6 of the tuple, and uses
vid6 to find the tuple prov(n3, vid6, rid3, n3) in the prov ta-
ble. ExSPAN further uses the values rid3 and n3 to locate
ruleExec(n3, rid3, r2, (vid5)) in the ruleExec table, which rep-
resents the provenance node of the rule execution (i.e., r2 )
that derives vid6 . To further query the body tuples that
triggered r2 , the querier would then look up (vid5 ) in the
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prov
Loc VID RID RLoc
n3 vid6 rid3 n3

(sha1(recv(@n3, n1, n3, “data”)))
n3 vid5 rid2 n2

(sha1(packet(@n3, n1, n3, “data”)))
n2 vid4 rid1 n1

(sha1(packet(@n2, n1, n3, “data”)))
n2 vid3 NULL NULL

(sha1(route(@n2, n3, n3)))
n1 vid2 NULL NULL

(sha1(packet(@n1, n1, n3, “data”)))
n1 vid1 NULL NULL

(sha1(route(@n1, n3, n2)))
ruleExec

RLoc RID R VIDS
n3 rid3(sha1(r2+n3+vid5)) r2 (vid5)
n2 rid2(sha1(r1+n2+vid3+vid4)) r1 (vid3,vid4)
n1 rid1(sha1(r1+n1+vid1+vid2)) r1 (vid1,vid2)

Table 1: Relational tables (ruleExec and prov) main-
taining the provenance tree in Figure 3.

packet(@n1,n1,n3, data )

packet(@n2,n1,n3, data )

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

packet(@n3,n1,n3, data )

r2@n3

recv(@n3,n1,n3, data )

Figure 3: A distributed provenance tree for the ex-
ecution of packet(@n1, n1, n3, “data”), which traverses
from node n1 to node n3 in Figure 2.

prov table. This recursive querying continues until it reaches
the base tuples (e.g., route(@n1, n3, n2)).
We adopt the same storage model as ExSPAN. However,

our provenance compression scheme applies generally to any
distributed provenance model.

2.3 Motivation for Provenance Compression
A key problem not addressed in prior work on network

provenance [28][27] is that the provenance information can
become very large, especially for distributed applications
(e.g., network protocols) where event tuples trigger rules
in a streaming fashion. For example, in Figure 2, if n1 initi-
ates a large volume of traffic towards n3 , each packet in the
traffic would generate a provenance tree similar to the one in
Figure 3. Given that today’s routers forward over millions of
packets per second, this would incur prohibitively high stor-
age overhead for the maintenance of distributed provenance
on each intermediate node.
We observe however that the provenance of different pack-

ets share significant similarities in their structures, present-
ing opportunities for provenance compression across differ-
ent provenance trees. For example, in Figure 2, whenever
a new packet is sent from n1 to n3 , an entire provenance
tree is created and maintained. However, it is not hard to
observe that all the packets traversing through n1 and n2
take the same route – that is, they join with the same local
route tuples. Therefore, storage of the provenance trees gen-

erated by these packets could be significantly reduced if we
manage to remove the observed redundancy.
The key challenge of provenance compression in a dis-

tributed system is to achieve significant storage saving while
incurring low network overhead (e.g., extra bandwidth and
computation), and still enabling the user to query the prove-
nance information effectively as does uncompressed prove-
nance. Hence, we avoid content-level compression techniques
such as gzip, but opt for the conservative compression based
on the structure of provenance trees.

3. MODEL
A distributed system DS is modeled as an undirected

graph G = (V ,E). Each node Ni in V represents an en-
tity in DS . Two nodes Ni and Nj can communicate with
each other if and only if there is an edge (Ni ,Nj) in E . In
DS , each node Ni maintains a local state in the form of
a relational database DBi . Tables in DBi can be divided
into base tables and derived tables. Tuples in base tables are
manually updated, while tuples in derived tables are derived
by network applications. Figure 2 is an example distributed
system with three nodes.

3.1 Network Applications
Each node in DS runs a number of network applications,

which are specified in NDlog with syntactic restriction. The
syntactic restriction enables efficient provenance compres-
sion (Section 5), while still being expressive enough to model
most network applications. In particular, we have:

Definition 1. An NDlog program Prog={r1 , r2 , ..., rn} is
a distributed event-driven linear program (DELP), if Prog
satisfies the following three conditions:
• Each rule is event-driven. Each rule ri can be speci-
fied in the form: [head] : −[event], [conditions], where
[event] is a body relation designated by the program-
mer, and [conditions] are all non-event body atoms.
• Consecutive rules are dependent. For each rule pair
(ri , ri+1 ) in Prog, the head relation of ri is identical to
the event relation in ri+1 .
• Head relations only appear as the event relations in
rule bodies. For each head relation hd in any rule ri,
there does not exist a rule rj, such that hd is a non-
event relation in rj.

In a typical network application, non-event relations often
represent the network states, which change slowly compared
to the fast rate of incoming events. For example, in the
packet forwarding program, the route relation is either up-
dated manually or through a network routing protocol. In
either case, it changes slowly compared to the large volume
of incoming packets. We call such non-event relations in a
DELP as slow-changing relations, and assume they do not
change during the fixpoint computation. This assumption
is realistic and can be enforced easily in the networks where
configurations are updated at runtime and packets see only
either the old or new configuration version across routers,
as shown in prior work [19] in the networking community.
A DELP {r1 , r2 , ..., rn} can be deployed in a distributed

fashion over a network, and its execution follows the pipelined
semi-naïve evaluation strategy introduced in prior work [11]
– whenever a new event tuple is injected into a node Ni , it
triggers r1 by joining with the slow-changing tuples at Ni .
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The generated head tuple hd is then sent to a node Nj as
identified by the location specifier of hd – triggering r2 at
Nj . This process continues until rn is executed.
DELP can model a large number of network applications,

due to their event-driven nature, such as packet forwarding
(Figure 1), Domain Name System (DNS) resolution [13], Dy-
namic Host Configuration Protocol (DHCP) [7] and Address
Resolution Protocol (ARP) [18].

3.2 Provenance of Interest
It is often the case that network administrators use a sub-

set of network states more often than others as their starting
point for debugging. In the packet forwarding example, an
administrator is more likely to query the provenance of a recv
tuple rather than a packet tuple upon packet misrouting, be-
cause the nodes that generate recv tuples are usually the
first places where an administrator observes abnormality.
Therefore, we allow a user to specify relations of interest –
i.e., relations whose provenance information interests a user
the most in a network application – and our runtime system
maintains concrete provenance information only for those
tuples of the relations of interest. However, the provenance
of other tuples – i.e., those of the relations of less interest
– is still accessible. We can adopt, for example, the reac-
tive maintenance strategy proposed in DTaP [27], by only
maintaining non-deterministic input tuples, and replaying
the whole system execution to re-construct the provenance
information of the tuples of less interest during querying.
As with prior work [28], we represent the provenance in-

formation of the tuples of interest as provenance trees. The
only difference is that, given the syntactic restriction of a
DELP, our system treats slow-changing tuples as base tu-
ples during provenance querying – i.e., the provenance tree
of a slow-changing tuple, e.g., a route tuple, is not auto-
matically presented, even if the tuple could be derived from
another network application, e.g., a routing protocol. To ob-
tain the provenance tree of a route tuple during provenance
querying, a user could specify route as a relation of interest
in the application that derives it, and explicitly query the
provenance tree of the route tuple in a separate process.

4. BASIC STORAGE OPTIMIZATION
Based on the model introduced in the previous section, we

propose our basic storage optimization for provenance trees,
which lays the foundation for the compression scheme in Sec-
tion 5. Simply put, for each provenance tree, we remove its
provenance nodes representing the intermediate event tu-
ples. Figure 4 shows an optimized provenance tree tr ′ of
the tree in Figure 3. The (distributed) relational database
maintaining tr ′ is shown in Table 2, where vid values and
rid values are identical to those in Table 1.
Compared to Table 1, Table 2 differs at two parts:
• The prov table only maintains the provenance of the
queried tuple, i.e., the recv tuple. Other entries in the
prov table are omitted because they represent either
the removed intermediate tuples or the base tuples.
• Two extra columns NLoc and NRID are added to
the ruleExec table. They help the recursive query find
the child node for each provenance node in the tree.

The optimization of removing the intermediate nodes saves
a fair amount of storage space, especially when the input
events arrive at a high rate and generate a large number

packet(@n1,n1,n3, data )

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

r2@n3

recv(@n3,n1,n3, data )

Figure 4: An optimized provenance tree for the tree
in Figure 3.

prov
Loc VID RID RLoc
n3 vid6 rid3 n3

ruleExec
RLoc RID R VIDS NLoc NRID
n3 rid3 r2 NULL n2 rid2
n2 rid2 r1 (vid4) n1 rid1
n1 rid1 r1 (vid1,vid2) NULL NULL

Table 2: Optimized ruleExec and prov tables for the
provenance tree in Figure 4.

of intermediate tuples, as is common in typical networking
scenarios. We use the querying of recv(@n3, n1, n3, “data”)’s
provenance in Table 2 to illustrate the two-step provenance
querying process for optimized provenance trees:
Step 1: Construct the optimized provenance tree.
The query first fetches the provenance tree in the optimized
form through recursive querying over Table 2. Starting from
the prov entry corresponding to recv(@n3, n1, n3, “data”), we
fetch the provenance node for the last rule execution rid3
in the ruleExec table, then follow the values in NLoc and
NRID to recursively fetch all the ruleExec tuples (i.e., rid3 ,
rid2 and rid1 ) until no further provenance nodes can be
fetched – i,e., both NLoc and NRID are NULL.
Step 2: Compute the intermediate provenance nodes.
At the end of Step 1, we obtain the provenance tree tr ′ in
Figure 4. To recover the intermediate provenance nodes, we
start from the leaf nodes, i.e., packet(@n1, n1, n3, “data”)
and route(@n1, n3, n2), and re-execute the rule r1 to derive
packet(@n2, n1, n3, “data”). This process is repeated in a
bottom-up fashion until the root is reached, resulting in the
provenance tree in Figure 3 .
In summary, the basic optimization still allows the user

to query the complete provenance trees, but incurs extra
computational overhead during provenance querying to re-
cover the intermediate nodes. The extra query latency is
negligible, as is shown in Section 6.1.3.

5. EQUIVALENCE-BASED COMPRESSION
The storage optimization described in Section 4 focuses

on reducing the storage overhead within a single provenance
tree. Building upon this optimization, we further explore
removing redundancy across provenance trees. We propose
grouping provenance trees of DELP execution into equiva-
lence classes, and only maintaining one copy of the shared
sub-tree within each equivalence class. Our definition of the
equivalence relation allows equivalent provenance trees to be
quickly identified through inspection of equivalence keys – a
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subset of attributes of input event tuples – and compressed
efficiently at runtime. The equivalence keys can be obtained
through static analysis of a DELP.

5.1 Equivalence Relation
We first introduce the equivalence relation for provenance

trees. We say that two provenance trees tr and tr ′ are equiv-
alent, written (tr ∼ tr ′) if (1) they are structurally identical
– i.e., they share the identical sequence of rules – and (2) the
slow-changing tuples used in each rule are identical as well.
In other words, two equivalent trees tr and tr ′ only differ
at two nodes: (1) the root node that represents the output
tuple and (2) the input event tuple. The formal definition
of tr ∼ tr ′ can be found in Appendix A. In our packet for-
warding example, the provenance tree generated by a new
event packet(@n1, n1, n3, “url”) (with “url” as its payload)
is equivalent to the tree in Figure 4.
For each equivalence class, we only need to maintain one

copy for the sub-provenance tree shared by all the class
members, while each individual tree in the equivalence class
only needs to maintain a small amount of delta information
– i.e., the root node, the event leaf node, and a reference to
the shared sub-provenance tree. Additionally, this definition
of equivalence enables more efficient equivalence detection
than node-by-node comparison between trees. In fact, we
show that equivalence of two provenance trees can be de-
termined by checking equivalence of the input event tuples
in both trees, based on the observation that the execution
of a DELP is uniquely determined by the values of a subset
of attributes in the input event tuple. For example, in the
packet forwarding program (Figure 1), if the values of the
attributes (loc, dst) in two input packet tuples are identical,
these two tuples will generate equivalent provenance trees.
We denote the minimal set of attributes K in the in-

put event relation whose values determine the provenance
trees as equivalence keys. Two event tuples ev1 and ev2 of
a relation e are said to be equivalent w.r.t K, written as
ev1 ∼K ev2, if their valuation of K is equal. Formally:

Definition 2 (Event equivalence). Let K = {e:i1, · · · , e:im},
e(t1 · · · tn) ∼K e(s1 · · · sn) iff ∀j ∈ {i1, · · · , im}, tj = sj.

Here, e:i denotes the ith attribute of the relation e.
Based on the above discussion, our approach to compress-

ing provenance trees, with regard to a program DQ, consists
of the following two main algorithms. (1) an equivalence
keys identification algorithm, which performs static analy-
sis of DQ to compute the equivalence keys (Section 5.2);
and (2) an online provenance compression algorithm, which
maintains the shared provenance tree for each equivalence
class in a distributed fashion (Section 5.3).
Correctness of using event equivalence for determining

provenance tree equivalence is shown in Theorem 1. The
proof will be discussed in Section 5.2.

Theorem 1 (Correctness of equivalence keys). Given a pro-
gram DQ of DELP, and two input event tuples ev1 and
ev2 , if ev1 ∼K ev2 , where K is the equivalence keys for
DQ, then for any provenance tree tr1 (tr ′

2 ) generated by ev1
(ev2 ), there exists a provenance tree tr2 (tr ′

1 ) generated by
ev2 (ev1 ) s.t. tr1 ∼ tr2 (tr ′

1 ∼ tr ′
2 ).

5.2 Equivalence Keys Identification
Given a DELP, we define a static analysis algorithm to

identify the equivalence keys of the input event relation. The

1: function GetEquiKeys(G, ev)
2: eqid ← {}
3: eqid.append(ev:0 )
4: nodes ← event attribute nodes in G
5: for each ev:i in nodes do
6: for bnode in non-event nodes of G do
7: if ev:i is reachable to bnode then
8: eqid.append(ev:i)
9: return eqid
10: end function
Figure 5: Pseudocode to identify equivalence keys

algorithm consists of two steps: (1) building an attribute-
level dependency graph reflecting the relationship between
valuation of different attributes and (2) computing equiva-
lence keys based on the constructed dependency graph. De-
tails of each step are given below.
Build the attribute-level dependency graph. An
attribute-level dependency graph G=(V , E) is an undi-
rected graph. Nodes of G represent attributes in the pro-
gram. Specifically, the i-th attribute of a relation rel corre-
sponds to a vertex labeled as (rel:i) in G. We refer interested
readers to Appendix C for an example dependency graph of
the packet forwarding program.
Two vertices v1 and v2 are directly connected in G if and

only if v1 represents an attribute attr1 of the event relation
in a rule r and v2 represents another attribute attr2 in r ,
and satisfies any of the following conditions: (1) attr2 is an
attribute of the same name as attr1 in a slow-changing re-
lation (e.g., v1 = (packet:1) and v2 = (route:1) in rule r1
of Figure 1); (2) attr2 is a head attribute with the same
name as attr1 (e.g., v1 = (packet:1) and v2 = (recv:1) in r2
of Figure 1); (3) attr2 and attr1 appear in the same arith-
metic atom (e.g., v1 = (packet:0) and v2 = (packet:2) in
rule r2 of Figure 1); and (4) v1 is on the right hand side
of an assignment asn and attr2 is on the left hand side of
asn. (e.g., if rule r2 of Figure 1 were to be redefined as
r2′ recv(@L, S,N,DT ) :− packet(@L, S,D,DT ), N := L+2.,
and v1 = (packet:0) while v2 = (recv:2)).
Identify equivalence keys. Given the attribute-level de-
pendency graph G, we identify the equivalence keys of the
input event relation ev using the function GetEquiKeys
(Figure 5). GetEquiKeys takes G and ev as input, and
outputs a list of attributes eqid representing the equivalence
keys. In the algorithm, for each node (ev:i) in G, GetE-
quiKeys checks whether (ev:i) is reachable to any attribute
in a slow-changing relation. If this is the case, (ev:i) would
be identified as a member of the equivalence keys, and ap-
pended to eqid. We always include the attribute indicating
the input location of ev (e.g., (packet:0)) in the equivalence
keys, to ensure no two input event tuples at different loca-
tions have the same equivalence keys. When applied to the
packet forwarding program, GetEquiKeys would identify
(packet:0) and (packet:2) as equivalence keys.
Now we introduce a few denotations to help prove Theo-

rem 1. We use predicate joinSAttr(p:n) to denote that a node
(p:n) in the dependency graph has an edge to an attribute
in a slow changing relation. We denote each edge connecting
two attributes (p:n, q:m) not in any slow-changing relation
as predicate joinFAttr(p:n, q:m). We further use predicate
joinFAttr(p:n, q:m) to inductively define connected(e:i, p:n),
denoting a path in the graph from (e:i) to (p:n). We then
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formally define below what it means, given a DELP, for K
to be equivalence keys:

Definition 3. K is equivalence keys for a program DQ of
DELP, if ∀(e:i) ∈ K, either DQ ` joinSAttr(e:i) or ∃p, n s.t.
DQ ` connected(e:i, p:n) and DQ ` joinSAttr(p:n).

We show the correctness of Theorem 1 by proving Lemma 2,
a stronger lemma that gives us Theorem 1 as corollary. In
Lemma 2, we write tr : P to denote that tr is a provenance
tree of the output tuple P , and write DQ,DB, ev � tr : P
to mean that tr is generated by executing the program DQ
over a database DB, triggered by the event tuple ev.

Lemma 2 (Correctness of equivalence keys (Strong)).
If GetEquiKeys(G, ev) = K and ev1 ∼K ev2
and DQ,DB, ev1 � tr1 : p(t1, ..., tn),
then ∃tr2 : p(s1, ..., sn) s.t. DQ,DB, ev2 � tr2 : p(s1, ..., sn)
and tr1 : p(t1, ..., tn) ∼ tr2 : p(s1, ..., sn)
and ∀i ∈ [1, n], ti 6= si implies

∃` s.t. DQ ` connected(ev:`, p:i) and (ev:`) 6∈ K.

Intuitively, Lemma 2 states that given two equivalent in-
put event tuples ev1 and ev2 w.r.t. K, and ev1 generates
a provenance tree tr1, we can construct a tr2 for ev2 such
that tr1 and tr2 are equivalent – i.e., they share the same
structure and slow-changing tuples. Furthermore, if the two
output tuples p(t1, ..., tn) and p(s1, ..., sn) have different val-
ues for a given attribute, this attribute must connect to an
event attribute that is not in equivalence keys in the depen-
dency graph. This last condition enables an inductive proof
(Appendix B) of Lemma 2 over the structure of the trees.
Time complexity. Next, we analyze the time complexity
of static analysis. Assume that a program DQ has m rules.
Each rule r has k atoms, including the head relation and all
body atoms. Each atom has at most t attributes. Hence, the
attribute-level dependency graph G has at most n=m ∗ k ∗ t
nodes. The construction of G takes O(n2 ) time, and the
identification of equivalence keys takes O(t ∗ n) time. Nor-
mally t is much smaller than n. Therefore, the total com-
plexity of static analysis is O(n2 ).

5.3 Online Provenance Compression
We next present an online provenance compression scheme

that compresses equivalent (distributed) provenance trees
based on the identified equivalence keys. In our compression
scheme, the execution of a DELP, triggered by an event
tuple ev, is composed of three stages:
• Stage 1: Equivalence keys checking. Extract the
value v of ev’s equivalence keys, and check whether v
has ever been seen before. If so, set a Boolean flag
existFlag to True. Otherwise, set existFlag to False.
Tag existFlag along with ev throughout the execution.
• Stage 2: Online provenance maintenance. If

existFlag is True, no provenance information is main-
tained during the execution. Otherwise, the complete
provenance tree of the execution would be maintained.
• Stage 3: Output tuple provenance maintenance.
When the execution finishes, associate the output tu-
ple to the shared provenance tree to allow for future
provenance querying.

To illustrate this, Figure 6 presents an example consisting
of two packets traversing the network topology (from n1 to
n3 ) in Figure 2. packet(@n1, n1, n3, “data”) is first inserted

for execution (represented by the solid arrows), followed by
the execution of packet(@n1, n1, n3, “url”) (represented by
the dashed arrows). The three stages of online compression
are logically separated with vertical dashed lines. Table 3
presents the (distributed) relational tables (i.e., a ruleExec
table and a prov table) that maintain the compressed prove-
nance trees for the aforementioned execution. Next, we in-
troduce each stage in detail.
Equivalence Keys Checking. Upon receiving an input
event ev, our runtime system first checks whether the value
of ev’s equivalence keys have been seen before. To do this,
we use a hash table htequi to store all unique equivalence
keys that have arrived. If ev’s equivalence keys eqid has a
value that already exists in htequi, a Boolean flag existFlag
will be created and set to True. This existFlag is supposed
to accompany ev throughout the execution, notifying all
nodes involved in the execution to avoid maintaining the
concrete provenance tree. Otherwise, existFlag would be
set to False, instructing the subsequent nodes to maintain
the provenance tree. For example, in Figure 6, when the
first packet tuple packet(@n1, n1, n3, “data”) arrives, it has
values (n1 ,n3 ) for its equivalence keys, which have never
been encountered before, so its existFlag is False. But when
the second packet tuple packet(@n1, n1, n3, “url”) arrives,
since it shares the same equivalence keys values with the
first packet, the existFlag for it is True.
Online Provenance Maintenance. For each rule r trig-
gered in the execution, we selectively maintain the prove-
nance information based on existFlag’s value. if existFlag
is False, the provenance nodes are maintained as tuples in
the ruleExec table locally. Otherwise, no provenance in-
formation is maintained at all. For example, in Figure 6,
when packet(@n2, n1, n3, “data”) triggers rule r1 at node
n2 , the existFlag is False. Therefore, we insert a tuple
ruleExec(n2, rid2, r1, vid1, n1, rid3) into the ruleExec table
at node n2 to record the provenance. The semantics of the
inserted tuple are the same as introduced in Section 4. In
comparison, when packet(@n2, n1, n3, “url”) triggers r2 at
node n2 , its existFlag is True. In this case, we simply exe-
cute r2 without recording any provenance information.
Output Tuple Provenance Maintenance. For the ex-
ecution whose existFlag is True, we need to associate its
output tuple to the shared provenance tree maintained by
previous execution. To do this, we use a hash table hmap to
store the reference to the shared provenance tree, wherein
the key is the hash value of the equivalence keys, and the
value is the node closest to the root in the shared provenance
tree. For example, in Figure 6, the shared provenance tree
is stored in hmap as {hash(n1 ,n3 ): (n3 , rid1 )}.
We then associate each output tuple tp to the shared

provenance tree st, by looking up its equivalence keys’ val-
ues in hmap. This association is stored as a tuple in the
prov table. For example, in Figure 6, the first execution
generates the output tuple recv(@n3, n1, n3, “data”), which
is associated to the reference (n3 , rid1 ). This is reflected
by the tuple prov(n3, tid1, n3, rid1, evid1) in the prov table
(Table 3). evid1 is used to identify the event tuple pecu-
liar to the execution, which is not included in the shared
provenance tree.
Correctness of Online Compression. We prove the cor-
rectness of the online compression algorithm by showing
that our compression scheme of provenance trees is loss-
less – that is, the distributed provenance nodes maintained
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Figure 6: An example execution of the packet forwarding program in Figure 1. The program is first triggered
by packet(@n1, n1, n3,“data”), followed by packet(@n1, n1, n3,“url”).

ruleExec
Loc RID RULE VIDS NLoc NRID
n3 rid1(sha1(r2)) r2 NULL n2 rid2
n2 rid2(sha1(r1,vid1 )) r1 (vid1 (sha1(route(@n2, n3, n3)))) n1 rid3
n1 rid3(sha1(r1,vid2 )) r1 (vid2 (sha1(route(@n1, n3, n2)))) NULL NULL

prov
Loc VID RLoc RID EVID
n3 tid1(sha1(recv(@n3, n1, n3, “data”))) n3 rid1 evid1(sha1(packet(@n1, n1, n3, “data”)))
n3 tid2(sha1(recv(@n3, n1, n3, “url”))) n3 rid1 evid2(sha1(packet(@n1, n1, n3, “url”)))

Table 3: a ruleExec table and a prov table for compressed provenance trees produced in Figure 6

in the ruleExec and prov tables contain the exact same set
of provenance trees that would have been derived by semi-
naïve evaluation [11] without compression (Theorem 3). To
do this, we define the operational semantics of semi-naïve
evaluation of a DELP with a set of transition rules of form:
Csn→SN Csn′, where Csn denotes a state in semi-naïve evalu-
ation that records the complete execution as provenance [5].
We also define a set of transition rules of form: Ccm ↗CM
Ccm′ for semi-naïve evaluation with our online compression
algorithm. Here, Ccm denotes a state in semi-naïve evalu-
ation with compression. The proof is to show that we can
assemble entries in the ruleExec and prov tables to reconstruct
an original provenance tree tr . Likewise, given a provenance
tree tr , we can also find an identical tree P encoded as en-
tries in the ruleExec and prov tables. This correspondence is
denoted as tr ∼d P and can be defined by induction over
the structure of provenance trees.

Theorem 3 (Correctness of Compression). ∀n ∈ N and an
initial state Cinit, if Cinit →n

SN Csn, then ∃Ccm s.t. Cinit ↗n
CM

Ccm and for any provenance tree tr ∈ Csn, there exists a
provenance tree P ∈ Ccm s.t. tr ∼d P and for any prove-
nance tree P ∈ Ccm, there exists a provenance tree tr ∈ Csn
s.t. tr ∼d P. And the same is true for semi-naïve evaluation
when Ccm is given.

The above theorem states that if we initiate a DELP DQ
from an initial state Cinit , and execute DQ for n steps to
reach a state Csn, then we can also execute DQ for n steps
with the online compression scheme, starting from Cinit and
ending in Ccm . In the end, the sets of provenance trees re-
spectively maintained by these two processes are identical.

An implication of Theorem 3 is that compressed provenance
trees, like traditional network provenance, would faithfully
record the system execution, even if the execution is erro-
neous due to misconfiguration (e.g., wrong routing tables).
To prove Theorem 3, we show Lemma 4 which implies

Theorem 3 as corollary. Lemma 4 shows that semi-naïve
evaluation with the online compression scheme is bisimilar
to the one that stores provenance trees without compres-
sion. This bisimilarity relation shows that both evaluation
strategies have identical semantics.

Lemma 4 (Compression Simulates Semi-naïve Evaluation).
∀n ∈ N and an initial state Cinit, if Cinit →n

SN Csn, then ∃Ccm
s.t. Cinit ↗n

CM Ccm and Csn RC Ccm, and vice versa.

We define a bisimulation relation RC between Csn and
Ccm – i.e., Csn RC Ccm means that when Csn→SN Csn′, there
exists a state Ccm′ s.t. Ccm ↗CM Ccm′ and Csn′ RC Ccm′,
and vice versa. Intuitively, RC relates two states of the two
evaluation strategies – i.e., semi-naïve evaluation with and
without compression – that execute identical programs to
the point of identical program execution states, and, most
importantly, for any provenance tree P ∈ Ccm, there exists
a provenance tree tr ∈ Csn s.t. tr ∼d P, and vice versa.
Proof details of Lemma 4, along with the formal defini-

tion of the bisimulation relation RC, are presented in Ap-
pendix D. Briefly, we apply induction over n, the number of
steps taken by the execution. The key is to show that if two
bismiluar states both take one step, the resulting states are
still bisimular.
Generality of equivalence-based compression. The
idea of equivalence-based compression is not just applicable
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to distributed scenarios, but can be generally used to com-
press arbitrary provenance tree sets maintained in a cen-
tralized manner as well. We adopt the definition of the
equivalence relation in Section 5.1 because it allows us to use
equivalence keys to efficiently identify equivalent provenance
trees, thus more suitable for the distributed environment
where networking resources (e.g., bandwidth) are scarce.

5.4 Inter-Equivalence Class Compression
The online compression scheme introduced in Section 5.3

focuses on intra-equivalence class compression of provenance
trees – i.e., only trees of the same equivalence class are com-
pressed. In fact, provenance trees of different equivalence
classes can be compressed as well. For example, assume a
tuple packet(@n2, n2, n3, “ack”) is inserted into n2 in Fig-
ure 6 for execution. The produced provenance tree prov
shares the provenance nodes rid1 and rid2 in the ruleExec
table of Table 3. To avoid the storage of such redundant
rule execution nodes, we separate the ruleExec table into two
sub-tables: a ruleExecNode table and a ruleExecLink table (Ta-
ble 4). The ruleExecNode table maintains the concrete rule
execution nodes, while the ruleExecLink table, maintained for
each provenance tree tr individually, records the parent-
child relationship of the rule execution nodes in tr . If two
provenance trees, whether in the same equivalence class or
not, share the same rule execution node nd, only one copy
of the concrete nd will be maintained in the ruleExecNode
table. Each tree maintains a reference pointer pointing to
nd in their respective ruleExecLink tables.

ruleExecNode
Loc RID RULE VIDS
n3 rid1 r2 NULL
n2 rid2 r1 (vid1)
n1 rid3 r1 (vid2)

ruleExecLink
Loc RID NLoc NRID
n3 rid1 n2 rid2
n2 rid2 n1 rid3
n1 rid3 NULL NULL

Table 4: The ruleExecNode table and the ruleExecLink
table replacing the ruleExec table in Table 3 to allow
for compression of the shared rule execution nodes.

5.5 Updates to Slow-changing Tables
Though we assume that slow-changing tables do not change

during a fixpoint computation, our system is designed to
handle these updates at runtime. Figure 7 presents an exam-
ple scenario based on Figure 2, where a network administra-
tor decides to use n4 , instead of n2 , as the intermediate hop
for packets sent from n1 to n3 . To redirect the traffic, the
administrator (1) deletes the route entry route(@n1, n3, n2),
and (2) inserts a new route entry route(@n1, n3, n4).
Deletion of a tuple from a slow-changing table, such as

route(@n1, n3, n2) in Figure 7, does not affect the stored
provenance, as provenance information is monotone – that
is, it represents the execution history which is immutable [27].
However, when a tuple tp is inserted into a slow-changing

table, such as route(@n1, n4, n3) in Figure 7, the provenance
tree generated by tp could be incorrect or missing. For ex-
ample, in Figure 7, after route(@n1, n4, n3) is inserted, the

n1 n4 n3

route

L D N

@n1 n3 n2

@n1 n3 n4

route

L D N

@n4 n3 n3

n2

Figure 7: An updated topology of Figure 2. A new
node n4 is deployed to reach n3 . The route table of
n1 is updated to forward packets to n4 now.

provenance trees for all subsequent packets need to be re-
calculated. However, since these packets are not the first in
their equivalence classes, their existFlags are set to true. As
a result, the provenance tree for the packet traversal on the
path n1 → n4 → n3 would not be maintained.
To handle such scenarios, we require that, once a new

tuple tp is inserted into a node n’s slow-changing table, n
should broadcast a control message sig to all the nodes in the
system. Any node receiving sig would empty the hash table
used for equivalence keys checking (Section 5.3). Therefore,
provenance trees will be maintained again for all equivalence
classes. In Figure 7, after the insertion of route(@n1, n3, n4),
n1 would broadcast a sig to all the nodes, including itself.
When a new packet pkt destined to n3 arrives at n1 , the
packet would have its existFlag set as false. When this
packet traverses the path n1 → n4 → n3 , the nodes on
the path are expected to maintain the corresponding prove-
nance nodes. In all our network applications, the extra net-
work overhead incurred by the broadcast and the impact
on the effectiveness of compression due to reset of the hash
table is negligible, as slow-changing tables are updated infre-
quently in practice (relative to the rate of event arrival). We
experimentally validated this, as is shown in Section 6.1.2.

5.6 Provenance Querying
To query the provenance tree of an output tuple tp, we

take the following steps:
• Compute the hash value htp of tp, and find the tuple

prvtp in the prov table that has htp as its VID.
• Initiate a recursive query for the (shared) provenance
nodes in the ruleExec table, starting with the values
of (Loc,RID) in prvtp. Also, tag the event ID evid
stored in the attribute EVID along with the query.
• When the recursive query reaches a ruleExec tuple at
node n that has (NULL,NULL) for (NLoc,NRID),
the tagged evid is used to retrieve the event tuple ma-
terialized at n.

For example, in Table 3, to query the provenance tree of
recv(@n3, n1, n3, “data”), we first find prov(n3, tid1, n3, rid1,
evid1), and use the values (n3 , rid1 ) to initiate the recur-
sive query in the ruleExec table to fetch the provenance nodes
rid1 , rid2 and rid3 . evid is carried throughout the query,
and is used to retrieve the event packet(@n1, n1, n3, “data”)
when the query stops at ruleExec(n1, rid3, r1, vid2, NULL,
NULL). The above steps return to the initial querying loca-
tion a collection of entries from the ruleExec and prov tables.
We define a top-level algorithm Query that reconstructs
the complete provenance tree tr based on these entries. The
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pseudocode of Query can be found in Figure 18 of Ap-
pendix E. Query takes as input the network state Ccm of
the online compression scheme, an output tuple P , an event
ID evid, and returns a set of provenance trees, each of which
corresponds to one derivation of P using the input event tu-
ple of ID evid. The example based on Table 3 has only one
derivation for the output tuple, so we return a singleton set.
Correctness of Querying. From the correctness of the
online compression algorithm (Theorem 3), we can prove
that all the provenance trees generated by semi-naïve evalu-
ation can be queried and the query algorithm will return the
correct provenance tree. One subtlety is that the compres-
sion algorithm may propagate updates out of order, causing
ruleExec entries to be referred to in a provenance tree be-
fore being stored. We handle this subtlety by assuming all
updates are processed before querying.

Theorem 5 (Correctness of the Query Algorithm).
∀n ∈ N, given an initial state Cinit s.t. Cinit →n

CM Ccm
and there are no more updates to be processed,

then ∃Csn s.t. Cinit →n
SN Csn

and ∀tr :P in the output provenance storage of Csn
s.t. hash(EventOf(tr)) = evid,

∃M s.t. Query(Ccm , P, evid) =M and tr ∈M
and ∀tr ′ ∈M\tr, tr ′ is a proof of P stored in Csn
and hash(EventOf(tr ′)) = evid.

Details of the proof are in Appendix E. Briefly, by Theo-
rem 3, there exists Csn s.t. Cinit →n

SN Csn and Csn RC Ccm.
By Csn RC Ccm, we know that for any provenance tree tr of
tuple P in Csn, there exists a prov tuple in Ccm that stores the
reference to a provenance tree P for P , such that tr ∼d P.
We induct over the depth of P to show that given the root of
P, the recursive lookup will return P. Now, it is straightfor-
ward to reconstruct tr from P as the return value of Query.

6. EVALUATION
We have implemented a prototype based on enhancement

to the RapidNet [14] declarative networking engine. At com-
pile time, we add a program rewrite step that rewrites each
DELP into a new program that supports online provenance
maintenance and compression at runtime. We evaluate our
prototype to understand the effectiveness of the online com-
pression scheme. In all the experiments, we compare three
techniques for maintaining distributed provenance. The first
is ExSPAN [28], a typical network provenance engine. We
maintain uncompressed provenance trees in the same way as
ExSPAN. The second is the distributed provenance mainte-
nance with basic storage optimization (Section 4). The third
is the provenance maintenance using equivalence-based com-
pression (Section 5). In the evaluation, we refer to the three
techniques as ExSPAN, Basic, and Advanced respectively.
Workloads. Our experiments are carried out on two clas-
sic network applications: packet forwarding (Section 2) and
Domain Name System (DNS) resolution. DNS resolution
is an Internet service which translates human-readable do-
main names into IP addresses. Both applications are event-
driven, and typically involve a large volume of traffic dur-
ing execution. The high-volume traffic incurs large storage
overhead if we maintain provenance information for each
packet/DNS request, which leaves potential opportunity for
compression. The workloads are also sufficiently different to
evaluate the generality of our approach. Packet forwarding

involves larger messages along different paths in a graph,
while DNS resolution involves smaller messages on a tree-
like topology.
Testbed. In our experiment setup, we write the packet
forwarding and DNS resolution applications in DELP, and
use our enhanced RapidNet [14] engine to compile them into
low-level (i.e., C++) execution codes.
The experiments for measuring storage and bandwidth are

run on the ns-3 [15] network simulator, which is a discrete-
event simulator that allows a user to evaluate network ap-
plications on a variety of network topologies. The simula-
tion is run on a 32-core server with Intel Xeon 2.40 GHz
CPUs. The server has 24G RAM, 400G disk space, and
runs Ubuntu 12.04 as the operating system. We run mul-
tiple node instances on the same machine communicating
over the ns-3 simulated network.
Performance Metrics. The performance metrics that we
use in our experiments are: (1) the storage overhead, (2) the
network overhead (i.e., bandwidth consumption) for prove-
nance maintenance, and (3) the query latency when different
provenance maintenance techniques are adopted.
In our experiments, the relational provenance tables are

maintained in memory. To measure the storage occupation,
we use the boost library [20] to serialize C++ data structures
into binary data. At the end of each experiment run, we
serialize the per-node provenance tables (i.e., the ruleExec
table and the prov table) into binary files, and measure the
size of files to estimate the storage overhead.

6.1 Application #1: Packet Forwarding
Our first set of results is based on the packet forward-

ing program in Figure 1. The topology we used for packet
forwarding is a 100-node transit-stub graph, randomly gen-
erated by the GT-ITM [25] topology generator. In par-
ticular, there are four transit nodes – i.e., nodes through
which traffic can traverse – in the topology, each connect-
ing to three stub domains, and each stub domain has eight
stub nodes – i.e., nodes where traffic only originates or
terminates. Transit-transit links have 50ms latency and
1Gbps bandwidth; transit-stub links have 10ms latency and
100Mbps bandwidth; stub-stub links have 2ms latency and
50Mbps bandwidth. The diameter of the topology is 12,
and the average distance for all node pairs is 5.3. Each node
runs one instance of the packet forwarding program.
In the experiment, we randomly selected a number of node

pairs (s, d) – where s is the source and d is the destination–
and sent packets from s to d while the provenance of each
packet is maintained. To allow the packets to be correctly
forwarded in the network, we pre-computed the shortest
path p between s and d using a distributed routing pro-
tocol written as a declarative networking program[12]. The
routes are stored in the route tables at each node in p.

6.1.1 Storage of Provenance Trees
Figure 8 shows the CDF (Cumulative Distribution Func-

tion) graph of storage growth for all the nodes in the 100-
node topology. In the experiment, we randomly selected
100 pairs of nodes, and continuously sent packets within
each pair at the rate of 100 packets/second. As packets are
transmitted, their provenance information is incrementally
created and stored at each node (and optionally compressed
for Basic and Advanced). We calculated the average storage
growth rate of each node, and plotted a CDF graph based
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Figure 8: Cumulative growth rate
of provenance with 100 pairs of
communicating nodes, at input
rate of 100 packets/second.
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tion during packet forwarding,
with 500 pairs of nodes, each trans-
mitting 100 packets.
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of provenance querying latency for
100 random queries with 100 pairs
of communicating nodes.
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Figure 13: Cumulative provenance
storage growth rate of nameservers
with input request at a rate of 1000
requests/second.

on the results. We observe that ExSPAN has the highest
storage growth rate among the three: 20% of the nodes have
storage growth greater than 5 Mbps; 4% of nodes (i.e., tran-
sit nodes) have storage growth greater than 30 Mbps. This
is because a number of node pairs share the same transit
nodes in their paths. As expected, Basic has smaller storage
growth rate compared to ExSPAN, as it removes intermedi-
ate packet tuples from the provenance tables of each node.
Advanced significantly outperforms the other two: all the
nodes in the topology has less than 2 Mbps storage growth
rate. The gap between Advanced and ExSPAN results from
the fact that Advanced only maintains one representative
provenance tree for each pair of nodes, while ExSPAN has
to maintain provenance trees of all the traversing packets.
Figure 9 shows the total storage usage with continuous

packet insertion. We ran the experiment for 100 seconds
and took a snapshot of the storage every 10 seconds. The
figure shows that ExSPAN has the highest storage overhead.
For example, it reaches the storage of 11.8 GB at 90 seconds,
and keeps growing in a linear fashion. Basic has a similar
pattern, with 9.2 GB at 90 seconds. However, Advanced
presents lower storage growth, where at 90 seconds it only
consumes storage space of 0.92 GB. We further calculate
the average growth rate for all three lines. ExSPAN’s stor-
age grows at 131 MB/second, Basic at 109 MB/second, and
Advanced at 10.3 MB/second. This means that ExSPAN
could fill a 1TB disk within 2 hours, Basic within 2.5 hours,
whereas Advanced more than one day.
Figure 10 shows the storage usage when we increase the

number of communicating pairs, but keep the total number
of packets the same (i.e., 2000 packets). All the packets
are evenly distributed among all the communicating pairs.
We observe that the storage usage of ExSPAN and Basic
remains almost constant: ExSPAN’s total storage usage is

around 27 MB and Basic’s total storage usage is around 21
MB. This is because in both cases, each packet has a prove-
nance tree maintained in the network, irrelevant of its source
and destination. The burst of storage at the beginning of
the experiments for ExSPAN and Basic is due to the fact
that sizes of provenance trees also depend on the length of
the path that each packet traverses. In our experiment, the
initial node pairs happen to have a path length shorter than
the average path length in the topology, thus incurring less
storage overhead.
For the case of Advanced, its storage usage increases with

the number of communicating pairs. This is because each
communicating pair forms an equivalence class, and main-
tains one copy of the shared provenance tree in the equiva-
lence class. Therefore, whenever a new communicating pair
is added to the experiment, we need to maintain one more
provenance tree for that pair, which increases the total stor-
age. Despite the storage increase, Advanced still consumes
much less storage space than the other two schemes.
In summary, we observe that Basic is able to reduce stor-

age growth, and in combination with the equivalence-based
compression (Advanced), the storage reduction is significant
– i.e., a 92% reduction over ExSPAN.

6.1.2 Network Overhead.
Figure 11 presents the bandwidth utilization when we ran-

domly selected 500 pairs of nodes and each pair communi-
cated 100 packets. As expected, the bandwidth consump-
tion of Advanced is close to the ones of ExSPAN and Basic.
This is because the extra information carried with each pack-
ets is merely existFlag and some auxiliary data (e.g., hash
value of the event tuple), which is negligible compared to the
large payload of the packets. We repeated the experiment
for Advanced, but updated a route every 10 seconds, in or-
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der to study the effects of updates to slow-changing tuples.
We observe a negligable bandwidth increase of 0.6%.

6.1.3 Query Latency
To evaluate the latency of queries, we ran emulation that

could account for both network delays and computation
time. We ran the packet forwarding application on a testbed
consisting of 25 machines. Each machine is equipped with
eight Intel Xeon 2.67 GHz CPUs, 4G RAM and 500G disk
space, running CentOS 6.8 as the operating system.
On each machine, we ran up to four instances of the same

packet forwarding application with provenance enabled. In-
stead of communicating via the ns-3 network, actual sock-
ets were used over a physical network. In total, there were
100 nodes, connected together using the same transit-stub
topology we used for simulation.
In our experiment, we executed 100 queries, selected on

random nodes, where each query returned the provenance
tree of a recv tuple corresponding to a random source and
destination pair – the destination node is the starting point
of the query. The query is executed in a distributed fashion
as described in Section 5.6. Based on our physical network
topology, each query takes 5.3 hops on average in the net-
work. We repeated the experiment for Basic, Advanced, and
ExSPAN for 100 queries each.
Figure 12 shows our experimental results in the form of

a CDF. We observe that both Basic and Advanced have
latency numbers that are significantly lower than that of
ExSPAN. For example, the mean/median for ExSPAN is
75ms and 74ms respectively, as compared to only 25.5ms and
25ms for Basic. This is approximately a 3X reduction in la-
tency time. The extra overhead is due to ExSPAN’s need in
processing larger intermediate tuples. Basic and Advanced
avoid this overhead by symbolically rederiving intermediate
results during query execution.

6.2 Application #2: DNS Resolution
DNS resolution [13] is an Internet service that translates

the requested domain name, such as “www.hello.com”, into
its corresponding IP address in the Internet. In practice,
DNS resolution is performed by DNS nameservers, which
are organized into a tree-like structure, where each name-
server is responsible for a domain name (e.g., “hello.com”
or “.com”). We used the recursive name resolution proto-
col in DNS, and implemented the protocol as a DELP (see
Appendix F). During the execution of each DNS program,
provenance support is enabled so that the history DNS re-
quests can be queried.
We synthetically generated the hierarchical network of

DNS name servers. In total, there were 100 name servers,
and the maximum tree depth is 27. Our workload consists
of clients issuing requests to 38 distinct URLs. In total,
DNS requests were issued at a rate of 1000 requests/second.
Our topology resembles real-world DNS deployments. Prior
work [9] has shown that in reality, the requested domain
names satisfy Zipfian distribution. In our experiments, we
adopted the same distribution.

6.2.1 Storage of Provenance Trees
Figure 13 shows the provenance storage growth rate for all

nameservers in the Domain Name System over a 100 seconds
duration. We measure the storage growth of each name-
server by first measuring the growth rate of each 10-second

interval, and calculating the average growth rates over all
10 intervals. We observe that ExSPAN has the largest stor-
age growth rate for each node among the three experiments,
while Advanced has the lowest storage growth rate. Note
that the reduction of storage growth rate in Figure 13 is not
as significant as that in the packet forwarding experiments
(Figure 8). For example, 80% of nameservers in ExSPAN
have storage growth rate less than 476 Kbps. while the rate
is 121 Kbps for Advanced. Advanced is four times better
than ExSPAN, compared to 11 times in packet forwarding.
The reason is that, compared to packet forwarding, we rate
the total throughput of incoming events – i.e., packet tuples
in packet forwarding and request tuple in DNS resolution –
and this causes the storage growth rate at each node using
either ExSPAN and Basic to drop as well.
Figure 16 shows the provenance storage growth for all

name servers. We record the current storage growth rate at
10-second intervals. In Figure 16, the storage of ExSPAN
and Basic grows much faster than that of Advanced. Specifi-
cally, the growth rates of ExSPAN, Basic and Advanced are
13.15 Mbps, 11.57 Mbps and 3.81 Mbps respectively, and
the storage space at 100 seconds reaches 1.32 GB, 1.16 GB,
and 0.38 GB respectively. With the given rates, ExSPAN
would fill up a 1TB disk within 21 hours, Basic within 24
hours, and Advanced up to 3 days.
Figure 14 shows the storage growth when we increased the

number of requested URLs. In this experiment, we fixed
the total number of requests at 200, so that when more
URLs were added, there would be fewer duplicate requests.
In Figure 14, the storage overhead for ExSPAN and Basic
remains stable at around 2.5 MB and 2.26 MB respectively.
This is because the storage overhead is mostly determined
by the number of provenance trees, which is equal to the
number of incoming requests (i.e., 200 in this case). For
Advanced, the storage grows at a rate of 11.6 Kb per URL.
This is expected as we need to maintain one provenance tree
for each equivalence class, and the number of equivalence
classes grows in proportion to the number of URLs. Similar
to our packet forwarding results, despite the storage growth,
Advanced still requires significantly less storage compared
to ExSPAN and Basic. Unless a URL is only requested
once (highly unlikely in reality), which is the worst possible
case for Advanced, Advanced always performs better than
ExSPAN and Basic.

6.2.2 Network Overhead
Figure 15 shows the bandwidth usage with elapsed time

when we continuously sent 100,000 requests to the root name-
server. All three experiments finish within 102 seconds.
Throughout the execution, ExSPAN and Basic have simi-
lar bandwidth usage, which is stable at around 4.5 MBps.
On the other hand, Advanced’s bandwidth usage is about
6 MBps, which is about 25% higher than the other two
techniques. This is because unlike in the packet forward-
ing experiments where each packet carries a payload of 500
characters, each DNS request does not have any extra pay-
load. Therefore, the meta-data tagged with each request
(e.g., existFlag) accounts for a large part of the size of each
request, resulting in higher additional bandwidth overhead.

7. RELATED WORK
Network provenance has been proposed and developed by

ExSPAN [28] and DTaP [27]. These two proposals store un-
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compressed provenance information, laying the foundation
for our work. In database literature, a number of works have
considered optimization of provenance storage. However, we
differ significantly in our design due to the distributed nature
of our target environment. We briefly list a few representa-
tive bodies of work, and explain our differences.
Woodruff et al. [21] reduce storage usage for maintaining

fine-grained lineage (i.e., provenance) by computing prove-
nance information dynamically during query time through
invertible functions. Their approach tradeoffs storage with
accuracy of provenance. On the other hand, our approach
requires no such tradeoff, achieving the same level of accu-
racy as queries on uncompressed provenance trees.
Chapman et al. [3] develop a set of factorization algo-

rithms to compress workflow provenance. Their proposal
does not consider a distributed setting. For example, node-
level factorization (combining identical nodes) requires ad-
ditional states to be maintained and propagated from node
to node during provenance maintenance to resolve potential
ambiguities. Maintaining and propagating these states can
lead to significant communication overhead in a distributed
environment. In contrast, our solution uses the equivalence
keys to avoid comparing provenance trees on a node-by-node
basis, and hence minimizes communication overhead during
provenance maintenance.
Our compression technique implicitly factorizes provenance

trees at runtime before removing redundant factors among
trees in the same equivalence class. Olteanu et al. [16][17]
propose factorization of provenance polynomials for con-
junctive queries with a new data structure called factoriza-
tion tree. Polynomial factorization in [17] can be viewed
as a more general form of the factorization used in the
equivalence-based compression proposed in this paper. If we
encode the provenance trees of each packet as polynomials,
the general factorization algorithm in [17], with specialized
factorization tree, would produce the same factorization re-
sult in our setting. Our approach is slightly more efficient,
as we can skip the factorization step by directly using the
equivalence keys at runtime to group provenance trees for
compression. Exploring the more general form of factor-
ization in [17] for provenance of distributed queries is an
interesting avenue of future work.
ProQL [10] proposes to save the storage of single prove-

nance tree by (1) using primary keys to represent tuples in
the provenance, and (2) maintaining one copy for attributes
of the same values in a mapping (rule). These techniques
could also be applied alongside our online compression algo-
rithm to further reduce storage. ProQL does not consider
storage sharing across provenance trees. Amsterdamer et

al. [1] theoretically defines the concept of core provenance,
which represents derivation shared by multiple equivalent
queries. In our scenario, the shared provenance tree of each
equivalence class can be viewed as core provenance.
Xie et al. [24] propose to compress provenance graphs with

a hybrid approach combining Web graph compression and
dictionary encoding. Zhifeng et al. [2] proposes rule-based
provenance compression scheme. Their approaches on a high
level compresses provenance trees to reduce redundant stor-
age. However, these approaches require knowledge of the
entire trees prior to compression, which is not practical, if
not impossible, for distributed provenance.
Provenance has been applied to network repairing [23, 22,

4] where root-cause analysis is used to identify and fix config-
uration errors in networks. Network repairing is orthogonal
to our work, but can benefit from our compression tech-
niques to reduce the storage of provenance maintenance.

8. CONCLUSION & FUTURE WORK
In this paper, we propose an online, equivalence-based

compression scheme for the maintenance of distributed net-
work provenance. Equivalent provenance trees are identified
at compile time through static analysis of the declarative
program, whereas our runtime maintains only one concrete
representative provenance tree for each equivalence class.
Our evaluation results show that the compression scheme
saves storage significantly, incurs little network overhead,
and allows for efficient provenance query.
This paper focuses on compressing trees generated within

one program executed at all nodes. In most network deploy-
ments, there may be multiple programs (or network proto-
cols) running concurrently. As future work, we plan to ex-
plore the possibility of compressing provenance trees across
programs that share execution rules.
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APPENDIX
In this appendix, we provide proof sketches of the key lem-
mas in the paper. We refer interested readers to our com-
panion technical report [6] for more details.

A. PROVENANCE TREE EQUIVALENCE
We formally define tree equivalence below using the fol-

lowing notations: an instance of the input event relation e is
denoted e(@ι,~c), or ev in shorthand; an instance of a slow-
changing relation b is denoted as b(@ι,~c) or B (thus we write
B1:: · · · ::Bn to denote the slow-changing tuples used to ex-
ecute rule rID); and instances of fast-changing relations are
denoted by P , p(@ι,~c), Q, or q(@ι,~c). A provenance tree tr
is inductively defined as follows:

Provenance tree tr ::= 〈rID, P, ev, B1:: · · · ::Bn〉
| 〈rID, P, tr , B1:: · · · ::Bn〉

tr ∼K tr ′ is defined inductively as follows:

ev ∼K ev′

v〈rID, P, ev, B1:: · · · ::Bn〉 ∼K 〈rID, P ′, ev′, B1:: · · · ::Bn〉

tr ∼K tr ′

〈rID, P, tr , B1:: · · · ::Bn〉 ∼K 〈rID, P ′, tr ′, B1:: · · · ::Bn〉

B. CORRECTNESS OF STATIC ANALYSIS
Formal definition of equivalent keys. In this section,
we explain the predicates used to define equivalence keys.
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DQ ` joinFAttr(p:i, q:j)

JoinF-Base
rID p(~xp) :- q(~xq), b1(~xb1), · · · , bk(~xbk), · · · , bn(~xbn), · · · ∈ DQ

q:i = p:j
DQ ` joinFAttr(p:i, q:j)

DQ ` joinSAttr(p:i)

Join-Base
rID p(~xp) :- q(~xq), b1(~xb1), · · · , bk(~xbk), · · · , bn(~xbn), · · · ∈ DQ

q:i = bk:j
DQ ` joinSAttr(q:i)

Join-Func-Attr
rID p(~xp) :- q(~xq), · · · , Fi : y := F (~z), · · · ∈ DQ

q:j = ~z:k
DQ ` joinSAttr(q:j)

Join-Arith-Left
rID p(~xp) :- q(~xq), · · · , aL(~xaL)bop aR(~xaR), · · · ∈ DQ

aL:j = q:i
DQ ` joinSAttr(q.i)

Join-Arith-Right
rID p(~xp) :- q(~xq), · · · , aL(~xaL)bop aR(~xaR), · · · ∈ DQ

aR:j = q:i
DQ ` joinSAttr(q:i)

We define rules to derive how an attribute of a tuple is
connected to an event trigger attribute.
DQ ` connected(e:i, p:j)

DQ ` joinFAttr(e:i, p:j)
DQ ` connected(e:i, p:j)

Connected-Base

Connected-Join
DQ ` connected(e:i, q:j) DQ ` joinFAttr(q:j, p:k)

DQ ` connected(e:i, p:k)

e:i is in the equivalent key K is defined as follows.
DQ ` e:i ∈ K

DQ ` joinSAttr(e:i)
DQ ` e:i ∈ K

Equi-Direct

Equi-Reachable
DQ ` joinSAttr(q:j) DQ ` connected(e:i, q:j)

DQ ` e:i ∈ K

Proof of correctness of equivalence keys (Lemma 2).
The proof uses induction over the structure of tr1. In the
base case, tr1 only uses one rule. We construct tr2 using the
same slow-changing tuples as tr1 because ev1 and ev2 agree
on every attribute that joins with a slow-changing tuple.
By the definition of DELP, any attribute on the root of
tr1 and tr2 whose values differ in those trees must come
from (be connected to) the input event tuple, not from any
slow-changing tuples; otherwise, they cannot differ. By the
definition equivalence keys, this differing attribute is not in
the equivalence keys.
For the inductive case, trp:p(t1, ..., tn) contains a subtree

trq:q(s1, ..., sm), in which q(s1, ..., sm) is the event of the
rule r that derived p(t1, ..., tn). By I.H., we know that

we can construct tr ′
q:q(s′

1, ..., s
′
m), which is equivalent to

trq:q(s1, ..., sm), and for any j s.t. sj 6= s′
j , ∃l, q:j is con-

nected to e:l, and e:l /∈ K. Next, we show that we can con-
struct a tr ′

p:p(t′1, ..., t′n) that is equivalent to trp:p(t1, ..., tn).
We can construct tr ′

p:p(t′1, ..., t′n) by using the same rule r
and the same slow-changing tuples from the last layer of
trp:p(t1, ..., tn). All the attributes that have different val-
ues for q(s1, ..., sm) and q(s′

1, ..., s
′
m) do not join with the

attributes in slow-changing tables; otherwise, it contradicts
with the condition that e:l /∈ K. The condition that ∀i,
ti 6= t′i, ∃l, p:i is connected to e:l, and e:l /∈ K follows from
the fact that such p:i must satisfy joinFAttr(p:i, q:j) for some
q:j, where ∃l, q:j is connected to e:l, and e:l /∈ K.

C. EXAMPLE DEPENDENCY GRAPH
Figure 17 shows an example attribute-level dependency

graph for the packet forwarding program in Figure 1. Based
on Section 5.2, the equivalence keys are (packet:0, packet:2).

packet:0

packet:1

packet:2

packet:3

route:0

route:1

route:2

recv:0

recv:1

recv:2

recv:3

Figure 17: The attribute-level dependency graph for
the packet forwarding program in Figure 1.

D. CORRECTNESS OF COMPRESSION
The key to showing that our online compression algorithm

stores the required provenance trees is to define a bisimu-
lation relation RC between the network state of the online
compression execution (Ccm) and the network state of semi-
naïve evaluation (Csn) introduced in prior work [11].
A bisimulation relation between Csn and Ccm. We de-
fine RC, a bisimulation relation that corresponds the deriva-
tion trees tr in Csn (where Csn = Qsn� Ssn1 · · · SsnN ) to the
provenance trees P in Ccm (where Ccm = Qcm�Scm1 · · · ScmN ).
We present the formal definition below.

E1 :: Scm.Γ ` Qsn ∼U Qcm
E2 :: ∀i ∈ [1, N ],Scm.Γ ` Ssni.Usn RU Scmi.U cm
E3 :: U cmF ⊆ Qcm ∪

(
∪Ni=1Scmi.U cm

)
E4 :: Scm.Γ,Scm.DQ,U cmF

` ∪Ni=1Ssni.MRre Scmi.(Table ruleExec)
E5 :: Scm.Γ,Scm.DQ,U cmF ,∪Ni=1Scmi.Υ

` ∪Ni=1Ssni.Mprov Rprov ∪Ni=1 Scmi.(Table prov)
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN

The network state Csn consists of the local states Ssn1
· · · SsnN of each node in the distributed system that the
program DQ is evaluated on, and a queue of unprocessed
updates Qsn representing the rule events in DQ that are
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to be sent to various nodes in the distributed system to
trigger rules in DQ. Similarly, a network state Ccm consists
of a set of local states Scm1 · · · ScmN for each node in the
distributed system, and a queue of unprocessed updates Qcm
representing the same rule events in Qsn.
The local states Ssn and Scm of both evaluations contain

the same copy of DQ and also a declaration Γ that maps
relations in DQ to their types as specified by the network
administrator (i.e. whether they are input events or slow-
changing tuples).
A semi-naïve local state Ssn is written as 〈@ι, DQ, Γ,
DB, E , Usn, equiSet, M, Mprov〉. Node ι is the identifier
of the node in the distributed system whose local state is
represented by Ssn. DQ and Γ have been introduced above.
DB is a local database of slow-changing tables and instances
of relations of interest derived on node ι that are used as
non-event inputs to a rule during the execution. E is a list
of unprocessed input event tuples that will eventually be
used to trigger the execution of DQ on node ι. Usn are
the unprocessed updates for the execution that have already
been triggered by an input event tuple. equiSet records the
equivalence keys that have been seen on node ι. The storage
structures areM that store the proofs of the tuples P that
are derived locally, andMprov that record the proofs of the
relations of interest that are stored locally.
The local state Scm of the online compression scheme

is similar to Ssn. It is defined as 〈@ι, DQ, Γ, DB, E ,
Usn, equiSet, Table ruleExec, Table prov〉. Because the on-
line compression scheme stores compressed provenance trees,
while semi-naïve evaluation does not perform compression,
the structures used for storage in Scm necessarily differ from
that of Ssn. In Scm, the ruleExec table (introduced in Sec-
tion 5.3) corresponds toM in Ssn, while the prov table cor-
responds toMprov in Ssn.
Our bisimulation relation uses relation Rre to related

derivation trees tr stored in theM of local states of Csn to
provenance trees P stored in the ruleExec tables of the local
states of Ccm (E4). We define the following relation tr ∼d P
between a derivation tree and a compressed provenance in
order to formalize Rre:

∀i ∈ [1, n], vIDi = hash(Bi)
vids = vID1:: · · · ::vIDn rid = hash(r :: vids)

ruleExec = 〈@ι, rid, r, vids,NULL,NULL〉
〈r, P, e(@ι,~t), B1:: · · · ::Bn〉 ∼d ruleExec

ruleExecq = 〈@ιq, ridq, rq, vidsq,@ιρ, ridρ〉
trq ∼d P :: ruleExecq ∀i ∈ [1, n], vIDi = hash(Bi)
vidsp = vID1:: · · · ::vIDn ridp = hash(rp :: vidsp)

ruleExecp = 〈@ιp, ridp, rp, vidsp,@ιq, ridq〉
〈rp, P, trq:q(@ιq,~tq), B1:: · · · ::Bn〉
∼d P :: ruleExecq :: ruleExecp

Rre is one of several intermediary relations used to relate
structures in each local state Ssn to structures in local state
Scm in order to define the bisimulation relation RC. These
intermediary relations are used in E1 to E4 to specify the
required correspondences. Due to space limitations, we elide
most of their definitions.
• Semi-naïve evaluation and online compression execu-
tion have the same set of updates (E1).
• Every local state contains the same set of unprocessed
updates during both executions (E2).

• All derivations derived by semi-naïve evaluation can ei-
ther be found in the set of existing rule provenances of
the online compression execution, or will eventually be
generated by the unprocessed updates (E3 and E4).
• For each tuple whose provenance information we record
during online compression execution, we also record its
proof during semi-naïve evaluation, and vice versa (E5).

The last three judgments are very complicated because of
possible out of order execution, thus we omit the details.
Proof of Lemma 4. We present the proof details of Lemma 4,
from which Theorem 3 immediately follows. The proof uses
induction on the number of steps and relies on a lemma
relating two states if one takes a single step. The lemma
shows that starting from related states (Csn RC Ccm), if
semi-naïve evaluation takes a step (Csn→SN Csn′), then on-
line compression can also take a step (i.e. Ccm ↗CM Ccm′)
and the resulting states are again bisimilar (Csn′ RC Ccm′)
and vice versa.
There are two key cases where new rule provenances are

generated and provenance storage data structures are up-
dated: one is when all the rules that an update can fire are
processed and the update is stored into the database if it is
the result tuple, the other is when a rule is fired and a new
update is generated.
In the first case, in semi-naïve evaluation, a derivation tr

of tuple P is stored. In the online compression execution,
the prov table will be updated. In this case, the derivation
of P has already been stored in the respective provenance
data structures when the rule that generates the update is
processed. Therefore, we only need to check that the hash
values in the prov table match corresponding fields in the
derivation stored inMprov. This can be shown because the
updates relate to each other in the initial execution states.
In the second case, an update P ′ triggers a rule r and

generates a new update P . Semi-naïve evaluation stores
the derivation tr for P . The online compression execution
updates the ruleExec table. We need to show that (1) the
new updates in both executions still relate to each other,
(2) the new derivation tr and the new entry in the ruleExec
table relate to each other, and (3) other relations are not
affected by the new entries. All of the above can be shown
by examining our relations.

E. CORRECTNESS OF QUERY
To show that our query algorithm (Query in Figure 18)

is able to recover the correct derivation tree of a given tuple
from our compressed provenance storage, we state and prove
Correctness of the Query Algorithm (Theorem 5). This the-
orem states that given initial network state Cinit that transi-
tions to Ccm in n steps using the rules for online compression,
there exists a network state Csn for semi-naïve evaluation s.t.
for any derivation tree tr that is a proof of output tuple P
and derived using an input event tuple ev with ID evid,
Query takes as inputs Ccm, P and evid and returns a set
M consisting of all derivation trees (including tr) that are
proofs of P and that were derived using ev.
Theorem 5 tells us that Query always returns all the

derivations in Csn for P and evid.
The proof relies on Lemma 3 to determine that there ex-

ists a network state Csn for semi-naïve evaluation s.t. Ccm
and Csn are bisimilar (Csn RC Ccm). Given such an Csn,
we pick an arbitrary derivation tree tr for tuple P in Csn
that was generated by event tuple ev with event ID evid.
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1: function Query(Ccm, P , evid)
2: htp ← hash(P )
3: if 〈_, htp,_,_, evid〉 ∈ Ccm then
4: [prov1 · · · provn]← Get_Prov(Ccm, htp, evid)
5: M← {}
6: for i ∈ [1, n] do
7: 〈loc, htp, rloci, ridi, evid〉 ← provi
8: Pi ← Qr(Ccm, (rloci, ridi))
9: tr i ← Transform_To_D(Pi, evid)
10: M←M∪ tr i
11: returnM
12: else
13: return ∅
14: end function
15:
16: function Qr(Ccm, (loc, rid))
17: if loc == NULL and rid == NULL then
18: return []
19: else
20: ruleExec ← Get_RuleExec(Ccm, (loc, rid))
21: 〈loc, rid, r, vids,nloc,nrid〉 ← ruleExec
22: return Qr(Ccm, (nloc,nrid)) :: ruleExec
23: end function
Figure 18: Pseudocode for querying a provenance
tree.

Because Csn RC Ccm, there exists a tuple prov for P in a
specific prov table in Ccm storing an association to a specific
provenance P, and furthermore tr ∼d P. By the above rea-
soning and the semantics of Query, the “If” branch of the
If-Else statement on lines 3-13 of Query is taken. On line
4, Get_Prov takes as input Ccm, htp (the hash of P ), and
evid, then returns every provi in the prov tables of Ccm con-
taining an association (rloci, ridi) to a provenance tree Pi
for P that was derived using ev. By the relation in E5, each
Pi is recorded in Ccm. We use Qr to retrieve Pi. If we can
show that Qr can correctly retrieve Pi, it is straightforward
to show that Transform_To_D recovers tr when given
Pi and evid as inputs. Hence, the conclusion holds.
We still need to show that recursive algorithm Qr will

return Pi when given Ccm and the association (rloci, ridi) to
provenance Pi. We prove Lemma 6 below. The proof uses
a uniqueness property on elements in the ruleExec table–the
first two arguments of ruleExec (i.e. loc and rid) are primary
keys that uniquely determine it. Thus, given any ruleExec
and ruleExec′, that agree on the first two arguments loc and
rid, then ruleExec = ruleExec′.

Lemma 6 (Correctness of Qr). Given that Csn RC Ccm and
tr :P ∈ Csn and ruleExec = 〈loc, rid, r, vids, nloc, nrid〉 and
P :: ruleExec is stored in the ruleExec tables of the local states
of Ccm and tr ∼d P :: ruleExec, then Qr(Ccm, (nloc,nrid)) =
P :: ruleExec.

We prove Lemma 6 by induction over `, the length of
P :: ruleExec.
Base Case A: ` = 0. By the assumption we have P ::

ruleExec = []. By the definition of ∼d that relates derivation
trees to compressed provenance trees, @tr ∈ Csn s.t. tr ∼d [].
Thus the antecedent of the lemma is false.
Base Case B: ` = 1. By the assumption we have P =

[] and thus P :: ruleExec = ruleExec. Because tr :P ∼d
ruleExec, tr has only one rule. Thus (nloc, nrid) are null by

the correspondence relation as only rule r was used to de-
rive P . Because (loc, rid) are not null, the “Else” branch of
the If-Else statement on Lines 17-22 of Qr is taken. There-
fore on Line 20 of Qr, the algorithm finds ruleExec (where
ruleExec = 〈loc, rid, r, vids,nloc,nrid〉) by the uniqueness
property. The query Qr(Ccm, (nloc,nrid)) initiates a query
for an empty rule provenance list, that by Base Case A re-
turns an empty list. By Line 22 of Qr, we have Qr(Ccm,
(loc, rid)) = [] :: ruleExec as desired.
Inductive Case: ` = k + 1 ≥ 2. By assumption, nloc

and nrid are not null, thus the “Else” branch of the If-Else
statement on Lines 17-22 of Qr is taken. Therefore on Line
20 of Qr the algorithm finds ruleExec (where ruleExec =
〈loc, rid, r, vids,nloc,nrid〉) by the uniqueness property. By
assumption, there exists P ′ and ruleExec′ s.t. P = P ′ ::
ruleExec′ and ruleExec′ is not null. By the above and the
correspondence tr ∼d P :: ruleExec′, exists tr ′ in Csn that
is a subderivation of tr s.t. tr ′ ∼d P and ruleExec′ =
〈nloc,nrid, r′, vids′,nloc′,nrid ′〉. Using I.H. we can obtain
Qr(Ccm, (nloc, nrid)) = P ′ :: ruleExec′. By Line 22 of Qr,
we have Qr(Ccm, (loc, rid)) = P ′ :: ruleExec′ :: ruleExec =
P :: ruleExec as desired.

F. DELP FOR DNS RESOLUTION

r1 request(@RT,URL,HST,RQID) :−
url(@HST,URL,RQID).
rootServer(@HST,RT ).

r2 request(@SV,URL,HST,RQID) :−
request(@X,URL,HST,RQID),
nameServer(@X,DM,SV ).
f_isSubDomain(DM,URL) == true.

r3 dnsResult(@X,URL, IPADDR,HST,RQID) :−
request(@X,URL,HST,RQID),
addressRecord(@X,URL, IPADDR).

r4 reply(@HST,URL, IPADDR,RQID) :−
dnsResult(@X,URL, IPADDR,HST,RQID).

Figure 19: DELP for DNS resolution.

Figure 19 shows the DELP encoding of the recursive DNS
resolution. The program is composed of four rules. Rule
r1 forwards a DNS request of ID RQID to the root name-
server RT for resolution. The request is generated by the
host HST for the URL URL. Rule r2 is triggered when
a nameserver X receives a DNS request for URL, but has
delegated the resolution of sub-domain DM corresponding
to URL to another nameserver SV. Rule r2 then forwards
the DNS request to SV for further DNS resolution. Rule r3
generates a DNS resolution result containing the IP address
IPADDR corresponding to the requested URL, when URL
matches an address record on the nameserver X. Finally,
Rule r4 is responsible for returning the DNS result to the
requesting host HST.
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