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ABSTRACT
Network provenance, which records the execution history of
network events as meta-data, is becoming increasingly im-
portant for network accountability and failure diagnosis. For
example, network provenance may be used to trace the path
that a message traversed in a network, or to reveal how a
particular routing entry was derived and the parties involved
in its derivation. A challenge when storing the provenance of
a live network is that the large number of the arriving mes-
sages may incur substantial storage overhead. In this paper,
we explore techniques to dynamically compress distributed
provenance stored at scale. Logically, the compression is
achieved by grouping equivalent provenance trees and main-
taining only one concrete copy for each equivalence class. To
efficiently identify equivalent provenance, we (1) introduce
distributed event-based linear programs (DELP) to specify
distributed network applications, and (2) statically analyze
DELPs to allow for quick detection of provenance equiv-
alence at runtime. Our experimental results demonstrate
that our approach leads to significant storage reduction and
query latency improvement over alternative approaches.

Keywords
Provenance; distributed systems; storage; static analysis

1. INTRODUCTION
Network administrators require the capability to identify

the root causes of performance slowdowns in data centers
or across wide-area networks, and also to determine the
sources of security attacks. Such capabilities often utilize
network provenance, which allows the user to issue queries
over network meta-data about the execution history. In re-
cent years, network provenance has been successfully ap-
plied to various network settings, resulting in proposals for
distributed provenance [27], secure network provenance [25],
distributed time-aware provenance [26] and negative prove-
nance [22]. These proposals demonstrate that database-style
declarative queries can be used for maintaining and querying
distributed provenance at scale. Moreover, a wide range of
forensic analysis work (e.g.[4, 21]) for determining and fixing
the root causes of misconfigurations, errors and attacks have

used network provenance as their underlying infrastructure.
One of the main drawbacks of the existing techniques is

their storage overhead. Network provenance has to be in-
crementally maintained as network events occur. This is
particularly challenging for the data plane of networks that
deals with frequent and high-volume data packets. When
there are streams of incoming packet events, the provenance
information can become prohibitively large. While there is
prior work on provenance compression in the database liter-
ature [3], the work was not designed for distributed settings.
Our paper’s contributions are:
System Model. We propose a new network program-
ming model, called distributed event-based linear programs
(DELP), which is a restricted variant of the Network Dat-
alog [11] language in declarative networking. Each DELP
program is composed of a set of rules triggered by events,
and executes until a fixpoint is reached. Unlike traditional
event-condition-action rules, DELP has the option of slow
changing tuples, which do not change their values while a
distributed fixpoint computation is happening. We show,
through two example applications (packet forwarding and
DNS resolution), that this model is general enough to cover
a wide range of network applications.
Distributed Provenance Compression. Based on the
DELP model, we propose two techniques to store prove-
nance information efficiently. Our first technique relies on
materializing only the tuples that the administrators are in-
terested in. We propose a distributed querying technique
that can reconstruct the entire provenance tree from the re-
duced provenance information that is maintained. Our sec-
ond technique combines multiple provenance trees together,
based on a notion of equivalence class that groups different
DELP rule firing instances together by virtue of the fact
that they share similar derivation structures.
Implementation and Evaluation. We implement a pro-
totype of DELP based on the RapidNet declarative net-
working engine [13]. We enhance RapidNet to include a
rule rewrite engine that maintains provenance at runtime.
Provenance queries are implemented as distributed recursive
queries over the maintained provenance information. We
deploy and evaluate DELP on packet forwarding and DNS
lookups, and the performance results show that the com-
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pression techniques result in orders of magnitude reduction
in storage, significant reduction in query lantency, and adds
only negligible overhead to the runtime performance of each
monitored network application.

2. BACKGROUND
We first provide an introduction to Network Datalog (ND-

Log) [11], a declarative networking programming language
we use to model network applications in the distributed sys-
tem, then we introduce the concept of distributed network
provenance [27, 26].

2.1 Network Datalog

r1 packet(@N, S, D, DT ) :− packet(@L, S, D, DT ),
route(@L, D, N).

r2 recv(@L, S, D, DT ) :− packet(@L, S, D, DT ), D == L.

Figure 1: An NDLog program for packet forwarding

To illustrate NDLog, we show an example query (Figure 1)
that recursively forwards packets in a network. A typical
NDLog program is composed of a set of rules. Each rule
takes on the format p :− q1, q2, ...qn, where p is a relation
called the rule head, and qis are rule bodies that are either
relational atoms, arithmetic atoms or user-defined functions.
Relations and rules of an NDLog program can be deployed
in a distributed fashion. To logically specify the location of
each relation, an “@” symbol – called the location specifier
– is prepended to the first attribute of each relation.
Each node in the network maintains a database storing

base tuples (i.e., tuples that are input by the user) and/or
derived tuples (i.e., tuples that are generated by the NDLog
program). During program execution, when all rule bodies
of a rule r have corresponding tuples in the local database, r
will be triggered, generating the head tuple. If the location
specifier of the head tuple is different from that of bodies
(e.g., r1 in Figure 1), the head tuple will be transmitted
through the network to the remote node. In the example
program of Figure 1, r1 forwards a local packet (packet) to
neighbor N by looking up the packet’s destination D in the
local routing table (route). r2 receives a packet and stores it
locally in the recv table, if the packet is destined to the local
node (D == L).

2.2 Distributed Network Provenance
Data provenance [7] can be used to explain why and how

a given tuple is derived. Prior work [27] proposes network
provenance, which faithfully records the execution of (pos-
sibly erroneous) applications in a (possibly misconfigured)
distributed system. This allows the network administrators
to inspect the derivation history of system states. For exam-
ple, suppose there is a direct link between n1 and n3 in Fig-
ure 2. If the user prefers the routing with the shortest paths,
the routing entry of n1 in Figure 2 would have been erro-
neous – a correct entry should be route(@n1, n3, n3). The
provenance engine, agnostic of this error, would record the
packet traversal on the path n1 → n2 → n3 . The user
can later use the recorded provenance as an explanation on
why the packet took a particular route, eventually leading
to further investigation into the route table at n1 .
Network provenance is typically represented as a directed

tree rooted at the queried tuple. Figure 3 shows the prove-
nance tree of a tuple recv(@n3, n1, n3, “data”) derived from

n1 n2 n3

route

L D N

@n1 n3 n2

route

L D N

@n2 n3 n3

Figure 2: An example deployment of packet for-
warding. Node n1 and node n2 has a local route
table indicating routes towards node n3 .

a packet packet(@n1, n1, n3, “data”). The provenance tree is
generated as packet(@n1, n1, n3, “data”) traverses the net-
work from node n1 to n3 in Figure 2. There are two types
of nodes in a typical provenance tree: the rule nodes and
the tuple nodes. The rule nodes (i.e., the oval nodes in Fig-
ure 3) stand for the rules that are triggered in the program
execution, while the tuple nodes (i.e., the square nodes in
Figure 3) represent tuples that trigger/are derived by the
rule execution. Note that the root of a provenance tree is
always a tuple node that represents the queried tuple.
To maintain the provenance, traditional database work [9]

often stores data provenance along with the target tuple for
efficient provenance querying. Such centralized provenance
storage turns out to be very costly for the provenance in
a network setting, which is typically constructed in a dis-
tributed fashion. In some cases, given the distributed nature
of the application, it may also not be feasible to collect the
information in a centralized fashion.
ExSPAN [27], a representative distributed provenance en-

gine, maintains the provenance information in a distributed
relational database. There are two (distributed) tables in
the database: the prov table and the ruleExec table. The
prov table records the provenance information for the direct
derivation of a given tuple, while the ruleExec table main-
tains the information of a specific rule instance, including
the rule name and the body tuples used in the rule evalua-
tion. Table 1 shows an example relational database storing
the provenance tree in Figure 3. Both tables are partitioned
and maintained in a distributed fashion, according to the
values of Loc and RLoc in each tuple.
ExSPAN uses a recursive provenance query to retrieve the

provenance tree of a queried tuple. For example, to query
the provenance tree for recv(@n3, n1, n3, “data”) (Figure 3),
ExSPAN first computes the hash value vid6 of the tuple, and
uses vid6 to find the tuple prov(n3, vid6, rid3, n3) in the prov
table. ExSPAN further uses the values rid3 and n3 in the
tuple to locate ruleExec(n3, rid3, r2, (vid5)) in the ruleExec
table, which represents the provenance node for the rule
execution (i.e., r2 ) that derives vid6 . To further query the
provenance of the body tuples that trigger r2 , the querier
would then look up (vid5 ) in the prov table. This recursive
query processing continues until it reaches the base tuples
(e.g., route(@n1, n3, n2)).
We adopt the relational database storage model of ExS-

PAN. However, our provenance compression scheme applies
generally to any distributed provenance model.

2.3 Motivation for Provenance Compression
A key problem not addressed in prior work on network

provenance [27][26] is that the provenance information can
become very large, especially for distributed applications
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prov
Loc VID RID RLoc
n3 vid6 rid3 n3

(sha1(recv(@n3, n1, n3, “data”)))
n3 vid5 rid2 n2

(sha1(packet(@n3, n1, n3, “data”)))
n2 vid4 rid1 n1

(sha1(packet(@n3, n1, n3, “data”)))
n2 vid3 NULL NULL

(sha1(route(@n2, n3, n3)))
n1 vid2 NULL NULL

(sha1(packet(@n1, n1, n3, “data”)))
n1 vid1 NULL NULL

(sha1(route(@n1, n3, n2)))
ruleExec

RLoc RID R VIDS
n3 rid3(sha1(r2+n3+vid5)) r2 (vid5)
n2 rid2(sha1(r1+n2+vid3+vid4)) r1 (vid3,vid4)
n1 rid1(sha1(r1+n1+vid1+vid2)) r1 (vid1,vid2)

Table 1: Relational tables (ruleExec and prov) main-
taining the provenance tree in Figure 3.

packet(@n1,n1,n3, data )

packet(@n2,n1,n3, data )

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

packet(@n3,n1,n3, data )

r2@n3

recv(@n3,n1,n3, data )

Figure 3: A (distributed) provenance tree for the ex-
ecution of packet(@n1, n1, n3, “data”), which traverses
from node n1 to node n3 in Figure 2.

(e.g., network protocols) where event tuples trigger rules in a
streaming fashion. For example, in Figure 2, if n1 initiates a
large volume of traffic towards n3 , each packet in the traffic
would generate a provenance tree similar to the one in Fig-
ure 3. Given that today’s routers forward packets at rates
over millions of packets per second, this would incur pro-
hibitively high storage overhead for distributed provenance
maintenance on each intermediate node.
We observe however that the provenance of different pack-

ets share significant similarities in their structures, present-
ing opportunities for provenance compression across differ-
ent provenance trees. For example, in Figure 2, whenever
a new packet is sent from n1 to n3 , an entire provenance
tree is created and maintained. However, it is not hard to
observe that all the packets traversing through n1 and n2
take the same route – that is, they join with the same local
route tuples. Therefore, the storage for the provenance trees
generated by these packets could be significantly reduced if
we manage to remove the observed redundancy.
The key challenge of provenance compression in a dis-

tributed system is to achieve significant storage savings while
incurring low network overhead (e.g., extra bandwidth and
computation), and still enabling the user to query the prove-
nance information effectively as does uncompressed prove-
nance. Hence, we avoid content-level compression techniques
such as gzip, but opt for the conservative compression based
on the structure of provenance trees.

3. MODEL
A distributed system DS is modeled as an undirected

graph G = (V ,E). Each node Ni in V represents an en-
tity in DS . Two nodes Ni and Nj can communicate with
each other if and only if there is an edge (Ni ,Nj) in E . In
DS , each node Ni maintains a local state in the form of
a relational database DBi . Tables in DBi can be divided
into base tables and derived tables. Tuples in base tables are
manually updated, while tuples in derived tables are derived
by network applications. Figure 2 is an example distributed
system with three nodes.

3.1 Network applications
Each node in DS runs a number of network applications,

which are specified in NDLog with syntactic restriction. The
syntactic restriction enables efficient provenance compres-
sion (Section 5), while still being expressive enough to model
most network applications. In particular, we have:
Definition 1. An NDLog program Prog={r1 , r2 , ..., rn} is
a distributed event-driven linear program (DELP), if Prog
satisfies the following three conditions:
• Each rule is event-driven. Each rule ri can be speci-
fied in the form: [head] : −[event], [conditions], where
[event] is a body relation designated by the program-
mer, and [conditions] are all non-event body atoms.
• Consecutive rules are dependent. For each rule pair
(ri , ri+1 ) in Prog, the head relation hd of ri is identical
to the event relation ev in ri+1 .
• Head relations can only be event relations. For each
head relation hd in any rule ri, there does not exist a
rule rj, such that hd is a non-event relation in rj.

In a typical network application, non-event relations of-
ten represent the network states, which change slowly com-
pared to the fast rate of incoming events. For example, in
the packet forwarding program, the route relation is either
updated manually or through a network routing protocol.
In either case, it changes slowly compared to the large vol-
ume of incoming packets. Therefore, we call the non-event
relations in a DELP as slow-changing relations, and assume
that they do not change during the fixpoint computation.
This assumption is realistic and can be enforced easily in
the networks where configurations are updated at runtime
and packets see only either the old or new configuration
version across routers, as shown in prior work [18] in the
networking community.
A DELP {r1 , r2 , ..., rn} can be deployed in a distributed

fashion over a network, and its execution follows the pipelined
semi-naïve evaluation strategy introduced in prior work [10]
– whenever an event tuple arrives at a node Ni , it triggers
r1 by joining with the slow-changing tuples at Ni . The gen-
erated head tuple hd is then sent to the node Nj – Nj is
identified by the location specifier in hd – triggering r2 at
Nj . This process continues until rn is executed.
DELP can model a large number of network applications,

due to their event-driven nature, such as packet forwarding
(Figure 1), Domain Name Service (DNS) resolution [12], Dy-
namic Host Configuration Protocol (DHCP) [6] and Address
Resolution Protocol (ARP) [17].

3.2 Provenance for Network Applications
It is often the case that network administrators will use

a subset of network states as their starting point for de-
bugging. For example, in the packet forwarding program,
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packet(@n1,n1,n3, data )

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

r2@n3

recv(@n3,n1,n3, data )

Figure 4: An optimized provenance tree for the tree
in Figure 3.

if a packet arrives at an unexpected destination node, the
administrator may initiate a provenance query on the prove-
nance of each recv tuple, but care less about the provenance
of the packet tuples that traverse intermediate nodes. To
satisfy this need, we allow the user to specify the relations
of interest – i.e., relations whose provenance information in-
terests the user the most in a network application – and our
runtime system only maintains the concrete and complete
provenance information for those tuples in the relations of
interest. For the relations of less interest to the user, we
can adopt the reactive maintenance strategy proposed by
DTaP [26], by only maintaining those non-deterministic in-
put tuples, and replaying the whole system execution to
construct the provenance information during querying.
As with network provenance in prior works [27], we repre-

sent the provenance information of the tuples of interest as
a tree. However, given the syntactic restriction we have for
DELP programs, the provenance trees in our system do not
maintain sub-provenance trees for the slow-changing tuples,
such as the route tuples in Figure 3, even through these tu-
ples may be derived from another network application, e.g.,
a routing protocol. To obtain the provenance tree of, say, a
derived route tuple, the user could specify the route relation
as the relation of interest in the application that derives it.
In the rest of paper, we use provenance trees to refer to

the distributed provenance trees for DELP programs.

4. BASIC STORAGE OPTIMIZATION
Based on the model introduced in the previous section,

we propose our basic storage optimization for provenance
trees, which lays the foundation for the compression scheme
in Section 5. For each provenance tree prov, we remove the
provenance nodes representing the intermediate tuples that
do not belong to the relations of interest. For example, in
the packet forwarding program, assume that the user only
specifies recv as the relation of interest, then the provenance
tree tr in Figure 3 would be optimized into the tree tr ′ in
Figure 4. The (distributed) relational database maintaining
tr ′ is shown in Table 2, where vid values and rid values are
identical to those in Table 1.
Compared to Table 1, Table 2 differs at two parts:
• The prov table only maintains the provenance for the
queried tuple, i.e., the recv tuple. Other entries in the
prov table are omitted because they represent either
the removed intermediate tuples or the base tuples.
• Two extra columns NLoc and NRID are added to
the ruleExec table. They help the recursive query find
the child node for each provenance node in the tree.

The optimization of removing the intermediate nodes saves
a fair amount of storage space, especially when the input

prov
Loc VID RID RLoc
n3 vid6 rid3 n3

ruleExec
RLoc RID R VIDS NLoc NRID
n3 rid3 r2 NULL n2 rid2
n2 rid2 r1 (vid4) n1 rid1
n1 rid1 r1 (vid1,vid2) NULL NULL

Table 2: Optimized ruleExec and prov tables for the
provenance tree in Figure 4

events arrive at a high rate and generate a large number
of intermediate tuples, as is common in typical networking
scenarios. We use the query of recv(@n3, n1, n3, “data”) in
Table 2 to illustrate the two-step provenance querying pro-
cess after the optimization:
Step 1: Construct the optimized provenance tree.
The query first fetches the optimized provenance tree in a
similar way to ExSPAN. Starting from the prov entry cor-
responding to recv(@n3, n1, n3, “data”), we fetch the prove-
nance node for the last rule execution rid3 in the ruleExec
table, then follow the values in NLoc and NRID to re-
cursively fetch all the ruleExec tuples (i.e., rid3 , rid2 and
rid1 ) until no further provenance nodes can be fetched: both
NLoc and NRID have NULL as their values.
Step 2: Compute the intermediate provenance nodes.
At the end of Step 1, we obtain the provenance tree tr ′ in
Figure 4. To construct the intermediate provenance nodes,
we start from the leaf nodes, i.e., packet(@n1, n1, n3, “data”)
and route(@n1, n3, n2), and re-execute the rule r1 to derive
packet(@n2, n1, n3, “data”). This process is repeated in a
bottom-up fashion to construct all the intermediate tuples
in Figure 3 until the root is reached.
The basic optimization still allows the user to query the

complete provenance trees, but incurs extra computational
overhead during the provenance querying to recover the in-
termediate nodes. The extra query latency is negligible, as
is shown in Section 6.1.3.

5. EQUIVALENCE-BASED COMPRESSION
The storage optimization described in Section 4 focuses

on reducing the storage overhead within a single provenance
tree. Building upon this optimization, we further explore
removing redundancy across provenance trees. We propose
grouping provenance trees of a DELP program into equiva-
lence classes, and only maintaining one copy of the shared
sub-tree within each equivalence class. Our definition of the
equivalence relation allows equivalent provenance trees to
be quickly identified through the inspection of equivalence
keys – a subset of attributes of the input event tuples – and
compressed efficiently at runtime. The equivalence keys can
be obtained through static analysis of the DELP.

5.1 Equivalence Relation
We first introduce the equivalence relation for provenance

trees. We say that two provenance trees tr and tr ′ are equiv-
alent, written (tr ∼ tr ′) if (1) they are structurally identical
– i.e., they share the identical sequence of rules – and (2)
the slow-changing tuples used in each rule are identical as
well. Specifically, two equivalent trees tr and tr ′ only differ
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at two nodes: (1) the root node that represents the output
tuple and (2) the input event tuple. The formal definition
of tr ∼ tr ′ can be found in Appendix C.2. In our packet for-
warding example, the provenance tree generated by a new
event packet(@n1, n1, n3, “url”) (with “url” as its payload)
is equivalent to the tree in Figure 4.
For each equivalence class, we only need to maintain one

copy for the sub-provenance tree shared by all the class
members, while each individual member in the equivalence
class only needs to maintain a small amount of delta in-
formation – i.e., the root node, the event leaf node, and a
reference to the shared sub-provenance tree. Additionally,
this definition of the equivalence relation has the benefit of
identifying equivalent provenance trees more efficiently than
traditional node-by-node comparison. In fact, we show that
the equivalence of two provenance trees can be determined
by the equivalence of the input event tuples in both trees,
based on the observation that the execution of a DELP is
uniquely determined by the values of a subset of attributes
in the input event tuple. For example, in the packet for-
warding program (Figure 1), if the values of the attributes
(loc, dst) in two input packet tuples are identical, these two
tuples will generate equivalent provenance trees.
We denote the minimal set of attributes K in the input

event relation whose values determine the provenance trees
as equivalence keys. Two event tuples ev1 and ev2 of a rela-
tion e are said to be equivalent w.r.t K, written ev1 ∼K ev2,
if their valuation of K is equal. Formally:

Definition 2 (Event equivalence). Let K = {e:i1, · · · , e:im},
e(t1 · · · tn) ∼K e(s1 · · · sn) iff ∀j ∈ {i1, · · · , im}, tj = sj.

Here, e:i denotes the ith attribute of the relation e.
Based on the above discussion, our approach to compress-

ing provenance trees, with regard to a program DQ, consists
of the following two main algorithms. (1) an equivalence
keys identification algorithm, which performs static analy-
sis of DQ to compute the equivalence keys (Section 5.2);
and (2) an online provenance compression algorithm, which
maintains the shared provenance tree for each equivalent
class in a distributed fashion (Section 5.3).
The correctness of using the event equivalence for deter-

mining the provenance tree equivalence is shown in Theo-
rem 1. The proof is discussed in Section 5.2.

Theorem 1 (Correctness of equivalence keys). Given a pro-
gram DQ of DELP, and two input event tuples ev1 and
ev2 , if ev1 ∼K ev2 , where K are the equivalence keys for
DQ, then for any provenance tree tr1 (tr ′

2 ) generated by ev1
(ev2 ), there exists a provenance tree tr2 (tr ′

1 ) generated by
ev2 (ev1 ) s.t. tr1 ∼ tr2 (tr ′

1 ∼ tr ′
2 ).

5.2 Equivalence Keys Identification
Given a DELP, we define a static analysis algorithm to

identify the equivalence keys of the input event relation. The
algorithm consists of two steps: (1) building an attribute-
level dependency graph reflecting the relationship between
the attributes of different relations and (2) computing equiv-
alence keys based on the constructed dependency graph. De-
tails of each step are given below.
Build the attribute-level dependency graph. An
attribute-level dependency graph G=(V , E) is an undi-
rected graph. Nodes of G represent the attributes in re-
lations. Specifically, for the i-th attribute of a relation rel,

1: function GetEquiKeys(G, ev)
2: eqid ← {}
3: eqid.append(ev:0 )
4: nodes ← event attribute nodes in G
5: for each ev:i in nodes do
6: for bnode in non-event nodes of G do
7: if ev:i is reachable to bnode then
8: eqid.append(ev:i)
9: return eqid
10: end function
Figure 5: Pseudocode to identify equivalence keys

a vertex vtx is created in G, labeled as (rel:i). We refer in-
terested readers to Appendix F for an example graph of the
packet forwarding program.
Two vertices v1 and v2 are connected in G if and only if v1

represents an attribute attr1 of the event relation in a rule r
and v2 represents another attribute attr2 in r , and satisfies
any of the following conditions: (1) attr2 is an attribute
with the same name as attr1 in a slow-changing relation (e.g.
v1 = packet:1 and v2 = route:1 in rule r1 of Figure 1); (2)
attr2 is a head attribute with the same name as attr1 (e.g.,
v1 = packet:1 and v2 = recv:1 in r2 of Figure 1); (3) attr2 is
an attribute with the same name as attr1 in an arithmetic
atom (e.g. v1 = (packet:0) and v2 = ((D == L).left:0)
in rule r2 of Figure 1); and (4) v1 is on the right hand
side of an assignment asn and attr2 is on the left hand side
of asn. (e.g., if rule r2 of Figure 1 were to be redefined as
r2′ recv(@L, S,N,DT ) :− packet(@L, S,D,DT ), N := L+2.,
and v1 = (packet:0) while v2 = (recv:2)).
Identify equivalence keys. Given the attribute-level de-
pendency graph G, we identify the equivalence keys of the
event relation ev using the function GetEquiKeys (Fig-
ure 5). GetEquiKeys takes G and ev as input, and outputs
a list of attributes eqid representing the equivalence keys.
In the algorithm, for each node (ev:i) in G, GetEquiKeys
checks whether (ev:i) is reachable to any node correspond-
ing to an attribute in a slow-changing relation, an arithmetic
atom, or an assignment. If this is the case, (ev:i) would
be identified as a member of the equivalence keys, and ap-
pended to eqid. We always include the attribute indicating
the input location of ev (e.g., (packet:0)) in the equivalence
keys, to ensure that the input event tuples on different net-
work nodes have different equivalence keys. When applied to
the packet forwarding program, GetEquiKeys would iden-
tify (packet:0) and (packet:2) as equivalence keys.
To prove Theorem 1, we introduce the following deno-

tations. We use predicate joinSAttr(p:n) to denote that a
node p:n in the dependency graph has an edge to an at-
tribute in a slow changing relation, an arithmetic atom or
an assignment. We denote each edge between two attributes
(p:n, q:m) of tables that are not slow-changing (i.e., event tu-
ple and intermediary tuples) as predicate joinFAttr(p:n, q:m).
We inductively define connected(e:i, p:n) to denote a path
in the graph from the node (e:i) to the node (p:n) (us-
ing joinFAttr(p:n, q:m) predicates). We then formally define
what it means for K to be equivalence keys, given a DELP
as follows:

Definition 3. K are the equivalence keys for a program DQ
of DELP, if ∀e:i ∈ K, either DQ ` joinSAttr(e:i) or ∃p, n
s.t. DQ ` connected(e:i, p:n) and DQ ` joinSAttr(p:n).
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Instead of directly proving Theorem 1, we prove a stronger
lemma below that gives us Theorem 1 as a corollary. In
Lemma 2, we write tr : P to mean that tr is a derivation
tree of the output tuple P , and write DQ,DB, ev � tr : P
to mean that tr is a derivation tree for P using the program
DQ, a database of materialized tuples DB, and the event
tuple ev.

Lemma 2 (Correctness of equivalence keys (Strong)).
If GetEquiKeys(G, ev) = K and ev1 ∼K ev2
and DQ,DB, ev1 � tr1 : p(t1, ..., tn),
then ∃tr2 : p(s1, ..., sn) s.t. DQ,DB, ev2 � tr2 : p(s1, ..., sn)
and tr1 : p(t1, ..., tn) ∼ tr2 : p(s1, ..., sn)
and ∀i ∈ [1, n], ti 6= si implies

∃` s.t. DQ ` connected(e:`, p:i) and ` 6∈ K.

Intuitively, Lemma 2 states that given two equivalent in-
put event tuples ev1 and ev2 w.r.t. K, and ev1 generates a
provenance tree tr1, we can construct a tr2 for ev2 such that
tr1 and tr2 are equivalent – i.e., they share the same struc-
ture and slow changing tuples. Furthermore, if the two out-
put tuples p(t1, ..., tn) and p(s1, ..., sn) have different values
for a given attribute, this attribute must connect to a non-
equivalence keys attribute in the dependency graph. This
last condition allows for an inductive proof (Appendix C.3.2)
of Lemma 2 over the structure of the tree.
Time complexity. Next, we analyze the time complex-
ity of static analysis. Assume the DELP program DQ has
m rules. Each rule r has k atoms, including the head re-
lation and all body atoms. Each atom has at most t at-
tributes. Hence, the attribute-level dependency graph G
has at most n=m ∗ k ∗ t nodes. The construction of G takes
O(n2 ) time, and the identification of equivalence keys takes
O(t ∗ n) time. Normally t is much smaller than n. There-
fore, the total complexity of static analysis is O(n2 ).

5.3 Online Provenance Compression
We next present an online provenance compression scheme

that compresses equivalent (distributed) provenance trees
based on the identified equivalence keys. In our compression
scheme, each execution of a DELP program DQ, triggered
by an event tuple ev, is composed of three stages:
• Stage 1: Equivalence keys checking. Extract

ev’s equivalence keys values v, and check whether v
has ever been seen from previous event tuples. If so,
set a Boolean flag existFlag to True. Otherwise, set
existFlag to False. Then tag existFlag along with ev.
• Stage 2: Distributed online provenance main-
tenance. If existFlag is True, no provenance informa-
tion is maintained for each rule execution. Otherwise,
the provenance nodes for the rule execution are main-
tained in a distributed fashion.
• Stage 3: Output tuple provenance maintenance.
When the execution finishes, associate the output tu-
ple to the shared provenance tree, to allow for future
provenance querying.

To illustrate this, Figure 6 presents an example consisting
of two packets traversing the network topology (from n1 to
n3) in Figure 2. packet(@n1, n1, n3, “data”) is first inserted
for execution (represented by the solid arrows), followed by
the execution of packet(@n1, n1, n3, “url”) (represented by
the dashed arrows). The three stages of online compres-
sion are logically separated with vertical dashed lines. Ta-
ble 3 presents the (distributed) relational tables (i.e., the

ruleExec table and the prov table) that maintain the com-
pressed provenance trees for both executions. Next, we in-
troduce each stage in detail.
Equivalence Keys Checking. Upon receiving an input
event ev, our runtime system first checks whether the val-
ues of ev’s equivalence keys have been seen before. To do
this, we use a hash table htequi to store all unique equiva-
lence keys that have arrived. If ev’s equivalence keys eqid
already exists in htequi, a Boolean flag existFlag will be
created and set to True. This existFlag is supposed to ac-
company ev throughout the execution, notifying all nodes
involved in the execution to avoid maintaining the concrete
provenance tree. Otherwise, if eqid does not exist in htequi,
existFlag would be set to False, notifying the subsequent
nodes that a provenance tree should be concretely main-
tained. For example, in Figure 6, when the first packet tuple
packet(@n1, n1, n3, “data”) arrives, it has values (n1 ,n3 )
for its equivalence keys, which have never been encoun-
tered before, so its existFlag is False. But when the sec-
ond packet tuple packet(@n1, n1, n3, “url”) arrives, since it
shares the same equivalence keys values with the first packet,
the existFlag for it is True.
Distributed Online Provenance Maintenance. For
each rule r triggered in the execution, we selectively main-
tain the provenance information based on existFlag’s value.
if existFlag is False, the provenance nodes are maintained
as tuples in the ruleExec table locally. Otherwise, no prove-
nance information is maintained at all. For example, in
Figure 6, when packet(@n2, n1, n3, “data”) triggers rule r1
at node n2 , the existFlag is False. Therefore, we insert a
tuple ruleExec(n2, rid2, r1, vid1, n1, rid3) into the ruleExec
table at node n2 to record the provenance. The semantics of
the inserted tuple are the same as introduced in Section 4.
In comparison, when packet(@n2, n1, n3, “url”) triggers r2
at node n2 , its existFlag is True. In this case, we simply
execute r2 without recording any provenance information.
Output Tuple Provenance Maintenance. For the ex-
ecution whose existFlag is True, we need to associate its
output tuple to the shared provenance tree maintained by
the execution whose existFlag is False. To do this, we use a
hash table hmap to store the reference to the shared prove-
nance tree. The key of hmap is the hash value of the equiv-
alence keys, and the value is the node closest to the root
in the shared provenance tree. For example, in Figure 6,
the provenance tree shared by two executions are stored in
hmap as {hash(n1 ,n3 ): (n3 , rid1 )}.
We then associate an output tuple tp to the shared prove-

nance tree st, by looking up its equivalence keys’ values in
hmap. The association is stored as a tuple in the prov table.
For example, in Figure 6, the first execution generates the
output tuple recv(@n3, n1, n3, “data”), which is associated
to the node closest to the root of the shared provenance
tree ((n3 , rid1 )). This association is reflected by the tu-
ple prov(n3, tid1, n3, rid1, evid1) in the prov table (Table 3).
evid1 in the prov tuple is used to identify the event tuple pe-
culiar to the execution, which is not included in the shared
provenance tree.
Correctness of Online Compression. We prove the
correctness of the online compression algorithm by show-
ing that the distributed provenance elements maintained in
the ruleExec and prov tables contain the exact same set of
provenance trees of tuples derived by a semi-naïve evalu-
ation (Theorem 3). We define the operational semantics
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Is (n1,n3) existing?

existFlag := FalseexistFlag := True

Append existFlag to packet tuple

existFlag == False? existFlag == False?

n2 n3 existFlag == False?

Associate Equivalence Key with the 
shared provenance tree

Associate the output tuple with the 
shared provenance tree

Yes
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Yes

Stage 1: Equivalence Key Checking Stage 2: Distributed Online Provenance Maintenance Stage 3: Output Tuple Provenance Association

: Execution of packet(@n1,n1,n3,  data ) : Execution of packet(@n1,n1,n3,  url )

Q={r1,r2}

 
packet(@n1,n1,n3,  url )

packet(@n1,n1,n3,  data )
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(loc, dst)
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provenance nodes

n1

existFlag == False?
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No

Maintain 
provenance nodes

Maintain 
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Figure 6: An example execution of the packet forwarding program in Figure 1. The program is first triggered
by packet(@n1, n1, n3,“data”), followed by packet(@n1, n1, n3,“url”).

ruleExec
Loc RID RULE VIDS NLoc NRID
n3 rid1(sha1(r2)) r2 NULL n2 rid2
n2 rid2(sha1(r1,vid1 )) r1 (vid1 (sha1(route(@n2, n3, n3)))) n1 rid3
n1 rid3(sha1(r1,vid2 )) r1 (vid2 (sha1(route(@n1, n3, n2)))) NULL NULL

prov
Loc VID RLoc RID EVID
n3 tid1(sha1(recv(@n3, n1, n3, “data”))) n3 rid1 evid1(sha1(packet(@n1, n1, n3, “data”)))
n3 tid2(sha1(recv(@n3, n1, n3, “url”))) n3 rid1 evid2(sha1(packet(@n1, n1, n3, “url”)))

Table 3: ruleExec table and prov table for compressed provenance trees produced by Figure 6

of the semi-naïve evaluation of the program using a set of
transition rules of form: Csn →SN Csn′, where Csn denotes
the state of the semi-naïve evaluation that stores the full
derivation trees as provenance [5]. We also define a set of
transition rules of form: Ccm ↗CM Ccm′ for the semi-naïve
evaluation with our online compression algorithm. Here, Ccm
denotes the state of the semi-naïve evaluation with compres-
sion. We can assemble entries in the ruleExec and prov tables
to reconstruct a provenance tree. Given a provenance tree
P, we can also find the corresponding entries in the ruleExec
and prov tables. This correspondence is denoted as tr ∼d P
and can be defined by induction over the structure of the
provenance tree.

Theorem 3 (Correctness of Compression). ∀n ∈ N and ini-
tial state Cinit, Cinit →n

SN Csn then exists Ccm s.t. Cinit ↗n
CM

Ccm and for any derivation tree tr ∈ Csn, there exists a prove-
nance tree P ∈ Ccm s.t. tr ∼d P and for all provenance
trees P ∈ Ccm, there exists a derivation tree tr ∈ Csn s.t.
tr ∼d P. And the same is true for the semi-naïve when
Cinit ↗n

CM Ccm.

The above theorem states that if we execute a DELP DQ
from an initial state Cinit (no derivations are generated yet)
in n steps to a state Csn, then we can execute the same
program starting from the same initial state using the on-
line compression scheme. In the end, the ending state has
the same provenance. An implication of Theorem 3 is that
the compressed provenance trees, like traditional network
provenance, would faithfully record the system execution,
even if the execution is erroneous due to misconfiguration
(e.g., wrong routing tables).

Theorem 3 is a corollary of Lemma 4, which shows that the
semi-naïve evaluation with the online compression scheme is
bisimilar to the one that stores the full derivation trees. The
bisimilarity relation shows that the provenance trees stored
by both evaluations have the same semantics.

Lemma 4 (Compression Simulates Semi-naïve). ∀n ∈ N
given initial state Cinit, and Cinit →n

SN Csn then ∃Ccm s.t.
Cinit ↗n

CM Ccm and Csn RC Ccm and vice versa.

We define a relation RC between Csn and Ccm such that
RC is a bisimulation relation: if Csn RC Ccm, then Csn→SN
Csn′ implies there exists a state Ccm′ s.t. Ccm →SN Ccm′

and Csn′ RC Ccm′ and vice versa. The formal definition of
Csn RC Ccm is presented in Appendix G.1.1. Intuitively,
RC relates two configurations that have the same program,
the same program execution state, and most importantly,
any provenance tree P ∈ Ccm, there exists a derivation tree
tr ∈ Csn s.t. tr ∼d P and vice versa. This definition is
complex due to the distributed nature of the compression
and the possibility that tuples arrive out of order.
Proof details are given in Appendix G.1. Briefly, we apply

induction over n, the number of steps taken by the execu-
tion. The key is to show that if one configuration takes a
step, the other configuration takes the same step and the
resulting states are again bisimular.
Generality of equivalence-based compression. The
idea of equivalence-based compression is not just applicable
to distributed scenarios, but can be generally used to com-
press arbitrary provenance tree sets maintained in a cen-
tralized manner as well. We adopt the definition of the
equivalence relation in Section 5.1 because it allows us to use
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equivalence keys to efficiently identify equivalent provenance
trees, thus more suitable for the distributed environment
where networking resources (e.g., bandwidth) are scarce.

5.4 Inter-Equivalence Class Compression
The online compression scheme introduced in Section 5.3

focuses on intra-equivalence class compression of the prove-
nance trees – i.e., only the trees of the same equivalence
class are compressed. In fact, the provenance trees of differ-
ent equivalence classes can be compressed as well. For ex-
ample, assume a tuple packet(@n2, n2, n3, “ack”) is inserted
into n2 in Figure 6 for execution. The produced provenance
tree prov shares the provenance nodes rid1 and rid2 in the
ruleExec table of Table 3. To avoid the storage of such redun-
dant rule execution nodes, we separate the ruleExec table into
two sub-tables: the ruleExecNode table and the ruleExecLink
table. The ruleExecNode table maintains the concrete rule
execution nodes, while the ruleExecLink table, which is main-
tained for each provenance tree tr individually, records the
parent-child relationship of the rule execution nodes in tr .
Table 4 presents the ruleExecNode table and the ruleExecLink
table for the ruleExec table in Table 3. If two provenance
trees, whether in the same equivalence class or not, share
the same rule execution node nd, only one copy of the con-
crete nd will be maintained in the ruleExecNode table. Each
tree maintains a reference pointer pointing to nd in their
respective ruleExecLink tables.

ruleExecNode
Loc RID RULE VIDS
n3 rid3 r2 NULL
n2 rid2 r1 (vid1)
n1 rid1 r1 (vid2)

ruleExecLink
Loc RID NLoc NRID
n3 rid3 n2 rid2
n2 rid2 n1 rid1
n1 rid1 NULL NULL

Table 4: The ruleExecNode table and the ruleExecLink
table replacing the ruleExec table in Table 3 to allow
for compression of the shared rule execution nodes

5.5 Updates to Slow-changing Tables
Though we assume that slow-changing tables do not change

during a fixpoint computation, our system is designed to
handle these updates at runtime. Figure 7 presents an ex-
ample scenario based on Figure 2, where the network admin-
istrator decides to use n4 , instead of n2 , as the next hop for
the packets sent from n1 to n3 . To redirect the traffic, the
administrator (1) deletes the route entry route(@n1, n3, n2),
and (2) inserts a new route entry route(@n1, n3, n4).
Deletion of a tuple from a slow-changing table, such as

route(@n1, n3, n2) in Figure 7, does not affect the stored
provenance, as provenance information is monotone – that
is, it represents the execution history which is immutable [26],
thus independent of the change of slow-changing tables.
However, when a tuple tp is inserted into a slow-changing

table, such as route(@n1, n4, n3) in Figure 7, the provenance
tree generated by tp could be incorrect or missing. For ex-
ample, in Figure 7, after route(@n1, n4, n3) is inserted, the
provenance trees for all subsequent packets need to be re-

n1 n4 n3

route

L D N

@n1 n3 n2

@n1 n3 n4

route

L D N

@n4 n3 n3

n2

Figure 7: An updated topology of Figure 2. A new
node n4 is deployed to reach n3 . The route table of
n1 is updated to forward packets to n4 now.

calculated. However, since these packets are not the first in
their equivalence classes, their existFlags are set to false. As
a result, the provenance tree for the packet traversal on the
path n1 → n4 → n3 would not be maintained.
To handle such scenarios, we require that, once a new

tuple tp is inserted into a node n’s slow-changing tables, n
should broadcast a control message sig to all the nodes in the
system. Any node receiving sig would reset the hash table
used for equivalence keys checking (Section 5.3). Therefore,
provenance trees will be maintained again for all equivalence
classes. In Figure 7, after the insertion of route(@n1, n3, n4),
n1 would broadcast a sig to all the nodes, including itself.
When the next packet pkt destined to n3 arrives at n1 ,
the packet would have its existFlag set as false. When this
packet traverses the path n1 → n4 → n3 , the nodes on
the path are expected to maintain the corresponding prove-
nance nodes. In all our network applications, the extra net-
work overhead incurred by the broadcast and the impact
on the effectiveness of compression due to reset of the hash
table is negligible, as slow-changing tables are updated in-
frequently in practice (relative to the rate of event arrival).
We experimentally validated this in Section 6.

5.6 Provenance Querying
To query the provenance tree of an output tuple tp, we

take the following steps:
• Compute the hash value htp of tp, and find the tuple

prvtp in the prov table that has htp as the value of the
VID attribute.
• Initiate a recursive query for the (shared) provenance
nodes in the ruleExec table, starting with the values
of (Loc,RID) in prvtp. Also, tag the event ID evid
stored in the attribute EVID along with the query.
• When the recursive query reaches (NULL,NULL) for
the attributes (NLoc,NRID) in a ruleExec tuple, the
tagged evid is used to retrieve the event tuple materi-
alized at the first node of the execution.

For example, in Table 3, to query the provenance tree of
recv(@n3, n1, n3, “data”), we first find prov(n3, tid1, n3, rid1,
evid1), and use the values (n3 , rid1 ) to initiate the recur-
sive query in the ruleExec table to fetch the provenance nodes
rid1 , rid2 and rid3 . evid is carried throughout the query,
and is used to retrieve the event packet(@n1, n1, n3, “data”)
when the query stops at ruleExec(n1, rid3, r1, vid2, NULL,
NULL). The above steps return a collection of entries from
the ruleExec and prov tables. We define a top-level algorithm
Query that reconstructs the full provenance tree tr based
on these entries. The pseudocode can be found in Figure 33
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in Appendix H.1.2. Query takes as input the network state
Ccm of the online compression scheme, an output tuple P ,
an event ID evid, and returns a set of provenance trees, each
of which corresponds to one derivation of P using the input
event tuple with ID evid. The above example has only one
derivation for the output tuple, so we return a singleton set.
Correctness of Querying. From the correctness of the
online compression algorithm (Theorem 3), we can prove
that all the provenance trees generated by the semi-naïve
evaluation can be queried and the query algorithm will re-
turn the correct provenance tree. One subtlety is that the
compression algorithm may propagate updates out of order,
causing ruleExec entries to be referred to in a provenance tree
before being stored. We handle this subtlety by assuming
all updates are processed before querying.

Theorem 5 (Correctness of the Query Algorithm).
∀n ∈ N, given initial state Cinit s.t. Cinit →n

CM Ccm
and there are no more updates to be processed,

then ∃Csn s.t. Cinit →n
SN Csn

and ∀tr :P in the output provenance storage of Csn
s.t. hash(EventOf(tr)) = evid,

∃M s.t. Query(Ccm , P, evid) =M and tr ∈M
and ∀tr ′ ∈M\tr, tr ′ is a proof of P stored in Csn

and hash(EventOf(tr ′)) = evid.

Details of the proof are in Appendix ??. Briefly, by The-
orem 3), there exists Csn s.t. Cinit →n

SN Csn and Csn RC Ccm.
By Csn RC Ccm, we know that for any tr of tuple P in Csn,
there exists a corresponding provenance tuple prov in Ccm
that stores an association to the root of some provenance
tree P for P , and that tr corresponds to P (tr ∼d P). We
induct over the depth of P to show that given the root of P,
the recursive lookup will return P. Now, it is straighforward
to reconstruct tr from P, as the return value of Query.

6. EVALUATION
We have implemented a prototype based on enhancement

to the RapidNet [13] declarative networking engine. At
compile time, we add a program rewrite step that rewrites
each DELP program into a new program that supports on-
line provenance maintenance and compression at runtime.
We evaluate our prototype to understand the effectiveness
of the online compression scheme. In all the experiments,
we compare three techniques for maintaining distributed
provenance. The first is ExSPAN [27], a typical network
provenance engine . We maintain uncompressed provenance
trees in the same way as ExSPAN. The second is the dis-
tributed provenance maintenance with basic storage opti-
mization (Section 4). The third is the provenance mainte-
nance using equivalence-based compression (Section 5). In
the evaluation section, we refer the three techniques as ExS-
PAN, Basic, and Advanced respectively.
Workloads. Our experiments are carried out on two clas-
sic network applications: packet forwarding (Section 2) and
DNS resolution. DNS resolution is an Internet service which
translates human-readable domain names into IP addresses.
Both applications are event-driven, and typically involve
large volume of traffic during execution. The high-volume
traffic incurs large storage overhead if we maintain prove-
nance information for each packet/DNS request, which leaves
potential opportunity for compression. The workloads are
also sufficiently different to evaluate the generality of our ap-

proach. Packet forwarding involve larger messages along dif-
ferent paths in a graph, while DNS lookups involve smaller
messages on a tree-like topology.
Testbed. In our experiment setup, we write the packet
forwarding and DNS resolution applications in DELP, and
use our enhanced RapidNet [13] engine to compile them into
low-level (i.e., C++) execution codes.
The experiments for measuring storage and bandwidth are

run on the ns-3 [14] network simulator, which is a discrete-
event simulator that allows a user to evaluate network ap-
plications on a variety of network topologies. The simula-
tion is run on a 32-core server with Intel Xeon 2.40 GHz
CPUs. The server has 24G RAM, 400G disk space, and
runs Ubuntu 12.04 as the operating system. We run mul-
tiple node instances on the same machine communicating
over the ns-3 simulated network.
Performance Metrics. The performance metrics that we
use in our experiments are: (1) the storage overhead, and
(2) the network overhead (i.e., bandwidth consumption) for
provenance maintenance, and (3) the query latency when
different provenance maintenance techniques are adopted.
In our experiments, the relational provenance tables are

maintained in memory. To measure the storage occupation,
we use the boost library [19] to serialize C++ data structures
into binary data. At the end of each experiment run, we
serialize the per-node provenance tables (i.e., ruleExec table
and prov table) into binary files, and measure the size of files
to estimate the storage overhead.

6.1 Application #1: Packet Forwarding
Our first set of results is based on the packet forward-

ing program in Figure 1. The topology we used for packet
forwarding is a 100-node transit-stub graph, randomly gen-
erated by the GT-ITM [24] topology generator. In par-
ticular, there are four transit nodes – i.e., nodes through
which traffic can traverse – in the topology, each connect-
ing to three stub domains, and each stub domain has eight
stub nodes – i.e., nodes where traffic only originates or
terminates. Transit-transit links have 50ms latency and
1Gbps bandwidth; transit-stub links have 10ms latency and
100Mbps bandwidth; stub-stub links have 2ms latency and
50Mbps bandwidth. The diameter of the topology is 12,
and the average distance for all node pairs is 5.3. Each node
in the topology runs one instance of the packet forwarding
program.
In the experiment, we randomly selected a number of node

pairs (s, d) – where s is the source and d is the destination–
and sent packets from s to d while the provenance of each
packet is maintained. To allow the packets to be correctly
forwarded in the network, we pre-computed the shortest
path p between s and d using a distributed routing pro-
tocol written as a declarative networking program[11]. The
routes are stored in the route tables at each node in p.

6.1.1 Storage of Provenance Trees
Figure 8 shows the CDF (Cumulative Distribution Func-

tion) graph of storage growth for all the nodes in the 100-
node topology. In the experiment, we randomly selected
100 pairs of nodes, and continuously sent packets within
each pair at the rate of 100 packets/second. As packets are
transmitted, their provenance information is incrementally
created and stored at each node (and optionally compressed
for Basic and Advanced). We calculated the average storage
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Figure 8: Cumulative growth rate
of provenance with 100 pairs of
communicating nodes, at input
rate of 100 packets/second.
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growth of all nodes, with input rate
of 100 packets/second for 100 pairs
of communicating nodes.
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age with 2000 input packets evenly
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ber of communicating pairs.
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tion during packet forwarding,
with 500 pairs of nodes, each trans-
mitting 100 packets.
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of provenance querying latency for
100 random queries with 100 pairs
of communicating nodes.
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Figure 13: Cumulative provenance
storage growth rate of nameservers
with input request at a rate of 1000
requests/second.

growth rate of each node, and plotted a CDF graph based
on the results. We observe that ExSPAN has the highest
storage growth rate among the three: 20% of the nodes have
storage growth greater than 5 Mbps; 4% of nodes (i.e., tran-
sit nodes) have storage growth greater than 30 Mbps. This
is because a number of node pairs share the same transit
node in their paths. As expected, Basic has less storage
growth rate compared to ExSPAN, as it removes intermedi-
ate packet tuples from the provenance tables of each node.
Advanced significantly outperforms the other two: all the
nodes in the topology has less than 2 Mbps storage growth
rate. The gap between Advanced and ExSPAN results from
the fact that Advanced only maintains one representative
provenance tree for each pair of nodes, while ExSPAN has
to maintain provenance trees of all the traversing packets.
Figure 9 shows the total storage usage with continuous

packet insertion. We ran the experiment for 100 seconds
and took a snapshot of the storage every 10 seconds. The
figure shows that ExSPAN has the highest storage overhead.
For example, it reaches the storage of 11.8 GB at 90 seconds,
and keeps growing in a linear fashion. Basic has a similar
pattern, with 9.2 GB at 90 seconds. However, Advanced
presents lower storage growth, where at 90 seconds it only
consumes storage space of 0.92 GB. We further calculate
the average growth rate for all three lines. ExSPAN’s stor-
age grows at 131 MB/second, Basic at 109 MB/second, and
Advanced at 10.3 MB/second. This means that ExSPAN
could fill a 1TB disk within 2 hours, Basic within 2.5 hours,
whereas Advanced more than one day.
Figure 10 shows the storage usage when we increase the

number of communicating pairs, but keep the total number
of packets the same (i.e., 2000 packets). All the packets
are evenly distributed among all the communicating pairs.
We observe that the storage usage of ExSPAN and Basic

remains almost constant: ExSPAN’s total storage usage is
around 27 MB and Basic’s total storage usage is around 21
MB. This is because in both cases, each packet has a prove-
nance tree maintained in the network, irrelevant of its source
and destination. The burst of storage at the beginning of
the experiments for ExSPAN and Basic is due to the fact
that sizes of provenance trees also depend on the length of
the path that each packet traverses. In our experiment, the
initial node pairs happen to have path length shorter than
the average path length in the topology, thus incurring less
storage overhead.
For the case of Advanced, its storage usage increases with

the number of communicating pairs. This is because each
communicating pair forms an equivalence class, and main-
tains one copy of the shared provenance tree in the equiva-
lence class. Therefore, whenever a new communicating pair
is added to the experiment, we need to maintain one more
provenance tree for that pair, which increases the total stor-
age. Despite the storage increase, Advanced still consumes
much less storage space than the other two schemes.
In summary, we observe that Basic is able to reduce stor-

age growth, and in combination with the equivalence-based
compression (Advanced), the storage reduction is significant
– i.e., a 92% reduction over ExSPAN.

6.1.2 Network Overhead.
Figure 11 presents the bandwidth utilization when we ran-

domly selected 500 pairs of nodes and each pair communi-
cated 100 packets. As expected, the bandwidth consump-
tion of Advanced is close to the ones of ExSPAN and Basic.
This is because the extra information carried with each pack-
ets is merely existFlag and some auxiliary data (e.g., hash
value of the event tuple), which is negligible compared to the
large payload of the packets. We repeated the experiment
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for Advanced, but updated a route every 10 seconds, in or-
der to study the effects of updates to slow-changing tuples.
We observe a negligable bandwidth increase of 0.6%.

6.1.3 Query Latency
To evaluate latency of queries, we used an actual dis-

tributed implementation that can account for both network
delays and computation time. We ran the packet forward-
ing application on a testbed consisting of 25 machines. Each
machine is equipped with eight Intel Xeon 2.67 GHz CPUs,
4G RAM and 500G disk space, running CentOS 6.8 as the
operating system.
On each machine, we ran up to four instances of the same

packet forwarding application with provenance enabled. In-
stead of communicating via the ns-3 network, actual sock-
ets were used over a physical network. In total, there were
100 nodes, connected together using the same transit-stub
topology we used for simulation.
In our experiment, we executed 100 queries, selected on

random nodes, where each query returns the provenance tree
for a recv tuple corresponding to a random source and desti-
nation pair, where the destination node is the starting point
of the query. The query is executed in a distributed fashion
as described in Section 5.6. Based on our physical network
topology, each query takes 5.3 hops on average in the net-
work. We repeated the experiment for Basic, Advanced, and
ExSPAN for 100 queries each.
Figure 12 shows our experimental results in the form of

a CDF of query latency. We observe that both Basic and
Advanced have latency numbers that are significantly lower
compared to ExSPAN. For example, the mean/median for
ExSPAN is 75ms and 74ms respectively, as compared to
only 25.5ms and 25ms for Basic. This is approximately a
3X reduction in latency times. The extra overhead is due to
ExSPAN’s need in processing the larger intermediate tuples.
Basic and Advanced avoid this overhead by symbolically red-
eriving intermediate results during query execution.

6.2 Application #2: DNS Resolution
DNS resolution [12] is an Internet service that translates

the requested domain name, such as “www.hello.com”, into
its corresponding IP address in the Internet. In practice,
DNS resolution is performed by DNS nameservers, which
are organized into a tree-like structure, where each name-
server is responsible for a domain name (e.g., “hello.com”
or “.com”). We used the recursive name resolution protocol
in DNS, and implemented the protocol as a DELP program
(see Appendix A). During the execution of each DELP DNS
program, provenance support is enabled so that the history
DNS requests can be queried.
We synthetically generated the hierarchical network of

DNS name servers. In total, there were 100 name servers,
and the maximum tree depth is 27. Our workload consists
of clients issuing requests to 38 distinct URLs. In total,
DNS requests were issued at a rate of 1000 requests/second.
Our topology resembles real-world DNS deployments. Prior
work [8] has shown that in reality, the requested domain
names satisfy Zipfian distribution. In our experiments, we
adopted the same distribution.

6.2.1 Storage of Provenance Trees
Figure 13 shows the provenance storage growth rate for all

nameservers in the Domain Name System over a 100 seconds

duration. We measure the storage growth of each name-
server by first measuring the growth rate of each 10-second
interval, and calculating the average growth rates over all
10 intervals. We observe that ExSPAN has the largest stor-
age growth rate for each node among the three experiments,
while Advanced has the lowest storage growth rate. Note
that the reduction of storage growth rate in Figure 13 is not
as significant as that in the packet forwarding experiments
(Figure 8). For example, 80% of nameservers in ExSPAN
have storage growth rate less than 476 Kbps. while the rate
is 121 Kbps for Advanced. Advanced is four times better
than ExSPAN, compared to 11 times in packet forwarding.
The reason is that, compared to packet forwarding, we rate
the total throughput of incoming events – i.e., packet tuples
in packet forwarding and request tuple in DNS resolution –
and this causes the storage growth rate at each node using
either ExSPAN and Basic to drop as well.
Figure 16 shows the provenance storage growth for all

name servers. We record the current storage growth rate at
10-second intervals. In Figure 16, the storage of ExSPAN
and Basic grow much faster than that of Advanced. Specif-
ically, the growth rate of ExSPAN, Basic and Advanced are
13.15 Mbps, 11.57 Mbps and 3.81 Mbps respectively, and
the storage space at 100 seconds reaches 1.32 GB, 1.16 GB,
and 0.38 GB respectively. With the given rates, ExSPAN
would fill up a 1TB disk within 21 hours, Basic within 24
hours, and Advanced up to 3 days.
Figure 14 shows the storage growth when we increased the

number of requested URLs. In this experiment, we fixed the
total number of requests at 200, so that when more URLs
were added, there would be fewer duplicate requests. In Fig-
ure 14, the storage overhead for ExSPAN and Basic remains
stable at around 2.5 MB and 2.26 MB respectively. This is
because the storage overhead is mostly determined by the
number of provenance trees, which is equal to the number of
incoming requests (i.e., 200 in this case). For Advanced, the
storage grows at a rate of 11.6 Kb per URL. This is expected
as we need to maintain one provenance tree for each equiv-
alence class, and the number of equivalence classes grows in
proportion to the number of URLs. Similar to our packet
forwarding results, despite the storage growth, Advanced
still requires significantly less storage compared ExSPAN
and Basic. Unless a URL is only requested once (highly un-
likely in reality), which represents the worst possible case for
Advanced, Advanced always performs better than ExSPAN
and Basic.

6.2.2 Network Overhead
Figure 15 shows the bandwidth usage with elapsed time

when we continuously sent 100,000 requests to the root name-
server. All three experiments finish within 102 seconds.
Throughout the execution, ExSPAN and Basic have simi-
lar bandwidth usage, which is stable at around 4.5 MBps.
On the other hand, Advanced’s bandwidth usage is about
6 MBps, which is about 25% higher than the other two
techniques. This is because unlike in the packet forward-
ing experiments where each packet carries a payload of 500
characters, each DNS request does not have any extra pay-
load. Therefore, the meta-data tagged with each request
(e.g., existFlag) accounts for a large part of the size of each
request, resulting in higher additional bandwidth overhead.

7. RELATED WORK
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Network provenance has been proposed and developed by
ExSPAN [27] and DTaP [26]. These two proposals store un-
compressed provenance information, laying the foundation
for our work. In database literature, a number of works have
considered optimization of provenance storage. However, we
differ significantly in our design due to the distributed nature
of our target environment. We briefly list a few representa-
tive bodies of work, and explain our differences.
Woodruff et al. [20] reduce storage usage for maintaining

fine-grained lineage (i.e., provenance) by computing prove-
nance information dynamically during query time through
invertible functions. Their approach tradeoffs storage with
accuracy of provenance. On the other hand, our approach
requires no such tradeoff, achieving the same level of accu-
racy as queries on uncompressed provenance trees.
Chapman et al. [3] develop a set of factorization algo-

rithms to compress workflow provenance. Their proposal
does not consider a distributed setting. For example, node-
level factorization (combining identical nodes) requires ad-
ditional states to be maintained and propagated from node
to node during provenance maintenance to resolve potential
ambiguities. Maintaining and propagating these states can
lead to significant communication overhead in a distributed
environment. In contrast, our solution uses the equivalence
keys to avoid comparing provenance trees on a node-by-node
basis, and hence minimizes communication overhead during
provenance maintenance.
Our compression technique implicitly factorizes provenance

trees at runtime before removing redundant factors among
trees in the same equivalence class. Olteanu et al. [15][16]
propose factorization of provenance polynomials for con-
junctive queries with a new data structure called factoriza-
tion tree. Polynomial factorization in [16] can be viewed
as a more general form of the factorization used in the
equivalence-based compression proposed in this paper. If we
encode the provenance trees of each packet as polynomials,
the general factorization algorithm in [16], with specialized
factorization tree, would produce the same factorization re-
sult in our setting. Our approach is slightly more efficient,
as we can skip the factorization step by directly using the
equivalence keys at runtime to group provenance trees for
compression. Exploring the more general form of factor-
ization in [16] for provenance of distributed queries is an
interesting avenue of future work.
ProQL [9] proposes to save the storage of single prove-

nance tree by (1) using primary keys to represent tuples in
the provenance, and (2) maintaining one copy for attributes
of the same values in a mapping (rule). These techniques
could also be applied alongside our online compression algo-

rithm to further reduce storage. ProQL does not consider
storage sharing across provenance trees. Amsterdamer et
al. [1] theoretically defines the concept of core provenance,
which represents derivation shared by multiple equivalent
queries. In our scenario, the shared provenance tree of each
equivalence class can be viewed as core provenance.
Xie et al. [23] propose to compress provenance graphs with

a hybrid approach combining Web graph compression and
dictionary encoding. Zhifeng et al. [2] proposes rule-based
provenance compression scheme. Their approaches on a high
level compresses provenance trees to reduce redundant stor-
age. However, these approaches require knowledge of the
entire trees prior to compression, which is not practical, if
not impossible, for distributed provenance.
Provenance has been applied to network repairing [22, 21,

4] where root-cause analysis is used to identify and fix config-
uration errors in networks. Network repairing is orthogonal
to our work, but can benefit from our compression tech-
niques to reduce the storage of provenance maintenance.

8. CONCLUSION & FUTURE WORK
In this paper, we propose an online, equivalence-based

compression scheme for the maintenance of distributed net-
work provenance. Equivalent provenance trees are identified
at compile time through static analysis of the declarative
program, whereas our runtime maintains only one concrete
representative provenance tree for each equivalence class.
Our evaluation results show that the compression scheme
saves storage significantly, incurs little network overhead,
and allows for efficient provenance query. As future work,
we plan to extend our compression scheme to provenance
trees generated by multiple programs that run concurrently.
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APPENDIX
A. DELP FOR DNS RESOLUTION

r1 request(@RT,URL,HST,RQID) :−
url(@HST,URL,RQID).
rootServer(@HST,RT ).

r2 request(@SV,URL,HST,RQID) :−
request(@X,URL,HST,RQID),
nameServer(@X,DM,SV ).
f_isSubDomain(DM,URL) == true.

r3 dnsResult(@X,URL, IPADDR,HST,RQID) :−
request(@X,URL,HST,RQID),
addressRecord(@X,URL, IPADDR).

r4 reply(@HST,URL, IPADDR,RQID) :−
dnsResult(@X,URL, IPADDR,HST,RQID).

Figure 17: DELP for DNS resolution

Figure 17 shows the DELP encoding of the recursive DNS resolution. The program is composed of four rules. Rule r1
forwards a DNS request of ID RQID to the root nameserver RT for resolution. The request is generated by the host HST for
the URL URL. Rule r2 is triggered when a nameserver X receives a DNS request for URL, but has delegated the resolution of
sub-domain DM corresponding to URL to another nameserver SV. Rule r2 then forwards the DNS request to SV for further
DNS resolution. Rule r3 generates a DNS resolution result containing the IP address IPADDR corresponding to the requested
URL, when URL matches an address record on the nameserver X. Finally, Rule r4 is responsible for returning the DNS result
to the requesting host HST.

B. DELP PROGRAMS
We present the syntax of DELP’s programs in Figure B. A DELP program DQ is composed of an ordered list of rules. Each

rule r consists of a head hd and a body body. A rule head is a relation, while a rule body consists of a list of body elements
which are either relations, assignments or constraints. Intuitively, a DELP rule specifies that the head tuple is derivable if all
the body tuples are derivable and all the constraints are satisfied.

DELP Program DQ ::= [r1, · · · , rn]
DELP Rule r ::= hd :- body
Rule Head hd ::= ev | res |P
Rule Body body ::= ev, B1, · · · , Bna1, · · · , am, c1, · · · , cN

Figure 18: Syntax of DELP programs

We explain the relations that appear in each DELP rule in Figure B.
First we define some constructs that are used to specify the relations. Terms are either variables represented by x, or

constants represented by c. Each DELP rule in DQ has a unique identifier rID for reference.
Each tuple in the program has a location specifier to declare its location. The location specifier is the first attribute in a

relation and is represented by @η. We prepend the first attribute of a relation with the “@” symbol as a reminder that it
represents the location of the relation. In particular, we write ι to refer to a concrete location specifier and ` to denote a
variable representing a location specifier.
All relations in the body of a rule must reside on the same node. However, the rule head can be location on a different node

from the rule body. In this case, when the rule is executed, the derived head tuple is sent across the network to the remote
node. We discuss the operational semantics of DELP in further detail in appendix D.
We define a declaration Γ to describe types of relations that can appear in DQ. Furthermore, Γ also stores the primary

keys for each tuple, which always includes the location specifier.
DELP distinguishes between slow-changing tuples and fast-changing tuples. Slow-changing tuples are assumed to be

populated upon system initialization and do not change during a fixpoint computation.
Slow-changing relations have type “slow” to specify that they do not change during a fixpoint execution. We write B to

refer to a slow-changing tuple and b(@`b, ~xb) to specify that a slow-changing relation has arguments @`b, ~xb.
A relation of type “fast” refers to a fast-changing relation of program that does not appear in the body of rule r1. We write

P to refer to a fast-changing tuple and p(@`p, ~xp) to specify that a fast-changing relation has arguments @`p, ~xp. In some
cases, we may also use Q and q(@`q, ~xq) to denote a fast-changing tuple.
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A relation of type “event” refers to the the fast-changing event relation in the first rule of the program. When an event
tuple arrives on a node, it triggers program execution. We write ev to refer to an event tuple and e(@`e, ~xe) to specify that
the event relation has arguments @`e, ~xe.
Finally, a relation of type “interest” refers to a fast-changing relation that the user additionally specifies as a relation of

interest. Our compression algorithm stores the provenance of rules fired, but normally omits storing tuple provenance to save
space. The user must specify a fast-changing relation is specified to be a relation of interest, in order for our algorithm to
store corresponding tuple provenance. We write res to refer to a tuple of a relation of interest and r(@`r, ~xr) to specify that
the relation of interest has arguments @`r, ~xr.
Each rule in DQ consist of one fast-changing relation (that may be of type event, fast, or interest) that triggers execution

of the rule when it arrives on a node ι and joins on the other slow-changing relations (of type slow) present in local database
of node ι.

Terms t ::= x | c
Rule Identifier rID ::= rID
Location Specifier η ::= ι | `
Declaration Γ ::= e 7→ [equivalence_keys,K], [tuple, event], [primary_keys, j1:: · · · ::jn]

| p 7→ [tuple, fast], [primary_keys, j1:: · · · ::jn]
| r 7→ [tuple, interest], [primary_keys, j1:: · · · ::jn]
| b 7→ [tuple, slow], [primary_keys, j1:: · · · ::jn]

Event relation ev ::= e(@η,~t)
Slow-changing relation B ::= b(@η,~t)
Derived relation P ::= p(@η,~t)
Relation of interest res ::= r(@η,~t)

Figure 19: Syntax of relations that appear in DELP rules

Besides relations, rules may also contain assignments or constraints. Assignments are used to specify a fresh variable in
the head tuple. The are computed either using a deterministic function that takes variables in the body relations as inputs
and outputs the value of the fresh variable, or returned by an arithmetic expression composed from variables in the body
relations. Finally, constraints are used to restrict the tuples that are used to execute a rule.

Assignment a ::= t := Fun(~t) | t := ar
Arithmetic operator aop ::= + | − | × |÷
Arithmetic expression ar ::= t | ar1 aop ar2
Arithmetic Operator aop ::= + | − | × |÷
Comparator cop ::= ≥ | > | = | < | ≤
Binary Operator bop ::= ∧ | ∨ | ⊃
Constraint c ::= ar1 cop ar2 | c1 bop c2 | ¬c

Figure 20: Syntax of DELP rules
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C. CORRECTNESS OF STATIC ANALYSIS
Given a DELP program DQ, two provenance trees tr and tr ′ generated by bottom-up execution of DQ are said to be

equivalent if they are structurally identical – i.e., they trigger an identical sequence of rules – and join with identical slow-
changing tuples in each rule. Thus, tr and tr ′ only differ at two nodes: (1) the root node that represents the output tuple and
(2) the input event tuple. We denote the minimal set of attributes K in the input event relation whose values determine the
provenance trees as equivalence keys. In Section 5.2, we defined a static analysis algorithm to identify the equivalence keys of
the input event relation. In this section, we show that our static analysis algorithm is correct.

C.1 Definitions
We define additional constructs we used to prove that our static analysis is correct. We write DB to denote a set of slow-

changing tuples and derived fast-changing tuples corresponding to relations in DQ. We write DQ, ev,DB � tr : P to mean
that tr is a derivation tree for tuple P using program DQ and materialized tuples DB. Tuple P is the root of tr and event
tuple ev is the left-most leaf of tr . A provenance tree tr :P represents the full derivation of the derived tuple P . The semantics
of DELP programs are bottom up, so in the base case only one rule was fired to derive P . This rule was the first rule of the
DELP program has unique identifier rID and was triggered by event tuple ev to join on slow-changing tuples B1, · · · , Bn. In
the inductive case, tuple Q is a fast-changing tuple that is not an event tuple. It triggered execution of a rule with unique
identifier rID and joined with slow-changing tuples B1, · · · , Bn to derive tuple P .

Materialized tuples DB ::= · | DB, P
Provenance Tree tr ::= 〈rID, P, ev, B1:: · · · ::Bn〉 | 〈rID, P, tr :Q,B1:: · · · ::Bn〉

C.2 Properties
Next, we define several rules that we will use to prove the correctness of equivalence keys.

Given a rule rID p(~xp) :- q(~xq), · · · ∈ DQ, we define rules the capture the ways in which attributes of trigger tuple q(~xq) are
connected to slow-changing tuples We write DQ ` joinSAttr(q:i) to mean that the ith attribute of q is The rules are:
Rule Join-Slow. If an attribute on a fast-changing relation in the body of a rule is the same as an attribute on a slow-changing

relation in the body, then that fast-changing attribute joins with a slow-changing attribute.
Rule Join-Func-Attr. If an attribute on a fast-changing relation in the body of a rule is the same as an attribute that appears

on the right-hand side of an assignment, then that fast-changing attribute joins with a slow-changing attribute.
Rule Join-Arith-Left. If an attribute on a fast-changing relation in the body of a rule is the same as an attribute that

appears on the left-hand side of an arithmetic constraint, then that fast-changing attribute joins with a slow-changing
attribute.

Rule Join-Arith-Right. If an attribute on a fast-changing relation in the body of a rule is the same as an attribute that
appears on the right-hand side of an arithmetic constraint, then that fast-changing attribute joins with a slow-changing
attribute.

DQ ` joinSAttr(p:i)

rID p(~xp) :- q(~xq), b1(~xb1), · · · , bk(~xbk), · · · , bn(~xbn), · · · ∈ DQ q:i = bk:j
DQ ` joinSAttr(q:i)

Join-Slow

rID p(~xp) :- q(~xq), · · · , Fi : y := F (~z), · · · ∈ DQ q:j = ~z:k
DQ ` joinSAttr(q:j)

Join-Func-Attr

rID p(~xp) :- q(~xq), · · · , aL(~xaL)bop aR(~xaR), · · · ∈ DQ aL.j = q.i

DQ ` joinSAttr(q.i)
Join-Arith-Left

rID p(~xp) :- q(~xq), · · · , aL(~xaL)bop aR(~xaR), · · · ∈ DQ aR.j = q.i

DQ ` joinSAttr(q.i)
Join-Arith-Right

Given a rule rID p(~xp) :- q(~xq), · · · ∈ DQ, rule Join-Head states that head tuple p(~xp) is connected to the fast changing
tuple q(~xq) in the body if they share identical values for their attributes.

DQ ` joinFAttr(q:i, p:j)

rID p(~xp) :- q(~xq), · · · ∈ DQ p:j = q:i
DQ ` joinFAttr(q:i, p:j)

Join-Head
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We write DQ ` connected(e:i, p:j) to mean that the ith attribute of the input event relation e is connected to the jth

attribute of the fast-changing relation p.

Rule Connected-Slow. If the ith attribute of the input event relation e joins with the jth attribute of the fast-changing
relation p, then p:j is connected to e:i

Rule Connected-Join. If the ith attribute of the input event relation e is connected to the jth attribute of the fast-changing
relation q, and if the jth attribute of the fast-changing relation q joins with the kth attribute the fast-changing relation
p, then the ith attribute of the input event relation e is connected to the kth attribute the fast-changing relation p.

DQ ` connected(q:i, p:j)

DQ ` joinFAttr(e:i, p:j)
DQ ` connected(e:i, p:j)

Connected-Slow
DQ ` connected(e:i, q:j) DQ ` joinFAttr(q:j, p:k)

DQ ` connected(e:i, p:k)
Connected-Join

An attribute e:i of event tuple e is in the set of equivalence keys (DQ ` e:i ∈ equi_attr) if it is connected to a slow changing
tuple.

Rule Equi-Direct. e:i is in the set of equivalence keys when it shares attributes with a slowing changing tuple within a rule

Rule Equi-Reachable. Alternatively, if e:i is connected to an attribute of a fast-changing tuple q:j, and q:j joins with an
attribute of some slow changing tuple, then e:i is also in the set of equivalence keys.

DQ ` e:i ∈ equi_attr

DQ ` joinSAttr(e:i)
DQ ` e:i ∈ equi_attr

Equi-Direct
DQ ` joinSAttr(q:j) DQ ` connected(e:i, q:j)

DQ ` e:i ∈ equi_attr
Equi-Reachable

Two provenance trees tr1 and tr2 that store the provenance of two separate executions of DQ are equivalent (tr1 ∼K tr2)
if their input event tuples are equivalent and they differ only at derived tuples.

Rule ∼K -Base. In the base case, only one rule has been fired. If the input event tuples that triggered both executions is
equivalence, and both executions used the same slow-changing tuples to fire that rule, then their derivation trees tr1 and
tr2 are the same.

Rule ∼K -Inductive. If tr and tr ′ are equivalent derivation trees for tuples Q and Q′ respectively, the resultant derivation
trees after Q and Q′ have been used to fire one subsequent rule using the same slow-changing tuples are again equivalent.

tr1 ∼K tr2

ev ∼K ev′

〈rID, P, ev, B1:: · · · ::Bn〉 ∼K 〈rID, P ′, ev′, B1:: · · · ::Bn〉
∼K -Base

tr ∼K tr ′

〈rID, P, tr , B1:: · · · ::Bn〉 ∼K 〈rID, P ′, tr ′, B1:: · · · ::Bn〉
∼K -Inductive

C.3 Lemmas and Proofs
Correctness of equivalence keys (Theorem 1) shows that given a DELP program DQ, the equivalence keys that our method

returns is able to determine the equivalence class of any incoming event tuple. We always include the attribute indicating the
input location of ev in the equivalence keys to prevent the input event tuples on different network nodes from having identical
equivalence keys. Instead of directly proving Correctness of equivalence keys (Theorem 1), we prove a stronger lemma about
provenance trees that gives us Theorem 1 as a corollary.
This theorem states that given two equivalent input event tuples ev1 and ev2 w.r.t. K, where K is identified by our static

analysis algorithm, and that ev1 generates provenance tree tr1, we can construct a tr2 for ev2 such that tr1 and tr2 are
equivalent – i.e., they share the same structure and slow changing tuples; further, the result (query) tuples of these two trees
only differ in attributes that connect to attributes of the input event tuple that are not part of the equivalent key. This
additional condition allows for an inductive proof over the structure of the tree.
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C.3.1 Correctness of equivalence keys
Theorem 1 (Correctness of equivalence keys).
GetEquiKeys(DQ,Γ) = K
and e(@ι, te1 , · · · , tem ) ∼K e(@ι, se1, · · · , sem)
and DQ,DB, e(@ι, te1 , · · · , tem ) � tr1 : p(t1, · · · , tn)
implies
∃tr2 : p(s1, · · · , sn) s.t.
DQ,DB, e(@ι, se1, · · · , sem) � tr2 : p(s1, · · · , sn)
and tr1 : p(t1, · · · , tn) ∼K tr2 : p(s1, · · · , sn).

Proof.
Assume
(1) GetEquiKeys(DQ,Γ) = K
(2) e(@ι, te1 , · · · , tem ) ∼K e(@ι, se1, · · · , sem)
(3) DQ,DB, e(@ι, te1 , · · · , tem ) � tr1 : p(t1, · · · , tn)

By (1), (2), and (3) we apply Correctness of equivalence keys (Strong) to obtain that
(4) ∃tr2:p(s1, · · · , sn) s.t.

DQ,DB, e(@ι, se1, · · · , sem) � tr2 : p(s1, · · · , sn)
and tr1 : p(t1, · · · , tn) ∼K tr2 : p(s1, · · · , sn)
and ∀i ∈ [1, n], ti 6= si implies ∃` s.t. DQ ` connected(e:`, p:i) and ` 6∈ K

By (4),
The conclusion follows

C.3.2 Correctness of equivalence keys (Strong)
Lemma 2 (Correctness of equivalence keys (Strong)).
GetEquiKeys(DQ,Γ) = K
and ev1 ∼K ev2
and DQ,DB, ev1 � tr1 : p(t1, · · · , tn)
implies
∃tr2 : p(s1, · · · , sn) s.t.
DQ,DB, ev2 � tr2 : p(s1, · · · , sn)
and tr1 : p(t1, · · · , tn) ∼K tr2 : p(s1, · · · , sn)
and ∀i ∈ [1, n],

ti 6= si
implies
∃` s.t. DQ ` connected(e:`, p:i) and ` 6∈ K.

Proof.
By induction over the structure of tr ′

1.
Base Case: tr ′

1:p(tp1, · · · , tpn) = 〈e(te1, · · · , tem), 〈rID, p(~tp1), b1(~tb1):: · · · ::bN (~tbN )::nil〉:p(tp1, · · · , tpn)
We show that ∃tr2:p(sp1, · · · , spn) s.t. DQ,DB, e(se1, · · · , sem) ` tr2:p(sp1, · · · , spn).

By the assumptions,
(i1) ∃r ∈ DQ s.t.

r = rID p(xp1, · · · , xpn) :- e(xe1, · · · , xem),
b1(~xb1), · · · , bN (~xbN ),
F1 : y1 := Fun1(~z1), · · · , FM : yM := FunM(~zM ),
aL1(~xaL1) bop aR(~xaR1), · · · , aLΛ(~xaLΛ) bop aRΛ(~xaRΛ)

∈ DQ

Define:
σ1 , {tp1/xp1, · · · , tpn/xpn} ∪

⋃N

i=1[~tbi/~xbi]
σ′

1 , σ1 ∪
⋃M

i=1[σ1(yi)/~yi]
Since rσ′

1:p(xp1, · · · , xpn)σ′
1 = tr1:p(tp1, · · · , tpn),

σ′
1 is a well-formed substitution

Define:
σ2 , {sp1/xp1, · · · , spn/xpn} ∪

⋃N

i=1[~tbi/~xbi]
σ′

2 , σ2 ∪
⋃M

i=1[σ2(yi)/~yi]
By definition,
σ′

1
(⋃N

i=1 ~xbi
)

= σ′
2
(⋃N

i=1 ~xbi
)
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We show that σ′
2 is a well-formed substitution.

Pick any [ta/xa], [tb/xb] ∈ σ′
2 s.t. xa = xb.

Our goal is to show that ta = tb

Cases to consider:
(A) [ta/xa], [tb/xb] ∈ {se1/xe1, · · · , sem/xem}
(B) [ta/xa], [tb/xb] ∈

⋃N

i=1[~tbi/~xbi]
(C) [ta/xa], [tb/xb] ∈

⋃M

i=1[σ2(yi)/~yi]
(D) [ta/xa] ∈ {se1/xe1, · · · , sem/xem} and [tb/xb] ∈

⋃N

i=1[~tbi/~xbi]
(E) [ta/xa] ∈ {se1/xe1, · · · , sem/xem} and [tb/xb] ∈

⋃M

i=1[σ2(yi)/~yi]
(F) [ta/xa] ∈

⋃N

i=1[~tbi/~xbi] and [tb/xb] ∈
⋃M

i=1[σ2(yi)/yi]
Case A: [ta/xa], [tb/xb] ∈ {se1/xe1, · · · , sem/xem}

By assumption,
∃i ∈ {xe1, · · · , xem} s.t. xa = e:i = xb

By the above,
σ′

2(xa) = ta = σ′
2(e:i) = tb = σ′

2(xb)
Case B: [ta/xa], [tb/xb] ∈

⋃N

i=1[~tbi/~xbi]
Similar argument to Case A

Case C: [ta/xa], [tb/xb] ∈
⋃M

i=1[σ2(yi)/~yi]
Similar argument to Case A

Case D: [ta/xa] ∈ {se1/xe1, · · · , sem/xem} and [tb/xb] ∈
⋃N

i=1[~tbi/~xbi]
Subcase I: xa = e:i and e:i ∈ K
Since xa = xb,
e:i = xb

By the above, we apply Join-Base and obtain:
DQ ` joinSAttr(e:i)

Since DQ ` joinSAttr(e:i), we apply Equi-Direct to obtain:
DQ ` e:i ∈ K

Since DQ ` joinSAttr(e:i)
and e(te1, · · · , etm) ∼K e(se1, · · · , stm)
and xb ∈

⋃N

i=1 ~xbi,
σ′

1(xa) = σ′
2(xa) and σ′

2(xb) = σ′
1(xb)

Since σ′
1(xa) = σ′

1(xb) as σ′
1 is well-formed,

σ′
2(xa) = ta = σ′

2(xb) = tb

Subcase II: xa = e:i and e:i 6∈ K
Since xa = xb,
e:i = xb

By the above, we apply Join-Base and obtain:
DQ ` joinSAttr(e:i)

Since DQ ` joinSAttr(e:i), we apply Equi-Direct to obtain:
DQ ` e:i ∈ K

This contradicts our assumption that e:i 6∈ K
Case E: [ta/xa] ∈ {se1/xe1, · · · , sem/xem} and [tb/xb] ∈

⋃M

i=1[σ2(yi)/yi]
Since xb ∈

⋃M

i=1 yi
and

(⋃M

i=1 yi
)
∩
(
{xe1, · · · , xem} ∪

⋃N

i=1 ~xbi
)

= ∅
and xa ∈

(⋃N

i=1 ~xbi
)

xa 6= xb
This contradicts our assumption that xa = xb

Case F: [ta/xa] ∈
⋃N

i=1[~tbi/~xbi] and [tb/xb] ∈
⋃M

i=1[σ2(yi)/yi]
Similar argument to Case E

We show that tr1:p(tp1, · · · , tpn) ∼K tr2:p(sp1, · · · , spn)
Define

trabs = 〈rID, p(xp1, · · · , xpn), e(xe1, · · · , xem), b1(~xb1) :: · · · :: bN (~xbN )〉
Since σ′

2 is well-formed, we define:
tr2 , σ′

2(trabs)
and σ′

1
(⋃n

i=1 ~xbi
)

= σ′
2
(⋃n

i=1 ~xbi
)

and e(te1, · · · , tem) ∼K e(se1, · · · , sem)
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and tr1 = σ′
1(trabs)

we apply ∼K -Base to obtain:
tr1 ∼ tr2

We show that ∀i ∈ [1, n], tpi 6= spi implies ∃` s.t. DQ ` connected(e:`, p:i) and ` 6∈ K
Pick any i ∈ [1, n].
Assume σ′

1(p:i) 6= σ′
2(p:i).

By definition of σ′
1 and σ′

2,
∀i ∈ [1, |e|], e:i ∈ K implies σ′

1(e:i) = σ′
2(e:i)

and σ′
1
(⋃N

i=1 ~xbi
)

= σ′
2
(⋃N

i=1 ~xbi
)

and ∀j ∈ [1,M ], ~zj ⊆
(⋃N

i=1 ~xbi
)
implies σ′

1(yj) = σ′
2(yj)

Since σ′
1(p:i) 6= σ′

2(p:i)
and ~xp ⊆

(
~xe ∪

⋃N

i=1 ~xbi ∪
⋃M

i=1 yi
)
,

at least one of these cases hold:
Case A: ∃j ∈ [1, |e|] s.t. e:j = p:i and e:j 6∈ K
Case B: ∃j ∈ [1,M ] s.t. p:i = ~yj = FunJ(~zj) and σ′

1(~zj ∩ ~xe) 6= σ′
2(~zj ∩ ~xe)

Case A: ∃j ∈ [1, |e|] s.t. e:j = p:i and e:j 6∈ K
By assumption ∃j ∈ [1, |e|] s.t. e:j = p:i,
DQ ` connected(e:j, p:i)

By assumption,
e:j 6∈ K

Case B: ∃j ∈ [1,M ] s.t. p:i = yj = FunJ(~zj) and σ′
1(~zj ∩ ~xe) 6= σ′

2(~zj ∩ ~xe)
By the assumptions,
∀` ∈ [1, |e|] s.t. e:` ∈ ~zj and σ′

1(e:`) 6= σ′
2(e:`)

By the above, ∃k ∈ [1, |~zj |] s.t. e:` = ~zj :k, thus by Join-Func-Attr,
DQ ` joinSAttr(e:`)

Since DQ ` joinSAttr(e:`), by Equi-Direct,
e:` ∈ K

Since ∀` ∈ [1, |e|] s.t. e:` ∈ ~zj , e:` ∈ K
and ∀~zj :k s.t. ~zj 6∈ ~xe, ~zj :k ∈

⋃n

i=1 ~xbi,
σ′

1(~zj) = σ′
2(~zj)

By the above,
σ′

1(yj) = σ′
2(yj)

Since p:i = yj ,
this contradicts the assumption that σ′

1(p:i) 6= σ′
2(p:i)

Inductive Case: tr1:p(tp1, · · · , tpN ) = 〈rID, p(tp1, · · · , tpN ), trq,1:q(tq1, · · · , tqM ), b1(~tb1) :: · · · :: bn(~tbn)〉
By assumptions,
(i1) ∃r ∈ DQ s.t.

r = rID p(xp1, · · · , xpN ) :- q(xq1, · · · , xqM ),
b1(~xb1), · · · , bn(~xbn),
F1 : y1 := Fun1(~z1), · · · , Fm : ym := FunM(~zm),
aL1(~xaL1) bop aR(~xaLR), · · · , aL`(~xaL`) bop aR`(~xaR`)

∈ DQ

Define:
σ1 , {tq1/xq1, · · · , tqM/xqM} ∪

⋃n

i=1[~tbi/~xbi]
σ′

1 , σ1 ∪
⋃m

i=1[σ1(yi)/~yi]
Since σ′

1(r) = tr1,
σ′

1 is a well-formed substitution
Pick any trq,2:q(sq1, · · · , sqM ) s.t. trq,1:q(tq1, · · · , tqM ) ∼K trq,2:q(sq1, · · · , sqM ).
By the induction hypothesis,
∀` ∈ [1,M ], tqi 6= sqi implies ∃` ∈ [1, |e|] s.t. DQ ` connected(e:`, p:i) and ` 6∈ K

Define:
σ2 , {sq1/xq1, · · · , sqM/xqM} ∪

⋃n

i=1[~tbi/~xbi]
σ′

2 , σ ∪
⋃m

i=1[σ2(yi)/~yi]
By definition,
σ′

1
(⋃n

i=1 ~xbi
)

= σ′
2
(⋃n

i=1 ~xbi
)

20



We show that σ′
2 is a well-formed substitution.

Pick any [ta/xa], [tb/xb] ∈ σ′
2 s.t. xa = xb.

Our goal is to show that ta = tb

Cases to consider:
(A) [ta/xa], [tb/xb] ∈ {sq1/xq1, · · · , sqM/xqM}
(B) [ta/xa], [tb/xb] ∈

⋃n

i=1[~tbi/~xbi]
(C) [ta/xa], [tb/xb] ∈

⋃m

i=1[σ2(yi)/~yi]
(D) ∃i ∈ [1,M ] s.t. [ta/xa] = [sqi/q:i] and ∃j ∈ [1, n], ∃k ∈ [1, |bj |] s.t. [tb/xb] = [σ2(bj :k)/bj :k]
(E) ∃i ∈ [1,M ] s.t. [ta/xa] = [sqi/xqi] and ∃j ∈ [1,m] s.t. [tb/xb] = [σ2(yj)/yj ]
(F) ∃j ∈ [1, n], ∃k ∈ [1, |bj |] s.t. [tb/xb] = [σ2(bj :k)/bj :k] and ∃j ∈ [1,m] s.t. [tb/xb] = [σ2(yj)/yj ]

Case A: [ta/xa], [tb/xb] ∈ {sq1/xq1, · · · , sqM/xqM}
By assumption,
∃i ∈ [1, |q|] s.t. [ta/xa] = [sqi/xqi]

Since xa = xqi and xa = xb and [tb/xb] ∈ {sq1/xq1, · · · , sqM/xqM},
[tb/xb] = [sqi/xqi]

Therefore ta = sqi = tb

Case B: [ta/xa], [tb/xb] ∈
⋃n

i=1[~tbi/~xbi]
Similar argument to Case A

Case C: [ta/xa], [tb/xb] ∈
⋃m

i=1[σ2(yi)/~yi]
Similar argument to Case A

Case D: ∃i ∈ [1,M ] s.t. [ta/xa] = [sqi/q:i] and ∃j ∈ [1, n], ∃k ∈ [1, |bj |] s.t. [tb/xb] = [σ2(bj :k)/bj :k]
Assume for contradiction that ta 6= tb.
Since σ′

1 is well-formed,
σ′

1(q:i) = tqi = σ′
1(bj :k)

By definition of σ′
2,

σ′
2(q:i) = sqi = ta
σ′

2(bj :k) = tb
Since σ′

1
(⋃n

i=1 ~xbi
)

= σ′
2
(⋃n

i=1 ~xbi
)
,

tqi 6= sqi
By the induction hypothesis,
∃` ∈ [1, |e|] s.t. DQ ` connected(e:`, q:i) and q:i 6∈ K

Since q:i = xa = xb = bj :k, by Join-Base,
DQ ` joinSAttr(q:i)

Given DQ ` connected(e:`, q:i) and DQ ` joinSAttr(q:i), by Equi-Reachable,
e:` ∈ K

This contradicts the earlier statement that q:i 6∈ K
Case E: ∃i ∈ [1,M ] s.t. [ta/xa] = [sqi/xqi] and ∃j ∈ [1,m] s.t. [tb/xb] = [σ2(yj)/yj ]

By assumption, yj 6∈ xq1 :: · · · :: xqM , thus
xa = xqi 6= yj = xb

Therefore xa 6= xb contradicting our earlier assumption
Case F: ∃j ∈ [1, n], ∃k ∈ [1, |bj |] s.t. [tb/xb] = [σ2(bj :k)/bj :k] and ∃j ∈ [1,m] s.t. [tb/xb] = [σ2(yj)/yj ]

By assumption, yj 6∈ xq1 :: · · · :: xqM , thus
xa = xqi 6= yj = xb

Therefore xa 6= xb contradicting our earlier assumption

Since σ′
2 is well-formed, we define:

tr2 , σ′
2(〈rID, p(xp1, · · · , xpN ), trq,2:q(xq1, · · · , xqM ), b1(~xb1) :: · · · :: bn(~xbn)〉)

Given that σ′
1
(⋃n

i=1 ~xbi
)

= σ′
2
(⋃n

i=1 ~xbi
)

and trq,1:q(tq1, · · · , tqM ) ∼K trq,1:q(sq1, · · · , sqM )
and tr1 = σ′

1(〈rID, p(~xp), trq,1:q(xq1, · · · , xqM ), b1(~xb1) :: · · · :: bn(~xbn)〉) = 〈rID, p(~tp), trq,2:q(tq1, · · · , tqM ), b1(~tb1) :: · · · :: bn(~tbn)〉
we apply ∼K -Base to obtain:

tr1:p(tp1, · · · , tpN ) ∼ tr2:p(sp1, · · · , spN )

Pick any i ∈ [1, N ].
Assume ti 6= si.
Goal:
∃` ∈ [1, |e|] s.t.
DQ ` connected(e:`, p:i,)
and ` 6∈ K
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By definition of σ′
1 and σ′

2,
σ′

1(p:i) 6= σ′
2(p:i)

By definition of σ′
2, one of the following hold

(A) ∃` ∈ [1, |e|] s.t. DQ ` connected(e:`, p:i,) and ` 6∈ K
otherwise if ` ∈ K, then σ′

1(e:`) = σ′
1(p:i) = ti = si = σ′

2(p:i)σ′
2(e:`)

(B): ∃j ∈ [1,m] s.t. p:i = yj = FunJ(~zj) and σ′
1(~zj ∩ ~xe) 6= σ′

2(~zj ∩ ~xe)

Case A ∃` ∈ [1, |e|] s.t. DQ ` connected(e:`, p:i,) and ` 6∈ K
The goal already holds

Case B: ∃j ∈ [1,m] s.t. p:i = yj = FunJ(~zj) and ~zj ∩ ~xe 6= ∅ and σ′
1(~zj ∩ ~xq) 6= σ′

2(~zj ∩ ~xq)
By assumptions,
∃` ∈ [1, |q|] s.t. q:` ∈ ~zj ∩ ~xq and σ′

1(q:`) 6= σ′
2(q:`)

By the induction hypothesis,
∃k ∈ [1, |e|] s.t.

DQ ` connected(e:k, q:`) and e:k 6∈ K
Since q:` ∈ ~zj , by Join-Func-Attr we have:
DQ ` joinSAttr(q:`)

By DQ ` connected(e:k, q:`) and DQ ` joinSAttr(q:`) and Equi-Reachable,
e:k ∈ K

This contradicts the the induction hypothesis that e:k 6∈ K
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D. OPERATIONAL SEMANTICS OF SEMI-NAÏVE EVALUATION
The operational semantics of the semi-naïve evaluation of DELP programs adopts a distributed execution model. Each node

runs a designated program, and maintains a database of proofs of derived tuples in its local state. Nodes can communicate
with each other by sending tuples over the network. The evaluation of the DELP programs follows the PSN algorithm [10],
and maintains the database incrementally.
At a high-level, each node computes its local fixed-point by firing the rules on newly derived tuples. The fixed-point

computation can also be triggered when a node receives tuples from the network. When a tuple is derived, it is sent to the
node specified by its location specifier. Instead of blindly computing the fixed-point, we make sure that only rules whose body
tuples are updated are fired.

D.1 Hash functions
During our online compression execution, we hash the values of certain provenance elements in order to save on storage space

or to generate unique identifiers. In order to show that semi-nav̈e evaluation is bisimular to online compression execution, we
need to use some of the hash functions for online compression in semi-naïve evaluation as well. We present the algorithms
used to compute these hash values in Figure D.1.
Given a declaration for the program DQ and an instance of its event relation e(@ιe,~ce), Algorithm EquiHash finds the

equivalence keys K for e, returns equivalence hash value of e(@ιe,~ce).
Given a declaration for the program DQ and an instance of one of its relations p(@ιp,~cp), Algorithm TupleHash finds the

primary keys pkeys for p, and returns the hash of p(@ιp,~cp) on its primary keys.

function EquiHash(e(@ιe,~te), Γ)
K ← Γ(e)[equi_attr ]
i1 :: · · · :: in ← K
return hash(~te:i1, · · · ,~te:in)

end function

function TupleHash(p(@ιp,~tp), Γ)
pkeys ← Γ(e)[primary_keys]
i1 :: · · · :: in ← pkeys
return hash(~tp:i1, · · · ,~tp:in)

end function

Figure 21: Hash functions used in program execution

D.2 Definitions of network states
In Figure D.2, we present the constructs needed for defining the operational semantics for Semi-naïve evaluation.
The network configuration Csn for the entire system that runs the evaluation is represented asQsn�Ssn1 · · · SsnN . Ssn1 · · · SsnN

are the local network states for each node in the distributed system, while Qsn is a queue of updates consisting of fast-changing
tuples which will eventually be sent to the nodes specified by the location specifier.
Each node ι in the distributed system has local state Ssn, where Ssn = 〈@ι,DQ,Γ,DB, E ,Usn, equiSet,M,Mprov〉 consists

of attributes needed to execute DQ locally.
The first four attributes of Ssn have been described in Appendixes B and C. We summarize them for completeness. We

have (1) ι, the identifier of the local state, (2) DQ, the DELP program that is to be executed, (3) Γ, the mapping of every
relation in DQ to a type, and (4) DB, a local database of materialized tuples used to execute rules.
The new constructs in Ssn introduced are (5) E , a set of instances of events in which e each element in E is an instance of

the event relation triggering execution of DQ. Of particular importance is (6) Usn, a set of updates consisting of instance of
fast-changing relations that trigger execution of rules in DQ. They differ from Qsn as all updates in Usn represent tuples which
are locally stored, in contrast to Qsn whose tuples can be stored anywhere in the network. Finally, we have (7) equiSet, a set
of of hashes of all the equivalence keys that have been seen so far on node ι, (8)M, a set of derivation trees of fast-changing
tuples representing the provenance of rules fired during execution and finally (9)Mprov, a set derivation trees of tuples that
are instances of relations of interest.
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Global network configuration Csn ::= Qsn� Ssn1 · · · SsnN
Network queue Qsn ::= Usn
Update usn ::= ev | tr :P
Local state Scm ::= 〈@ι,DQ,Γ,DB, E ,Usn, equiSet,M,Mprov〉
Event queue E ::= nil | ev :: E
Local updates Usn ::= [usn1, · · · , usnn]
Equivalence hash table equiSet ::= · | equiSet, heq
Rule provenance table M ::= · |M, tr :P
Tuple provenance table Mprov ::= · |Mprov, prov
Tuple provenance prov ::= interest(tr)

Figure 22: Definitions of network state for Semi-naïve evaluation

D.3 Evaluation rules
We introduce the transition rules and explain how configurations are updated based on the updates in the network queue.

Global state transition (Csn→ Csn′).
The small-step operational semantics of the entire distributed system is denoted Csn →n Csn′, where n is the number

of steps taken to transition from the initial state Csninit to Csn′. A trace T is a sequence of transitions Csninit →0 Csn1 →1

· · · →n Csnn+1.
Rule SN-NodeStep states that the system takes a step when one node takes a step. As a result, the updates generated

by node ι are appended to the end of the network queue. We use ◦ to denote the list append operation. Rule SN-DeQueue
applies when a node receives updates from the network. We write E1 ⊕ E2 to denote a merge of two lists. Any node
can dequeue updates sent to it and append those updates to the update list in its local state. Here, we overload the ◦
operator, and write Qsn ◦ E to denote a new state, which is the same as Qsn, except that the update list is the result of
appending E to the update list in Qsn.

Local state transition (Ssn ↪→ Ssn′,Usn).
From state Ssn, a node takes a step to a new state Ssn′ and generates a set of updates Usn for other nodes in the

network. This is denote by Ssn ↪→ Ssn′,Usn.
Each program DQ is triggered by instance of the event relation e. Each node ιe contains a queue E of instances of e.

Rule SN-Event states that an execution of DQ is triggered by dequeuing an element e(@ιe,~ce) in E and placing it into
the set of local updates Usn.
Each usn in the set of local updates Usn on node ιq denotes a derivation tree of a fast-changing tuple q(@ιq,~cq).

q(@ιq,~cq) can be used to trigger more rules in DQ. fireRulesSN takes in arguments ιq, ∆DQ, usn, DB, andM, and fires
all rules in DQ that are triggered when given usn and DB. It then returns a set of local updates Usnin , a set of external
updates Usnext consisting of tuples that are to be sent to other nodes in the distributed system, and the set of updated
derivation trees of tuplesM′ that represent the provenance of the rules that have been fired locally.

Fire Rules (fireRulesSN (@ι,∆DQ, usn,DB,M) = (Usnin ,Usnext ,M′)).
Given one update, we fire rules in program DQ that are affected by this update.
Rule SN-Empty is the base case where all rules have been fired, so we directly return empty update sets and the same

set of derivation trees of tuples generated.
Given a program [∆r,∆DQ′] (where DQ′ can be the empty list) with at least one rule, rule SN-Seq first fires the rule

∆r, then recursively calls itself to process the rest of the rules in ∆DQ′. The resulting updates and derivation trees
generated are the union of the updates and derivation trees generated by firing ∆r and ∆DQ′.

Fire a single rule (fireSingleRuleSN (@ι,∆r, usn,DB,M) = (Usn′
in ,Usn′

ext ,M′)).
Given one update, one rule, and a database of materialized slow-changing tuples, we find all possible substitutions Σ

that satisfy the rule body. We may choose to only fire rules using a subset of all possible substitutions For each possible
substitution we want to use, we find the sets of updates and derivation trees generated by firing the rule.

Fire a single rule given substitutions (derivationSN (@ι,Σ,∆r, usn,M) = (Usn′
in ,Usn′

ext,M′)).
Given one update, one rule, and a list of substitutions for relations in body of the rule, we derive the head of the rule.
Rule SN-Subst-Empty is the base case when there are no more substitutions, so we directly return empty update sets

and the same set of and derivation trees of tuples generated.
Given that there is at least one substitution σ :: Σ, rule SN-Subst first derives the update triggered by σ, then recursively

calls itself to process the rest of the substitutions in ∆Σ. The resulting updates and derivation trees generated are the
union of the updates and derivation trees generated by ∆r and ∆Σ.

Fire a single rule given one substitution (singleDerivSN (@ι, σ,∆r, usn,M) = (Usn′
in ,Usn′

ext ,M′)).
Given a substitution σ for the rule body of rule ∆r, rule SN-SingleSubst derives the head tuple of ∆r. If the head is

also located at node ι, the head tuple is an internal update. Otherwise, the head tuple is an external update. We update
the set of and derivation trees of tuples derived locally to include the and derivation tree for the head tuple.

Csn→ Csn′
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Ssni ↪→ Ssn′
i,Usn ∀j ∈ [1, N ] ∧ j 6= i,Ssn′

j = Ssnj
Qsn� Ssn1 · · · SsnN → Qsn ◦ Usn� Ssn1 · · · SsnN

SN-NodeStep

Qsn = Qsn′ ⊕Qsn1 ⊕ · · · ⊕ QsnN
Qsn� Ssn1 · · · SsnN → Qsn′

� (Ssn1 ◦ Qsn1) · · · (SsnN ◦ QsnN )
SN-DeQueue

Ssn ↪→ Ssn′,Usn

usn = e(@ιe,~te)
Γ(e)[tuple] = event K = Γ(e)[equi_attr ] heq = EquiHash(e(@ιe,~te),K) equiSet′ = equiSet ∪ heq
〈@ι,DQ,Γ,DB, e(@ιe,~te) :: E ,Usn, equiSet,M,Mprov〉 ↪→ 〈@ι,DQ,Γ,DB, E ,Usn ◦ [usn], equiSet′,M,Mprov〉

SN-Event

Γ(q)[tuple] = fast usn = trq:q(@ιq,~tq) fireRulesSN (@ιq,∆DQ, usn,DB,M) = (Usn′
in ,Usn′

ext ,M′)
〈@ι,DQ,Γ,DB, E , usn :: Usn,M,Mprov〉

↪→ 〈@ι,DQ,Γ,DB, E ,Usn ◦ Usn′
in , equiSet,M′,Mprov〉,Usn′

ext

SN-RuleFire-Fast

Γ(q)[tuple] = interest usn = trq:q(@ιq,~tq)
〈@ι,DQ,Γ,DB, E , usn :: Usn, equiSet,M,Mprov〉

↪→ 〈@ι,DQ,Γ,DB ∪ q(@ιq,~tq), E ,Usn ◦ Usn′
in , equiSet,M′,Mprov ∪ interest(trq:q(@ιq,~tq))〉,Usn′

ext

SN-RuleFire-Interest

fireRulesSN (@ι,∆DQ, usn,DB,M) = (Usnin ,Usnext ,M′)

fireRulesSN (@ι, [], usn,DB,M) = ([], [],M)
SN-Empty

fireSingleRuleSN (@ι,∆r, usn,DB,M) = (Usn′
in ,Usn′

ext ,M′)
fireRulesSN (@ι,∆DQ, usn,DB,M′) = (Usn′′

in ,Usn′′
ext ,M′′)

fireRulesSN (@ι, (∆r,∆DQ), usn,DB,M) = (Usn′
in ◦ Usn′′

in ,Usn′
ext ◦ Usn′′

ext ,M′′)
SN-Seq

fireSingleRuleSN (@ι,∆r, usn,DB,M) = (Usn′
in ,Usn′

ext ,M′)

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · · usn = trq:q(@ιq,~tq)
Σ = ρ(∆r, q(@ιq,~tq),DB) Σ′ = sel(Σ,∆r) derivationSN (@ιq,Σ′,∆r,DB,M) = (Usn′

in ,Usn′
ext ,M′)

fireSingleRuleSN (@ιq,∆r, usn,DB,M) = (Usn′
in ,Usn′

ext ,M′)
SN-FireSingle

derivationSN (@ι,Σ,∆r, usn,M = (Usn′
in ,Usn′

ext,M′)

derivationSN (@ι, [],∆r, usn,M) = ([], [],M)
SN-Subst-Empty

singleDerivSN (@ι, σ,∆r, usn,M) = (Usn′
in ,Usn′

ext,M′) derivationSN (@ι,Σ,∆r, usn,M′) = (Usn′′
in ,Usn′′

ext,M′′)
derivationSN (@ι, σ :: Σ,∆r, usn,M′′) = (Usn′

in ◦ Usn′′
in ,Usn′

ext ◦ Usn′′
ext,M′′)

SN-Subst

singleDerivSN (@ι, σ,∆r, usn,M) = (Usn′
in ,Usn′

ext ,M′)
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∆r = rID ∆p(@`p, ~xp) :- ∆e(@`e, ~xe), b1(@`e, ~xb1), · · · , bn(@`e, ~xbn), · · · usn = e(@ιe,~te)

e(@`e, ~xe)σ = e(@ιe,~te) Γ(e)[type] = event dom(σ) = `p ∪ ~xp ∪ `e ∪ ~xe ∪
N⋃
i=1

~xbi

trp = (rID, p(@`p, ~xp)σ, e(@ιe,~te), b1(@`e, ~xb1)σ :: · · · :: bn(@`e, ~xbn)σ) usn′ = trp:p(@`p, ~xp)σ
if σ(@`p) = @ιe then Usn′

in = [usn′],Usn′
ext = [] else Usn′

in = [],Usn′
ext = [usn′]

M′ =M∪ trp:p(@`p, ~xp)σ
singleDerivSN (@ιq, σ,∆r, usn,M) = (Usn′

in ,Usn′
ext ,M)

SN-SingleSubst-Event

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
usn = trq:q(@ιq,~tq) either Γ(q)[type] = fast or Γ(q)[type] = interest

q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪
N⋃
i=1

~xbi

trp = (rID, p(@`p, ~xp)σ, trq:q(@ιq,~tq), b1(@`q, ~xb1))σ :: · · · :: bn(@`q, ~xbn)σ) usn′ = trp:p(@`p, ~xp)σ
if σ(@`p) = @ιq then Usn′

in = [usn′],Usn′
ext = [] else Usn′

in = [],Usn′
ext = [usn′]

M′ =M∪ trp:p(@`p, ~xp)σ
singleDerivSN (@ιq, σ,∆r, usn,M) = (Usn′

in ,Usn′
ext ,M′)

SN-SingleSubst-Fast
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E. OPERATIONAL SEMANTICS OF ONLINE COMPRESSION EXECUTION
Our online compression scheme compresses equivalent distributed provenance trees based on equivalence keys identified.

We store one representative provenance tree for all provenances in the same equivalence class.
The operational semantics of the online compression evaluation for DELP programs are similar to the operation semantics

for semi-naïve evaluation introduced in Appendix D. However, some of the constructs used to define the set of updates and
proofs generated are different. Appendix D motivates and describes these differences.
Next, we present an evaluation strategy that shares the storage of provenances within the same equivalence class in Ap-

pendix E.1. Building on this, we next present an evaluation strategy that allows for bigger gains in storage space saved by
sharing the storage of provenances across equivalence classes in Appendix E.2.

E.1 Sharing storage within equivalence classes
In this section, we describe an evaluation strategy to shares the storage of provenances within the same equivalence class.

We store the provenance of each rule fired in the form of a provenance node with a reference to the provenance of the previous
rule fired in order to recover the complete provenance of a tuple during provenance querying.

E.1.1 Definitions of network states
All the constructs used to represent the online compression evaluation have analogous functions to their respective counter-

parts in semi-naïve evaluation. Many of the constructs are identical to those of semi-naïve evaluation. However, the constructs
that deal with provenance storage are different, as online compression saves storage space by only storing the provenance of
the rule that derived tuple P instead of storing the entire derivation tree of a tuple derived locally in semi-naïve evaluation.
The network configuration Ccm for online compression execution is represented as Qcm � Scm1 · · · ScmN . Similar to the

network configuration Csn (where Csn = Qsn � Ssn1 · · · SsnN )for semi-naïve evaluation, Scm1 · · · ScmN are the local network
states for each node in the distributed system, while Qcm is a queue of updates consisting of fast-changing tuples which will
eventually be sent to the nodes specified by the location specifier.
Each node ι in the network has local state Scm, where Scm = 〈ι,DQ,Γ,DB, E ,U cm, equiSet,Υ,Υprov〉. Most of the attributes

in Scm are identical to their counterparts in Ssn. We summarize the differing constructs of each local state in Figure E.1.1. In
particular, the set of local updates U cm, the set of local provenances Υ, and the set of tuple provenances representing relations
of interest Υprov differ from those of semi-naïve evaluation.

Global Network Configuration Ccm ::= Qcm� Scm1 · · · ScmN
Network Queue Qcm ::= U cm
Local State Scm ::= 〈ι,DQ,Γ,DB, E ,U cm, equiSet,Υ,Υprov〉
Updates U cm ::= {ucm1, · · · , ucmn}
Collection of rule provenances Υ ::= · |Υ, ruleExec
Collection of tuple provenances Υprov ::= · |Υprov, prov

Figure 23: Definitions of network state for online compression evaluation

Rule provenances are stored differently because online compression saves storage by recording provenance information more
concisely than semi-naïve evaluation does. Figure E.1.1 summarizes the constructs use by online compression to record rule
provenances.
Instead of recording the entire tuple, online compression records only the hash of the primary keys of a tuple. We write

eID, vID, and tID to refer to the hash of the primary keys of an event tuple, slow-changing tuple, and tuple of a relation of
interest respectively. Instead of recording the entire provenance tree for each new fast-changing tuple derived during program
execution, online compression records only the provenance of the new rule fired as ruleargs on the node at which the rule was
fired. Thus, the provenance elements representing the derivation of a single tuple may be stored on several different nodes in
the network. Because different executions may use the same arguments to fire a particular rule, each rule provenance element
ruleExec records a lookup key λ unique to it. It also records the lookup key of the previous tuple that trigger the rule. We
denote an ordered list of rule provenance elements representing the provenance of a tuple as yl.
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Unique ID for an event tuple eID ::= EquiHash(ev,Γ)
Unique ID for a slow-changing tuple vID ::= TupleHash(P,Γ)
Unique ID for a tuple of a relation of interest tID ::= TupleHash(res,Γ)
Provenance for a single rule execution ruleargs ::= rID :: ι :: vID1 :: · · · :: vIDn
Hash of ruleargs HrID ::= hash(ruleargs)
Unique identifier for a rule provenance element [ ::= hash(λ)
Lookup Keys λ ::= id(∅, ∅, heq) | id(@ι, HrID, [)
Rule provenance element ruleExec ::= 〈λp, ruleargs, λq〉
Provenance for a DELP program execution yl ::= nil | yl :: ruleExec

Figure 24: Constructs used to record rule provenances during online compression execution

An update ucm in online compression evaluation differs from is counterpart usn in semi-naïve evaluation. usn is the entire
provenance tree of a tuple P . In contrast, the corresponding update ucm for tuple P does not store the complete provenance
tree for P to save bandwidth. Instead, ucm has form 〈P, createFlag, eID, λ〉, in which createFlag is a flag that identifies whether
provenances should be created and maintained during program execution, eID is the hash of the event tuple that triggered
program execution, and λ represents the lookup key that enables us the retrieve the rule provenance that derived tuple P .

Create Flag createFlag ::= Create |NCreate
Update ucm ::= 〈P, createFlag, eID, λ〉

Figure 25: Definition of updates for online compression with sharing within equivalence class

E.1.2 Evaluation rules
Most of the transition rules are similar to those in appendix D.3. The transition rules that maintain provenance (singleDerivSN (@ι,

σ, ∆r, usn,M) = (Usn′
in , Usn′

ext ,M′) for semi-naïve evaluation and singleCompressionCM (@ι, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′)
for online compression evaluation) are different. We explain the rules that differ below.

Fire single rule given one substitution (singleCompressionCM (@ι, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′))
If the update consists of a tuple and a flag instructing us to maintain provenance, we execute Rule CM-Create and

generate a new update consisting of the head of rule r, and adds the rule provenance for this execution of r to the set of
local rule provenances.
Otherwise, if the update consists of a tuple and a flag instructing us not to maintain provenance, we execute rule

CM-NCreate to generate a new update consisting of the head of rule r.

Ccm→ Ccm′

Scmi ↪→ Scm′
i,U cm ∀j ∈ [1, n] ∧ j 6= i,Scm′

j = Scmj
Qcm� Scm1 · · · Scmn → Qcm ◦ U cm� Scm′

1 · · · Scm′
n

CM-NodeStep

Qcm = Qcm′ ⊕Qcm1 ⊕ · · · ⊕ Qcmn
Qcm� Scm1 · · · Scmn → Qcm′

� (Scm1 ◦ Qcm1) · · · (Scmn ◦ Qcmn)
CM-DeQueue

Scm ↪→ Scm′,U cm
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Γ(e)[tuple] = event eID = TupleHash(e(@ιe,~te),Γ)
heq = EquiHash(e(@ιe,~te),Γ) If heq ∈ equiSet then createFlag = NCreate else createFlag = Create

ucm = 〈e(@ιe,~te), createFlag, eID, id(∅, ∅, heq)〉 equiSet′ = equiSet ∪ heq
〈@ιe,DQ,Γ,DB, ev :: E ,U cm, equiSet,Υ,Υprov〉 ↪→ 〈@ιe,DQ,Γ,DB, E ,U cm ◦ [ucm], equiSet′,Υ,Υprov〉, []

CM-Init-Event

ucm = 〈q(@ιq,~tq), createFlag, eID, λq〉 either Γ(q)[tuple] = fast or Γ(q)[tuple] = interest
fireRulesCM (@ιq,∆DQ, ucm,DB,Υ) = (U cm′

in ,U cm′
ext ,Υ′)

〈@ιq,DQ,Γ,DB, E , ucm :: U cm, equiSet,Υ,Υprov〉 ↪→ 〈@ιq,DQ,Γ,DB, E ,U cm ◦ U cm′
in , equiSet,Υ′,Υprov〉,U cmext

CM-RuleFire-Intm

ucm = 〈p(@ιp,~tp), createFlag, eID, λp〉 Γ(p)[tuple] = interest
tID = TupleHash(p(@ιp,~tp),Γ) prov = 〈@ιp, tID, eID, λp〉 Υprov

′ = Υprov ∪ prov
〈@ιp,DQ,Γ,DB, E , ucm :: U cm, equiSet,Υ,Υprov〉

↪→ 〈@ιp,DQ,Γ,DB ∪ {p(@ιp,~tp)}, E ,U cm, equiSet,Υ,Υprov
′〉, []

CM-RuleFire-Interest

fireRulesCM (@ι,∆DQ, ucm,DB,Υ) = (U ′
in ,U ′

ext ,Υ′)

fireRulesCM (@ι, [], ucm,DB,Υ) = ([], [],Υ)
CM-Empty

fireSingleRuleCM (@ι,∆r, ucm,DB,Υ) = (U ′
in ,U ′

ext ,Υ′) fireRulesCM (@ι,∆DQ, ucm,DB,Υ′) = (U ′′
in ,U ′′

ext ,Υ′′)
fireRulesCM (@ι,∆r :: ∆DQ, ucm,DB,Υ) = (U ′

in ◦ U ′′
in ,U ′

ext ◦ U ′′
ext ,Υ′′)

CM-Seq

fireSingleRuleCM (@ι,∆r, ucm,DB,Υ) = (U ′
in ,U ′

ext ,Υ′)

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), · · · ucm = 〈q(@ιq,~tq), createFlag, eID, λq〉
Σ = ρ(∆r, q(@ιq,~tq),DB) Σ′ = sel(Σ,∆r) compressionCM (@ιq,Σ′,∆r,Υ) = (U cm′

in ,U cm′
ext ,Υ′)

fireSingleRuleCM (@ι,∆r, ucm,DB,Υ) = (U ′
in ,U ′

ext ,Υ′)
CM-FireSingle

compressionCM (@ι,Σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′)

compressionCM (@ι, [],∆r, ucm,Υ) = ([], [],Υ)
CM-Compress-Empty

singleCompressionCM (@ι, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′)
compressionCM (@ι,Σ,∆r, ucm,Υ′) = (U cm′′

in ,U cm′′
ext ,Υ′′)

compressionCM (@ι, σ :: Σ,∆r, ucm,Υ) = (U cm′
in ◦ U cm′′

in ,U cm′
in ◦ U cm′′

ext ,Υ′′)
CM-Compress

singleCompressionCM (@ι, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′)

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·

ucm = 〈q(@ιq,~tq),Create, eID, λq〉 q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪
n⋃
i=1

~xbi

∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
HrIDp = hash(ruleargsp) if (Γ(q)[type] = event) then [p = hash(λq:3) else [p = hash(λq)

λp = id(@ιq, HrIDp, [p) ucm′ = 〈p(@`p, ~xp)σ,Create, eID, λp〉 ruleExecp = 〈λp, ruleargs, λq〉
Υ′ = Υ ∪ ruleExecp if σ(@`p) = @ιq then U cm′

in = [ucm′],U cm′
ext = [] else U cm′

in = [],U cm′
ext = [ucm′]

singleCompressionCM (@ιq, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ′)
CM-Create

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·

ucm = 〈q(@ιq,~tq),NCreate, eID, λq〉 q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪
n⋃
i=1

~xbi

∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
HrIDp = hash(ruleargsp) if (Γ(q)[type] = event) then [p = hash(λq:3) else [p = hash(λq)

λp = id(@ιq, HrIDp, [p) ucm′ = 〈p(@`p, ~xp)σ,NCreate, eID, λp〉
if σ(@`p) = @ιq then U cm′

in = [ucm′],U cm′
ext = [] else U cm′

in = [],U cm′
ext = [ucm′]

singleCompressionCM (@ιq, σ,∆r, ucm,Υ) = (U cm′
in ,U cm′

ext ,Υ)
CM-NCreate
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E.2 Sharing storage across equivalence classes
In this section, we describe an evaluation strategy to shares the storage of provenances across equivalence classes. Instead

of storing the provenance of each rule fired together with the reference to the provenance of the previous rule fired, we store
these two pieces of information separately. While each provenance node recording the parent-child relationship between rules
fired is unique to a particular equivalence class, the provenance element recording the provenance of each rule fired can be
shared between different equivalence classes.

E.2.1 Definitions of network states
The operational semantics of the online compression evaluation with sharing across equivalence class are similar to the oper-

ational semantics of the online compression evaluation without sharing across equivalence class, as described in appendix E.1.2.
However, the constructs used to store the provenances generated are necessarily different. We summarize the differing

constructs in Figure E.2.1. When sharing provenance within equivalence classes, we store both the arguments used to fire a
DELP rule and parent-child relationship between the rule provenance representing the previous rule fired together as ruleExec.
Each ruleExec has form 〈λp, ruleargsp, λq〉, in which λp is the lookup key is for the current rule provenance, ruleargsp, and λq
is the lookup key for the previous rule provenance. In contrast, when sharing provenance across equivalence classes, we store
the parent-child relationship between rule provenances separately. We store the arguments used for a single rule execution
as a node ncm (where ncm = (〈@ι, HrID〉, ruleargs)), and the parent-child relationship between ncm and the previous rule
execution as lcm = (〈@ι, HrID, [〉, λq), where 〈@ι, HrID, [〉 is an extension of the lookup id for ncm and λq is an extension of
the lookup id for the provenance of the previous rule fired.

Global Network Configuration Ctcm ::= Qcm� T cm1 · · · T cmN
Local State T cm ::= 〈@ι,DQ,Γ,DB, E ,U cm, equiSet,N ,L,Υprov〉
Parent-child relationship between rule provenances lcm ::= (λp, λq)
Collection of parent-child relationships L ::= · | L, lcm
Ordered list of rule provenances ch ::= nil | ch ; (lcm :: ncm)
Rule provenance ncm ::= (〈@ι, HrID〉, ruleargs)
Collection of rule provenances N ::= · | N ,ncm

Figure 26: Definition of network states for online compression with sharing across equivalence class

E.2.2 Evaluation rules
Most of the transition rules are similar to those in appendix E.1.2. The transition rules that handle provenance maintenance

for online compression evaluation that shares storage within an equivalence class and online compression evaluation that shares
storage across equivalence classes are necessarily different. We explain the rules that differ below.

Fire a single rule given one substitution (singleCompressionAcrossCM (@ι, σ,∆r, ucm,N ,L) = (U cm′
in ,U cm′

ext ,N ′,L′))
If the update consists of a tuple and a flag instructing us to maintain provenance, Rule CM-across-Create generates

a new update consisting of the head of rule r, and adds the node for the rule provenance for this execution of r and
the relationship between this rule provenance node for the new update and the rule provenance node for the tuple that
triggered the update.
Otherwise, if the update consists of a tuple and a flag instructing us not to maintain provenance, Rule CM-across-

NCreate generates a new update consisting of the head of rule r.

Ctcm→ Ctcm′

T cmi ↪→ T cm′
i,U cm ∀j ∈ [1, n] ∧ j 6= i, T cm′

j = T cmj
Qcm� T cm1 · · · T cmn → Qcm ◦ U cm� T cm′

1 · · · T cm′
n

CM-across-NodeStep

Qcm = Qcm′ ⊕Qcm1 ⊕ · · · ⊕ Qcmn
Qcm� T cm1 · · · T cmn → Qcm′

� (T cm1 ◦ Qcm1) · · · (T cmn ◦ Qcmn)
CM-across-DeQueue

T cm ↪→ T cm′,U cm
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Γ(e)[tuple] = event eID = TupleHash(e(@ιe,~te),Γ) heq = EquiHash(e(@ιe,~te),Γ)
If heq ∈ equiSet then createFlag = NCreate else createFlag = Create

ucm = 〈e(@ιe,~te), createFlag, eID, id(∅, ∅, heq)〉 equiSet′ = equiSet ∪ heq
〈@ιe,DQ,Γ,DB, ev :: E ,U cm, equiSet,N ,L,Υprov〉

↪→ 〈@ιe,DQ,Γ,DB, E ,U cm ◦ [ucm], equiSet′,N ,L,Υprov〉, []

CM-across-Init-Event

ucm = 〈q(@ιq,~tq), createFlag, eID, λq〉 either Γ(q)[tuple] = fast or Γ(q)[tuple] = interest
fireRulesCM (@ιq,∆DQ, ucm,DB,N ,L) = (U cm′

in ,U cm′
ext ,N ′,L′)

〈@ιq,DQ,Γ,DB, E , ucm :: U cm, equiSet,N ,L,Υprov〉
↪→ 〈@ιq,DQ,Γ,DB, E ,U cm ◦ U cm′

in , equiSet,N ′,L′,Υprov〉,U cmext

CM-across-RuleFire-Intm

ucm = 〈p(@ιp,~tp), createFlag, eID, λp〉 Γ(p)[tuple] = interest
tID = TupleHash(p(@ιp,~tp),Γ) prov = 〈@ιp, tID, eID, λp〉 Υprov

′ = Υprov ∪ prov
〈@ιp,DQ,Γ,DB, E , ucm :: U cm, equiSet,N ,L,Υprov〉

↪→ 〈@ιp,DQ,Γ,DB ∪ p(@ιp,~tp), E ,U cm, equiSet,N ,L,Υprov
′〉, []

CM-across-RuleFire-Interest

fireRulesAcrossCM (@ι,∆DQ, ucm,DB,N ,L) = (U ′
in ,U ′

ext ,N ′,L′)

fireRulesAcrossCM (@ι, [], ucm,DB,N ,L) = ([], [],N ,L)
CM-across-Empty

fireSingleRuleAcrossCM (@ι,∆r, ucm,DB,N ,L) = (U ′
in ,U ′

ext ,N ′,L′)
fireRulesAcrossCM (@ι,∆DQ, ucm,DB,N ′,L′) = (U ′′

in ,U ′′
ext ,N ′′,L′′)

fireRulesAcrossCM (@ι,∆r :: ∆DQ, ucm,DB,N ,L) = (U ′
in ◦ U ′′

in ,U ′
ext ◦ U ′′

ext ,N ′′,L′′)
CM-across-Seq

fireSingleRuleAcrossCM (@ι,∆r, ucm,DB,N ,L) = (U ′
in ,U ′

ext ,N ′,L′)

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), · · ·
ucm = 〈q(@ιq,~tq), createFlag, eID, λq〉 Σ = ρ(∆r, q(@ιq,~tq),DB)

Σ′ = sel(Σ,∆r) compressionAcrossCM (@ιq,Σ′,∆r,N ,L) = (U cm′
in ,U cm′

ext ,N ′,L′)
fireSingleRuleAcrossCM (@ι,∆r, ucm,DB,N ,L) = (U ′

in ,U ′
ext ,N ′,L′)

CM-across-FireSingle

compressionAcrossCM (@ι,Σ,∆r, ucm,N ,L) = (U cm′
in ,U cm′

ext ,N ′,L′)

compressionAcrossCM (@ι, [],∆r, ucm,N ,L) = ([], [],N ,L)
CM-across-Compress-Empty

singleCompressionAcrossCM (@ι, σ,∆r, ucm,N ,L) = (U cm′
in ,U cm′

ext ,N ′,L′)
compressionAcrossCM (@ι,Σ,∆r, ucm,N ′,L′) = (U cm′′

in ,U cm′′
ext ,N ′′,L′′)

compressionAcrossCM (@ι, σ :: Σ,∆r, ucm,N ,L) = (U cm′
in ◦ U cm′′

in ,U cm′
in ◦ U cm′′

ext ,N ′′,L′′)
CM-across-Compress

singleCompressionAcrossCM (@ι, σ,∆r, ucm,N ,L) = (U cm′
in ,U cm′

ext ,N ′,L′)
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∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·

ucm = 〈q(@ιq,~tq),Create, eID, λq〉 q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪
n⋃
i=1

~xbi

∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
HrIDp = hash(ruleargsp) if (Γ(q)[type] = event) then [p = hash(λq:3) else [p = hash(λq)

λp = id(@ιq, HrIDp, [p) ucm′ = 〈p(@`p, ~xp)σ,Create, eID, λp〉
ncmp = (〈@ιq, HrIDp〉, ruleargsp) N ′ = N ∪ ncmp lcmp = (λp, λq)

L′ = L ∪ lcmp if σ(@`p) = @ιq then U cm′
in = [ucm′],U cm′

ext = [] else U cm′
in = [],U cm′

ext = [ucm′]
singleCompressionAcrossCM (@ιq, σ,∆r, ucm,N ,L) = (U cm′

in ,U cm′
ext ,N ′,L′)

CM-across-Create

∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
ucm = 〈q(@ιq,~tq),NCreate, eID, λq〉

q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪
n⋃
i=1

~xbi

∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
HrIDp = hash(ruleargsp) if (Γ(q)[type] = event) then [p = hash(λq:3) else [p = hash(λq)

λp = id(@ιq, HrIDp, [p) ucm′ = 〈p(@`p, ~xp)σ,NCreate, eID, λp〉
if σ(@`p) = @ιq then U cm′

in = [ucm′],U cm′
ext = [] else U cm′

in = [],U cm′
ext = [ucm′]

singleCompressionAcrossCM (@ιq, σ,∆r, ucm,N ,L) = (U cm′
in ,U cm′

ext ,N ,L)
CM-across-NCreate

F. EXAMPLE DEPENDENCY GRAPH
Figure 27 shows an example attribute-level dependency graph for the packet forwarding program in Figure 1. Based on

Section 5.2, the equivalence keys are (packet:0, packet:2).

packet:0

packet:1

packet:2

packet:3

route:0

route:1

route:2

recv:0

recv:1

recv:2

recv:3

Figure 27: The attribute-level dependency graph for the packet forwarding program in Figure 1.
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G. CORRECTNESS OF COMPRESSION
In order to prove that our online compression algorithm is correct – that it stores all the expected provenances and nothing

more, we show that there is a bisimulation relation between network states for semi-naïve evaluation and online compression
execution that shares storage across equivalence classes.
This section is organized as follows. First in Appendix G.1, we define a bisimulation relation between the network state

for semi-naïve evaluation and online compression execution that shares storage within equivalence classes, and show that it
holds after every pair of corresponding transition rules in both systems is fired. Next in Appendix G.2, we define a second
bisimulation relation between the network state of online compression execution that shares storage within equivalence classes
and online compression execution that shares storage across equivalence classes, and again show that it holds after every pair
of corresponding transition rules in both systems is fired. In this way, we see that all provenances derived and stored by the
semi-naïve evaluation is also derived and stored by the online compression execution that shares storage across equivalence
classes and vice versa.

G.1 Bisimulation between semi-naïve evaluation and online compression execution
First, we show that there is a bisimulation between semi-naïve evaluation and online compression execution that shares

storage within equivalence classes. In Appendix G.1.1, we formally define a relation RC between the network configuration
Csn of semi-naïve evaluation and the network configuration Ccm of online compression execution and show that the relation
Csn RC Ccm defines a bisimulation between the two executions. Next, in Appendix G.1.2, we show that every time the
semi-naïve evaluation takes a step,

G.1.1 Relating network states
We define relations between constructs for semi-naïve evaluation and online compression execution that shares storage

within equivalence classes.

Relating a single update (Γ ` usn ∼u ucm).
In the base case, when a tuple ev arriving on a node is an event relation, rule u-Base states that the update for

semi-naïve evaluation is simply the event tuple itself, while the update for online compression evaluation is the event
tuple, the flag that tells us whether to maintain provenances, and the hash of ev.
In the inductive case when tuple Q arriving on a node is not an event relation, then tuple Q must have been been

derived from a previous rule that has already been fired. Tuple Q triggers another rule on the node to derive a new
tuple P . Rule u-Ind states that the update for semi-naïve evaluation is the entire provenance tree for P which has the
provenance tree for Q as a subtree, while the update for online compression evaluation is the tuple P , the flag that tells
us whether to maintain provenances (which must be the same as that of the update for Q) the hash of the event tuple
the triggered program execution, and the unique identifier for the provenance of the rule that derived P .

Relating multiple updates (Γ ` Usn RU U cm).
The base case is when both Usn and U cm are empty sets.
In the inductive case, every update usn in Usn must be related to an update ucm in U cm according to the relation

usn RU ucm and vice versa.
Relating a provenance tree to an ordered list of rule provenances (Γ ` tr ∼d yl).

Rule ∼d-Base states that when an incoming event tuple triggers execution of the first rule in the program to derive
tuple P , each construct in the provenance tree for P can be related to a construct in the rule provenance.
Rule ∼d-Ind states that if the incoming tuple Q is not an event tuple and its provenance tree relates to an order list

of rule provenances and triggers execution of a rule rID in the program to derive tuple P , then the provenance tree for
P can be related to the list of rule provenances for tuple Q with the rule provenance for the rID appended to the end of
the list.

Relating provenance trees to rule provenances (Γ ` M ≈d Υ).
The base case is when bothM and Υ are empty sets.
In the inductive case, every provenance tree tr inM relates to an ordered list of rule provenances yl, and every element

of yl can be found in Υ.
Determining an potential update (DQ,Γ ` ucm⇒ ruleExec, ucm′).

Given an update ucm for tuple Q and the program execution, rule ⇒-Update determines a potential update ucm′ that
can be generate given program DQ and the tuple associated with ucm, as well as the corresponding rule provenance.

Determining future provenances generated from a single update (Γ ` ucm# yl).
Given an update ucm for tuple Q and the program execution, rule #-Ind can be repeatedly applied to determine the

allowable future updates according to the program, and an ordered list of rule provenances for the allowable future
updates.

Determining future provenances generated by multiple updates (Γ ` U cm y Υ).
Given a set of updates U cm and the program, repeated application of rule y-Update derives all the rule provenances

that could possibly be generated by the updates in U cm.
Relating a provenance tree to a tuple provenance element (Γ,Υ ` interest(tr) ∼prov prov).

Given that tuple P is an instance of a relation of interest, and given that the provenance tree of P relates via ∼d to an
ordered list of tuples, a tuple provenance node for P stores the location specifier of P , the hash of the primary keys of
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P , the hash of the primary keys of the event tuple that triggered the execution sequence that derived P , and the lookup
key for the tail element of the ordered list.

Relating provenance trees to current and future rule provenances (Γ,DQ,U cm ` MRre Υ).
Given a set of provenance trees M that are generated by semi-naïve evaluation, a set of rule provenances Υ have

already been generated by online compression evaluation, and that online compression evaluation will eventually use the
updates in U cm to generate a set of rule provenances ΥF , rule Relate-Rule-Prov derives that all provenance trees inM
relates to the existing rule provenances Υ given the updates U cm.

Relating a set of provenance trees to a set of tuple provenances (Γ,Υ ` Mprov Rprov Υprov).
In the base case, bothMprov and Υprov are empty sets, thus ≈prov trivially relates the empty sets.
In the inductive case, every element inMprov is a provenance tree interest(tr) for an instance of a relation of interest,

that relates via ∼prov to a tuple provenance node in Υprov and vice versa.
Relating the configurations for semi-naïve to online compression evaluation (Csn RC Ccm).

Most of the constructs used to define the network configurations for semi-naïve evaluation and online compression
evaluation that shares storage within equivalence classes are identical, except for the way updates are handled and how
provenance is maintained.
Rule Relate-Config relates the updates from both evaluations using the relation RU .
Rule Relate-Rule-Prov relatesM, the set of provenance trees of all tuples derived by the semi-naïve evaluation to Υ,

the set of rule provenances generated by the online compression evaluation. Because updates may be processed out of
order, this rule makes use of the updates that have yet to be fired by online compression evaluation to show that the
sets of provenances in both evaluations will eventually correspond.
The relation Rprov makes use of the set of future rule provenances that will eventually be generated by the updates

to relate the provenance trees of all tuples of relations of interest derived by the semi-naïve evaluation to the tuple
provenances of relations of interest derived by the online compression evaluation that shares storage within equivalence
classes.
Because the every provenance tree derived and stored by the semi-naïve evaluation will eventually corrspond to some

rule provenance(s) derived and stored by the online compression evaluation and vice versa, the two evaluations always
store the exact same provenances when execution terminates.

Γ ` usn ∼u ucm

Γ[e][type] = event heq = EquiHash(e(@ιe,~te),Γ) eID = TupleHash(e(@ιe,~te),Γ)
Γ ` e(@ιe,~te)) ∼u 〈e(@ιe,~te)), createFlag, eID, id(∅, ∅, heq)〉

u-Base

Γ ` trq : q(@ιq,~tq) ∼u 〈q(@ιq,~tq), createFlag, eID, λq〉 ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιq,~tbi),Γ)
ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn HrIDp = hash(ruleargsp) λp = id(@ιq, HrIDp, hash(λq))

Γ ` (rID, p(@ιp,~tp), trq:q(@ιq,~tq), b1(@ιq,~tb1) :: · · · :: bn(@ιq,~tbn)) : p(@ιp,~tp) ∼u 〈p(@ιp,~tp)), createFlag, eID, λp〉
u-Ind

Γ ` Usn ∼u U cm

Γ ` [] RU []
U-Base

Γ ` usn ∼u ucm Γ ` Usn RU U cm
Γ ` usn :: Usn RU ucm :: U cm

U-Ind

Γ ` tr ∼d yl

trp = (rID, p(@ιp,~tp), e(@ιe,~te), b1(@ιe,~tb1) :: · · · :: bn(@ιe,~tbn))
heq = EquiHash(e(@ιe,~te),Γ) λe = id(∅, ∅, heq) ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιe,~tbi),Γ)

ruleargsp = rID :: ιe :: vID1 :: · · · :: vIDn HrIDp = hash(ruleargsp) λp = id(@ιe, HrIDp, heq)
Γ ` trp ∼d 〈λp, ruleargsp, λe〉

∼d-Base

Γ ` trq:q(@ιq,~tq)) ∼d ylρ :: 〈λq, ruleargsq, λρ〉 ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιq,~tbi),Γ)
ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn HrIDp = hash(ruleargsp) λp = id(@ιq, HrIDp, hash(λq))

Γ ` (rID, p(@ιp,~tp), trq:q(@ιq,~tq), b1(@ιq,~tb1) :: · · · :: bn(@ιq,~tbn))
∼d ylρ :: 〈λq, ruleargsq, λρ〉 :: 〈λp, ruleargsp, λq〉

∼d-Ind

Γ ` M ≈d Υ

Γ ` {} ≈d {}
[d]-Base

Γ ` tr ∼d yl Γ ` M ∼d Υ
Γ ` M∪ tr ≈d Υ ∪ yl

[d]-Ind

DQ,Γ ` ucm⇒ ruleExec, ucm′
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ucmq = 〈q(@ιq,~tq),Create, eID, λq〉 rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@ιq, ~xb1), · · · , bn(@ιq, ~xbn), · · · ∈ DQ

q(@`q, ~xq)σ = q(@ιq,~tq) dom(σ) = `p ∪ ~xp ∪ `q ∪
n⋃
i=1

~xbi ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)

ruleargsp = rID :: σ(ιq) :: vID1 :: · · · :: vIDn ruleExecq = 〈λp, ruleargsp, λq〉
HrIDp = hash(ruleargsp) [p = λq:3 λp = id(@ιq, HrIDp, [p) ucmp = 〈p(@`p, ~xp)σ,Create, eID, λp〉

DQ,Γ ` ucmq ⇒ ruleExecp, ucmp
⇒-Update

Γ ` ucm# yl

DQ,Γ ` ucm# []
#-Base

DQ,Γ ` ucm⇒ ruleExec, ucm′ DQ,Γ ` ucm′ # yl ′

DQ,Γ ` ucm# [ruleExec] ◦ yl ′ #-Ind

Γ ` U cm y Υ

DQ,Γ ` {}y {}
y-Base

∀i ∈ [1, n],DQ,Γ ` ucm# yli DQ,Γ ` U cm y Υ

DQ,Γ ` U cm ∪
n⋃
i=1

U cmi y Υ ∪
n⋃
i=1

yli

y-Ind

Γ,DQ,U cm ` MRre Υ

Γ,DQ ` U cm y ΥF Γ ` M ≈d Υ ∪ΥF

Γ,DQ,U cm ` MRre Υ
Relate-Rule-Prov

Γ,Υ ` interest(tr) ∼prov prov

EventOf(trr:r(@ιr,~tr)) = e(@ιe,~te)
eID = TupleHash(e(@ιe,~te),Γ) Γ ` trr:r(@ιr,~tr) ∼d ylq :: 〈λr, ruleargsr, λq〉

ylq :: 〈λr, ruleargsr, λq〉 ⊆ Υ tID = TupleHash(r(@ιr,~tr),Γ)
Γ,Υ ` interest(trr:r(@ιr,~tr)) ∼prov 〈@ιr, tID, eID, λr〉

Relate-Prov

Γ,Υ ` Mprov ≈prov Υprov

Γ,Υ ` {} ≈prov {}
≈prov-Base

Γ,Υ ` interest(trr:r(@ιr,~tr)) ∼prov prov Γ,Υ ` Mprov ≈prov Υprov

Γ,Υ ` Mprov ∪ interest(trr:r(@ιr,~tr)) ≈prov Υprov ∪ prov
≈prov-Ind

Γ,DQ,U cm,Υ ` Mprov Rprov Υprov

Γ,DQ,U cm,Υ ` {}Rprov {}
Rprov-Base

Γ,DQ ` U cm# ΥF Γ,Υ ∪ΥF ` Υprov ≈prov Mprov

Γ,DQ,U cm,Υ ` Mprov Rprov Υprov
Rprov-Ind

Csn RC Ccm

∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Υi,Υprovi〉

Γ ` Qsn RU Qcm ∀i ∈ [1, N ],Γ ` Usni RU U cmi U cmF ⊆ Qcm ∪
N⋃
i=1

U cmi

Γ,DQ,U cmF `
N⋃
i=1

Mi Rre

N⋃
i=1

Υi Γ,DQ,U cmF ,
N⋃
i=1

Υi `
N⋃
i=1

Mprovi Rprov

N⋃
i=1

Υprovi

Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
Relate-Config

G.1.2 Semi-naïve evaluation simulates online compression execution
We show that semi-naïve evaluation simulates online compression execution that shares storage within equivalence classes.

To do so, for each transition rule for semi-naïve evaluation, we state and prove a lemma that shows that the rule has a
corresponding counterpart in online compression execution. If initially the network configuration for both systems relate, after
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semi-naïve evaluation steps to a new configuration, then online compression execution is also able to step to a corresponding
new configuration. We present the lemmas and their proofs below.

Multi-step transition: semi-naïve simulates online compression (Lemma 6).
We define Cinit to be the initial network configuration when no updates have been fired and not provenance has been

stored. We show that given any Semi-Naïve evaluation that transitions from Cinit to Csnk+1 in k steps, there exists an
Online Compression evaluation that also transitions from Cinit to Ccmk+1 in k steps, and furthermore that the network
configurations relate (i.e. Csnk+1 RC Ccmk+1).
To prove this lemma, we use induction over k. In the base case when k = 0, Csn1 = Cinit = Ccm1, so it is obvious

that Csn1 RC Ccm1. In the inductive case when k = m + 1, Cinit transitions to Csnk in m steps, thus by the induction
hypothesis that Csnk RC Ccmk. Now using Single-step transition: semi-naïve simulates online compression (Lemma 7),
we see that given Csnk →k

SN Csnk+1, there exists Ccmk+1 s.t. Csnk+1 RC Ccmk+1.
Single-step transition: semi-naïve simulates online compression (Lemma 7).

Given that the network configuration for both systems relate (Csn RC Ccm), if the semi-naïve evaluation takes a step
and transitions to Csn′, then when online compression execution takes a step to Ccm′, these new network configurations
again relate (Csn′ RC Ccm′).
The proof uses the relation Csn RC Ccm and inversion over the transition rules for the network configuration (Csn→SN
Csn′).
Case A: the last rule that derived Csn→SN Csn′ was SN-NodeStep.

The overall network configurations in both systems took a step because some state Ssni in Csn transitioned to a new
state Ssn′

i with additional external updates Usn′
i. We use Single-step transition per node: semi-naïve simulates online

compression 8 and the corresponding Online Compression rule CM-NodeStep to obtain the goal.
Case B: the last rule that derived Csn→SN Csn′ was SM-DeQueue.

The overall network configurations in both systems took a step because external updates in Csn were sent to different
nodes in the network based on their location specifier. Since external updates in Csn correspond to those in Ccm, by
CM-DeQueue we have our goal.

Single-step transition per node: semi-naïve simulates online compression (Lemma 8).
Given two related configurations (Csn RC Ccm), if state Ssn` in Csn transitioned to Ssn′

` with external updates Usn′
`,

then the corresponding state Scm` in Ccm transitioned to Scm′
` with external updates U cm′

`.
The proof uses the relation Csn RC Ccm and inversion over the transition rules for the individual nodes (Ssn` ↪→
Ssn′

`,Usn′
ext).

Case A: The last rule that derived Ssn` ↪→ Ssn′
`,Usn′

ext was SN-Event.
Rule SN-Event popped off an event in E and fired an update. It is easy to relate the respective updates for both
systems show that the resultant list of internal events and updates correspond. The provenance trees in Ssn` and
Ssn′

` are the same.
Case B: The last rule that derived Ssn` ↪→ Ssn′

`,Usn′
ext was SN-RuleFire-Fast.

Rule SN-RuleFire-Fast takes in an update and substitutions for a rule, then generates a new update based on these
arguments. Thus, the set of provenances and updates for fast-changing tuples is incremented. By fireRulesSN
simulates fireRulesCM (Lemma 10) and CM-RuleFire-Fast, we obtain the desired conclusion.

Case C: The last rule that derived Ssn` ↪→ Ssn′
`,Usn′

ext was SN-RuleFire-Interest.
Rule SN-RuleFire-Interest takes as argument an update that contains a provenance tree trr:res, in which res is a
tuple that is an instance of a relation of interest as an argument. It saves trr:res in the set of tuple provenances. No
new updates nor new rule provenance are generated.
Since provenance tree trr:res is an update, thus the semi-naïve evaluation has already stored trr:res in the set of
derived provenance trees M and the set of provenances for relations of interests Mprov. By relation Csn RC Ccm,
therefore rule provenances that correspond to trr:res are either already stored in Υ, or will eventually be generated.
Now we apply rule Relate-Prov to show that we can store trr:res in Υprov. Since only the set of tuple provenances
(Mprov and Υprov) is updated by rule SN-RuleFire-Interest, thus the updated network states for both executions
again relate.

fireRulesSN simulates fireRulesCM (Lemma 10).
Given that the network configuration for both systems relate (Csn RC Ccm), fireRulesSN (@ι`,∆D̄Q, usn`,DB`,M`)

takes in an update usn`, a subset of the program D̄Q and returns new updates and provenance trees.
This lemma is proved using induction over |D̄Q|. In the base case then there are no rules to be fired, Csn′ = Csn and
Ccm′ = Ccm, so the conclusion is trivially true. In the inductive case when |D̄Q| = k+1, the last rule fired was SN-Seq. By
inversion on that rule we see that we should use fireSingleRuleSN simulates fireSingleRuleCM (Lemma 11), the induction
hypothesis, and then CM-Seq to obtain the goal.

fireSingleRuleSN simulates fireSingleRuleCM (Lemma 11).
Given that the network configuration for both systems relate (Csn RC Ccm), fireSingleRuleSN (@ι`,∆r, usn`,DB`,M`)

takes in an update usn`, a rule in the program DQ, and returns new updates and provenance trees.
We prove the lemma using Lemma derivationSN simulates compressionCM (Lemma 12) and CM-FireSingle.

derivationSN simulates compressionCM (Lemma 12).
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Given that the network configuration for both systems relate (Csn RC Ccm), derivationSN (@ι`,Σ,∆r, usn`,M`) takes
in an update usn`, a rule r in the program DQ, a subset Σ of all possible substitutions for r and returns new updates
and provenance trees.
This lemma is proved using induction over |Σ|. In the base case then there are no possible substitutions and rule

r cannot be fired, thus Csn′ = Csn and Ccm′ = Ccm, and the conclusion is trivially true. In the inductive case when
|Σ| = k + 1, the last rule fired was SN-Subst. By inversion on that rule we see that we should use singleDerivSN
simulates singleCompressionCM (Lemma 13) the induction hypothesis, and then CM-Subst to obtain the goal.

singleDerivSN simulates singleCompressionCM (Lemma 13).
This is the key lemma that deals with updating the set of rule provenances. The proof is fairly complicated due to

potential out of order executions. Because semi-naïve evaluation stores one provenance tree per execution while online
compression execution only stores one set of rule provenances per equivalence class, out of order executions may result
in the provenances in the systems not having an obvious correspondence during program execution. Consequently, our
proof need to argue that the missing rule provenances will eventually be generated by the online compression execution.
The lemma shows that given that the network configuration for both systems relate (Csn RC Ccm), singleDerivSN (@ι`,

σ, ∆r, usn`,M`) takes in an update usn`, a rule r in the program DQ, a substitution σ for r, and returns a new update
usn′

` and a new provenance tree.
There are several cases to consider:

Case I: usn` represents a tuple that is an instance of the input event relation.
By the rules Semi-Naïve evaluation, the last transition rule executed was SN-SingleSubst-Event. Therefore by
inversion on the rule, exists an input event tuple ev s.t. usn` = ev and exists a provenance tree trp:P s.t. usn′

` = trp:P
and ev is a subformula of trp:P .
Case A: ucm`.createFlag = Create.

Using the constructs obtained from inversion, we fire the corresponding cnline compression rule CM-Create to
return an update ucm′

` and a new rule provenance ruleExecp. Because only one rule in DQ has been fired so far,
it is easy to see that provenances trp:P and ruleExecp relate and furthermore that updates usn′

` and ucm′
` relate.

We show that the new provenances added to both systems relate. Since value of createFlag is Create, ruleExecp
was created and stored in Ccm. We use the above facts and Csn RC Ccm to show that the network configurations
of both executions after firing SN-SingleSubst-Event and CM-Create again relate.
We use Csn RC Ccm and the above facts about the new update and rule provenance generated to show that the
network configurations of both executions after firing SN-SingleSubst-Event and CM-Create will again relate.

Case B: ucm`.createFlag = NCreate.
By the constructs obtained from inversion, we fire the corresponding online compression rule CM-Create to
return an update ucm′

` and a new rule provenance ruleExecp. Because only one rule in DQ has been fired so far,
it is easy to see that provenances trp:P and ruleExecp relate and furthermore that updates usn′

` and ucm′
` relate.

We show that the new provenances added to both systems relate. Since value of createFlag is NCreate, there
are two cases to consider. (1) ruleExecp is already stored in Ccm. By examining the rules for online compression
execution, in the past some update ucmν` (where ucmν` = ucm`[createFlag 7→ Create]) had already been fired,
causing ruleExecp to be created and stored in Ccm. Because the network configurations of both systems relate,
thus trp:P is already stored in Csn as well. Therefore previous updates already generate provenances trp:P and
ruleExecp and thus when rules SN-SingleSubst-Event and CM-Create were fired no new provenances were stored.
(2) ruleExecp is not stored in Ccm. By examining the rules for online compression execution, there is an update
ucmν` (where ucmν` = ucm`[createFlag 7→ Create]) that has not been fired yet and is still stored in the set of updates
in Ccm. However the set of rule provenances in Csn is updated to include trp:P . We use ucmν` to argue that in the
future ruleExecp will be created and stored, thus the rule provenances in both systems still relate.
We use Csn RC Ccm and the above facts about the new update and rule provenance generated to show that the
network configurations of both executions after firing SN-SingleSubst-Event and CM-Create will again relate.

Case II: usn` represents a tuple that is an instance of a fast-changing relation/ relation of interest.
By the rules semi-naïve evaluation, the last transition rule executed was SN-SingleSubst-Fast. Therefore by inversion
on that rule, exists a provenance tree trq:Q s.t. usn` = trq:Q and exists a provenance tree trp:P s.t. usn′

` = trp:P
and trq:Q is a subtree in trp:P .
Case A: ucm`.createFlag = Create.

By the transition rules semi-naïve evaluation, trq:Q is stored in Csn. Thus given the relation Csn RC Ccm there
exists a list of rule provenances ylq that relates to trq:Q. Since createFlag = Create, rule provenances are created
during this online compression execution, so ylq is concretely stored in the set of rule provenances in Ccm.
Using the constructs obtained by inversion on SN-SingleSubst-Fast, we fire the corresponding rule CM-Create
and obtain the new rule provenance ruleExecp and new update ucm′

`. ruleExecp stores the provenance for the
execution of rule r triggered by tuple Q that uses substitution σ. Given that usn` and ucm` relate, it is easy to
see that usn′

` also relates to ucm′
`.

We show that the new provenances added to both systems relate. Since createFlag is Create, rule provenances
are created during this online compression execution, so ruleExecp is concretely stored in Scm`. Using the above
results we show that trp:P and ylq :: ruleExecp relate and ylq :: ruleExecp is concretely stored in Ccm. We
use the above facts and Csn RC Ccm to show that the network configurations of both executions after firing
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SN-SingleSubst-Fast and CM-Create again relate.
Case B: ucm`.createFlag = NCreate.

By the transition rules Semi-Naïve evaluation, trq:Q is stored in Csn. Thus given the relation Csn RC Ccm there
exists a list of rule provenances ylq that relates to trq:Q.
Using the constructs obtained by inversion on SN-SingleSubst-Fast, we fire the corresponding rule CM-NCreate
and obtain the new rule provenance ruleExecp and new update ucm′

`. ruleExecp stores the provenance for the
execution of rule r triggered by tuple Q that uses substitution σ. Given that usn`anducm` relate, it is easy to see
that usn′

` also relates to ucm′
`.

We show that the new provenances added to both systems relate. Since value of createFlag is NCreate, there are
two cases to consider. (1) ylq is already stored entirely within Ccm. If ruleExecp is also stored in Ccm, then the
rule provenances in both system configurations again relate. If ruleExecp is not stored in Ccm, By examining the
rules for online compression execution, there is an update ucmν` (where ucmν` = ucm`[createFlag 7→ Create]) that
has not been fired yet and is still stored in the set of updates in Ccm. However the set of rule provenances in
Csn is updated to include trp:P . We use ucmν` to argue that in the future ruleExecp will be created and stored,
thus the rule provenances in both systems still relate. (2) ylq is not stored entirely within Ccm. By Csn RC Ccm
part of ylq is contained in Ccm (call it ylA) and there is some update ucmν (where ucmν .createFlag = Create)
that generates ylB , where ylq = ylA ◦ ylB . Since ucmν will eventually cause updates ucm`[createFlag 7→ Create],
ucm`[createFlag 7→ Create] and rule provenanceruleExecp to be generated as well, therefore the missing rule
provenances ylB :: ruleExecp will eventually be created and stored. Thus the rule provenances in both systems
still relate after the transition rules have been fired.

Lemma 6 (Multi-step transition: semi-naïve simulates online compression).
∀k ∈ N,
Cinit →k

SN Csnk+1
implies
∃Ccmk+1 s.t.
Cinit ↗k

CM Ccmk+1
and Ccmk+1 RC Csnk+1.

Proof. By induction over k.

Base Case: k = 0.
By assumption,
(b1) Cinit →0

SN Cinit
We define:
(b2) the network configuration for online compression evaluation to be Cinit

Thus we have
(b3) Cinit ↗0

CM Cinit
By Rule Relate-Config and since no provenances are stored in either configuration,
(b4) Cinit RC Cinit

By (b2) and (b4),
The conclusion follows

Inductive Case: k = m+ 1.
Given Cinit →m

SN Csnk, by I.H. we have
(i1) ∃Ccmm s.t.

Cinit ↗m
CM Ccmm+1

and Ccmm+1 RC Csnm+1.
By assumption we have

(i2) Csnk →SN Csnk+1
Using (i1) and Csnk →SN Csnk+1 we apply
Single-step transition: semi-naïve simulates online compression (Lemma 7) to obtain:

(i3) ∃Ccmk+1 s.t.
Cinit ↗k

CM Ccmk+1
and Ccmk+1 RC Csnk+1

By (i2) and (i3),
The conclusion follows

Lemma 7 (Single-step transition: semi-naïve simulates online compression).
Csn RC Ccm
and Csn→SN Csn′

implies
∃Ccm′ s.t.
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Ccm↗CM Ccm′

and Csn′ RC Ccm′.

Proof.
Assume that
(1) Csn RC Ccm
(2) Csn→SN Csn′

By inversion on the rules (2),
Csn = Qsn� Ssn1 · · · SsnN
Ccm = Qcm� Scm1 · · · ScmN
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi

By inversion over the rules for Csn→SN Csn′, we have the following cases:

Case A: the last rule that derived Csn→SN Csn′ was SN-NodeStep.
By inversion we have

(a1) Ssni ↪→ Ssn′
i,Usn′

i

(a2) ∀j ∈ [1, n] ∧ j 6= i, Ssn′
j = Ssnj

By (1) and (a1) we apply
Single-step transition per node: semi-naïve simulates online compression (Lemma 8) to obtain

(a3) ∃U cm′
i, ∃Scm′

` s.t.
Scmi ↪→ Scm′

i,U cm′
i

and Qsn ◦ Usn′
i � Ssn1 · · · Ssn′

i · · · SsnN RC Qcm ◦ U cm′
i � Scm1 · · · Scm′

i · · · ScmN .
Define

(a4) Ccm′ , Qcm ◦ U cm′
i � Scm′

1 · · · Scm′
i · · · Scm′

N

where ∀j ∈ [1, N ] ∧ j 6= `, Scm′
j = Scmj .

Apply CM-NodeStep to obtain
(a5) Ccm↗CM Ccm′

By (a3) and (a5),
The conclusion holds.

Case B: the last rule that derived Csn→SN Csn′ was SN-DeQueue.
By inversion we have

(b1) Csn′ = Qsn′ � (Ssn1 ◦ Qsn1) · · · (SsnN ◦ QsnN )
(b2) Qsn = Qsn′ ⊕Qsn1 ⊕ · · · ⊕ QsnN .

Define
(b3) Qcm = Qcm′ ⊕Qcm1 ⊕ · · · ⊕ QcmN ,

where Γ ` Qsn ∼U Qcm.
By Eα,
(b4) ∀i ∈ [1, N ], Γ ` Qsni ∼U Qcmi.

Using (b4) define
(b5) Ccm′ , Qcm′ � (Scm1 ◦ Qcm1) · · · (ScmN ◦ QcmN ).

Using (b5) apply CM-DeQueue and obtain
(b6) Ccm↗CM Ccm′

By Eα, Eβ , (b4), Eγ , Eδ, and Eε,
(b7) Csn′ RC Ccm′.

By (b6) and (b7),
The conclusion holds.

Lemma 8 (Single-step transition per node: semi-naïve simulates online compression).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ,ScmN
and Ssn` ↪→ Ssn′

`,Usn′
ext

implies
∃U cm′

ext, ∃Scm′
` s.t.

Scm` ↪→ Scm′
`,U cm′

ext
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn′
` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm′
` · · · ScmN .

Proof.
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Assume
(1) Qsn� Ssn1 · · · Ssn` · · · ,SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN
(2) Ssn` ↪→ Ssn′

`,Usn′
ext

By inversion on (1) we have
∀i ∈ [1, N ], Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ], Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi

We proceed by induction over the rules for (2)
Case A: The last rule that derived Ssn` ↪→ Ssn′

`,Usn′
ext was SN-Event.

By inversion we know:
(a1) Ssn` = 〈@ι`,DQ,Γ,DB`, e(@ι`,~t`) :: E`,Usn`, equiSet`,M`,Mprov`〉
(a2) Ssn′

` = 〈@ι`,DQ,Γ,DB`, E`,Usn` ◦ [usn`], equiSet′
`,M`,Mprov`〉,Usn′

ext
(a3) usn` = e(@ιe,~te)
(a4) Γ(e)[tuple] = event
(a5) K = Γ(e)[equi_attr ]
(a6) heq = EquiHash(e(@ιe,~te),K)
(a7) equiSet′ = equiSet ∪ heq

We define
(a8) ucm` , 〈e(@ι`,~te), createFlag, eID, heq〉

where createFlag = NCreate if heq ∈ equiSet` and createFlag = Create if heq 6∈ equiSet`
(a9) eID = TupleHash(e(@ιe,~te),Γ)

By the definition of ucm`,
(a10) Γ ` usn` ∼u ucm`.

By Eβ and (a10),
(a11) Γ ` Usn` :: usn` ∼U U cm` :: ucm`

By (a11) we apply CM-Init-Event to obtain
(a12) Scm` ↪→ Scm′

`, []
where Scm′

` = 〈@ι`,DQ,Γ,DB`, E`,Usn` ◦ [usn`], equiSet′
`,Υ`,Υprov`〉.

By Eα, Eβ , Eγ , Eδ, Eε and (a11),
(a13) Qsn� Ssn1 · · · Ssn′

` · · · SsnN RC Qcm� Scm1 · · · Scm′
` · · · ScmN

By (a12) and (a13),
the conclusion holds

Case B: The last rule that derived Ssn` ↪→ Ssn′
`,Usn′

ext was SN-RuleFire-Fast.
By inversion we know:

(b1) Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
(b2) Ssn′

` = 〈@ι`,DQ,Γ,DB`, E`, Ūsn` ◦ Usn′
in , equiSet`,M′

`,Mprov`〉
(b3) Γ(q)[tuple] = fast
(b4) usn` = trq:q(@ι`,~tq)
(b5) fireRulesSN (@ι`, ∆DQ, usn`, DB`,M`) = (Usn′

in , Usn′
ext ,M′

`).
By (1), the above and since DQ ⊆ DQ, we apply fireRulesSN simulates fireRulesCM (Lemma 10) to obtain that

(b6) ∃U cm′
`,in, ∃U cm′

`,ext, ∃Υ′
` s.t.

fireRulesCM (@ι`,∆D̄Q, ucm`,DB`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`)

and Qsn ◦ Usn′
`,ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

`,ext � Scm1 · · · Scm∂` · · · ScmN ,
where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, Ūsn` ◦ Usn′

in , equiSet`,M′
`,Mprov`〉

and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉.
We apply CM-RuleFire-Fast to obtain

(b7) Scm` ↪→ Scm∂` ,U cm′
`,ext

By (b6) and (b7)
the conclusion holds

Case C: The last rule that derived Ssn` ↪→ Ssn′
`,Usn′

ext was SN-RuleFire-Interest.
By inversion we know

(c1) Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
(c2) Ssn′

` = 〈@ι`,DQ,Γ,DB` ∪ p(@ι`,~tp), E`, Ūsn` ◦ Usn′
in , equiSet`,M′

`,Mprov` ∪ {interest(trp:p(@ι`,~tp))}〉,Usn′
ext

(c3) Γ(p)[tuple] = interest
(c4) usn` = trp:p(@ι`,~tp)
(c5) fireRulesSN (@ι`,∆DQ, usn`,DB`,M`) = (Usn′

in ,Usn′
ext ,M′

`)
By (1) and since DQ ⊆ DQ we apply fireRulesSN simulates fireRulesCM (Lemma 10) to obtain
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(c6) ∃U cm′
`,in, ∃U cm′

`,ext, ∃Υ′
` s.t.

fireRulesCM (@ι`,∆D̄Q, ucm`,DB`,Υ`) = (U cm′
`,in ,U cm′

`,ext ,Υ′
`)

and Qsn ◦ Usn′
`,ext � Ssn1, · · · ,Ssn∂` , · · · ,SsnN RC Qcm ◦ U cm′

`,ext � Scm1, · · · ,Scm∂` , · · · ,ScmN ,
where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, Ūsn` ◦ Usn′

in , equiSet`,M′
`,Mprov`〉

and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉.
Using the above constructs we define

(c7) tID , TupleHash(p(@ι`,~tp),K)
(c8) prov , 〈@ιp, tID, eID, λp〉.

By examining the rules for Semi-Naïve Evaluation,
trp ∈M`

By the above and Eδ,
(c9) ∃ylp, ∃λq s.t.

Γ ` trp ∼d ylp
and tl(yl):1 = λp
and Γ,Υ′

` ∪
⋃N

i=1 Υi ` interest(tr) ∼prov prov.
By (c9) and Eε

(c10) Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1,i 6=`Mprovi ∪Mprov
′
` Rprov

⋃N

i=1,i 6=` Υprovi ∪ (Υprov` ∪ prov)
By Eβ ,
(c11) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i6=` Usni ∪ Ūsn` RU
⋃N

i=1,i 6=` U cmi ∪ ¯U cm`
Apply CM-RuleFire-Interest to obtain

(c12) Scm` ↪→ Scm′
`, [],

where Scm′
` = 〈@ι`,DQ,Γ,DB` ∪ p(@ι`,~tp), E`, ¯U cm`, equiSet`,Υ`,Υprov` ∪ prov〉.

We apply Deleting updates that triggered all possible rules (Lemma 9) to obtain:
By Eα, (c11), Eγ , Eδ, and (c10),

(c13) Qsn ◦ Usn′
ext � Ssn1 · · · Ssn′

` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm′

` · · · ScmN
By (c12) and (c13),

the conclusion holds

Lemma 9 (Deleting updates that triggered all possible rules).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN ,

where Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ι`,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and usn` = trq:Q
and ∀r ∈ DQ,

r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
Σ′ = ρ(∆r,Q,DB`)
and Σ = sel(Σ′,∆r)
implies
∀σ ∈ Σ, (rID, p(@`p, ~xp), trq:Q, b1(@`q, ~xb1) :: · · · :: bn(@`q, ~xbn))σ ∈

⋃N

i=1Mi

implies
Qsn� Ssn1 · · · Ssn′

` · · · SsnN RC Qcm� Scm1 · · · Scm′
` · · · ScmN

where Ssn′
` = 〈@ι`,DQ,Γ,DB`, E`, Ūsn`, equiSet`,M`,Mprov`〉

and Scm′
` = 〈@ι`,DQ,Γ,DB`, E`, ¯U cm`, equiSet`,Υ`,Υprov`〉.

Proof.
Assume that:
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN ,
where Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ι`,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

(2) usn` = trq:Q
(3) ∀r ∈ DQ,

r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
Σ′ = ρ(∆r,Q,DB`)
and Σ = sel(Σ′,∆r)
implies
∀σ ∈ Σ, (rID, p(@`p, ~xp), trq:Q, b1(@`q, ~xb1) :: · · · :: bn(@`q, ~xbn))σ ∈

⋃N

i=1Mi

By inversion on the rules that derive (1),
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∀i ∈ [1, N ], Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ], Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi

Case A: ucm` 6∈ U cmF
By Eβ ,
(a1) ∀i ∈ [1, N ]\`, Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi and Γ ` Ūsn` RU ¯U cm`
By Eα, (a1), Eγ , Eδ, and Eε,

The conclusion holds
Case B: ucm` ∈ U cmF

By Eδ,
(b1) ∃ruleExecp s.t. DQ,Γ ` ucm` # ruleExecp

By (b1),
(b2) ∃r ∈ DQ s.t.

r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
and Σ′ = ρ(∆r,Q,DB`)
and Σ = sel(Σ′,∆r)
and ∃σ ∈ Σ, ∃ylq s.t.

Γ ` (rID, p(@`p, ~xp), trq:Q, b1(@`q, ~xb1) :: · · · :: bn(@`q, ~xbn))σ ∼∼d ylq :: ruleExecp
Subcase I: ucm`.createFlag = Create

By the assumption,
(i1) ruleExecp ∈

⋃N

i=1 Υi

By (i1),
(i2) ylq :: ruleExecp ⊆

⋃N

i=1 Υi

Thus we can define
(i3) U cmF

′
, Qcm ∪

⋃
i=1,i 6=` U cmi ∪ ¯U cm`

By inversion on Eδ, we have
(i4) Γ,DQ ` U cmF # ΥF

(i5) Γ `
⋃N

i=1Mi ≈d
⋃N

i=1 Υi ∪ΥF

By (i3) and (i4),
(i6) Γ,DQ ` U cmF

′
# ΥF ′

where ruleExecp 6∈ ΥF ′

By (i1), (i5), and (i6),
(i7) Γ `

⋃N

i=1Mi ≈d
⋃N

i=1 Υi ∪ΥF ′

where ruleExecp ∈
⋃N

i=1 Υi ∪ΥF ′

By (i6) and (i7),
(i8) Γ,DQ,U cmF

′
`
⋃N

i=1Mi Rre
⋃N

i=1 Υi

By (i8) and Eε,
E ′
ε :: Γ,DQ,U cmF

′
,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi

By Eα, Eβ , (i8), E ′
ε, E ′

δ

the conclusion follows
Subcase II: ucm`.createFlag = NCreate

We claim that ucm` 6∈ U cmF , a contradiction
This follows by definition of the relations that generate Γ ` ucmF # ΥF , as
∀ucm ∈ U cmF , ucm.createFlag = Create

Lemma 10 (fireRulesSN simulates fireRulesCM ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and D̄Q ⊆ DQ
and fireRulesSN (@ι`,∆D̄Q, usn`,DB`,M`) = (Usn′

in ,Usn′
ext ,M′

`)
implies
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∃U cm′
in, ∃U cm′

ext, ∃Υ′
` s.t.

fireRulesCM(@ι`, ∆D̄Q, ucm`, DB`, Υ`) = (U cm′
in, U cm′

ext, Υ′
`)

and Qsn� Ssn1 · · · Ssn∂` · · · SsnN RC Qcm� Scm1 · · · Scm∂` · · · ScmN
where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn′

in , equiSet`,M′
`,Mprov`〉

and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉.

Proof.

Assume that
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN
where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

(2) D̄Q ⊆ DQ
(3) fireRulesSN (@ι`,∆D̄Q, usn`,DB`,M`) = (Usn′

in ,Usn′
ext ,M′

`)
By inversion on the rules for (1),
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.
We proceed by induction over |∆D̄Q|.

Base Case: |∆D̄Q| = 0.
By assumption,
(b1) ∆D̄Q = [].

By (b1)
the last rule that derived (3) is SN-Empty,

By inversion on SN-Empty
(b2) Usn′

in = []
(b3) Usn′

ext = []
(b4)M′

` =M`

Using CM-Empty we have
(b5) fireRulesCM (@ι`, [], ucm`,DB`,Υ`) = ([], [],Υ`)

By (b2), (b3), (b4), and (1),
(b6) Qsn ◦ [] � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ [] � Scm1 · · · Scm∂` · · · ScmN .

By (b5) and (b6),
the conclusion holds

Inductive Case: |∆D̄Q| = k + 1.
By assumption

the last rule that derived (3) is SN-Seq
By inversion we have

(i1) fireSingleRuleSN (@ι`,∆r, usn`,DB`,M`) = (Usn1
in ,Usn1

ext ,M1
`)

(i2) fireRulesSN (@ι`, ∆D̂Q, usn`, DB`,M1
`) = (Usn2

in , Usn2
ext ,M′

`)
where ∆D̄Q = ∆r :: ∆D̂Q
and Usn′

in = Usn1
in ◦ Usn2

in
and Usn′

ext = Usn1
ext ◦ Usn2

ext .
Since r ∈ DQ, we apply fireSingleRuleSN simulates fireSingleRuleCM (Lemma 11) to obtain:
(i3) ∃U cm1

in , ∃U cm1
ext , ∃Υ1

` s.t.
fireSingleRuleCM (@ι`,∆r, ucm`,DB`,Υ`) = (U cm1

in ,U cm1
ext ,Υ1

`)
and Qsn ◦ Usn1

ext � Ssn1 · · · Ssn∂1
` · · · SsnN RC Qcm ◦ U cm1

ext � Scm1 · · · Scm∂1
` · · · ScmN ,

where Ssn∂1
` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Usn` ◦ Usn1

in , equiSet`,M1
` ,Mprov`〉

and Scm∂1
` = 〈@ι`,DQ,Γ,DB`, E`, ucm` :: U cm` ◦ U cm1

in , equiSet`,Υ1
` ,Υprov`〉

Since |D̂Q| = k and D̂Q ⊆ DQ, and using (i3) we apply the induction hypothesis to obtain
(i4) ∃U cm2

in , ∃U cm2
ext , ∃Υ′

` s.t.
fireRulesCM (@ι`, ∆D̂Q, ucm`, DB`, Υ1

`) = (U cm2
in , U cm2

ext , Υ′
`)

and Qsn ◦ Usn1
ext ◦ Usn2

ext � Ssn1 · · · Ssn∂2
` · · · SsnN RC Qcm ◦ Usn1

ext ◦ U cm2
ext � Scm1 · · · Scm∂2

` · · · ScmN
where Ssn∂2

` = 〈@ι`,DQ,Γ,DB`, E`, Ūsn` ◦ U cm1
in ◦ Usn2

in , equiSet`,M′
`,Mprov`〉

and Scm∂2
` = 〈@ι`,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm1

in ◦ U cm2
in , equiSet`,Υ′

`,Υprov`〉.
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By the above we apply CM-Seq to obtain
(i5) fireRulesCM (@ι`,∆D̄Q, ucm`,DB`,Υ`) = (U cm1

in ◦ U cm2
in ,U cm1

ext ◦ U cm2
ext ,Υ′

`)
where Ssn∂` , Ssn∂2

`

and Scm∂` , Scm∂2
`

By (i4) and (i5),
the conclusion holds.

Lemma 11 (fireSingleRuleSN simulates fireSingleRuleCM ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN
and r ∈ DQ
and Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and fireSingleRuleSN (@ι`,∆r, usn`,DB`,M`) = (Usn∂in ,Usn∂ext ,M∂

` )
implies
∃U cm∂in, ∃U cm∂ext, ∃Υ∂

` s.t.
fireSingleRuleCM (@ι`,∆r, ucm`,DB`,Υ`) = (U cm∂in ,U cm∂ext ,Υ∂

` )
and Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm∂ext � Scm1 · · · Scm∂` · · · ScmN ,
where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn∂in , equiSet`,M∂

` ,Mprov`〉
and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm∂in , equiSet`,Υ∂

` ,Υprov`〉.

Proof.
Assume
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN
(2) r ∈ DQ
(3) Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
(4) Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
(5) fireSingleRuleSN (@ι`,∆r, usn`,DB`,M`) = (Usn∂in ,Usn∂ext ,M∂

` )
By inversion on the rules that derive (1),
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ]\`, Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.
By examining the rules for fireSingleRuleSN , the last rule that derived (5) was SM-FireSingle. By inversion we have:
(6) ∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(7) usn` = trq:q(@ιq,~tq)
(8) Σ̄ = ρ(∆r, q(@ιq,~tq),DB`)
(9) Σ = sel(Σ̄,∆r)
(10) derivationSN (@ιq,Σ,∆r,DB`,M`) = (Usn∂in ,Usn∂ext ,M∂

` )
Given Σ ⊆ Σ = sel(Σ̄,∆r), using the above, we apply derivationSN simulates compressionCM (Lemma 12) to obtain:
(11) ∃U cm′

in , ∃U cm′
ext , ∃Υ′

` s.t.
compressionCM (@ι`,Σ∂ ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ∂

` )
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn′
` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm′
` · · · ScmN

By the above we apply CM-FireSingle to obtain
(12) fireSingleRuleCM (@ι`,∆r, ucm`,DB`,Υ`) = (U∂in ,U cm∂ext ,Υ∂

` )
By (11) and (12)
the conclusion holds

Lemma 12 (derivationSN simulates compressionCM ).
Qsn� Ssn1, · · · ,Ssn`, · · · ,SsnN RC Qcm� Scm1, · · · ,Scm`, · · · ,ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and r ∈ DQ
and usn` = trq:q(@ι`,~tq)
and Σ̄ = ρ(∆r, q(@ι`,~tq),DB`)
and Σ ⊆ sel(Σ̄,∆r)
derivationSN (@ι,Σ,∆r, usn`,M`) = (Usn∂in ,Usn∂ext,M∂

` )
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implies
∃U cm∂in, ∃U cm∂ext, ∃Υ∂

` s.t.
compressionCM (@ι`,Σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ∂

` )
and Qsn ◦ Usn∂ext � Ssn1, · · · ,Ssn∂` , · · · ,SsnN RC Qcm ◦ U cm∂ext � Scm1, · · · ,Scm∂` , · · · ,ScmN

where Ssn∂` = 〈@ι`,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn∂in , equiSet`,M∂
` ,Mprov`〉

and Scm∂` = 〈@ι`,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm∂in , equiSet`,Υ∂
` ,Υprov`〉.

Proof.
Assume that
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

(2) r ∈ DQ
(3) usn` = trq:q(@ι`,~tq)
(4) Σ̄ = ρ(∆r, q(@ι`,~tq),DB`)
(5) Σ ⊆ sel(Σ̄,∆r)
(6) derivationSN (@ι,Σ,∆r, usn`,M`) = (Usn∂in ,Usn∂ext,M∂

` )
We proceed by induction over the length of Σ.

Base Case: |Σ| = 0.
By assumption,

(b1) Σ = []
We apply CM-Compress-Empty to obtain:

(b2) compressionCM (@ι`, [],∆r, ucm`,Υ`) = ([], [],Υ′
`)

where Υ′
` = Υ`

Using the above, we define
(b3) U cm∂in , []
(b4) U cm∂ext , []
(b5) Υ∂

` , Υ`

(b6) Ssn∂` , 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M′
`,Mprov`〉

(b7) Scm∂` , 〈@ι`,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ′
`,Υprov`〉.

By the above,
(b8) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN = Qsn� Ssn1 · · · Ssn` · · · SsnN
(b9) Qcm ◦ U cm∂ext � Scm1 · · · Scm` · · · ScmN = Qcm� Scm1 · · · Scm∂` · · · ScmN

By the above constructs,
(b10) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm∂ext � Scm1 · · · Scm∂` · · · ScmN

By (b2) and (b10),
the conclusion holds

Inductive Case: |Σ| = k + 1.
By assumption,
(i1) The last transition rule that derived derivationSN (@ι,Σ,∆r, usn`,M`) = (Usn∂in ,Usn∂ext,M∂

` ) was SN-Subst
By inversion on SN-Subst,
(i2) ∃σ, ∃Σ̂ s.t. Σ = σ :: Σ̂
(i3) ∃Usn1

in , ∃Usn2
in , ∃Usn1

ext, ∃Usn2
ext, ∃M1

` s.t.
singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn1

in ,Usn1
ext,M1

`)
and derivationSN (@ι`, Σ̂,∆r, usn`,M1

`) = (Usn2
in ,Usn2

ext,M∂
` )

We apply singleDerivSN simulates singleCompressionCM (Lemma 13) to obtain that
(i4) ∃U cm1

in , ∃U cm1
ext , ∃Υ1

` s.t.
singleCompressionCM (@ι`, σ, ∆r, ucm`, Υ`) = (U cm1

in , U cm1
ext , Υ1

`)
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂1
` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂1
` · · · ScmN

where Ssn∂1
` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn1

in , equiSet`,M1
` ,Mprov`〉

and Scm∂1
` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm1

in , equiSet`,Υ1
` ,Υprov`〉

Since Σ = σ :: Σ̂ and |Σ| = k + 1, thus |Σ̂| = k.
Using the above constructs we apply I.H. to find that

(i5) ∃U cm2
in , ∃U cm2

ext, ∃Υ∂
` s.t.

compressionCM (@ι`, Σ̂,∆r, ucm`,Υ1
`) = (U cm2

in ,U cm2
ext,Υ∂

` )
and Qsn ◦ Usn1

ext ◦ Usn2
ext � Ssn1 · · · Ssn` · · · SsnN RC Qcm ◦ U cm1

ext ◦ U cm2
ext � Scm1 · · · Scm∂` · · · ScmN

where Ssn∂` = 〈@ι`,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn1
in ◦ Usn2

in , equiSet`,M∂
` ,Mprov`〉

and Scm∂` = 〈@ι`,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm1
in ◦ U cm2

in , equiSet`,Υ∂
` ,Υprov`〉

Applying CM-Subst we have
(i6) derivationSN (@ιq,Σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ∂

` )
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where Σ = σ :: Σ̂
and U cm∂in = U cm1

in ◦ U cm2
in

and U cm∂ext = U cm1
ext ◦ U cm2

ext
By (i5) and (i6)

The conclusion holds.

Lemma 13 (singleDerivSN simulates singleCompressionCM .).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN ,

where Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ι`,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and r ∈ DQ
and Σ̄ = ρ(∆r, q(@ιq,~t`),DB`)
and σ ∈ sel(Σ̄,∆r)
and singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn∂in ,Usn∂ext,M∂

` )
implies
∃U cm∂in, ∃U cm∂ext, ∃Υ∂

` s.t.
singleCompressionCM (@ι`, σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ′

`)
and Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm∂ext � Scm1 · · · Scm∂` · · · ScmN

where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn∂in , equiSet`,M′
`,Mprov`〉

and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm∂in , equiSet`,Υ′
`,Υprov`〉.

Proof.
Assume the following:
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN ,
where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
(2) r ∈ DQ
(3) Σ̄ = ρ(∆r, q(@ιq,~t`),DB`)
(4) σ ∈ sel(Σ̄,∆r)
(5) singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn∂in ,Usn∂ext,M∂

` )

Then by inversion on the rules for Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN , we have
∀i ∈ [1, N ], Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ], Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.

By inversion on the rules for Eδ, we have
E1 :: Γ,DQ ` Qcm ∪

⋃N

i=1 U cmi y ΥF

E2 :: Γ `
⋃N

i=1Mi ≈d
⋃N

i=1 Υi ∪ΥF .

Case I: Γ(q)[tuple] = event.
The last transition rule that derived (5) was SN-SingleSubst, thus by inversion we have:

(1) ∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(2) usn` = q(@ιq,~tq)
(3) q(@`q, ~xq)σ = q(@ιq,~tq)
(4) Γ(q)[type] = event
(5) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃N

i=1 ~xbi
(6) trp = (rID, p(@`p, ~xp)σ, q(@ιq,~tq), b1(@`q, ~xb1))σ :: · · · :: bn(@`q, ~xbn)σ)
(7) usn′

` = trp:p(@`p, ~xp)σ
(8) if (σ(@`p) = @ιq) then Usn′

in = [usn′
`],Usn′

ext = [] else Usn′
in = [],Usn′

ext = [usn′
`]

(9)M′
` =M` ∪ trp:p(@`p, ~xp)σ

Subcase A: ucm`.createFlag = Create.
By Eβ we have
(a1) Γ ` usn` ∼u ucm`

By assumption,
(a2) the last rule the derived (a1) was u-Base
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By the above and inversion we have:
(a3) heq = EquiHash(q(@ιq,~tq),Γ)
(a4) eID = TupleHash(q(@ιq,~tq),Γ)

Using the above constructs we define the following:
(a5) ∀i ∈ [1, n], vIDi , hash(bi(@`q, ~xbi)σ)
(a6) ruleargsp , rID :: ιq :: vID1 :: · · · :: vIDn
(a7) HrIDp , hash(ruleargsp)
(a8) λq , id(∅, ∅, heq)
(a9) λp , id(@ιq, HrIDp, heq)
(a10) ruleExecp , 〈λp, ruleargs, λq〉
(a11) ucm′

` , 〈p(@`p, ~xp)σ,Create, eID, λp〉.
(a12) If (σ(@`p) = @ιq) then (U cm∂in , [ucm′

`] and U cm∂ext , []) else (U cm∂in , [] and U cm∂ext , [ucm′
`])

(a13) Υ′
` = Υ` ∪ ruleExecp

We use the above constructs to apply CM-Create to obtain
(a14) singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ′

`)

By definition of the constructs above we have
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
(a14) Γ ` Qsn ◦ Usn∂in RU Qcm ◦ U cm∂in

By Eβ and (a14),
(a15) ∀i ∈ [1, N ]\`, Γ `

⋃N

i=1 Usni ∪ ((usn` :: Ūsn`) ◦ Usn∂in) RU
⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm∂in)

By definition ruleExecp we have
Γ ` trp ∼d ruleExecp

By Eδ and the above,
(a16) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1,i 6=` Υi ∪Υ′
`.

Using (a14), (a15), Eγ , (a16), and Eε, we have
(a17) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN

By (a14) and (a17),
the conclusion holds

Subase B: ucm`.createFlag = NCreate.
By Eβ we have
(a1) Γ ` usn` ∼u ucm`

By assumption,
(a2) the last rule the derived (a1) was u-Base

By the above and inversion we have:
(a3) heq = EquiHash(q(@ιq,~tq),Γ)
(a4) eID = TupleHash(q(@ιq,~tq),Γ)

We define the following:
(a5) ∀i ∈ [1, n], vIDi , hash(bi(@`e, ~xbi)σ)
(a6) ruleargsp , rID :: ιq :: vID1 :: · · · :: vIDn
(a7) HrIDp , hash(ruleargsp)
(a9) λp , id(@ιq, HrIDp, heq)
(a10) ruleExecp , 〈λp, ruleargsp, id(∅, ∅, heq)〉
(a11) ucm′

` , 〈p(@`p, ~xp)σ,NCreate, eID, λp〉.
(a12) If (σ(@`p) = @ιq) then (U cm∂in , [ucm′

`] and U cm∂ext , []) else (U cm∂in , [] and U cm∂ext , [ucm′
`])

(a13) Υ′
` , Υ`

Using the above definitions we apply CM-NCreate to obtain
(a14) singleCompressionCM (@ι`, σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ′

`)

By definition of the constructs above we have
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
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(a15) Γ ` Qsn ◦ Usn∂in RU Qcm ◦ U cm∂in
By Eβ and the above,
(a16) ∀i ∈ [1, N ]\`, Γ `

⋃N

i=1 Usni ∪ ((usn` :: Ūsn`) ◦ Usn∂in) RU
⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm∂in)

If ruleExecp ∈ Υ`:
By assumption,

Υ′
` = Υ`

Since Γ ` trp : p(@ιp,~tp) ∼d ruleExecp, by Eδ and the assumption that ruleExecp ∈ Υ`, therefore
M′

` =M`

By the above we have
(a17) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

If ruleExecp 6∈ Υ`:
By examining the rules,
rule CM-Init-Event was fired in the past
∃ucmµ` ∈ U cm` s.t. ucm

µ
` = ucm`[createFlag 7→ Create]

By construction,
Γ ` ucmµ` # ruleExecp, ucm′

`[createFlag 7→ Create]
By the above and Eδ thus
(a18) Γ,DQ,U cmF ∪ ucmµ` `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

By (a15), (a16) Eγ , (a17) or (a18), and Eε, we have
(a18) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN .

By (a14) and (a18),
The conclusion follows.

Case II: Γ(q)[tuple] = fast or Γ(q)[tuple] = interest.
The last transition rule that derived (5) was SN-SingleSubst, thus by inversion we have:

(1) ∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(2) usn` = trq:q(@ιq,~tq)
(3) q(@`q, ~xe)σ = q(@ιq,~tq)
(4) either Γ(q)[type] = fast or Γ(q)[type] = interest
(5) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃N

i=1 ~xbi
(6) trp = (rID, p(@`p, ~xp)σ, trq:q(@ιq,~tq), b1(@`q, ~xb1))σ :: · · · :: bn(@`q, ~xbn)σ)
(7) usn′

` = trp:p(@`p, ~xp)σ
(8) if (σ(@`p) = @ιq) then Usn′

in = [usn′
`],Usn′

ext = [] else Usn′
in = [],Usn′

ext = [usn′
`]

(9)M′
` =M` ∪ trp:p(@`p, ~xp)σ

Subcase A: ucm`.createFlag = Create.
By Eβ we have
(a1) Γ ` usn` ∼u ucm`

By assumption,
(a2) the last rule the derived (a1) was u-Ind

By the above and inversion we have:
(a3) Γ ` trq:q(@ιq,~tq) ∼u 〈q(@ιq,~tq), createFlag, eID, λq〉

We define the following:
(a4) ∀i ∈ [1, n], vIDi , TupleHash(bi(@`q, ~xbi)σ,Γ)
(a5) ruleargsp , rID :: ιq :: vID1 :: · · · :: vIDn
(a6) heq , EquiHash(q(@ιq,~tq),Γ)
(a7) HrIDp , hash(ruleargsp)
(a6) [p , hash(λq)
(a7) λp , id(@ιq, HrIDp, [p)
(a8) ruleExecp , 〈λp, ruleargs, λq〉
(a9) ucm′

` , 〈p(@`p, ~xp)σ,Create, eID, λp〉.
(a10) If (σ(@`p) = @ιq) then (U cm∂in , [ucm′

`] and U cm∂ext , []) else (U cm∂in , [] and U cm∂ext , [ucm′
`])

(a11) Υ′
` = Υ` ∪ ruleExecp

We apply CM-Create to obtain
(a12) singleCompressionCM (@ι`, σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ′

`).
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By (a3) the definition of the constructs we have
(a13) Γ ` Usn′

` ∼u ucm′
`

By Eα the definitions of Usn∂ext and U cm∂ext
(a14) Γ ` Qsn ◦ Usn∂ext RU Qcm ◦ U cm∂ext

By Eβ and the above
(a15) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i 6=` Usni ∪ ((usn` :: Ūsn`) ◦ Usn∂in) RU
⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm∂in)

By examining the transition rules for Semi-Naïve Evaluation and since Γ(q)[type] = fast we have
trq ∈M`

By Eδ and (a15) and since createFlag = Create,
∃ylq ⊆

⋃N

i=1Mi s.t. Γ ` trq ∼d ylq
By definition of trp and ruleExecp and the above,

Γ ` trp ∼d ylq :: ruleExecp
By the above and Eδ and since ruleExecp ∈ Υ′

`,
(a16) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1,i 6=` Υi ∪Υ′
`

By (a14), (a15), Eγ , (a16), and Eε, we have
(a17) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN

By (a13) and (a17),
The conclusion follows

Subcase B: ucm`.createFlag = NCreate.
By Eβ we have
(a1) Γ ` usn` ∼u ucm`

By assumption,
(a2) the last rule the derived (a1) was u-Ind

By the above and inversion we have:
(a3) Γ ` trq : q(@ιq,~tq) ∼u 〈q(@ιq,~tq), createFlag, eID, λq〉

We define
(a4) ∀i ∈ [1, n], vIDi , TupleHash(bi(@`q, ~xbi)σ,Γ)
(a5) ruleargsp , rID :: ιq :: vID1 :: · · · :: vIDn
(a6) HrIDp , hash(ruleargsp)
(a7) [p , hash(λq)
(a8) λp , id(@ιq, HrIDp, [p)
(a9) ruleExecp , 〈λp, ruleargsp, λq〉
(a10) ucm′

` , 〈p(@`p, ~xp)σ,Create, eID, λp〉.
(a11) If (σ(@`p) = @ιq) then (U cm∂in , [ucm′

`] and U cm∂ext , []) else (U cm∂in , [] and U cm∂ext , [ucm′
`])

(a12) Υ′
` = Υ`

Using the above and CM-NCreate we obtain
(a13) singleCompressionCM (@ι`, σ,∆r, ucm`,Υ`) = (U cm∂in ,U cm∂ext ,Υ′

`).

If ylq ⊆
⋃N

i=1 Υi:

. . . . .Case. .i:. . . . . . . . . . . . . . . . .ruleExecp ∈ Υ`

By Eδ
(a14) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M` Rre
⋃N

i=1 Υi

. . . . .Case. . .ii:. . . . . . . . . . . . . . . . .ruleExecp 6∈ Υ`

By Each update that does not create rule provenances has a counterpart (Lemma 14)
∃ucmν` ∈ U cm` s.t. ucmν` .createFlag = Create

By definition of ruleExecp
DQ,Γ ` ucmν` # ruleExecp, ucm`[createFlag 7→ Create]

By the above and Eδ
(a15) Γ,DQ,U cmF ∪ ucmν` `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

If ylq *
⋃N

i=1 Υi:
In this case not all of ylq has been fully derived yet.
Therefore there is some update already in the set of updates in the network that will eventually generate all of ylq

By the Semi-naïve transition rules
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trq ∈M`

By the above and Eδ,
Γ ` trq ∼d ylq :: ruleExecp
Thus given E1 and E2
∃ucmν ∈ U cmF , ∃ylA, ∃ylB s.t.
ucmν .createFlag = Create
and ylq = ylA ◦ ylB
and DQ,Γ ` ucmν # ylB
and ylA ⊆

⋃N

i=1 Υi

By definition of ruleExecp,
DQ,Γ ` ucm` ⇒ ruleExecp, ucm′

`[createFlag 7→ Create]
By the above constructs
DQ,Γ ` ucmν # ylB :: ruleExecp

Given that Γ ` trp ∼d ylq :: ruleExecp and the above and Eδ,
(a16) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

By Eα, (a13), Eγ , (a14)/(a15)/(a16), and Eε, we have
(a17) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN

By (a13) and (a17),
The conclusion follows

Lemma 14 (Each update that does not create rule provenances has a counterpart).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN ,

where Ssn` = 〈@ι`,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ι`,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and ucm`.createFlag = NCreate
and usn` = trp:P
and Γ ` trp:P ∼d ylp
and tail(ylp) 6∈

⋃N

i=1 Υi

implies
∃ucmν` ∈ Qcm ∪

⋃N

i=1 ucmi s.t.
DQ,Γ ` ucmν` # ylνp, where ylp = _ ◦ ylν

Proof. By inversion over the rule that last derived ucm`

Case A: CM-Init-Event was the last rule that derived ucm`.
By inversion on rule SN-Init-Event and since createFlag = NCreate

(a1) heq ∈ equiSet`, where heq = EquiHash(ev,Γ)
By (a1),

(a2) previously SN-Init-Event was fired to create some usnν s.t.
usnν` = usn`[createFlag 7→ NCreate]
and usnν` ∈ Qcm ∪

⋃N

i=1 ucmi

Case B: CM-RuleFire-Intm was the last rule that derived ucm`.
By the rule and given Γ ` trp:P ∼d ylp,

(b1) ylp = _ :: ruleExecq :: ruleExecp

If ruleExecq ∈
⋃N

i=1 Υi:
The last transition rule that derived ruleExecq also generated usn`[createFlag 7→ Create]
where usn`[createFlag 7→ Create] ∈

⋃N

i=1 Υi

By the above,
DQ ` usn`[createFlag 7→ Create]# ruleExecp

If ruleExecq 6∈
⋃N

i=1 Υi:
By I.H. there is some usnν
where usnν .createFlag = Create
and DQ ` usnν # _ :: ruleExecq
and _ :: ruleExecq ⊆ ylp

By the above
DQ ` usnν # _ :: ruleExecq :: ruleExecp as required
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Case C: CM-RuleFire-Interest was the last rule that derived ucm`.
Because this rule never derives a new rule provenance no matter what the value of createFlag is, the lemma vacuously
holds.

G.1.3 Online compression execution simulates semi-naïve evaluation
We show that online compression xecution simulates semi-naïve evaluation. To do so, for each set of transition rules for

Online Compression execution, we state and prove a lemma that shows that these rules have a corresponding counterpart
in Semi-Naïve evaluation. If initially the network configuration for both systems relate, after Online Compression execution
steps to a new configuration, then Semi-Naïve evaluation is also able to step to a corresponding new configuration.
We present the necessary lemmas below, but omit most of the proof details as they are similar to those presented in

Appendix G.1.2. Only the proof of singleCompressionCM simulates singleDerivSN (Lemma 21) is explained in detail as this
is the key lemma that handles the updates of rule provenances. This lemma shows that given that the network configuration
for both systems relate (Csn RC Ccm), singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) takes in an update ucm` for tuple q, a rule
r in the program DQ, a substitution σ for r, and returns a new update ucm′

` and increments the set of rule provenances.
As with singleDerivSN simulates singleCompressionCM (Lemma 13), the proof is rather complicated due to potential out of
order executions. We explain the steps at a high level below. To prove this lemma, there are several cases to consider:

Case I: ucm` represents a tuple that is an instance of the input event relation.
Subcase A: ucm`.createFlag = Create.

By assumption, the last transition rule execute by the Online Compression execution was CM-Create. Given
Csn RC Ccm and the above, we deduce the constructs for Semi-Naïve evaluation used to execute the corresponding
transition rule SN-SingleSubst-Event. Because only one rule in DQ has been fired so far, it is easy to relate the new
rule provenance and new update for both systems.

Subcase B: ucm`.createFlag = NCreate.
By assumption, the last transition rule execute by the Online Compression execution was CM-NCreate. Given
Csn RC Ccm and the above, we deduce the constructs for Semi-Naïve evaluation used to execute the corresponding
transition rule SN-SingleSubst-Event. Because only one rule in DQ has been fired so far, it is easy to relate the new
updates for both systems.
However, showing that the rule provenances relate is more involved provenance for Online Compression are not

stored in this execution. There are two cases to consider. (1) There are no additions to the set of rule provenances
for Online Compression execution as they have already been created and stored by past updates. In this case it
is obvious that the set of rule provenances relate. (2) The rule provenance for Online Compression execution has
not yet been created, by the corresponding provenance tree for Semi-Naïve evaluation is created and stored. By
examining the rules for Online Compression execution, there is an enqueued update that will eventually create the
required rule provenance.

Case II: ucm` represents a tuple that is an instance of a fast-changing relation or a relation of interest.
Subcase A: ucm`.createFlag = Create.

Similar argument to Case I, Subcase A, except that we additionally need to use the fact that ucm` relates to usn`,
and that usn` represents a provenance tree that is stored in the set of rule provenances in Csn to show that the new
update and rule provenance derived again relate.

Subcase B: ucm`.createFlag = NCreate.
Simmilar argument to Case I, Subcase B. Also uses the fact that ucm` relates to usn`, and that usn` represents a

provenance tree that is stored in the set of rule provenances in Csn.

Lemma 15 (Multi-step transition: online compression simulates semi-naïve).
∀k ∈ N,
Cinit →0

SN Cinit →1
SN · · · →k

SN Ccmk+1
implies
∃Csnk+1 s.t.
Cinit →0

SN Cinit →1
SN · · · →k

SN Csnk+1
and Ccmk+1 RC Csnk+1.

Proof. By induction over k and using Single-step transition: online compression simulates semi-naïve (Lemma 16).

Lemma 16 (Single-step transition: online compression simulates semi-naïve).
Csn RC Ccm
and Ccm↗CM Ccm′

implies
∃Csn′ s.t.
Csn→SN Csn′

and Csn′ RC Ccm′.
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Proof. By inversion on rules for Ccm↗CM Ccm′ using Single-step transition per node: online compression simulates semi-naïve
(Lemma 17), and applying the rules for Ctcm↗CM Ctcm′.

Lemma 17 (Single-step transition per node: online compression simulates semi-naïve).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1, · · · ,Scm`, · · · ,ScmN
and Scm` ↪→ Scm′

`,U cm′
ext

implies
∃Usn′

ext,∃Ssn′
` s.t.

Ssn` ↪→ Ssn′
`,Usn′

ext
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn′
` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm′
` · · · ScmN .

Proof. By inversion on rules for Scm` ↪→ Scm′
`,U cm′

ext , using fireRulesCM simulates fireRulesSN (Lemma 18), and applying
the rules for Ssn` ↪→ Ssn′

`,Usn′
ext .

Lemma 18 (fireRulesCM simulates fireRulesSN ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Usn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: U cm`, equiSet`,Υ`,Υprov`〉

and D̄Q ⊆ DQ
and fireRulesCM (@ιq,∆D̄Q, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃Usn′

in, ∃Usn′
ext, ∃M′

` s.t.
fireRulesSN (@ιq,∆D̄Q, usn`,DB`,M`) = (Usn′

in ,Usn′
ext ,M′

`)
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN

where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, Ūsn` ◦ Usn′
in , equiSet`,M′

`,Mprov`〉
and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′

in , equiSet`,Υ′
`,Υprov`〉.

Proof. By induction over length of D̄Q, inversion on the rules for fireRulesCM (@ιq,∆D̄Q, ucm`,DB`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`),

using fireSingleRuleCM simulates fireSingleRuleSN (Lemma 19), and applying the rules for fireRulesSN .

Lemma 19 (fireSingleRuleCM simulates fireSingleRuleSN ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Usn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: U cm`, equiSet`,Υ`,Υprov`〉

and r ∈ DQ
and fireSingleRuleCM (@ιq,∆r, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃Usn′

in, ∃Usn′
ext, ∃M′

` s.t.
fireSingleRuleSN (@ιq,∆r, usn`,DB`,M`) = (Usn′

in ,Usn′
ext ,M′

`)
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂ · · · ScmN

where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`,Usn` ◦ Usn′
in , equiSet`,M′

`,Mprov`〉
and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,Υ′
`,Υprov`〉.

Proof. By inversion on the rules for fireSingleRuleCM (@ιq,∆r, ucm`,DB`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`), using compressionCM

simulates derivationSN (Lemma 20), and applying the rules for fireSingleRuleSN .

Lemma 20 (compressionCM simulates derivationSN ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ,ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Usn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: U cm`, equiSet`,Υ`,Υprov`〉

and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ⊆ sel(Σ,∆r)
and compressionCM (@ιq,Σ′,∆r, ucm`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃Usn′

in, ∃Usn′
ext, ∃M′

` s.t.
and derivationSN (@ιq,Σ′,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1, · · · Scm∂` · · · ,ScmN

where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`,Usn` ◦ Usn′
in , equiSet`,M′

`,Mprov`〉
and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,Υ′
`,Υprov`〉.

Proof. By induction on the length of Σ′, inversion on the rules for compressionCM (@ιq,Σ′,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`),

using singleCompressionCM simulates singleDerivSN (Lemma 21), and applying the rules for derivationSN .
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Lemma 21 (singleCompressionCM simulates singleDerivSN ).
Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN

where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉

and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ∈ sel(Σ,∆r)
and σ ∈ Σ′

and singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`)

implies
∃Usn′

in, ∃Usn′
ext, ∃M′

` s.t.
singleDerivSN (@ιq, σ,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)
and Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN

where Ssn∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn′
in , equiSet`,M′

`,Mprov`〉
and Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm′

in , equiSet`,Υ′
`,Υprov`〉.

Proof.
Assume that
(1) Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN
where Ssn` = 〈@ιq,DQ,Γ,DB`, E`, usn` :: Ūsn`, equiSet`,M`,Mprov`〉
and Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
(2) r ∈ DQ
(3) Σ = ρ(∆r, q(@ιq,~tq),DB`)
(4) Σ′ ∈ sel(Σ,∆r)
(5) σ ∈ Σ′

(6) singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`)

By inversion on the rules for Qsn� Ssn1 · · · Ssn` · · · SsnN RC Qcm� Scm1 · · · Scm` · · · ScmN we have
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.

By inversion on the rules for Eδ, we have
E1 :: Γ,DQ ` Qcm ∪

⋃N

i=1 U cmi y ΥF

E2 :: Γ `
⋃N

i=1Mi ≈d
⋃N

i=1 Υi ∪ΥF .

By inversion on the rules for (6), there exists constructs s.t.
ucm` = 〈q(@ιq,~tq), createFlag, eID, λq〉

Case I: Γ(q)[tuple] = event.
Case A: ucm`.createFlag = Create.

By assumption
The last rule that derived (6) was CM-Create

By inversion we have
(a1) ∆r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(a2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(a3) q(@`q, ~xq)σ = q(@ιq,~tq)
(a4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(a5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(a6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(a7) HrIDp = hash(ruleargsp)
(a8) heq = EquiHash(q(@`q, ~xq),Γ)
(a9) λp = id(@ιq, HrIDp, [p)
(a10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(a11) ruleExecp = 〈λp, ruleargs, λq〉
(a12) Υ′

` = Υ` ∪ {ruleExecp}
(a13) if σ(@`p) = @ιq then U cm′

in = [ucm′
`],U cm′

ext = [] else U cm′
in = [],U cm′

ext = [ucm′
`]
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We use the above constructs to define:
(a14) usn` , q(@ιq,~tq)
(a15) trp , (rID, p(@`p, ~xp)σ, q(@ιq,~tq), b1(@`q, ~xb1)σ :: · · · :: bn(@`q, ~xbn)σ)
(a16) usn′

` , trp:p(@`p, ~xp)σ
(a17) if (σ(@`p) = @ιq) then Usn′

in , [usn′
`],U cm′

ext , [] else Usn′
in , [],Usn′

ext , [usn′
`]

(a18)M′
` ,M` ∪ trp:p(@`p, ~xp)σ

Using the above constructs we apply SN-SingleSubst to obtain:
(a19) singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)

By definition of the constructs,
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
(a20) Γ ` Qsn ◦ Usn′

ext RU Qcm ◦ U cm′
ext

By Eβ and the above,
(a21) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i 6=` Usni ∪ ((usn` :: Ūsn`) ◦ Usn′
`) RU

⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm′
`)

By definition of trp,
Γ ` trp:p(@`p, ~xp)σ ∼d ruleExecp

By Eδ the above,
(a22) Γ,DQ,U cmF ` Υ′

` ∪
⋃N

i=1,i 6=`Mi Rre M′
` ∪
⋃N

i=1,i 6=` Υi

By (a20), (a21), Eγ , (a23), Eε,
(a24) Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN

By (a19) and (a24),
The conclusion holds

Case B: ucm`.createFlag = NCreate.
By assumption
the last rule that derived (6) was CM-NCreate.

By inversion on that rule,
(b1) ∆r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(b2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(b3) q(@`q, ~xq)σ = q(@ιq,~tq)
(b4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(b5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(b6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(b7) HrIDp = hash(ruleargsp)
(b8) heq = EquiHash(q(@`q, ~xq),Γ)
(b9) λp = id(@ιq, HrIDp, heq)
(b10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(b11) Υ′

` = Υ`

(b12) if (σ(@`p) == @ιq) then U cm′
in = [ucm′

`],U cm′
ext = [] else U cm′

in = [],U cm′
ext = [ucm′

`]

We use the above to define the following constructs for Semi-Naive Evaluation
(b13) usn` , q(@ιq,~tq)
(b14) trp , (rID, p(@`p, ~xp)σ, q(@ιq,~tq), b1(@`q, ~xb1)σ :: · · · :: bn(@`q, ~xbn)σ)
(b15) usn′

` , trp:p(@`p, ~xp)σ
(b16) if (σ(@`p) = @ιq) then (Usn′

in , [usn′
`] and Usn′

ext , []) else (Usn′
in , [] and Usn′

ext , [usn′
`])

(b17)M′
` ,M` ∪ trp:p(@`p, ~xp)σ

We apply SN-SingleSubst to obtain
(b18) singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)

By our definitions
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
(b19) Γ ` Qsn ◦ Usn′

ext RU Qcm ◦ U cm′
ext

By Eβ and the above,
(b20) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i 6=` Usni ∪ ((usn` :: Ūsn`) ◦ Usn′
in) RU

⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm′
in)
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Additionally we define the following constructs for Online Compression Evaluation
(b19) heq = EquiHash(q(@ιq,~tq),Γ)
(b20) λq = id(∅, ∅, heq)
(b21) ruleExecp , 〈λp, ruleargsp, λq〉

If ruleExecp ∈ Υ`:
By Eδ we have
(b22) Γ,DQ,U cmF `

⋃N

i=1,i6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

If ruleExecp 6∈ Υ`:
By examining the rules,
rule CM-Init-Event was fired in the past
and ∃ucmµ` ∈ U cm` s.t. ucm

µ
` = ucm`[createFlag 7→ Create]

By construction,
Γ ` ucmµ` # ruleExecp, ucm′

`[createFlag 7→ Create]
By the above and Eδ thus
(b23) Γ,DQ,U cmF ∪ ucmµ` `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

By (b19), (b20) Eγ , (b22)/(b23) and Eε, we have
(b26) Qsn ◦ Usn∂ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN

By (b18) and (b26),
the conclusion holds

Case II: Γ(q)[tuple] = fast.
Case A: ucm`.createFlag = Create.

By assumption
the last rule that derived (6) was CM-Create

By inversion on that rule
(a1) ∆r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(a2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(a3) q(@`q, ~xq)σ = q(@ιq,~tq)
(a4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(a5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(a6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(a7) HrIDp = hash(ruleargsp)
(a8) [p = hash(λq)
(a9) λp = id(@ιq, HrIDp, [p)
(a10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(a11) ruleExecp = 〈λp, ruleargs, λq〉
(a12) Υ′

` = Υ` ∪ ruleExecp
(a13) if (σ(@`p) = @ιq) then (U cm′

in = [ucm′
`] and U cm′

ext = []) else (U cm′
in = [] and U cm′

ext = [ucm′
`])

By Eβ and since ucm` ∈ U cm`,
(a14) ∃trq s.t. ucm` = trq

Using the above we define
(a15) trp , (rID, p(@`p, ~xp)σ, trq:q(@ιq,~tq), b1(@`q, ~xb1)σ :: · · · :: bn(@`q, ~xbn)σ)
(a16) usn′

` , trp:p(@`p, ~xp)σ
(a17) if (σ(@`p) = @ιq) then (Usn′

in , [usn′
`] and Usn′

ext , []) else (Usn′
in , [] and Usn′

ext , [usn′
`])

(a18)M′
` , trp:p(@`p, ~xp)σ

Using the above constructs we apply SN-SingleSubst to obtain:
(a19) singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)

By our definitions
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
(a20) Γ ` Qsn ◦ Usn′

ext RU Qcm ◦ U cm′
ext

By Eβ and the above,
(a21) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i 6=` Usni ∪ ((usn` :: Ūsn`) ◦ Usn′
in) RU

⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm′
in)
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By examining the rules for Semi-Naïve Evaluation and given usn` = trq,
(a22) trq ∈M`

By the above, given Eδ and since createFlag = Create,
∃ylq s.t.

ylq ⊆
⋃N

i=1 Υi

and Γ ` trq ∼d ylq
By the above and using the definitions of trp and ruleExecp,

Γ ` trp:p(@`p, ~xp)σ ∼d ylq :: ruleExecp
By the above and Eδ,
(a23) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M` Rre
⋃N

i=1,i 6=` Υi ∪Υ`

By (a20), (a21), Eγ , (a23), Eε,
(a24) Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN

By (a20) and (a24),
the conclusion follows

Case B: ucm`.createFlag = NCreate.
By assumption
the last rule that derived (6) was CM-NCreate

By inversion on that rule
(b1) ∆r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(b2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(b3) q(@`q, ~xq)σ = q(@ιq,~tq)
(b4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(b5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(b6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(b7) HrIDp = hash(ruleargsp)
(b8) [p = hash(λq)
(b9) λp = id(@ιq, HrIDp, [p)
(b10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(b11) ruleExecp = 〈λp, ruleargs, λq〉
(b12) Υ′

` = Υ`

(b13) if (σ(@`p) = @ιq) then (U cm′
in = [ucm′

`] and U cm′
ext = []) else (U cm′

in = [] and U cm′
ext = [ucm′

`])

By Eβ and since ucm` ∈ U cm`,
(b14) ∃trq s.t. ucm` = trq

Using the above constructs we define
(b15) trp , (rID, p(@`p, ~xp)σ, trq:q(@ιq,~tq), b1(@`q, ~xb1)σ :: · · · :: bn(@`q, ~xbn)σ)
(b16) usn′

` , trp:p(@`p, ~xp)σ
(b17) if (σ(@`p) = @ιq) then (Usn′

in , [usn′
`] and Usn′

ext , []) else (Usn′
in , [] and Usn′

ext , [usn′
`])

(b18)M′
` , trp:p(@`p, ~xp)σ

Using the above we apply SN-SingleSubst to obtain:
(b19) singleDerivSN (@ι`, σ,∆r, usn`,M`) = (Usn′

in ,Usn′
ext,M′

`)

By our definitions
Γ ` usn′

` ∼u ucm′
`

By Eα and the above,
(b20) Γ ` Qsn ◦ Usn′

ext RU Qcm ◦ U cm′
ext

By Eβ and the above,
(b21) ∀i ∈ [1, N ], Γ `

⋃N

i=1,i 6=` Usni ∪ ((usn` :: Ūsn`) ◦ Usn′
in) RU

⋃N

i=1,i 6=` U cmi ∪ ((ucm` :: ¯U cm`) ◦ U cm′
in)

By examining the rules for Semi-Naïve Evaluation and given usn` = trq,
(b22) trq ∈M`

If ylq ⊆
⋃N

i=1 Υi:

. . . . .Case. .i:. . . . . . . . . . . . . . . . .ruleExecp ∈ Υ`

By Eδ
(b23) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M` Rre
⋃N

i=1 Υi
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. . . . .Case. . .ii:. . . . . . . . . . . . . . . . .ruleExecp 6∈ Υ`

By examining the rules for Online Compression,
∃ucmν` ∈ U cm` s.t. ucmν` .createFlag = Create

By definition of ruleExecp
DQ,Γ ` ucmν` # ruleExecp, ucm`[createFlag 7→ Create]

By the above and Eδ
(b24) Γ,DQ,U cmF ∪ ucmν` `

⋃N

i=1,i6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

If ylq :*
⋃N

i=1 Υi:
By (b22), E1 and E2
∃ucmν ∈ U cmF , ∃ylA, ∃ylB s.t.
ucmν .createFlag = Create
and ylq = ylA ◦ ylB
and DQ,Γ ` ucmν # ylB
and ylA ⊆

⋃N

i=1 Υi

By definition of ruleExecp,
DQ,Γ ` ucm` ⇒ ruleExecp, ucm′

`[createFlag 7→ Create]
By the above constructs
DQ,Γ ` ucmν # ylB :: ruleExecp

Given that Γ ` trp ∼d ylq :: ruleExecp and the above and Eδ,
(b25) Γ,DQ,U cmF `

⋃N

i=1,i 6=`Mi ∪M′
` Rre

⋃N

i=1 Υi

By (b20), (b21), Eγ , (b23)/(b24)/(b25), Eε,
(b26) Qsn ◦ Usn′

ext � Ssn1 · · · Ssn∂` · · · SsnN RC Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN

By (b19) and (b26),
the conclusion follows

G.2 Bisimulation between the two online compression executions
Our overall goal is to show that there is a bisimulation relation between semi-naïve evaluation and the online compression

execution that shares storage across equivalence classes. In this section, we show that there is a bisimulation relation between
the online compression execution that shares storage within equivalence classes and the online compression execution that
shares storage across equivalence classes. Together with the results from Appendix G.1, we reach our desired conclusion.
The main difference between the two versions of online compression is that online compression that shares storage across

equivalence classes uses even less storage space to record rule provenances than online compression that shares storage within
equivalence classes. It accomplishes this by storing the parent-child relation ship separately from the constructs used to execute
a rule. Therefore the constructs used to execute a rule could potentially be shared across multiple equivalence classes. In
contrast, online compression that shares storage within equivalence classes cannot share any rule provenance storage between
different equivalence classes.
We prove the bisimulation between the two versions of online compression by formally defining define a relation ∼∼C

between the network configuration Ccm of the online compression execution that shares storage within equivalence classes and
the network configuration Ctcm of the online compression execution that shares storage across equivalence classes. Then, we
show that Ccm ∼∼C Ctcm defines a bisimulation between the two executions.

G.2.1 Relating network states
Most constructs for online compression that shares storage within equivalence classes and online compression that shares

storage across equivalence classes are identical. The constructs that handle rule provenance are necessarily different as the
version that shares storage across equivalence classes optimizes storage even more. We explain how we relate the differing
constructs below, using the Packet Forwarding example in Figure 28 to illustrate.

r1 packet(@N,S,D,DT ) :− packet(@L, S,D,DT ), route(@L,D,N).
r2 recv(@L, S,D,DT ) :− packet(@L, S,D,DT ), D == L.

Figure 28: Packet Forwarding

In this example, we assume that the initial network configuration for both versions of online compression each have two
slow changing tuples, route(@1, 3, 2) and @2,3,3. Assuming an input event tuple packet(@1, 1, 3, hi) triggers program execution,
Figure 29 shows the rule provenances that are stored after online compression of the packet forwarding program that shares
storage within equivalence classes terminates. The rule provenances generated are on the left column.
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heq = EquiHash(packet(@1, 1, 3, hi))
ruleExec1 = 〈λ1, ruleargs1, λ0〉 ruleargs1 = r1 :: 1 :: TupleHash(route(@1, 3, 2))

HrID1 = hash(ruleargs1)
λ0 = id(∅, ∅, heq)
λ1 = id(@1, HrID1, heq)

ruleExec2 = 〈λ2, ruleargs2, λ1〉 ruleargs2 = r1 :: 2 :: TupleHash(route(@2, 3, 3))
HrID2 = hash(ruleargs2)
λ2 = id(@2, HrID2, λ1)

ruleExec3 = 〈λ3, ruleargs3, λ2〉 ruleargs3 = r2 :: 3
HrID3 = hash(ruleargs3)
λ3 = id(@3, HrID3, λ2)

Figure 29: Rule provenance storage after online compression of the packet forwarding program that shares
storage within equivalence classes terminates. The input event tuple is packet(@1, 1, 3,hi).

Figure 30 shows the rule provenances that are stored after online compression of the packet forwarding program that shares
storage across equivalence classes terminates. The rule provenances generated are in the first two columns. The corresponding
rule provenance for online compression that shares storage across equivalence classes is in the right column.

Sharing across equivalence classes Sharing within equivalence classe
Provenance of an individual rule Parent-child relation Provenance of individual rule and parent-child relation combined

(〈λ1:1, λ1:2〉, ruleargs1) (λ1, λ0) ruleExec1
(〈λ2:1, λ2:2〉, ruleargs2) (λ2, λ1) ruleExec2
(〈λ3:1, λ3:2〉, ruleargs3) (λ3, λ2) ruleExec3

Figure 30: Rule provenance storage after online compression of the packet forwarding program that shares
storage across equivalence classes terminates. The input event tuple is packet(@1, 1, 3,hi).

Relating a rule provenance element (ruleExec ∼∼` lcm :: ncm).
Online compression that shares storage within equivalence classes records the arguments used to fire a DELP rule and the
parent-child relationship between the rule provenance representing the previous rule fired together as ruleExec. ruleExec
has form 〈λp, ruleargsp, λq〉, in which λp (where λp = id(@ιq, HrIDp, [p)) is a unique identifier for ruleExec, ruleargsp
contains the necessary constructs to fire a rule, and λq stores the unique identifier for the previous rule fired.
In contrast, online compression that shares storage across equivalence classes records those two pieces of information
separately in order to further compress the provenances. The arguments used to fire a DELP rule are recorded as ncm,
which may be used to record the provenance of executions belonging to multiple equivalence classes. lcm is used solely
to record the parent-child relationship between the rule provenances, and cannot be shared between multiple equivalence
classes. Figures 29 and 30 provide a concrete example of how to relate an ruleExec element to a node element ncm and
link element lcm.

Relating sets of rule provenances (Υ ∼∼ruleExec L;N ).
The base case is when no provenances have been recorded and Υ, L, and N are empty sets.
In the inductive case, every rule provenance ruleExec in Υ relates to a node provenance ncm in N and parent-child
provenance lcm in L.
For example, if Υ = {ruleExec1, ruleExec2} and L = {(λ1, λ0), (λ2, λ1);N = {(〈λ1:1, λ1:2〉, ruleargs1), (〈λ2:1, λ2:2〉, ruleargs2)}
and then Υ ∼∼ruleExec L;N , and given ruleExec3 ∼∼` (λ3, λ2) :: (〈λ3:1, λ3:2〉, ruleargs3), then Υ ∪ ruleExec3 ∼∼ruleExec
L ∪ (λ3, λ2);N ∪ (〈λ3:1, λ3:2〉, ruleargs3).

Relating individual network states (Scm ∼∼S T cm). Given a state Scm for online compression that shares storage within
equivalence classes and a state T cm for online compression that shares storage across equivalence classes, if the constructs
that store rule provenances for both states relate (Υ ∼∼ruleExec L;N ) and the other constructs in their states are identical,
then these two states relate

Relating network configurations (Ccm ∼∼S Ctcm). Given that all states in the two network configurations relate and the
sets external updates for both network configurations are identical, then the network configurations relate.

ruleExec ∼∼` lcm :: ncm

λp = id(@ιq, HrIDp, [p)
〈λp, ruleargsp, λq〉 ∼∼` (λp, λq) :: (〈@ιq, HrIDp〉, ruleargsp)

∼∼`
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Υ ∼∼ruleExec L;N

{} ∼∼ruleExec {}; {}
∼∼ruleExec-Base

ruleExec ∼∼` (lcm :: ncm) Υ ∼∼ruleExec (L;N )
Υ ∪ ruleExec ∼∼ruleExec (L ∪ lcm;N ∪ ncm)

∼∼ruleExec-Ind

Scm ∼∼S T cm

Υ ∼∼ruleExec L;N
〈@ι,DQ,Γ,DB, E ,U cm, equiSet,Υ,Υprov〉 ∼∼S 〈@ι,DQ,Γ,DB, E ,U cm, equiSet,L,N ,Υprov〉

∼∼S

Ccm ∼∼C Ctcm

∀i ∈ [1, N ],Scmi ∼∼S T cmi
Qcm� Scm1 · · · ScmN ∼∼C Qcm� T cm1 · · · T cmN

∼∼C

G.2.2 Relating provenance trees to ordered lists of provenances
Next we define relations between provenance trees and ordered lists of rule provenances. We will use these relations to show

that every time online compresion that shares storage within equivalent classes takes a step, online compresion that shares
storage across equivalent classes takes a step and the bisimulation relation between the network state again holds, and vice
versa.

Relating an ordered list of rule provenances (yl ∼∼ch ch).
The base case is when the ordered lists of rule provenances are empty.
In the inductive case, every ruleExec rule provenance in yl relates to the corresponding pair of lcm :: ncm in ch.

Relating a provenance tree to an ordered list of rule provenances (Γ ` tr ∼∼d ch).
Given a provenance tree tr , if tr relates to an ordered list of rule provenances yl that store the parent-child relationships
together with arguments to rules (Γ ` tr ∼∼d yl), and if yl relates to ch (yl ∼∼ch ch), then tr relates to ch (Γ ` tr ∼∼d
ch).

yl ∼∼ch ch

[] ∼∼ch []
∼∼ch-Base

ruleExec ∼∼` (lcm :: ncm)
yl :: ruleExec ∼∼ch ch  (lcm :: ncm)

∼∼ch-Ind

Γ ` tr ∼∼d ch

Γ ` tr ∼∼d yl yl ∼∼ch ch
Γ ` tr ∼∼d ch

∼∼d

G.2.3 Online compression sharing storage within equivalence classes simulates online compression sharing
storage across equivalence classes

We show that online compression that shares storage within equivalence classes simulates online compression that shares stor-
age across equivalence classes. We show that given any network configuration Ccm (where Ccm = Qcm�Scm1 · · · Scmi · · · ScmN )
for Online Compression (via sharing storage within equivalence classes), there exists a corresponding network configuration
Ctcm (where Ctcm = Qcm � T cm1 · · · T cmi · · · T cmN ) for Online Compression (via sharing storage across equivalence classes),
such that Ccm ∼∼C Ctcm.
To prove this, for each set of transition rules for online compression that shares storage within equivalence classes, we state

and prove a lemma that shows that these rules have a corresponding counterpart in online compression that shares storage
across equivalence classes. If initially the network configuration for both systems relate, after online compression that shares
storage within equivalence classes steps to a new configuration, then online compression that shares storage across equivalence
classes is also able to step to a corresponding new configuration.
We present the necessary lemmas below, but omit most of the proof details as they are similar to those presented in Ap-

pendix G.1.2. Only the proof of singleCompressionCM simulates singleCompressionAcrossCM ] (Lemma 28) differs somewhat
lemma that handles the updates of rule provenances. The proof exploits the fact that for every rule provenance element in
Ccm, there is one corresponding rule provenance link and node in Ctcm and vice versa.

Lemma 22 (Multi-step: Sharing within equivalence classes simulates sharing across equivalence classes).
∀k ∈ N,
Cinit ↗0

CM Cinit ↗1
CM · · · ↗k

CM Ccmk+1
implies
∃Ctcmk+1 s.t.
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Cinit ↘0
CM Cinit ↘1

CM · · · ↘k
CM Ctcmk+1

and Ccmk+1 ∼∼C Ctcmk+1.

Proof. By induction over k and using Single-step: Sharing within equivalence classes simulates sharing across equivalence
classes (Lemma 23).

Lemma 23 (Single-step: Sharing within equivalence classes simulates sharing across equivalence classes).
Ccm ∼∼C Ctcm
and Ccm↗CM Ccm′

implies
∃Ctcm′ s.t.
Ctcm↘CM Ctcm′

and Ccm′ ∼∼C Ctcm′.

Proof. By inversion on rules for Ccm↗CM Ccm′ using Single-step per node: sharing within equivalence classes simulates sharing
across equivalence classes (Lemma 24), and applying the rules for Ctcm↘CM Ctcm′.

Lemma 24 (Single-step per node: sharing within equivalence classes simulates sharing across equivalence classes).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN
and Scm` ↪→ Scm′

`,U cm′
ext

implies
∃T cm′

` s.t.
T cm` ↪→ T cm′

`,U cm′
ext

and Qcm ◦ U cm′
ext � Scm1 · · · Scm′

` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm′

` · · · T cmN .

Proof. By inversion on rules for Scm` ↪→ Scm′
`,U cm′

ext , using fireRulesCM simulates fireRulesAcrossCM (Lemma 25) and
applying the rules for T cm` ↪→ T cm′

`,U cm′
ext .

Lemma 25 (fireRulesCM simulates fireRulesAcrossCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and D̄Q ⊆ DQ
and fireRulesCM (@ιq,∆D̄Q, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃L′

`, ∃N ′
` s.t.

fireRulesAcrossCM (@ιq,∆D̄Q, ucm`,DB`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof. By induction over length of D̄Q, inversion on the rules for fireRulesCM (@ι`,∆D̄Q, ucm`,DB`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`),

using fireSingleRuleCM simulates fireSingleRuleAcrossCM (Lemma 26) and applying the rules for fireRulesAcrossCM .

Lemma 26 (fireSingleRuleCM simulates fireSingleRuleAcrossCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: Ūsn`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and r ∈ DQ
and fireSingleRuleCM (@ιq,∆r, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃L′

`, ∃N ′
` s.t.

fireSingleRuleAcrossCM (@ιq,∆r, ucm`,DB`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂ · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof. By inversion on the rules for fireSingleRuleCM (@ι`,∆r, ucm`,DB`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`), using compressionCM

simulates compressionAcrossCM (Lemma 27) and applying the rules for fireSingleRuleAcrossCM .

Lemma 27 (compressionCM simulates compressionAcrossCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉
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and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ⊆ sel(Σ,∆r)
and compressionCM (@ι`,Σ′,∆r, ucm`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
implies
∃L′

`, ∃N ′
` s.t.

and compressionAcrossCM (@ιq,Σ′,∆r, ucm`,L`,N`) = (Usn′
in ,Usn′

ext,L′
`,N ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof. By induction on the length of Σ′, inversion on the rules for compressionCM (@ι`,Σ′,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`),

using singleCompressionCM simulates singleCompressionAcrossCM (Lemma 28) and applying the rules for compressionAcrossCM .

Lemma 28 (singleCompressionCM simulates singleCompressionAcrossCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ∈ sel(Σ,∆r)
and σ ∈ Σ′

and singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`)

implies
∃L′

`, ∃N ′
` s.t.

singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,L`,N`) = (U cm′
in ,U cm′

ext,L′
`,N ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof.
Assume that
(1) Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

(2) r ∈ DQ
(3) Σ = ρ(∆r, q(@ιq,~tq),DB`)
(4) Σ′ ∈ sel(Σ,∆r)
(5) σ ∈ Σ′

(6) singleCompressionCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext ,Υ′
`)

By the bisimulation relation in (1),
(7) Υ` ∼∼ruleExec L`;N`

Thus the set of rule provenances in both executions correspond

Case I: Γ(q)[tuple] = event.
Subcase A: ucm`.createFlag = Create.

By assumption
The last rule that derived (6) was CM-Create

By inversion we have
(a1) ∆r = rID ∆p(@`p, ~xp) :- ∆q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(a2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(a3) q(@`q, ~xq)σ = q(@ιq,~tq)
(a4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(a5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(a6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(a7) HrIDp = hash(ruleargsp)
(a9) λp = id(@ιq, HrIDp, λq:3)
(a10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(a11) ruleExecp = 〈λp, ruleargs, λq〉
(a12) Υ′

` = Υ` ∪ ruleExecp
(a13) if (σ(@`p) = @ιq) then U cm′

in = [ucm′
`],U cm′

ext = [] else U cm′
in = [],U cm′

ext = [ucm′
`]
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We use the above constructs to define:
(a14) lcmp , (λp, λq)
(a15) ncmp , (〈@ιq, HrIDp〉, ruleargsp)
(a16) L′

` , L` ∪ lcmp

(a17) N ′
` , N` ∪ ncmp

Using the above constructs we apply CM-across-Create to obtain
(a19) singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,L`,N`) = (U cm′

in ,U cm′
ext,L′

`,N ′
`)

By property (1) of the bisimulation relation,
(a20) Υ` ∼∼ruleExec L;N

By (a20), (a16), (a17), we apply ∼∼ruleExec-Ind and obtain:
(a21) Υ′

` ∼∼ruleExec L′;N ′

We have shown that the rule provenance storage in both executions again relate after the executions take a step.

By (1) and (a21),
(a22) Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

By (a20) and (a22),
the conclusion holds

Subcase B: ucm`.createFlag = NCreate.
Since the set of rule provenances is not updated in both executions, the desired conclusion is obvious.

Case II: Γ(q)[tuple] = fast.
Subcase A: ucm`.createFlag = Create. Identical argument to Case I, Subcase A.
Subcase B: ucm`.createFlag = NCreate.

Since the set of rule provenances is not updated in both executions, the desired conclusion is obvious.

G.2.4 Online compression sharing storage across equivalence classes simulates online compression sharing stor-
age within equivalence classes

In this appendix, we show that Online Compression (via sharing storage across equivalence classes) simulates Online
Compression (via sharing storage within equivalence classes). We show that given any network configuration Ctcm (where
Ctcm = Qcm � T cm1 · · · T cmi · · · T cmN ) for Online Compression (via sharing storage across equivalence classes), there exists
a corresponding network configuration Ccm (where Ccm = Qcm � Scm1 · · · Scmi · · · ScmN ) for Online Compression (via sharing
storage across equivalence classes), such that Ccm ∼∼C Ctcm.
To prove this, for each set of transition rules for Online Compression (via sharing storage across equivalence classes), we

state and prove a lemma that shows that these rules have a corresponding counterpart in Online Compression (via sharing
storage within equivalence classes). If initially the network configuration for both systems relate, after Online Compression
(via sharing storage across equivalence classes) steps to a new configuration, then Online Compression (via sharing storage
within equivalence classes) is also able to step to a corresponding new configuration.
We present the necessary lemmas below, but omit most of the proof details as they are similar to those presented in ap-

pendix G.1.2. Only the proof of singleCompressionAcrossCM simulates singleCompressionCM (Lemma 35) differs somewhat
lemma that handles the updates of rule provenances. The proof exploits the fact that for every rule provenance element in
Ccm, there is one corresponding rule provenance link and node in Ctcm and vice versa.

Lemma 29 (Multi-step: sharing across equivalence classes simulates sharing within equivalence classes).
∀k ∈ N,
Cinit ↘0

CM Cinit ↘1
CM · · · →k

SN Ccmk+1
implies
∃Ctcmk+1 s.t.
Cinit ↗0

CM Cinit ↗1
CM · · · ↗k

CM Ctcmk+1
and Ccmk+1 ∼∼C Ctcmk+1.

Proof. By induction over k and using Single-step: sharing across equivalence classes simulates sharing within equivalence
classes (Lemma 30).

Lemma 30 (Single-step: sharing across equivalence classes simulates sharing within equivalence classes).
Ccm ∼∼C Ctcm
and Ctcm↘CM Ctcm′

implies
∃Ccm′ s.t.
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Ccm↗CM Ccm′

and Ccm′ ∼∼C Ctcm′.

Proof. By inversion on rules for Ctcm ↘CM Ctcm′ using Single-step per node: sharing across equivalence classes simulates
sharing within equivalence classes (Lemma 31), and applying the rules for Ccm↗CM Ccm′.

Lemma 31 (Single-step per node: sharing across equivalence classes simulates sharing within equivalence classes).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN
and T cm` ↪→ T cm′

`,U cm′
ext

implies
∃Scm′

` s.t.
Scm` ↪→ Scm′

`,U cm′
ext

and Qcm ◦ U cm′
ext � Scm1 · · · Scm′

` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm′

` · · · T cmN .

Proof. By inversion on rules for T cm` ↪→ T cm′
`,U cm′

ext , using fireRulesAcrossCM simulates fireRulesCM (Lemma 25) and
applying the rules for T cm` ↪→ T cm′

`,U cm′
ext .

Lemma 32 (fireRulesAcrossCM simulates fireRulesCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and D̄Q ⊆ DQ
and fireRulesAcrossCM (@ιq,∆D̄Q, ucm`,DB`,L`,N`) = (U cm′

in ,U cm′
ext ,L′

`,N ′
`)

implies
∃Υ′

` s.t.
fireRulesAcrossCM (@ιq,∆D̄Q, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`, ¯U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof.
By induction over length of D̄Q,
inversion on the rules for fireRulesAcrossCM (@ι`,∆D̄Q, ucm`,DB`,L`,N`) = (U cm′

in ,U cm′
ext ,L′

`,N ′
`),

using fireSingleRuleAcrossCM simulates fireSingleRuleCM (Lemma 33)
and applying the rules for fireRulesCM .

Lemma 33 (fireSingleRuleAcrossCM simulates fireSingleRuleCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: Ūsn`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and r ∈ DQ
and fireSingleRuleAcrossCM (@ιq,∆r, ucm`,DB`,L`,N`) = (U cm′

in ,U cm′
ext ,L′

`,N ′
`)

implies
∃Υ′

` s.t.
fireSingleRuleCM (@ιq,∆r, ucm`,DB`,Υ`) = (U cm′

in ,U cm′
ext ,Υ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂ · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof.
By inversion on the rules for

fireSingleRuleAcrossCM (@ι`,∆r, ucm`,DB`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`),
using compressionAcrossCM simulates compressionCM (Lemma 34)
and applying the rules for fireSingleRuleCM .

Lemma 34 (compressionAcrossCM simulates compressionCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ⊆ sel(Σ,∆r)
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and compressionAcrossCM (@ι`,Σ′,∆r, ucm`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`)
implies
∃Υ′

` s.t.
and compressionAcrossCM (@ιq,Σ′,∆r, ucm`,Υ`) = (Usn′

in ,Usn′
ext,Υ′

`)
and Qcm ◦ U cm′

ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′
ext � T cm1 · · · T cm∂` · · · T cmN

where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′
in , equiSet`,Υ′

`,Υprov`〉
and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`,U cm` ◦ U cm′

in , equiSet`,L′
`,N ′

` ,Υprov`〉.

Proof.
By induction on the length of Σ′,
inversion on the rules for compressionAcrossCM (@ι`,Σ′,∆r, ucm`,L`,N`) = (U cm′

in ,U cm′
ext ,L′

`,N ′
`),

using singleCompressionAcrossCM simulates singleCompressionCM (Lemma 35)
and applying the rules for compressionCM .

Lemma 35 (singleCompressionAcrossCM simulates singleCompressionCM ).
Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

and r ∈ DQ
and Σ = ρ(∆r, q(@ιq,~tq),DB`)
and Σ′ ∈ sel(Σ,∆r)
and σ ∈ Σ′

and singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`)
implies
∃L′

`, ∃N ′
` s.t.

singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′
in ,U cm′

ext,Υ′
`)

and Qcm ◦ U cm′
ext � Scm1 · · · Scm∂` · · · ScmN ∼∼C Qcm ◦ U cm′

ext � T cm1 · · · T cm∂` · · · T cmN
where Scm∂` = 〈@ιq,DQ,Γ,DB`, E`, (usn` :: Ūsn`) ◦ Usn′

in , equiSet`,Υ′
`,Υprov`〉

and T cm∂` = 〈@ιq,DQ,Γ,DB`, E`, (ucm` :: ¯U cm`) ◦ U cm′
in , equiSet`,L′

`,N ′
` ,Υprov`〉.

Proof.
Assume that
(1) Qcm� Scm1 · · · Scm` · · · ScmN ∼∼C Qcm� T cm1 · · · T cm` · · · T cmN

where Scm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,Υ`,Υprov`〉
and T cm` = 〈@ιq,DQ,Γ,DB`, E`, ucm` :: ¯U cm`, equiSet`,L`,N`,Υprov`〉

(2) r ∈ DQ
(3) Σ = ρ(∆r, q(@ιq,~tq),DB`)
(4) Σ′ ∈ sel(Σ,∆r)
(5) σ ∈ Σ′

(6) singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,L`,N`) = (U cm′
in ,U cm′

ext ,L′
`,N ′

`)

By the bisimulation relation in (1),
(7) Υ` ∼∼ruleExec L`;N`

Thus the set of rule provenances in both executions correspond

Case I: Γ(q)[tuple] = event.
Subcase A: ucm`.createFlag = Create.

By assumption
The last rule that derived (6) was CM-across-Create

By inversion we have
(a1) ∆r = rID p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xbn), · · ·
(a2) ucm` = 〈q(@ιq,~tq),Create, eID, λq〉
(a3) q(@`q, ~xq)σ = q(@ιq,~tq)
(a4) dom(σ) = `p ∪ ~xp ∪ `q ∪ ~xq ∪

⋃n

i=1 ~xbi
(a5) ∀i ∈ [1, n], vIDi = TupleHash(bi(@`q, ~xbi)σ,Γ)
(a6) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(a9) λp = id(@ιq, HrIDp, λq:3)
(a10) ucm′

` = 〈p(@`p, ~xp)σ,Create, eID, λp〉
(a11) ncmp = (〈@ιq, HrIDp〉, ruleargsp)
(a12) N ′

` = N` ∪ ncmp

(a13) lcmp = (λp, λq)
(a14) L′

` = L` ∪ lcmp
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(a15) if σ(@`p) = @ιq then U cm′
in = [ucm′

`],U cm′
ext = [] else U cm′

in = [],U cm′
ext = [ucm′

`]

We use the above constructs to define:
(a16) ruleExecp , 〈λp, ruleargsp, λq〉
(a17) Υ′

` = Υ` ∪ ruleExecp
By definition of the constructs,
(a18) ruleExecp ∼∼` lcmp :: ncmp

By (1) and (a18),
(a19) Υ′

` ∼∼C L′
`;N ′

`

We have shown that the rule provenance storage in both executions again relate after the executions take a step.

Using the above constructs we apply CM-Create to obtain
(a20) singleCompressionAcrossCM (@ιq, σ,∆r, ucm`,Υ`) = (U cm′

in ,U cm′
ext,Υ′

`)

By (a19) and (a20)
the conclusion follows

Subcase B: ucm`.createFlag = NCreate.
Since the set of rule provenances is not updated in both executions, the desired conclusion is obvious.

Case II: Γ(q)[tuple] = fast.
Subcase A: ucm`.createFlag = Create. The argument is similar to that of Case I, Subcase A.
Subcase B: ucm`.createFlag = NCreate.

Since the set of rule provenances is not updated in both executions, the desired conclusion is obvious.

G.3 Proof of Correctness of Compression
We prove the correctness of the online compression algorithm by showing that the distributed provenances maintained

in the ruleExec and prov tables contain the exact same set of provenances of tuples derived by a semi-naïve evaluation.
Theorem 3 in Section 5.3 states that we can assemble entries in ruleExec and prov to reconstruct a provenance tree and
vice versa.
Theorem 3 (Correctness of Compression). ∀n ∈ N and initial state Cinit , Cinit →n

SN Csn then exists Ccm s.t. Cinit →n
CM Ccm

and for any derivation tree tr ∈ Csn , there exists a provenance P ∈ Ccm s.t. tr ∼d P and for all provenance P ∈ Ccm , there
exists a derivation tree tr ∈ Csn s.t. tr ∼d P. And the same is true for the semi-naïve when Cinit →n

CM Ccm .
Theorem 3 is a corollary of Lemma 4, which shows that the semi-naïve execution with online compression algorithm

is bisimilar to the semi-naïve execution that stores full derivation trees. The bisimilarity relation relates the distributed
compressed provenances and the full derivation provenances in such a way that both store the same set of provenances.
Lemma 4 (Compression Simulates Semi-naïve). ∀n ∈ N given initial state Cinit, and Cinit →n

SN Csn then ∃Ccm s.t. Cinit →n
CM

Ccm and Csn RC Ccm and vice versa.

Proof. By Semi-Naïve simulates Online Compression (Lemma 6) and Online Compression simulates Semi-Naïve (Lemma 15).
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H. CORRECTNESS OF QUERY
We show for both online compression execution that shares storage within equivalence classes and online compression

execution that shares storage across equivalent classes, all provenance trees generated by using the semi-naïve evaluation
can be queried for, and furthermore the query algorithm will return the correct provenance tree. Because online compression
execution may propagate updates out of order, there are situations where rule provenance entries are referred to in a provenance
before they are stored. Thus the query algorithm assumes all updates have already been processed.
This section is organized as follows. First we present the query algorithms for both versions of online compression. Next,

we define several properties of the provenance that we use in the proof. By Correctness of Compression (Theorem 3) we know
there is a bisimulation between semi-naïve evaluation and online compression execution that shares storage within equivalence
classes. We use this bisimulation relation to prove correctness of query. Finally, we use the bisimulation relation between
the two versions of online compression to see that we can retrieve provenance trees from the network that executed online
compression with sharing across equivalence classes.

H.1 Query algorithms
Given a tuple res that is an instance of a relation of interest, the query algorithm returns all possible provenance trees for

res. We present the algorithms for both versions of online compression here.

H.1.1 Sharing storage within equivalence classes
We present the query algorithm to retrieve provenances in Figure 31. Function QueryS first checks that all updates in

the network have already been processed to ensure that the algorithm is able to retrieve all rule provenances associated with
tuple res, where res is an instance of a relation of interest. The network configuration Qcm � Scm1 · · · ScmN stores all rule
provenances needed to reconstruct res. Each rule provenance for res takes the form of yl, an ordered list of ruleExec elements.
The elements in yl may be stored at different nodes in the network.
For every instance of a relation of interest derived, the online compression algorithm additionally maintains a tuple prove-

nance prov that contains a pointer to the last element of the corresponding list of rule provenance yl. ObtainTupleProvS
returns all such tuple provenances prov associated with res. Next, QueryS calls QuerySS, which uses the pointer to the last
element of yl to return yl in its entirety.
Because each element ruleExec stores a reference to the previous rule provenance element, QuerySS is able to retrieve every

element of yl in reverse order. It terminates when the reference to the previous rule provenance is a null pointer, meaning
that the final rule provenance retrieved represents the first rule triggered for the execution that derived res.

1: function QueryS(Qcm� Scm1 · · · ScmN , res, eID)
2: [prov1, · · · , provm]← ObtainTupleProvS(Qcm� Scm1 · · · ScmN , res, eID)
3: ProvSetS = {}
4: for i ∈ [1,m] do
5: 〈@ιr, res, eID, λr〉 ← provi
6: yli ← QuerySS(Qcm� Scm1 · · · ScmN , λr)
7: ProvSetS ← ProvSetS ∪ yli
8: return ProvSetS
9: end function
10:
11: function QuerySS(Qcm� Scm1 · · · ScmN , λp)
12: if λp ∈

⋃N

i=1 Scmi.equiSet then
13: return []
14: else
15: ruleExecp ← Get_RuleExec(

⋃N

i=1 Scmi.Υ, λp)
16: 〈λp, ruleargsp, λq〉 ← ruleExecp
17: return QuerySS(Qcm� Scm1 · · · ScmN , λq) :: ruleExecp
18: end function

Figure 31: Query algorithm for online compression execution that shares storage within equivalence classes

Finally, QueryS returns ProvSetS , a set of lists of rule provenances that can be used to recover the provenance trees for
res. Algorithm CompressedS_to_ProvenanceTree in Figure 32 takes as arguments a rule provenance yl in ProvSetS ,
the tuple of interest res, the complete set of all materialized tuples in Qcm� Scm1 · · · ScmN , the mapping of tuples to primary
keys Γ, the unique identifier eID for the event tuple eID, and the DELP program DQ and recovers the provenance tree.
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1: function CompressedS_to_ProvenanceTree(yl :: ruleExec, P , DB, Γ, eID, DQ)
2: if yl = [] then
3: 〈λp, ruleargsp, heq〉 ← ruleExec
4: rID :: ιe :: vID1 :: · · · :: vIDn ← ruleargsp
5: (* DQ[rID] = p(@`p, ~xp) :- e(@`e, ~xe), b1(@`e, ~xb1), · · · , bn(@`e, ~xb1) *)
6: ev ← Recover_Tuples(eID,DB,Γ)
7: B1 :: · · · :: Bn ← Recover_Tuples(vID1 :: · · · :: vIDn,DB,Γ)
8: return (rID, P, ev, B1 :: · · · :: Bn)
9: else
10: 〈λp, ruleargsp, λq〉 ← ruleExecp
11: rID :: ιq :: vID1 :: · · · :: vIDn ← ruleargsp
12: B1 :: · · · :: Bn ← Recover_Tuples(vID1 :: · · · :: vIDn,DB,Γ)
13: (* DQ[rID] = p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xb1) *)
14: Q← Recover_Rule_Trigger(P,B1 :: · · · :: Bn, rID,DQ)
15: trq ← CompressedS_to_ProvenanceTree(yl, Q,DB,Γ, eID,DQ)
16: return (rID, P, trq:Q,B1 :: · · · :: Bn)
17: end function

Figure 32: Algorithm to recover a provenance tree from an ordered list of rule provenances

H.1.2 Sharing storage across equivalence classes
We present the query algorithm to retrieve provenances in Figure 33 below. Function QueryT is almost identical in syntax

and semantics to QueryS in appendix H.1.1, except that the network configuration it accepts is for online compression with
sharing across equivalence classes, thus the structures for storing rule provenance somewhat differs. Function QueryTT is
analogous QuerySS.

1: function QueryT(Qcm� T cm1 · · · T cmN , res, eID)
2: Assert No more updates in Qcm� T cm1 · · · T cmN
3: [prov1, · · · , provm]← ObtainTupleProvT(Qcm� T cm1 · · · T cmN , res, eID)
4: ProvSetT = {}
5: for i ∈ [1,m] do
6: 〈@ιr, res, eID, λr〉 ← provi
7: chi ← QueryTT(Qcm� T cm1 · · · T cmN , λr)
8: ProvSetT ← ProvSetT ∪ {chi}
9:
10: return ProvSetT
11: end function
12:
13: function QueryTT(Qcm� T cm1 · · · T cmN , res, eID)
14: if λp ∈

⋃N

i=1 T cmi.equiSet then
15: return []
16: else
17: id(@ιq, HrIDp, [p)← λp
18: lcm ← Get_RuleExec_Link(Qcm� T cm1 · · · T cmN , λp)
19: ncm ← Get_RuleExec_Node(Qcm� T cm1 · · · T cmN , 〈@ιq, HrIDp〉)
20: (_, λq)← lcm
21: return QueryTT(Qcm� T cm1 · · · T cmN , λq) lcm::ncm
22: end function

Figure 33: Query algorithm for online compression execution that shares storage across equivalence classes

Algorithm CompressedT_to_ProvenanceTree (Figure 34) recovers the provenance tree corresponding to a list of rule
provenances and is analogous to Algorithm CompressedS_to_ProvenanceTree.
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1: function CompressedT_to_ProvenanceTree(yl ; (lcm :: ncm), P , DB, Γ, eID, DQ)
2: if yl = [] then
3: (_, ruleargsp)← ncm
4: rID :: ιe :: vID1 :: · · · :: vIDn ← ruleargsp
5: (* DQ[rID] = p(@`p, ~xp) :- e(@`e, ~xe), b1(@`e, ~xb1), · · · , bn(@`e, ~xb1) *)
6: ev ← Recover_Tuples(eID,DB,Γ)
7: B1 :: · · · :: Bn ← Recover_Tuples(vID1 :: · · · :: vIDn,DB,Γ)
8: return (rID, P, ev, B1 :: · · · :: Bn)
9: else
10: (_, ruleargsp)← ncm
11: rID :: ιq :: vID1 :: · · · :: vIDn ← ruleargsp
12: B1 :: · · · :: Bn ← Recover_Tuples(vID1 :: · · · :: vIDn,DB,Γ)
13: (* DQ[rID] = p(@`p, ~xp) :- q(@`q, ~xq), b1(@`q, ~xb1), · · · , bn(@`q, ~xb1) *)
14: Q← Recover_Rule_Trigger(P,B1 :: · · · :: Bn, rID,DQ)
15: trq ← CompressedT_to_ProvenanceTree(yl, Q,DB,Γ, eID,DQ)
16: return (rID, P, trq:Q,B1 :: · · · :: Bn)
17: end function

Figure 34: Algorithm to recover a provenance tree from an ordered list of rule provenances

H.2 Properties of rule provenance
To prove the correctness of query for both forms of online compression, we rely on the fact that every rule provenance

element has a unique identifier. We state and prove this in Uniqueness of Rule Provenance Identifier (Lemma 38). In order to
prove uniqueness, we defined a well-formness property for rule provenance elements. We say that a rule provenance element
ruleExec is well-formed when the unique identifier for each element is the hash the unique identifier of the previous rule
provenance element generated during program execution. We show that every rule provenance element ruleExec (Lemma 36)
derived by the online compression execution is well-formed.

H.2.1 Definitions
We define what it means for a rule provenance element ruleExec to be well-formed.

Rule WF-heq
In the base case only one rule has been fired, thus there is no unique identifier for the previous rule fired. Instead, we

record the equivalence hash heq as an attribute of the unique identifier for the previous rule.
The rule associated with provenance element 〈λp, ruleargsp, λe〉 was triggered by an event tuple ev with equivalence

hash heq that joined with some slow-changing tuples B1, · · · , Bn. To differentiate the unique identifier for the provenance
element representing execution of this rule from the provenance element using the same slow-changing tuples B1, · · · , Bn
but triggered by an event tuple from a different equivalence class, we use heq as one of the attributes in the unique
identifier.

Rule WF-HashPrev
The rule associated with provenance element 〈λp, ruleargsp, λq〉 was triggered by a derived fast-changing tuple P that

joined with some slow-changing tuples B1, · · · , Bn. To differentiate the unique identifier for the provenance element
representing execution of this rule from the provenance element using the same slow-changing tuples B1, · · · , Bn but
triggered by an event tuple from a different equivalence class, we hash the unique identifier of the provenance element
associated with the previous rule executed.

equiSet ` ruleExec WF

heq ∈ equiSet HrIDp = hash(ruleargsp) λp = id(@ιe, HrIDp, heq) λe = id(∅, ∅, heq)
equiSet ` 〈λp, ruleargsp, λe〉 WF

WF-heq

equiSet ` 〈λq,_,_〉 WF λp = id(@ιq, HrIDp, hash(λq)) HrIDp = hash(ruleargsp)
equiSet ` 〈λp, ruleargsp, λq〉 WF

WF-HashPrev

H.2.2 Properties of the provenance when sharing storing within equivalence classes
Lemma 36 states that every rule provenance element ruleExec stored in Ccm is well-formed. Since Csn RC Ccm, every ruleExec

stored in Ccm corresponds to part of a provenance tree tr stored in Csn.
In the base case when only one rule was fired, ruleExec corresponds to tr . Therefore ruleExec is the last element of the list

of rule provenances that corresponds to tr , so by Well-formness of the last element of a list of rule provenances (Lemma 37)
it is well-formed. In the inductive case when multiple rules were fired, there are multiple rule provenances forming a chain
yl that correspond to tr . If ruleExec is the last element in yl, Well-formness of the last element of a list of rule provenances
(Lemma 37) to show that ruleExec is well-formed. Otherwise if ruleExec is not the last element in yl, there must a subtree
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trs where trs ⊆ tr and a subchain yls where yls ⊆ yl and ruleExec is the tail of yls, such that trs and yls correspond. Then
again by Well-formness of the last element of a list of rule provenances (Lemma 37) we see that ruleExec is well-formed.

Lemma 36 (Well-formness of ruleExec).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
implies
∀ruleExec ∈

⋃N

i=1 Scmi.Υ⋃N

i=1 Scmi.equiSet ` ruleExec WF

Proof.
Assume Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN .
By inversion on the rules for RC we have
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.

Pick any ruleExec ∈
⋃N

i=1 Scmi.Υ.

By Eδ,
(?) ∃trp:P ∈

⋃N

i=1Mi, ∃yl ∈
⋃N

i=1 Υi s.t.
Γ ` tr ∼d yl
and ruleExec ∈ yl

We proceed by induction over the structure of trp:P .

Base Case: trp = (rID, P, ev, B1 :: · · · :: Bn).
By (?) and the rules for ∼d,
(b1) yl = ruleExec

By (b1),
(b2) tail(yl) = ruleExec

By Well-formness of the last element of a list of rule provenances (Lemma 37),
(b2)

⋃N

i=1 equiSeti ` ruleExec WF
The conclusion holds

Inductive Case: trp = (rID, P, trq:Q,B1 :: · · · :: Bn).
Subcase i: tail(yl) = ruleExec.

By Well-formness of the last element of a list of rule provenances (Lemma 37),
(i1)

⋃N

i=1 equiSeti ` tail(yl) WF
By (i1) and since tail(yl) = ruleExec,

(i2)
⋃N

i=1 equiSeti ` ruleExec WF
The conclusion holds

Subcase ii: tail(yl) 6= ruleExec.
By the assumption that ruleExec ∈ yl,
(ii1) ∃ŷl ⊆ yl, ∃m ∈ [1, |yl| − 1] s.t.

yl = ŷl :: ruleExec :: ruleExec1 :: · · · :: ruleExecm
By (ii1) and (?),
(ii2) Γ ` tr ∼d ŷl :: ruleExec :: ruleExec1 :: · · · :: ruleExecm

By repeated inversion on rule ∼d-Ind,
(ii3) ∃t̂r s.t.

Γ ` t̂r ∼d ŷl :: ruleExec
and t̂r is a subderivation of trp

By the Semi-naïve transition rules and (ii3) and since trp:P ∈
⋃N

i=1Mi,
(ii4) t̂r ∈

⋃N

i=1Mi

By Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN , (ii3) and (ii4),
we apply Well-formness of the last element of a list of rule provenances (Lemma 37) to obtain
(ii5)

⋃N

i=1 equiSeti ` tail(ŷl :: ruleExec) WF
By (ii5),
(ii6)

⋃N

i=1 equiSeti ` tail(ruleExec) WF
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The conclusion holds

Well-formness of ruleExec (Lemma 36) uses Well-formness of the last element of a list of rule provenances to show that all
rule provenances stored by Ccm are well-formed. The proof uses the relation Csn RC Ccm and induction over the structure of
a provenance tree in Csn.

Lemma 37 (Well-formness of the last element of a list of rule provenances).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
implies
∀tr ∈

⋃N

i=1 Ssni.M, ∀yl ⊆
⋃N

i=1 Scmi.Υ,
Scm1.Γ ` tr ∼d yl
implies⋃N

i=1 Scmi.equiSet ` tail(yl) WF.

Proof.
Assume Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN .
By inversion on the rules that derived the above,
∀i ∈ [1, N ],Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ],Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉,
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.

Pick any tr ∈
⋃N

i=1Mi.

We proceed by induction over the structure of tr .

Base Case: tr = (rID, p(@ιp,~tp), e(@ιe,~te), b1(@ιe,~tb1) :: · · · :: bn(@ιe,~tbn)).
Pick any yl ⊆

⋃N

i=1 Scmi.Υ.
Assume Γ ` tr ∼d yl.
By inversion on the rules for ∼d we have the following constructs:
(b1) yl = tail(yl) = 〈λp, ruleargsp, λq〉
(b2) heq = EquiHash(e(@ιe,~te),Γ)
(b3) ∀i ∈ [1, n], vIDiTupleHash(bi(@ιe,~tbi),Γ)
(b4) ruleargsp = rID :: ιe :: vID1 :: · · · :: vIDn
(b5) HrIDp = hash(ruleargsp)
(b6) λp = id(@ιe, HrIDp, heq)

By (b2),
(b7) heq ∈

⋃N

i=1 equiSeti

By the above constructs we apply WF-heq to obtain:
(b8)

⋃N

i=1 equiSeti ` 〈λp, ruleargsp, id(∅, ∅, heq)〉 WF

By (b1) and (b8),
(b9)

⋃N

i=1 equiSeti ` tail(yl) WF
Inductive Case: tr = (rID, p(@ιp,~tp), trq:q(@ιq,~tq), b1(@ιq,~tb1) :: · · · :: bn(@ιq,~tbn)).

Pick any yl ⊆
⋃N

i=1 Υi.
Assume Γ ` tr ∼d yl.
By inversion on the rules for ∼d we have the following constructs:
(i1) yl = ylρ :: ruleExecq :: ruleExecp

where ruleExecq = 〈λq, ruleargsq, λρ〉
and ruleExecp = 〈λp, ruleargsp, λq〉

(i2) Γ ` trq:q(@ιq,~tq) ∼d ylρ :: ruleExecq
(i3) ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιe,~tbi),Γ)
(i4) ruleargsp = rID :: ιq :: vID1 :: · · · :: vIDn
(i5) HrIDp = hash(ruleargsp)
(i6) λp = id(@ιq, HrIDp, hash(λq))

By the transition rules for Semi-naïve evaluation,
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(i7) trq:q(@ιq,~tq) ∈
⋃N

i=1Mi

Using the bisimulation and (i7), we apply I.H. to obtain:
(i8) ∀ŷl ⊆

⋃N

i=1 Υi,
Γ ` trq:q(@ιq,~tq) ∼d ŷl
implies⋃N

i=1 equiSeti ` tail(ŷl) WF
By (i1), (i2) and (i8),

(i9)
⋃N

i=1 equiSeti ` tail(ylρ :: ruleExecq) WF

By (i9), (i5), (i6), and (i1),⋃N

i=1 equiSeti ` ruleExecp
By (i1),

tail(yl) = tail(ylρ :: ruleExecq :: ruleExecp) = ruleExecp
By the above and (i9),

the conclusion holds

Our online compression algorithm may store the rule provenances for the same execution trace on different nodes in the
network. In order to allow for querying of the complete provenance of a tuple, each rule provenance stores the unique identifier
of the previous rule provenance derived by the execution. Uniqueness of Rule Provenance Identifier (Lemma 38) shows that
our constructs for the unique identifier of a rule provenance element allows us to uniquely identify that element.

Lemma 38 (Uniqueness of Rule Provenance Identifier).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
implies
∀ruleExecA ∈

⋃N

i=1 Scmi.Υ, ∀ruleExecB ∈
⋃N

i=1 Scmi.Υ,
ruleExecA = 〈id(@ιp, HrIDp, [p), ruleargspA, λqA〉
ruleExecB = 〈id(@ιp, HrIDp, [p), ruleargspB , λqB〉
implies

ruleargspA = ruleargspB
and λqA = λqB

Proof.
Assume that Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN .

Pick any ruleExecA, ruleExecB ∈
⋃N

i=1 Scmi.Υ.
Assume:

ruleExecA = 〈λp, ruleargspA, λqA〉
and ruleExecB = 〈λp, ruleargspB , λqB〉.

Our goal is to show that ruleExecA = ruleExecB .

By Well-formness of ruleExec (Lemma 36),
(wfA)

⋃N

i=1 equiSeti ` ruleExecA WF
(wfB)

⋃N

i=1 equiSeti ` ruleExecB WF

We proceed by inversion on (wfA)
⋃N

i=1 equiSeti ` ruleExecA WF.

Case WF-heq.
By assumption

(a1) λqA = id(∅, ∅, heqA)
(a2) heqA ∈

⋃N

i=1 equiSeti
(a3) HrIDpA = hash(ruleargspA)
(a4) λp = id(@ιe, HrIDpA, heqA)

Now by inversion on (wfB)
⋃N

i=1 equiSeti ` ruleExecB WF, we have the following subcases:
Subcase WF-heq.

By assumption
(b1) λqB = id(∅, ∅, heqB)
(b2) heqB ∈

⋃N

i=1 equiSeti
(b3) HrIDpB = hash(ruleargspB)
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(b4) λp = id(@ιq, HrIDpB , heqB)

By (a4) and (b4),
(b5) HrIDpA = HrIDpB
(b6) heqA = heqB

Using the assumption that there are no collisions in hash:
By (b5) we have
(b7) ruleargspA = ruleargspB

By (b6), (b1), and (a1),
(b9) λqA = λqB

By (b7) and (b9),
the conclusion follows

Subcase WF-HashPrev.
By assumption
(b1)

⋃N

i=1 equiSeti ` 〈λqB ,_,_〉 WF
(b2) HrIDpB = hash(ruleargspB)
(b3) λp = id(@ιq, HrIDpB , hash(λqB))

By (b3),
(b4) HrIDpA = HrIDpB
(b5) heqA = hash(λqB)

By (b4) and the above constructs,
(b6) ruleargspA = ruleargspB

By (b1),
(b7) λqB 6∈ equiSet

By (a2) we have
(b8) heqA ∈

⋃N

i=1 equiSeti

By (b5), (b7), and (b8),
we have a contradiction

The last rule the derived (wfB)
⋃N

i=1 equiSeti ` ruleExecB WF was not WF-HashPrev

Case WF-HashPrev.
By assumption

(a1)
⋃N

i=1 equiSeti ` 〈λqA,_,_〉 WF
(a2) HrIDpA = hash(ruleargspA)
(a3) λp = id(@ιq, HrIDpA, hash(λqA))

Now by inversion on (wfB)
⋃N

i=1 equiSeti ` ruleExecB WF, we have the following subcases:
Subcase WF-heq.

By assumption
(b1) λqB = id(∅, ∅, heqB)
(b2) heqB ∈

⋃N

i=1 equiSeti
(b3) HrIDpB = hash(ruleargspB)
(b4) λp = id(@ιq, HrIDpB , heqB)

By (b4),
(b5) HrIDpB = HrIDpA
(b6) hash(λqA) = heqB

By (a1) and (b6),
(b7) heqB 6∈

⋃N

i=1 equiSeti

By (b2), and (b7),
(b8) we have a contradiction

The last rule the derived (wfB)
⋃N

i=1 equiSeti ` ruleExecB WF was not WF-heq.
Subcase WF-HashPrev.
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By assumption
(b1)

⋃N

i=1 equiSeti ` 〈λqB ,_,_〉 WF
(b2) HrIDpB = hash(ruleargspB)
(b3) λp = id(@ιq, HrIDpB , hash(λqB))

By (a2) and (b2),
(b4) HrIDpA = HrIDpB

Since we assume there are no collisions in hash,
(b5) ruleargspA = ruleargspB

By (a3) and (b3),
(b6) hash(λqA) = hash(λqB)

Since we assume there are no collisions in hash and using (b4),
(b7) λqA = λqB

By (b5) and (b7),
the conclusion holds

H.2.3 Properties of the provenance when sharing storing across equivalence classes

Lemma 39 (Uniqueness of lcm and ncm).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
and Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
implies

(I) ∀lcmA ∈
⋃
i=1 T cmi.L, ∀lcmB ∈

⋃
i=1 T cmi.L,

lcmA = 〈λp, λqA〉
and lcmB = 〈λp, λqB〉
implies
λqA = λqB

and
(II) ∀ncmA ∈

⋃
i=1 T cmi.N , ∀ncmB ∈

⋃
i=1 T cmi.N ,

ncmA = (〈@ιq, HrIDp〉, ruleargspA)
and ncmB = (〈@ιq, HrIDp〉, ruleargspB)
implies

ruleargspA = ruleargspB

Proof.
Assume the following:
(A1) Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
(A2) Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN

By inversion (A2),
(1) ∀i ∈ [1, N ], Scmi ∼∼S T cmi

By inversion on (1),
(2) ∀i ∈ [1, N ],

Scmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Υi,Υprovi〉
and T cmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Li,Ni,Υprovi〉
and Υi ∼∼ruleExec Li,Ni

Case (I): Proof that each element storing a parent-child relation has a unique identifier
Pick any lcmA ∈

⋃
i=1 T cmi.L.

Pick any lcmB ∈
⋃
i=1 T cmi.L.

Assume that
(i1) lcmA = 〈λp, λqA〉
(i2) lcmB = 〈λp, λqB〉

By (2),
(i3) ∃ruleExecA ∈

⋃N

i=1 Υi s.t. ruleExecA ∼∼` 〈λp, λqA〉
(i4) ∃ruleExecB ∈

⋃N

i=1 Υi s.t. ruleExecB ∼∼` 〈λp, λqB〉

By inversion on (i3),

73



(i5) ruleExecA = 〈λp,_, λqA〉
By inversion on (i4),

(i6) ruleExecB = 〈λp,_, λqB〉

By Uniqueness of Rule Provenance Identifier (Lemma 38),
ruleExecA = ruleExecB

By the above
(i7) λqA = λqB

By (i7),
(i8) lcmA = lcmB

The conclusion holds
Case (II): Proof that each element storing the rule provenance arguments has a unique identifier

Pick any ∀ncmA ∈
⋃
i=1 T cmi.N .

Pick any ∀ncmB ∈
⋃
i=1 T cmi.N .

Assume that
(ii1) ncmA = (〈@ιq, HrIDp〉, ruleargspA)
(ii2) ncmB = (〈@ιq, HrIDp〉, ruleargspB)

By (2),
(ii3) ∃ruleExecA ∈

⋃N

i=1 Υi s.t. ruleExecA ∼∼` (〈@ιq, HrIDp〉, ruleargspA)
(ii4) ∃ruleExecB ∈

⋃N

i=1 Υi s.t. ruleExecB ∼∼` (〈@ιq, HrIDp〉, ruleargspB)

By inversion on (ii3),
(ii5) ruleExecA = 〈id(@ιq, HrIDp,_), ruleargspA,_〉

By inversion on (ii4),
(ii6) ruleExecB = 〈id(@ιq, HrIDp,_), ruleargspB ,_〉

By (A1) we apply Well-formness of ruleExec (Lemma 36) to obtain:
(ii7)

⋃N

i=1 equiSeti ` ruleExecA WF
(ii8)

⋃N

i=1 equiSeti ` ruleExecB WF

By (ii5) and (ii7) and the definition of well-formness
(ii9) HrIDp = hash(ruleargspA)

By (ii6) and (ii8) and the definition of well-formness
(ii10) HrIDp = hash(ruleargspB)

Since we assume no hash collisions, by (ii9) and (ii10):
(ii11) ruleargspA = ruleargspB

By (ii11) and the definitions in (ii1) and (ii2):
the conclusion holds

H.3 Correctness of Query
Our goal is to who that we can recover all possible provenance trees for that tuple from the network configuration for online

compression that shares storage across equivalence classes. We formalize this notion as Correctness of QueryT (Lemma 42).
We first show that given any tuple that is an instance of a relation of interest, we can recover all possible provenance trees for

that tuple from the network configuration for online compression that shares storage within equivalence classes (Lemma 40).
Next, we use the bisimulation relation between the two versions of online compression execution to show that every provenance
returned by QueryS has a corresponding provenance returned by QueryT and vice versa (Lemma 43). We use this to prove
Lemma 42.

H.3.1 Sharing storage within equivalence classes
We show that given any tuple derived by semi-naïve evaluation, once the online compression execution that started out

in the same initial state terminates, then given the network configuration of the online compression execution that shares
storage within equivalence classes, QueryS is always able to correctly query for the set of all provenance trees of that tuple.

Correctness of QueryS (Lemma 40).
QueryS shows that given a network configuration for online compression execution with sharing storage within equiv-

alence classes, and there are no more updates to be processed, then for every provenance tree trr for an instance of a
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relation of interest res that is derived by the semi-naïve evaluation, when QueryS is given the network configuration
and res as arguments, it results a set of rule provenances ProvSetS . Every element in ProvSetS is an ordered list of rule
provenances that can be used to reconstruct a provenance tree for res. Furthermore, one of the elements in ProvSetS
can be used to reconstruct trr.
Because QueryS calls QuerySS to retrieve complete provenances, the proof uses Correctness of QuerySS (Lemma 41)

to show that given trr:res relates to a list of rule provenances ylr (Γ ` trr:res ∼d ylr), QuerySS takes in the network
configuration for the online compression and a pointer to the last rule provenance element in ylr and returns ylr in its
entirety.
In certain constructs used in QueryS, we write Scm1.Γ to denote the declaration that maps all relations in the program

DQ to a type and its primary keys. Because every state in online compression and semi-naïve evaluation stores the same
declaration, we could have chosen to write Scmi.Γ for i ∈ [1, N ] or Ssnj .Γ for j in [1, N ] to denote this declaration as well.
However, we write Scm1.Γ as the network presumably has at least one entity.

Correctness of QuerySS (Lemma 41).
Given that the network configurations for Semi-naïve evaluation and online compression execution relate, and Semi-

naïve evaluation stores a provenance tree trp for a tuple P , then if trp relates to a list of rule provenances ylp (Γ `
trp:P ∼ ylp) then QuerySS is able to retrieve ylp given just the network configuration and the unique identifier of the
last element in ylp.
The proof uses induction over the length of ylp. In the base case, ylp has only one rule provenance element, ruleExecp.

QuerySS uses the unique identifier of ruleExecp to retrieve ruleExecp and returns. Since ylp = ruleExecp :: nil, QuerySS
has successfully recovered ylp. For the inductive case, ylp has form ylq :: ruleExecp, where ylq is a non-trivial list of rule
provenances corresponding to trq:Q, the direct subtree of trp:P . QuerySS uses the unique identifier of ruleExecp to
retrieve ruleExecp. We use the induction hypothesis to show that QuerySS is then called with the unique identifier of
the last element of ylq and obtains ylq. The algorithm returns with ylq :: ruleExecp.

Lemma 40 (Correctness of QueryS).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
and Qcm ∪

⋃N

i=1 Scmi.U cm = ∅
implies
∀interest(trr:res) ∈

⋃N

i=1 Ssni.Mprov

∃ProvSetS s.t.
QueryS(Qcm� Scm1 · · · ScmN , res, eID) = ProvSetS
and ∃yl ∈ ProvSetS

yl ⊆
⋃N

i=1 Ssni.Mprov

and Scm1.Γ ` trr:res ∼d yl
and ∀ŷl ∈ ProvSetS\yl,

∃interest(t̂rr:res) ∈
⋃N

i=1 Ssni.Mprov s.t.
Scm1.Γ ` t̂rr ∼d ŷl.

Proof.
Assume
(1) Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
(2) Qcm ∪

⋃N

i=1 U cmi = ∅

By inversion on the rule that derived (1):
∀i ∈ [1, N ], Ssni = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Mi,Mprovi〉
∀i ∈ [1, N ], Scmi = 〈@ιi,DQ,Γ,DBi, Ei,U cmi, equiSeti,Υi,Υprovi〉
Eα :: Γ ` Qsn RU Qcm
Eβ :: ∀i ∈ [1, N ], Γ `

⋃N

i=1 Usni RU
⋃N

i=1 U cmi
Eγ :: U cmF ⊆ Qcm ∪

⋃N

i=1 U cmi
Eδ :: Γ,DQ,U cmF `

⋃N

i=1Mi Rre
⋃N

i=1 Υi

Eε :: Γ,DQ,U cmF ,
⋃N

i=1 Υi `
⋃N

i=1Mprovi Rprov
⋃N

i=1 Υprovi.

Pick any interest(trr:res) ∈
⋃N

i=1 Ssni.Mprov

Call QueryS(Qcm� Scm1 · · · ScmN , res, eID)

By assumption (2),
the are no updates left to be fired
the assertion on Line 2 passes

By the semantics of Obtain_Result_Prov and Eε,
(3) ∃provr ∈

⋃N

i=1 Υprovi s.t.
provr = 〈@ιr, res,_,_〉
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and Γ,
⋃N

i=1 Υi ` interest(trr:res) ∼prov provr

By inversion on the rules for (3),
(4) ∃ev, ∃λr, ∃ylr s.t.

ev = EventOf(trr:res)
and eID = hash(ev,Γ)
and provr = 〈@ιr, res, eID, λr〉
and Γ ` trr:res ∼d ylr
and tail(ylp):1 = λr

By (3) and (4),
the list of tuple provenances [prov1, · · · , provm] returns by Obtain_Result_Provenance is nontrivial

By a similar reasoning in (3) and (4),
(5) ∀i ∈ [1,m],

∃provri, ∃evi, ∃trri, ∃λri, ∃ylri s.t.
evi = EventOf(trri:res)
and eIDi = hash(evi,Γ)
and provri = 〈@ιri, res, eIDi, λri〉
and Γ ` trri:res ∼d ylri
and tail(ylri):1 = λri

By the rules for Semi-naïve evaluation,
(6) ∀i ∈ [1,m], trri:res ∈

⋃N

i=1 Υprovi

We use the above constructs to apply Correctness of QuerySS (Lemma 41) and obtain
(7) ∀i ∈ [1,m],

QuerySS(Qcm� Scm1 · · · ScmN , λri) = trri:res
where Γ ` trri:res ∼d ylri
and tail(ylri):1 = λri

By (5), (7), and the semantics of QueryS,
(8) QueryS(Qcm� Scm1 · · · ScmN , res, eID) terminates and returns ProvSetS
(9) ∀ŷl ∈ ProvSetS ,

∃t̂rr s.t.
ŷl ⊆

⋃N

i=1 Υi

and interest(t̂rr:res) ∈
⋃N

i=1 Υprov

and Γ ` t̂rr:res ∼d ŷl

By (4), (8), and (9),
the conclusion holds

Lemma 41 (Correctness of QuerySS).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
and trp:p(@ιp,~tp) ∈

⋃N

i=1 Ssnj .M
and Υp ⊆

⋃N

j=1 Scmj .Υ
and Scm1.Γ ` trp:p(@ιp,~tp) ∼d ylp
and tail(ylp):1 = λp
implies

QuerySS(Qcm� Scm1 · · · ScmN , λp) = ylp

Proof.
Assume:
(1) Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
(2) trp ∈

⋃N

i=1 Ssnj .M
(3) Υp ⊆

⋃N

j=1 Scmj .Υ
(4) Scm1.Γ ` trp ∼d ylp
(5) tail(ylp):1 = λp

By (5),
ylp contains at least one element
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We proceed by induction on the length of |ylp|.

Base Case: |ylp| = 1.
By assumption

the last rule that derive (4) was ∼d-Base
By inversion on the rule we have the following constructs

(b1) trp = (rID, p(@ιp,~tp), e(@ιe,~te), b1(@ιe,~tb1) :: · · · :: bn(@ιe,~tbn))
(b2) heq = EquiHash(e(@ιe,~te),Γ)
(b3) λe = id(∅, ∅, heq)
(b3) ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιe,~tbi),Γ)
(b4) ruleargsp = rID :: ιe :: vID1 :: · · · :: vIDn
(b5) HrIDp = hash(ruleargsp)
(b6) λp = id(@ιe, HrIDp, hash(heq :: HrIDp))
(b7) ylp = ruleExecp = 〈λp, ruleargsp, λe〉

By the semantics of QuerySS and (b6)
when QuerySS(Qcm� Scm1 · · · ScmN , λp) is called
since λp:3 6∈

⋃N

i=1 equiSeti,
the else branch of the if-else statement on Lines 12-17 is taken

By the semantics of QuerySS, (b7), and (b3),
(b8) ∃ruleExec′

p s.t.
ruleExec′

p = 〈λp, ruleargs′
p, λ

′
e〉

and QuerySS(Qcm� Scm1 · · · ScmN , λp) returns QuerySS(Qcm� Scm1 · · · ScmN , λp) :: ruleExec′
p

By Uniqueness of Rule Provenance Identifier (Lemma 38),
(b9) ruleExec′

p = ruleExecp

By semantics of QuerySS and (b2)
when QuerySS(Qcm� Scm1 · · · ScmN , λe) is called,
since λe:3 ∈

⋃N

i=1 equiSeti,
the if branch of the if-else statement on Lines 12-17 is taken

By the above,
(b10) the empty list [] is returned

By (b8), (b9), (b10),
(b11) QuerySS(Qcm� Scm1 · · · ScmN , λp) returns ruleExecp

Inductive Case: |ylp| = k + 1 ≥ 2.
By assumption,
∃ylq, ∃ruleExecp s.t.

ylp = ylq :: ruleExecp
and |ylq| = k ≥ 1

By the above,
the last rule that derived (4) was ∼d-Ind

By inversion on that rule we have the following:
(i1) trp = (rID, p(@ιp,~tp), trq:q(@ιq,~tq), b1(@ιq,~tb1) :: · · · :: bn(@ιq,~tbn))
(i2) ylq = ylρ :: ruleExecq where ruleExecq = 〈λq, ruleargsq, λρ〉
(i3) Γ ` trq:q(@ιq,~tq)) ∼d ylρ :: ruleExecq where ruleExecq = 〈λq, ruleargsq, λρ〉
(i4) ∀i ∈ [1, n], vIDi = TupleHash(bi(@ιe,~tbi),Γ)
(i5) ruleargsp = rID :: @ιq :: vID1 :: · · · :: vIDn
(i6) HrIDp = hash(ruleargsp)
(i7) [p = hash((λq:3) :: HrIDp)
(i8) λp = id(@ιq, HrIDp, [p)

By (i8) and the semantics of QuerySS
when QuerySS(Qcm� Scm1 · · · ScmN , λp) is called
since λp:3 6∈

⋃N

i=1 equiSeti,
the else branch of the if-else statement on Lines 12-17 is taken

By the above,
(i9) the return value is QuerySS(Qcm� Scm1 · · · ScmN , λq) :: ruleExec′

p

where ruleExec′
p = Get_RuleExec(

⋃N

i=1 Υi, λp)

By (i9) and the semantics of Get_RuleExec,
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(i10) ruleExec′
p ∈
⋃N

i=1 Υi

(i11) ∃ruleargs′
p, ∃λ′

q s.t.
ruleExec′

p = 〈λp, ruleargs′
p, λ

′
q〉

By Uniqueness of Rule Provenance Identifier (Lemma 38),
(i12) ruleExec′

p = ruleExecp

Since |ylq| = k ≥ 1 and by (i3),
(i13) trq:q(@ιq,~tq) is nontrivial and there exists constructs such that

trq = (rIDq, q(@ιq,~tq), trρ:ρ(@ιρ,~tρ), bρ1(ιρ,~tρ1) :: · · · :: bρm(ιρ,~tρm))
By the transition rules for Semi-naïve evaluation,

(i14) trq:q(@ιq,~tq) ∈
⋃N

i=1Mi

By assumption Υp ⊆
⋃N

j=1 Scmj .Υ,
(i15) ylρ :: ruleExecp ⊆

⋃N

j=1 Scmj .Υ

Using (1), (i3), (i14) and (i15) and by I.H.,
(i16) QuerySS(Qcm� Scm1 · · · ScmN , λp) = ylρ :: ruleExecq :: ruleExecp = ylp

By (i9), (i12), and (i16),
(i17) QuerySS(Qcm� Scm1 · · · ScmN , λq) :: ruleExec′

p

H.3.2 Sharing storage across equivalence classes
We show that given any tuple derived by semi-naïve evaluation, once the online compression execution that started out

in the same initial state terminates, then given the network configuration of the online compression execution that shares
storage across equivalence classes, QueryS is always able to correctly query for the set of all provenance trees of that tuple.

Correctness of QueryT (Lemma 42).
This is the key lemma that shows that we can recover all possible provenances for a tuple from the network configuration

for online compression that shares storage across equivalence classes. The proof relies on the fact that QueryS and
QueryT return equivalence sets of provenances as show in QueryS implies QueryT (Lemma 43).

Soundness of QueryT w.r.t. QueryS (Lemma 43).
This lemma shows that given bisimular network configurations and the same tuple to query for, then QueryS and

QueryT will return equivalence sets of provenances given. The proof steps through the implementation of the Algorithms
QueryS and QueryT and shows that they perform analogous operations.

Soundness of QueryTT w.r.t. QuerySS (Lemma 44).
This lemma shows that given bisimular network configurations, the same tuple to query for, and the unique identifier

of the last provenance element for the derivation of that tuple, then QuerySS and QueryTT will return corresponding
provenances for the query tuple. The proof steps through the implementation of the Algorithms QuerySS and QueryTT
and shows that they perform analogous operations.

Lemma 42 (Correctness of QueryT).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
and Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
and Qcm ∪

⋃N

i=1 T cmi.U cm
implies
∀interest(trr:res) ∈

⋃N

i=1 Ssni.Mprov

∃ProvSetT s.t.
QueryT(Qcm� T cm1 · · · T cmN , res, eID) = ProvSetT
and ∃ch ∈ ProvSetT s.t.

ch ⊆
⋃N

i=1 Ssni.Mprov

and T cm1.Γ ` trr:res ∼∼ch ch
and ∀ĉh ∈ ProvSetT,

∃interest(t̂rr:res) ∈
⋃N

i=1 Ssni.Mprov s.t.
T cm1.Γ ` t̂rr ∼∼ch ĉh

Proof.
Assume the following:
(A1) Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
(A2) Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
(A3) Qcm ∪

⋃N

i=1 T cmi.U cm
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By inversion (A2),
(1) ∀i ∈ [1, N ], Scmi ∼∼S T cmi

By inversion on (1),
(2) ∀i ∈ [1, N ],

Scmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Υi,Υprovi〉
and T cmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Li,Ni,Υprovi〉
and Υi ∼∼ruleExec Li,Ni

Using (A1) and (2) we apply Correctness of QueryS (Lemma 40) to obtain:
(3) ∀interest(trr:res) ∈

⋃N

i=1Mprovi

∃ProvSetS s.t.
QueryS(Qcm� Scm1 · · · ScmN , res, eID) = ProvSetS
and ∃yl ∈ ProvSetS

yl ⊆
⋃N

i=1Mprovi

and Γ ` trr:res ∼d yl
and ∀ŷl ∈ ProvSetS\yl,

∃interest(t̂rr:res) ∈
⋃N

i=1Mprovi s.t.
Scm1.Γ ` t̂rr ∼d ŷl

Pick any interest(trr:res) ∈
⋃N

i=1Mprovi.
We apply QueryS implies QueryT (Lemma 43) to obtain:

(4) ∃ProvSetT s.t.
∀yl ∈ ProvSetS , ∃ch ∈ ProvSetT s.t. yl ∼∼ch ch
and ∀ch ∈ ProvSetT , ∃yl ∈ ProvSetS s.t. yl ∼∼ch ch
and QueryT(Qcm� T cm1 · · · T cmN , res, eID) = ProvSetT

By (3) and (4),
(5) ∃ch ∈ ProvSetT s.t.

ch ⊆
⋃N

i=1Mprovi

and Γ ` trr:res ∼∼ch ch
and ∀ĉh ∈ ProvSetT ,

∃interest(t̂rr:res) ∈
⋃N

i=1Mprovi s.t.
Γ ` t̂rr ∼∼ch ĉh

Lemma 43 (Soundness of QueryT w.r.t. QueryS).
Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
and QueryS(Qcm� Scm1 · · · ScmN , res, eID) = ProvSetS
implies
∃ProvSetT s.t.
∀yl ∈ ProvSetS, ∃ch ∈ ProvSetT s.t. yl ∼∼ch ch
and ∀ch ∈ ProvSetT, ∃yl ∈ ProvSetS s.t. yl ∼∼ch ch
and QueryT(Qcm� T cm1 · · · T cmN , res, eID) = ProvSetT

Proof.
Assume the following:
(A1) Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
(A2) QueryS(Qcm� Scm1 · · · ScmN , res, eID) = ProvSetS

By the semantics of QueryS and QueryT,
(1) both call a function (ObtainTupleProvS and ObtainTupleProvT)

respectively that return an identical set of tuple provenances [prov1, · · · , provm]
for the tuple res and event identifier eID
and ∀i ∈ [1,m], provi = 〈@ιr, res, eID, λr〉

(2) On Lines 4-7 of both functions, the unique identifier to enables querying for the complete provenance for each provi
is retrived via QuerySS and QueryTT

(3) On Line 8, both functions return the complete set of rule provenances
that derived tuple res given the input event with identifier eID.

By (A2) and (2),
(4) For each provi in [prov1, · · · , provm],

QuerySS(Qcm� Scm1 · · · ScmN , λr) = yli
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and QueryTT(Qcm� T cm1 · · · T cmN , λr) = chi
and T cmi.Γ ` yli ∼∼ch chi

By (3) and (4),
The conclusion follows

Lemma 44 (Soundness of QueryTT w.r.t. QuerySS).
Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
and Qcm ∪

⋃N

i=1 T cmi.U cm
and QuerySS(Qcm� Scm1 · · · ScmN , λp) = yl
implies
∃ch s.t.

QueryTT(Qcm� T cm1 · · · T cmN , λp) = ch
and T cm1.Γ ` yl ∼∼ch ch

Proof.
Assume the following:
(A1) Qsn� Ssn1 · · · SsnN RC Qcm� Scm1 · · · ScmN
(A2) Qcm� Scm1 · · · ScmN ∼∼ch Qcm� T cm1 · · · T cmN
(A3) Qcm ∪

⋃N

i=1 T cmi.U cm
(A4) QuerySS(Qcm� Scm1 · · · ScmN , λp) = yl

By inversion on (A2),
∀i ∈ [1, N ], Ssni ∼∼S T cmi

By inversion on the above,
(?) ∀i ∈ [1, N ],

Scmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Υi,Υprovi〉
and T cmi = 〈@ιi,DQ,Γ,DBi, Ei,Usni, equiSeti,Li,Ni,Υprovi〉
and Υi ∼∼ruleExec Li,Ni

We proceed by induction on the length of yl.

Base Case: |yl| = 0.
By assumption

(b1) yl = []
By (b1) and the semantics of QuerySS,
λr ∈

⋃N

i=1 equiSeti
By the above and the semantics of QueryTT

(b2) ch = []
By the rules for ∼∼ch ,

(b3) [] ∼∼ch []
By (b2) and (b3),

the conclusion follows
Inductive Case: |yl| = k + 1.

By assumption,
(i1) |yl| = k + 1 ≥ 1
(i2) yl ⊆

⋃N

i=1 Υi

where ∃ŷl, ∃ruleExecp s.t.
ruleExecp = 〈λp, ruleargsp, λq〉
and yl = ŷl :: ruleExecp
and ruleExecp:1 = λp

By the semantics of QuerySS,
(i2) the else branch of the if-else statement on Lines 12-17 of QuerySS was taken
(i3) the function finds ruleExec′

p and returns QuerySS(Qcm� Scm1 · · · ScmN , λp) :: ruleExecp
where QuerySS(Qcm� Scm1 · · · ScmN , λp) = ŷl

By (i5), when we call QueryTT with arguments Qcm� T cm1 · · · T cmN and λp,
(i6) the else branch of the if-else statement on Lines 12-17 of QueryTT is taken

By (i2) and the definition of rule provenances, ruleExecp consists of the following constructs:
(i7) ruleExecp = 〈λp, ruleargsp, λq〉 = 〈id(@ιq, HrIDp, [p), ruleargsp, λq〉

where HrIDp = hash(ruleargsp)
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We use the above to define:
(i8) lcm , (λp, λq)
(i9) ncm , (〈@ιq, HrIDp, 〉, ruleargsp)

By (i6),
(i10) QueryTT returns QueryTT(Qcm� T cm1 · · · T cmN , λ′

q) ; (lcm′ :: ncm′)
where lcm = (λp, λ′

q) and ncm = (〈@ιq, HrIDp, 〉, ruleargs′
p)

By Uniqueness of lcm and ncm (Lemma 39),
(i11) lcm′ = lcm and ncm′ = ncm

By (i1) we have
|ŷl| = k

Using (A1), (A2), (A3), (i3) and the above,
(i12) ∃ĉh s.t.

QueryTT(Qcm� T cm1 · · · T cmN , λq) = ĉh
and T cm1.Γ ` ŷl ∼∼ch ĉh

By (i11) and (i12),
(i13) QueryTT(Qcm� T cm1 · · · T cmN , λp)

= QueryTT(Qcm� T cm1 · · · T cmN , λq) ; (lcm :: ncm)
= ĉh ; (lcm :: ncm)
and T cm1.Γ ` yl ∼∼ch ĉh ; (lcm :: ncm) where yl = ŷl :: ruleExecp

By (i13)
the conclusion follows
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