
Lightweight Source Authentication and Path Validation

Tiffany Hyun-Jin Kim
CyLab, CMU

hyunjin@cmu.edu

Cristina Basescu
ETH Zürich

cba@inf.eth.ch

Limin Jia
CyLab, CMU

liminjia@cmu.edu

Soo Bum Lee
Qualcomm

soobuml@qti.qualcomm.com

Yih-Chun Hu
UIUC

yihchun@uiuc.edu

Adrian Perrig
ETH Zürich

perrig@inf.eth.ch

ABSTRACT

In-network source authentication and path validation are funda-
mental primitives to construct higher-level security mechanisms
such as DDoS mitigation, path compliance, packet attribution, or
protection against flow redirection. Unfortunately, currently pro-
posed solutions either fall short of addressing important security
concerns or require a substantial amount of router overhead. In this
paper, we propose lightweight, scalable, and secure protocols for
shared key setup, source authentication, and path validation. Our
prototype implementation demonstrates the efficiency and scalabil-
ity of the protocols, especially for software-based implementations.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Security and pro-
tection; C.2.1 [Network Architecture and Design]: Circuit-switch-
ing networks, Packet-switching networks

Keywords

Source Authentication, Path Validation, Retroactive Key Setup

1. INTRODUCTION
Source authentication and path validation are useful primitives

to help mitigate various network-based attacks, such as DDoS, ad-
dress spoofing, and flow redirection attacks [7]. Path validation,
in particular, provides a way to enforce path compliance according
to the policies of ISPs, enterprises, and datacenters. Endhosts and
ISPs desire to validate service level agreement compliance regard-
ing data delivery in the network: Did the packet truly originate from
the claimed client? Did the client select a path that complies with
the service provider’s policy? Did the packet indeed travel through
the path selected by the client?

Unfortunately, the current Internet provides almost no means for
source authentication and path validation by routers or endhosts,
opening up numerous attack surfaces. For example, a malicious
ISP may forward a packet on an inferior path while claiming to its
client that it forwarded the packet on the premium path. Alterna-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626323.

tively, a malicious router may inject packets with a spoofed source
address to incriminate a victim source node into having sent an ex-
cessive number of packets. A malicious router may simply alter the
contents of received packets as well. The inability to detect such
attacks near the point of deviation wastes downstream resources.
Furthermore, an adversary may exploit the routing protocol to di-
vert traffic to traverse a point of eavesdropping it controls—a seri-
ous issue in particular for sensitive information.

End-to-end encryption and authentication mechanisms, such as
TLS, do not solve any of the above issues, since they are agnos-
tic to which path the packet takes. A stronger approach is needed,
which enables routers and destinations to perform source authenti-
cation and path validation. As we discuss in the related work, ex-
isting solutions either require extensive overhead, or only partially
address fundamental problems, affecting both feasibility and prac-
ticality in the existing network. For example, ICING [26] addresses
both source authentication and path validation, but it requires each
intermediate router on a path to store and look up keys shared with
other routers; ICING requires 42 bytes per verifying router in the
packet header. Furthermore, ICING requires each router to calcu-
late a Message Authentication Code (MACs) for all other routers

on the path. In contrast, our protocol does not require any per-
client state on routers; it requires only 16 bytes per hop (which can
be reduced to 2 bytes for a lower level of security), and only a sin-
gle MAC and a single PRF computation per router irrespectively of

the path length. Moreover, one of our protocol instantiations pre-
vents against coward attacks [20], where an adversary only attacks
when it knows that the attack will not be detected. Our protocol,
however, offers reduced security in the case of a malicious sender
colluding with a malicious router on the path, which we describe
in detail in the related work section. Since in the common case,
sender and receiver trust each other, the performance gain of O(1)
MAC operation per router instead of O(n) is worth the tradeoff.
Contributions. In this paper, we present Dynamically Recreatable

Key (DRKey) protocols that enable routers to (re-)create symmetric
keys shared with the endhosts on the fly. The stateless operation of
DRKey on routers prevents state exhaustion DoS attacks and sim-
plifies router architecture. We further enrich DRKey with a new
notion called retroactive key setup that provides the following de-
sirable properties: (1) in contrast to previous protocols, source and
destination can start the communication without needing to wait
for the expensive key setup to complete, providing efficiency; (2)
if misbehavior is suspected, endhosts set up keys retroactively to
verify previous packets, defending against coward attacks.

Based on the dynamically (re-)creatable keys through DRKey
protocols, we present Origin and Path Trace (OPT)—-lightweight,
scalable, and secure protocols for source authentication and path
validation. We introduce an extension called Retroactive-PathTrace

that supports the destination to perform path validation with retroac-

tive key setup and to detect coward attackers with small, constant
overhead in the packet header. Our OPT protocols enable imple-
mentation on software routers with minimal performance impact.

2. PROBLEM DEFINITION

2.1 Desired Security Properties
Source authentication and data authentication. The destination
and each intermediate router should be able to determine whether
the packet indeed originated from the claimed source and whether
the packet content has not been altered en route. In this paper,
source authentication includes data authentication.
Path validation. The source, intermediate routers, and the desti-
nation should be able to validate that the packet indeed traversed
the path known to (or selected by) the source. Successful path val-
idation ensures that the packet traversed each honest router on the
path in the correct order. Unfortunately, no scheme can provide
any guarantees for malicious routers: if malicious router Rm pub-
lishes its secret keys, another malicious router Rm′ could perform
cryptographic operations on a packet without traversing Rm.

2.2 Elided Security Properties
No packet delivery guarantee. Routers generally have the free-
dom to decide whether or not to forward packets. Hence, it is not
the purpose of path validation to guarantee that packets will be de-
livered to the specified destination.
No detection of packet siphoning. Misbehaving router Rm on the
source-selected path can siphon packets and send them over a sep-
arate channel to a remote entity. Since Rm still forwards the packet
to Rm+1, this attack is not detected. We consider Rm as obeying the
protocol as long as it performs protocol-compliant operations with
the packet.
No locating of packet altering and dropping routers. Locating
routers that alter or drop packets is the goal of fault-localization
mechanisms—another challenging problem especially in inter-domain
settings [40]. Since path validation is a simpler problem, the goal
is to achieve a more efficient protocol than heavy-weight fault lo-
calization.

2.3 Adversary Model
We consider a computationally-bounded network attacker that

deviates from the protocol and violates its security goals as we de-
scribe next.
Packet alteration. A malicious router alters any part of the packet,
such as source address, header information, or payload data.
Packet injection. A malicious router fabricates a packet and sends
it towards a destination of its choice. A packet replay attack is a
special case of packet injection.
Path deviation. A malicious router may perform path deviation

attacks, which cause packets to be forwarded along a path other
than the path previously selected by the source. We subdivide this
attack as follows:

• Path detour: Malicious router Rm causes a packet to deviate
from the intended forwarding path, but later the packet returns
to the correct downstream router Rm+1 to resume traversal of all

routers on the intended path.
• Router skipping: A malicious router redirects the packet and

skips other router(s) on the path. Thus, some routers on the in-
tended path does not forward the packet.
• Out-of-order traversal: An adversary causes path deviations

such that routers on the intended path are not traversed in the
right order.

Coward attack. An adversary launches a coward attack [20] only
when the adversary believes that the attack cannot be detected. For

example, an attacker diverts traffic only when the protocol is inac-
tive (e.g., required keys for validation have not been established).
Denial-of-Service (DoS). As part of DoS attacks, we consider mem-
ory and computation exhaustion attacks on routers performing source
authentication and path validation.
Collusion. Protocol participants may collude to carry out any of
the attacks listed above. For example, two or more intermediate
routers may collude to claim the use of an expensive path for mon-
etary profit, or the source may collude with an intermediate router
to spoof authenticators for its downstream routers if the destina-
tion prefers/trusts skipped routers. Also, both the source and the
destination could collude with some intermediate routers to frame
another router on the path by not forwarding packets to it.

In Section 6, we explore potential attacks against our protocols
that violate the desired properties and discuss how OPT defends
against these attacks.

3. OPT DESIGN OVERVIEW
We consider a setting in which source S sends a packet to des-

tination D along a sequence of routers Ri. We refer to S, D, and
Ri’s as tracing entities. At a very high level, the main insights for
achieving source authentication and path validation without requir-
ing routers to maintain per-source or per-path-length state are as
follows: (1) In the packet header, source S includes H(P), which is
the hash of the packet payload to help receiving entities identify the
packet while avoiding expensive hash computation at each router;
(2) On demand, each router Ri generates key Ki using a symmet-
ric cryptographic operation, and requires only router’s local secret
SVRi

and a special value called SESSIONID in the packet header
as inputs. Consequently, generating deterministic keys is stateless
and faster than storing or retrieving secrets. (3) Each router per-
forms source authentication using a MAC computed over H(P); (4)
Each router Ri extends a special authentication field called PVF by
performing a MAC operation. Hence, path validation is achieved
through a chain consisting of nested MACs.

3.1 Assumptions
For the communication properties of the network, we assume

that the source knows the path that the packet will traverse at the
AS- or router-level granularity to enable path validation, and that
the source knows which entities in that path desire to perform the
validations. This information can stem from (1) the BGP proto-
col where the source can learn the AS path that the packet is ex-
pected to traverse, (2) Pathlet routing [11] or SCION [41] where
the source can specify the path in the packet header, or (3) i3 [34]
or Platypus [30] where the source can define a sequence of servers
to traverse. Alternatively, an ISP may provide the premium path
information to clients as an extra service (e.g., transatlantic cable
for financial transactions [28]), in which case a client can validate
that the traversed path is indeed the premium path paid for.

For the cryptographic key setup, the source and the destination
need to be able to authenticate the router’s cryptographic materi-
als (i.e., validate a signature that binds an entity to some crypto-
graphic materials). In the case of AS-level tracing, the AS needs to
be authenticated, and such authentication can be achieved through
RPKI [4], which is already operational. RPKI provides a PKI that
enables authentication of AS certificates, each of which binds an
AS number to its public key, given the correct RPKI public root
key. In case of router-level tracing, we assume that each AS in turn
creates certificates for each router using the AS’s private key—
enabling the tracing entity to verify via the AS certificate using
RPKI.1

1Alternatively, OPT can authenticate entities based on mechanisms

Table 1: Notation.
(PKE ,PK−1

E) Entity E’s public-private key pair
CertPKE

Entity E’s public-key Certificate

K̂SD Long-term symmetric key between S and D, which is valid
over multiple sessions

KE Symmetric key among S, D, and entity E for a single session
KE1E2

Symmetric key between entities E1 and E2 for a single session

KE1E2σ Symmetric key for E1 and E2 in session σ for E1-initiated
packets

SVE Entity E’s local secret value
P Network packet payload

(PKσ ,PK−1
σ) Public-private key pair of session σ

PATHσ Session σ ’s path information
Tσ Time when S initiates session σ

SESSIONID Hash of session σ ’s public key, path, session initiation time
AUTHσ Authenticated and encrypted SESSIONID and private key for

session σ

SignKEY
PK−1

E
,σ

Signature on a symmetric key for session σ using entity E’s
private key

EncKEYK,σ Encryption of a symmetric key for session σ using key K

KEYSσ Set of shared keys between routers and S for session σ

DATAHASH Hash of the packet’s payload
PVF Field enabling D to verify the path

PVFS Field enabling Ri and D to verify the path
PVFD Field enabling D to confirm the actual path

OVi Field enabling Ri to validate the packet sender
OPVi Field enabling Ri to verify both the packet sender and path

Sign
PK−1

E
(·) Signature using entity E’s private key

CheckSig
PK−1

E
(·) Signature verification using entity E’s private key

EncK (·), DecK (·) Encryption, decryption using key K

AuthEncK (·) Authenticated encryption using key K

AuthDecK (·) Authenticated decryption using key K

FK (·) Pseudo-random function using key K

MACK (·) Message Authentication Code using key K

H(·) Cryptographic hash operation

We also assume that the source and destination entities that per-
form the tracing of the intermediate routers can establish a secret
key between each other. In case the tracing entities are AS infras-
tructure hosts such as edge routers, firewalls, or a middlebox at a
service provider, either RPKI can be used as described above or an
administrator can set up trusted public keys between entities that
need path verification. If endhosts perform tracing, then a shared
key can be set up through SSL or TLS if one of the endhosts is a
HTTPS server, through IPsec or SSH. The public keys can be ver-
ified through a regular PKI, administrator-based set up of trusted
keys, TOFU (Trust On First Use) in SSH, TOFU with Perspec-
tives [36], RPKI with domain-certified host keys, self-certifying
IDs as public keys [1,23,24,35], or self-validation using an anony-
mous service [10]. We assume that one of these approaches is used
to set up symmetric key K̂SD between source S and destination D.

3.2 Main Insights
One of OPT’s crucial insights is our approach to avoid storing

per-flow state on routers; unlike prior approaches that require each
router to maintain a secret key for each flow, our design enables
routers to derive the secret keys on the fly using only local se-
crets stored at the routers and an efficient pseudo-random function.
Thus, we avoid storing all the keys.

More precisely, OPT runs in sessions. In each session σ , source
S sends packets to destination D on path PATHσ . S and D leverage
long-term symmetric key K̂SD to set up keys with each router in
PATHσ . DRKey, the details of which is explained in Section 4, is
instrumental in achieving OPT’s efficiency properties. In particular,
the source prepares and inserts a special field in the packet header
called SESSIONID such that intermediate routers Ri on PATHσ dy-
namically compute the shared symmetric key with S and D (Ri only
needs to look up its local secret SVRi

for computation).

that use self-certifying IDs as public keys [1,23,24,35] as assumed
in ICING. However, such mechanisms have issues with key revo-
cations. Hence, we prefer to use RPKI.

Our key establishment mechanism does not require any per-flow
state on the routers. Consequently, OPT is robust against DoS
attacks based on state exhaustion. Moreover, computing pseudo-
random function (PRF) F is faster than performing a cache access;
for instance, a key derivation using AESni takes 32 cycles, whereas
a L3 cache read operation requires approximately 40 cycles (on In-
tel “Sandy-Bridge”-based Xeon architecture).

OPT includes the hash of the packet payload H(P) in the header,
which enables an important optimization: routers can either par-
allelize the computations of MAC and the hash of the packet, or
probabilistically validate H(P).

3.3 OPT Protocol Overview
DRKey for path selection and key setup. When source S initiates
session σ at time Tσ , S selects path PATHσ to destination D, gener-
ates asymmetric public/private key pair (PKσ ,PK−1

σ), and creates a
session identifier, where SESSIONID = H(PKσ‖PATHσ‖Tσ). Af-
ter preparing some values that support source authentication and
path validation for other entities on PATHσ , S forwards the OPT
packet to its downstream router on PATHσ . If Tσ is recent (i.e.,
within some predefined interval by the AS), each intermediate router
Ri sets up shared symmetric key Ki using its local secret SVRi

and
SESSIONID. Detailed DRKey protocols are explained in Section 4.
Generation of verification fields. S uses the path information to
pre-compute verification fields, one for each router Ri on PATHσ ,
and a special field called PVF such that routers can perform source
authentication and path validation.
Verification and update by intermediate routers. Upon receiv-
ing a packet, Ri first regenerates the shared symmetric key Ki and
recomputes the verification field based on PVF. When the com-
puted value matches what is present in the packet header for Ri, it
successfully authenticates the source and the content of the packet,
and validates the traversed path. Ri then updates PVF, by applying
a MAC operation using Ki to the field. This process helps down-
stream routers and the destination to validate that each router on the
path has indeed seen the packet.
Verification by destination. The destination finally recomputes
the verification fields using all the symmetric keys shared with
other entities on the path. Successful verification indicates source
and packet content authentication as well as path validation.

4. DYNAMICALLY RECREATABLE KEYS
This section introduces the DRKey protocols that enable routers

to set up shared keys with source S and destination D. Section 4.1
describes the case when both S and D trust each other. Section 4.2
relaxes this assumption and describes the case when S and D do not
trust each other. Section 4.3 describes how S and D retroactively set
up shared keys with intermediate routers to enable path validation
of prior packets.

4.1 DRKey for Benign Source and Destination
When both S and D trust each other, each entity on the source-

selected path needs to pre-establish only one symmetric key that is
shared with both S and D. Figure 1 shows the key setup steps and
the associated cryptographic operations.

S creates a fresh public/private key pair (PKσ ,PK−1
σ) for each

session such that routers encrypt session symmetric key Ki’s. Since
S and D trust each other, they share private key PK−1

σ , the en-
crypted and authenticated value of which is sent to D. The public
key is used to derive the SESSIONID as follows: SESSIONID =
H(PKσ‖PATHσ‖Tσ), where PATHσ is the source-selected path
and Tσ is when S initiates session σ . Note that Tσ prevents re-
play attacks since routers can drop expired packets based on loose
time synchronization.

Initialization by Source S

0. Assume long-term symmetric key K̂SD shared with D

(Optional) Assume public/private key pair (PKS,PK−1
S) and CertPKS

1. Initiate new session σ and pick random session key (PKσ ,PK−1
σ)

2. Obtain PATHσ = 〈S,R1,R2,D〉
3. Measure current time Tσ

4. Compute SESSIONID = H(PKσ‖PATHσ‖Tσ)

(Optional) Authenticate session: SignPK−1
S
(SESSIONID)

5. Compute KSDσ = FK̂SD
(S‖D‖SESSIONID)

KDSσ = FK̂SD
(D‖S‖SESSIONID)

6. Compute AUTHσ = AuthEncKSDσ
(SESSIONID‖PK−1

σ)

S→ R1

7. Forward {PKσ ,PATHσ ,Tσ ,AUTHσ , (optional) SignPK−1
S
(SESSIONID) }

Pairwise Key Derivation by R1
8. Compute K1 = FSVR1

(SESSIONID)
9. Encrypt K1: EncKEYR1,σ = EncPKσ

(K1)
Sign: SignKEYR1,σ

= SignPK−1
R1

(K1‖SESSIONID)

R1→ R2

10. Forward {PKσ ,PATHσ ,Tσ ,AUTHσ , (optional) SignPK−1
S
(SESSIONID),

EncKEYR1,σ , SignKEYR1,σ
}

Pairwise Key Derivation by R2
11. Computes K2 = FSVR2

(SESSIONID)
12. Encrypt K2: EncKEYR2,σ = EncPKσ

(K2)
Sign: SignKEYR2,σ

= SignPK−1
R2

(K2‖SESSIONID)

R2→ D

13. Forward {PKσ ,PATHσ ,Tσ ,AUTHσ , (optional) SignPKS
(SESSIONID),

EncKEYR1,σ , SignKEYR1,σ
, EncKEYR2,σ , SignKEYR2,σ

}
Key Retrieval by Destination D

14. Already has K̂SD, which is the long-term shared symmetric key with S
15. Check that D is the last entity on PATHσ

16. Compute SESSIONID = H(PKσ‖PATHσ‖Tσ) and check the integrity
17. Compute KSDσ = FK̂SD

(S‖D‖SESSIONID)
KDSσ = FK̂SD

(D‖S‖SESSIONID)

18. Decrypt AUTHσ and authenticate PK−1
σ : AuthDecKSDσ

(AUTHσ)
19. Decrypt K1 and K2 and check their signatures:

DecPK−1
σ

(EncKEYR1,σ),CheckSigPKR1
(SignKEYR1,σ

)

DecPK−1
σ

(EncKEYR2,σ),CheckSigPKR2
(SignKEYR2,σ

)
K1 and K2 become shared symmetric keys between each router and D

20. Compute KD = FSVD
(SESSIONID)

D→ S
21. Forward authenticated and encrypted shared keys:

KEYSσ = AuthEncKDSσ
(K1‖K2‖KD‖AUTHσ)

Key Retrieval by Source S
22. Decrypt and authenticate the keys received from D: AuthDecKDSσ

(KEYSσ)
K1, K2 and KD become shared keys between S and R1, R2, and D

Figure 1: A session key setup for path S→ R1→ R2→ D.

Each intermediate router Ri generates shared key Ki using an ef-
ficient PRF keyed with a secret SVi only known to Ri. The PRF
takes SESSIONID as an input. For high efficiency, we compute
our PRF from a pseudo-random permutation using AES. The over-
head of the key setup is negligible to affect the on-going traffic (see
Section 8). Resulting key Ki is encrypted with public key PKσ ,
and digitally signed to enable verification that (encrypted) Ki in-
deed originates from the correct router (as any entity could have
performed the public-key encryption on an arbitrary key).

To prevent reflection attacks (i.e., replaying message in the op-
posite order of communication), communication between S and D

uses different symmetric keys for each direction: KSDσ and KDSσ

for S-initiated and D-initiated packets, respectively.
The optional operations in Figure 1 are used only if the router

also needs to authenticate S, in which case S also signs the SESSIONID,
and certificates needed for routers to verify S’s public key are in-
cluded in the message.

4.2 Extended-DRKey for Distrusting Source
and Destination

When we assume that the source S and the destination D trust
each other and that they share the same public-private key pair for
the session, then each intermediate router needs to set up only one
shared key with both S and D. However, S and D may not neces-

Path Agreement and Key Setup Initialization by Source S

1. Initiate new session σ and pick random session key (PKSσ
,PK−1

Sσ
)

Ri uses this key to authenticate S’s packets
2. Obtain PATHσ = 〈S,R1,R2,D〉
3. Measure current time Tσ

4. Compute SESSIONIDS = H(PKSσ‖PATHσ‖Tσ)

(Optional) Authenticate session: SignPK−1
S
(SESSIONIDS)

S→ D
5. Forward {PKSσ ,PATHσ ,Tσ ,SignPK−1

S
(PKSσ‖PATHσ‖Tσ)}

Path Agreement and Key Setup Initialization by Destination D

6. Pick random session key (PKDσ , PK−1
Dσ

) that Ri uses with D
7. Compute SESSIONIDD = H(PKDσ‖PATHσ‖Tσ)

(Optional) Authenticate session: SignPK−1
D
(SESSIONIDD)

D→ S
8. Forward {PKDσ ,PATHσ ,Tσ ,SignPK−1

D
(PKSσ‖PKDσ‖PATHσ),

SESSIONIDD, (optional) SignPK−1
D
(SESSIONIDD) }

Initialization by S

S→ R1

9. Forward {PKSσ ,PKDσ ,PATHσ ,Tσ ,

(optional) SignPK−1
S
(SESSIONIDS),SignPK−1

D
(SESSIONIDD) }

Pairwise Key Derivation by R1
10. Compute KS1 = FSVR1S

(SESSIONIDS))
KD1 = FSVR1D

(SESSIONIDD))
11. Encrypt KS1: EncKEYR1S,σ = EncPKSσ

(KS1)
KS2: EncKEYR1D,σ = EncPKDσ

(KD1)
12. Sign: SignKEYR1S,σ = SignPK−1

R1

(KS1‖PKSσ‖S)

SignKEYR1D,σ = SignPK−1
R1

(KD1‖PKDσ‖D)

R1→ R2

13. Forward {PKSσ ,PKDσ ,PATHσ ,Tσ ,

(optional) SignPK−1
S
(SESSIONIDS),SignPK−1

D
(SESSIONIDD),

EncKEYR1S,σ ,SignKEYR1S,σ ,EncKEYR1D,σ ,SignKEYR1D,σ }
Pairwise Key Derivation by R2
14. Compute KS2 = FSVR2S

(SESSIONIDS))
KD2 = FSVR2D

(SESSIONIDD))
15. Encrypt KS2: EncKEYR2S,σ = EncPKSσ

(KS2)
KS2: EncKEYR2D,σ = EncPKDσ

(KD2)
16. Sign: SignKEYR2S,σ = SignPK−1

R2

(KS2‖PKSσ‖S)

SignKEYR2D,σ = SignPK−1
R2

(KD2‖PKDσ‖D)

R2→ D

17. Forward {PKSσ ,PKDσ ,PATHσ ,Tσ ,

(optional) SignPK−1
S
(SESSIONIDS),SignPK−1

D
(SESSIONIDD),

EncKEYR1S,σ ,SignKEYR1S,σ ,EncKEYR1D,σ ,SignKEYR1D,σ ,

EncKEYR2S,σ ,SignKEYR2S,σ ,EncKEYR2D,σ ,SignKEYR2D,σ }
Key Retrieval by D
18. Check that D is the last entry in PATHσ

19. Decrypt KD1 and KD2 and check their signatures
DecPK−1

Dσ

(EncKEYR1D,σ),CheckSigPKR1
(SignKEYR1S,σ)

DecPK−1
Dσ

(EncKEYR2D,σ),CheckSigPKR2
(SignKEYR2S,σ)

KD1 and KD2 become shared symmetric key between each router and D
20. Compute KD = FSVD

(SESSIONIDS))
21. Encrypt KD: EncKEYD,σ = EncPKSσ

(KD)
22. Sign: SignKEYD,σ = SignPK−1

D
(KD‖PKSσ‖S)

D→ S
23. Forward {EncKEYR1S,σ ,SignKEYR1S,σ ,EncKEYR2S,σ ,SignKEYR2S,σ ,

EncKEYD,σ ,SignKEYD,σ }
Key Retrieval by Source S
24. Decrypt and authenticate keys received from D

KS1, KS2 and KD become shared keys between S and R1, R2, and D.

Figure 2: A modified session key setup when S and D do not

trust each other. The path is: S→ R1→ R2→ D.

sarily trust each other, or they may collude. To strengthen the secu-
rity guarantees under such circumstances, we introduce Extended-

DRKey , which requires each intermediate router to set up two keys,
KSi and KDi, where KSi is the shared symmetric key between S and
Ri and KDi is the shared symmetric key between Ri and D. Figure 2
describes the Extended-DRKey protocol and its cryptographic op-
erations.

Unlike DRKey in Section 4.1, Extended-DRKey does not require
AUTHσ since Ri shares different keys with S and D. For creating
shared keys (i.e., KSi and KDi), Ri and D use distinct local secrets
to encode the directionality of the keys.

4.3 Retroactive-DRKey
The key setup protocols as presented in Figures 1 and 2 run once

before the session starts. However, the key setup process incurs
the following extra latency and computational overhead: (1) Key
setup itself requires an extra round trip between the source and the
destination; and (2) Key setup requires each intermediate router to
encrypt and sign its shared key. Furthermore, running an indepen-
dent key setup protocol a priori allows routers to launch a coward
attack, since the key setup protocol warns possibly misbehaving
routers to start behaving correctly and to avoid detection. Conse-
quently, achieving path validation without the apparent key setup
process is desirable.

We introduce Retroactive-DRKey that enables entities to set up
shared keys at any time after the first packet in a session reaches
the destination. Note that Retroactive-OPT is invoked only if the
source or the destination wishes to perform source authentication
or path validation (i.e., there could be sessions during which the
source or the destination performs no retroactive key setup).

To support such a feature, we still assume that source S and des-
tination D establish a shared symmetric key K̂SD in advance, and
S derives a session key pair (PKσ ,PK−1

σ) before the session starts.
Unlike DRKey or Extended-DRKey, Retroactive-DRKey utilizes
that S creates KD—a shared symmetric key with D for the ses-
sion (i.e. KD = FSVS

(SESSIONID))—and includes encrypted and
authenticated KD in AUTHσ in the data packets of the forwarding
protocol header. In this way, S can already use KD to compute some
fields such that D can check. When a forwarding protocol is used
with Retroactive-DRKey, the routers use some keys for OPT during
a session, and only reveal them at a later time (Section 5.2.1).

Retroactive-DRKey is very similar to the key setup protocol in
Figure 1. The only difference is that D does not derive KD, be-
cause it is already included in each forwarded packet. Retroactive-
DRKey runs at most once during or after a session ends. We ob-
serve that S can set Tσ to a future time when S may want to trigger
source and path validation if S of D detect an anomaly.

5. OPT PROTOCOL DESCRIPTION
The DRKey protocols described in Section 4 and the techniques

we introduce in this section span a protocol family of source au-
thentication and path validation with varying assumptions and prop-
erties. Unfortunately, exploring the entire design space is out of
scope for this paper, and we will present several protocol instantia-
tions: (1) OriginValidation for source authentication (S and D trust
each other), (2) PathTrace for path validation (S and D trust each
other), and (3) Origin and Path Trace (OPT) for source authentica-
tion and path validation (S and D may not trust each other).

5.1 OriginValidation for Source Authentication
OriginValidation enables each intermediate router and the des-

tination to perform source authentication using MACs computed
over the hash of the packet. For efficient authentication, the source
includes the following fields in the packet header:

• DATAHASH: Hash of the packet’s payload H(P);
• SESSIONID: Hash of the session public key, path, and session

initiation time H(PKσ‖PATHσ‖Tσ);
• OVi: Origin Verification field. OVi is a Message Authenti-

cation Code computed over DATAHASH using key Ki that Ri

shares with S (i.e., OVi = MACKi
(H(P))). Similarly, OVD =

MACKD
(H(P)). The source creates an OV field for each inter-

mediate router and the destination.

OriginValidation provides efficient MAC verification using the
DATAHASH field without requiring each intermediate router to com-

.

.

.

DATAHASH (128 bits)
SESSIONID (128 bits)

PVF (128 bits)
OV1 (128 bits)
OV2 (128 bits)

OVD (128 bits)

IP Header

OriginValidation/PathTrace Header

TCP Header

Figure 3: The packet header format for OriginValidation and

PathTrace. DATAHASH, SESSIONID, and OVs help intermedi-

ate routers and the destination authenticate the source (Orig-

inValidation), and DATAHASH, SESSIONID, and PVF help the

destination validate the path (PathTrace).

pute the hash over the entire packet. Figure 3 represents the packet
header, and only DATAHASH, SESSIONID and OV fields are needed
for OriginValidation.

When intermediate router R1 receives a packet from source S, R1

computes the symmetric key (K1) it shares with S using R1’s local
secret and SESSIONID from the packet header. Then R1 generates a
MAC as follows: OV′1 =MACK1

(DATAHASH). If OV′1 is the same
as OV1 in the packet header, R1 is assured that the packet indeed
originated from the claimed source S, and forwards the packet to
R2. R2 and D perform the same operations as R1.

Although we present the protocol with OV fields of size 128,
the size can be altered to reflect the desired level of security. In
general, assuming a secure MAC function, the success probability
of a forged n-bit MAC is 2−n, which already results in a low rate at
n = 16. Thus, for many applications, 2 byte long OV fields suffice,
as a router would only let 1 in 65536 packets pass on average.

5.2 PathTrace
PathTrace is to help the source and destination validate that a re-

ceived packet traversed the source-selected path. This main objec-
tive is achieved by Path Validation Field (PVF), which is a nested
MAC that intermediate routers update in the packet header as they
forward the packet. In Figure 3, only DATAHASH, SESSIONID,
and PVF fields are used for PathTrace. Thus, the packet overhead
is irrespective of the path length. Next we describe how PathTrace
supports the source and the destination to validate the path.
PathTrace for destination. To enable only the destination to val-
idate the path, the source generates PVF0—the initial PVF value
which is a MAC of DATAHASH using the shared symmetric key
between the source and the destination. Then the source initializes
the PVF field in the header with PVF0:

PVF← PVF0 = MACKD
(DATAHASH). (1)

Any intermediate router Ri on the path generates PVFi and updates
the PVF field in the header as follows:

PVF← PVFi = MACKi
(DATAHASH‖PVFi−1). (2)

The shared symmetric key Ki is shared with both the source and
the destination according to the key setup protocol in Section 4.1.
Hence, upon receiving a packet, the destination first re-creates the
nested MACs (here shown for a path of 2 routers):

PVF′ = MACK2
(DATAHASH‖

MACK1
(DATAHASH‖MACKD

(DATAHASH))).
(3)

If PVF′ is the same as PVF in the packet header, the destination is
assured that the packet was indeed delivered on the source-selected
path. Otherwise, the destination drops the packet.
PathTrace for source. To help the source authenticate that its
packet is delivered to the intended destination using the source-
selected path, the destination forwards the PVF from the received

.

.

.

DATAHASH (128 bits)

SESSIONID (128 bits)
TIMESTAMP (32 bits)

PVF (128 bits)

OPV1 (128 bits)

OPV2 (128 bits)

OPVD (128 bits)

IP Header

OPT Header

TCP Header

Figure 4: OPT header. Source S initializes all the fields. Inter-

mediate routers only update the PVF field.

packet header back to the source as follows:

D→ S : EncKD
(PVF‖DATAHASH). (4)

Upon receiving this information, the source first decrypts the
message using KD and then performs the validation by re-constructing
the nested MACs using DATAHASH as shown in Eq. (3) and com-
paring it with PVF. A successful validation indicates that the packet
was indeed delivered on the source-selected path.

5.2.1 Retroactive-PathTrace

Retroactive-PathTrace supports path validation without the ap-
parent key setup process in advance. Instead, it utilizes Retroactive-
DRKey that runs after the session ends. Unlike PathTrace, in Retro-
active-PathTrace the source cannot pre-compute the OPVi fields;
hence no OPV fields can be used in the packet header. Instead,
under the assumption that the source and the destination trust each
other, Retroactive-PathTrace requires that the source creates KD—
the session-specific shared key with the destination, and the source
additionally includes KD and its authenticated encryption in the
packet header. The source uses KD to compute PVF0 and the
routers derive their shared key and update the PVF field accord-
ingly.

Retroactive-PathTrace requires the destination to store per-packet
information for later checking. However, the benefit of defending
against coward attacks overcomes such a disadvantage. Namely,
the destination stores for each packet the tuple (SESSIONID, DATA-
HASH, PVF). When the destination wants to validate the path, it
requests the source to initiate Retroactive-DRKey such that inter-
mediate routers reveal the key that was used for the received pack-
ets. Then the destination can check the PVF fields and detect cow-
ard attacks. The source can independently initiate the retroactive
process as well.

5.3 OPT: Origin and Path Trace
In this section, we introduce OPT that combines OriginValida-

tion and PathTrace such that all entities (including intermediate
routers) on the path can perform both source authentication and
path validation when they trust the source. We assume that all the
routers in a session are loosely time synchronized (within a few
milliseconds, e.g., using NTP).2

Figure 4 illustrates the OPT header format. In addition to DATA-
HASH, SESSIONID, and PVF, an OPT header includes the follow-
ing additional fields to enable each intermediate router to perform
path validation.

• TIMESTAMP: Time when S creates the OPT packet to mitigate
timing-based attacks, such as replay attacks.
• OPVi: Origin and Path Verification field. OPVi is a MAC that

enables all entities on the path to perform path validation.

2http://www.ntp.org/

Algorithm 1 OPT header initialization and validation pseudo code.
An arrow represents the header field initialization.

1: function SOURCE INITIALIZATION

Require: Ki and KD that Ri’s and D share with S, respectively after running
key setup protocol in Figure 1

2: DATAHASH← H(P)
3: SESSIONID← H(PKσ‖PATHσ‖Tσ)
4: PVF ← PVF0 = MACKD

(DATAHASH)
5: l = source-selected path length
6: for each intermediate router Ri, where 1≤ i < l do
7: PVFi = MACKi

(PVFi−1)
8: OPVi ←MACKi

(PVFi−1‖DATAHASH‖Ri−1‖TIMESTAMP)
9: end for

10: for destination D do
11: OPVD ←MACKD

(PVFl−1‖DATAHASH‖Rl−1‖TIMESTAMP)
12: end for
13: TIMESTAMP← current time
14: end function

15: function VALIDATION AND UPDATE BY Ri

16: (Note PVF in OPT header = PVFi−1)
17: Compute OPV′i =MACKi

(PVFi−1‖DATAHASH‖ Ri−1‖TIMESTAMP)
18: if OPV′i == OPVi then
19: PVF ← PVFi = MACKi

(PVFi−1)
20: Forward the packet to Ri+1

21: else
22: Drop the packet
23: end if
24: end function

25: function DESTINATION VALIDATION

26: (Note PVF in OPT header = PVFl−1)
27: l = source-selected path length
28: Compute PVF′ = MACKl−1

(. . .(MACK1
(MACKD

(DATAHASH))))

29: Compute OPV′D =MACKD
(PVFl−1‖DATAHASH‖ Rl−1‖TIMESTAMP)

30: if (PVF′ == PVF) && (OPV′D == OPVD) then
31: Validation succeeds
32: Prepare packet using Eq. (4) and forward to source
33: else
34: Drop the packet
35: end if
36: end function

The SOURCE INITIALIZATION pseudo code in Algorithm 1 de-
scribes how the source initializes the OPT header fields. Each OPV
field includes the following as inputs.
Previous PVF: Including PVFi−1 in the OPVi computation sup-
ports the detection of a malicious intermediate router that forwards
the packet to a benign router, which is not specified by the source
but follows the protocol.
Previous router address: PVF by itself cannot support entities to
detect the packet injection attack. Hence, we include the address of
the previous router from which each entity receives the packet.
TIMESTAMP: This field mitigates authenticator cloning attacks.
Consider an example where packet Pcrt is expected to be sent along
the source-selected path PATHcrt , the source previously sent packet
Pold on PATHold , and Pcrt and Pold have the same payload. Con-
sider router Rbad that is in both PATHcrt and PATHold such that
PATHcrt = {R1,R2, . . . ,Rbad ,Rbad+1, . . . ,Rn} and PATHold = {R′1,
R′2, . . . ,Rbad ,R

′
bad+1, . . . ,Rm}. In this scenario, Rbad can replace

{Rbad+1, . . . ,Rn}with {R′bad+1, . . . ,Rm} in PATHcrt and all the cor-
responding fields in the Pcrt header with those in Pold . Therefore,
without TIMESTAMP, the destination cannot detect the misbehavior
and ends up validating path {R1,R2, . . . , Rbad , R′bad+1, . . . ,Rm} for
Pcrt . By setting the TIMESTAMP field when the source sends out a
packet, authenticator cloning attacks are mitigated with loose time
synchronization between the source and other entities on the path.

VALIDATION AND UPDATE BY Ri and DESTINATION VALIDA-
TION functions in Algorithm 1 describe the OPT procedure that
intermediate router Ri and the destination performs, respectively.

5.3.1 Distrusting source and destination

The previous protocols assumes that the source and the destina-
tion are honest and trust each other. We now relax this assumption
and present an extension that handles distrusting entities. In OPT,
the source can generate all PVFs by itself since it knows all Ki’s.
Consequently, a malicious source can collude with an intermedi-
ate router (e.g., R2) and forward the packet on a path S→ R2→ D

without going through R1 in Figure 1.
To prevent such an attack and address the problem of a distrust-

ing source and destination, we use the key setup protocol in Sec-
tion 4.2 such that intermediate routers generate two separate shared
keys for the source and the destination. Unlike OPT, the Extended-
OPT header requires two PVF fields: PVFS that enables interme-
diate routers and the destination to validate the source, and PVFD

that enables the destination to confirm the actual path, even if the
source is malicious and colludes with (at least) one intermediate
router.

6. SECURITY ANALYSIS
We prove that OPT has origin authenticity and path validation

properties when both the source and the destination are trusted.
This property holds on any network configuration, including ones
that have malicious routers. Extended-OPT offers stronger prop-
erties: the router’s origin and path validation property assumes
that only the source is honest; and the destination’s path validation
property does not assume the source is honest.

We describe how OPT and its variants defend against the adver-
sary model described in Section 2.3. OPT’s security properties have
been formally verified using the Coq interactive theorem prover;
details can be found in our technical report [17].
Packet alteration. Without the secret keys (KD and Ki), a mali-
cious router cannot compute valid PVFi and OPVi. Consequently,
in OPT, a successful verification of PVFi−1 (PVFn) based on OPVi

(OPVD) implies that there can be no packet alteration attacks to
router Ri (the destination), provided that the source and destination
are trusted. A malicious destination can carry out the packet al-
teration attack, as it can generate all the necessary PVF and OPV
fields. Extended-OPT provides similar protections for intermediary
routers except that only the source needs to be trusted.
Packet injection attack. OPT routers can check that an incoming
packet does come from an intended AS, as such information is in-
cluded in OPV. Therefore, a malicious router A can only inject
packet to a router B if A is B’s neighbor and the link AB is on the
intended path. We will revisit this attack when discussing collusion
attacks.

In order to inject a packet with a valid header, an attacker can
replay a previously seen packet, which is only possible when the
same payload has been sent on that path before. Such replay attacks
can be mitigated by including a timestamp in the packet. OPT is
also vulnerable to packet injection when the destination colludes
with the injecting router.
Path deviation attack. OPT ensures that a successful verification
of PVFi−1 (PVFn) against OPVi (OPVD) implies that the payload
Ri (the destination) received has traversed all the honest routers in
the source-intended path in the correct order, assuming that both
source and destination are honest. OPT provides this guarantee
because the attacker does not possess the secret keys required to
compute PVFi and OPVi, and thus cannot generate valid PVFi or
OPVi. As a result, malicious routers cannot mount router skipping
or out-of-order traversal attacks.

This indicates that if a malicious router selects a path not in-
tended by the source, an honest intermediary router will reject the

packet. However, a malicious router can mount a path detour attack
and send the payload to other routers that are not on the intended
path.

In Extended-OPT, even if the destination is malicious, it cannot
select the unauthorized path that drops or reorders honest routers.
Extended-OPT also assures the destination that neither the mali-
cious routers nor the malicious source can select a path that drops
or reorders honest routers on the source-intended path.
Coward attack. Retroactive-OPT can mitigate coward attacks by
requiring all forwarding routers to compute relevant PVF and OPV
fields for probabilistic auditing. As a router cannot reliably guess
when audits will happen, it does not know when to carry out an
attack. We are unaware of any other path validation protocols that
can defend against the coward attack, including ICING.
DoS attack. We consider attacks aiming to exhaust memory and
computational resources on routers (Section 2.3). Each OPT router
stores only a secret value (SVRi

), regardless of the number of sources
sending traffic and the number of flows transiting the router. For
this reason, memory exhaustion attacks are not possible under OPT.
OPT routers perform very few symmetric cryptographic operations
per packet during forwarding, which run at line speed (Section 7).
Therefore, OPT is more resilient to computation resource exhaus-
tion attacks than existing schemes such as ICING that provide sim-
ilar security guarantees.
Collusion. The path and source validation are conditioned upon
whether a router is honest, i.e., correctly runs the protocol. When
no two malicious routers are adjacent to each other on the intended
path before Ri, malicious routers can redirect the packet to any
routers as it chooses. However, all preceding links on the desired
path are still traversed in the correct sequence for this packet to be
accepted by Ri. Similarly, a malicious router could replace the path
in the packet and trick its neighbor into forwarding the packet to a
router outside the intended path. Again, this packet will be dropped
when it reaches an honest router.

When there are multiple adjacent malicious routers on the in-
tended path (R j1 to R jn), a wormhole is present: an honest router
down the path can only conclude that the packet has entered into the
hole via R j1 and exited the hole from R jn, but has no knowledge as
to where the packet has been to in between these two points. In
particular, when the source colludes with Ri, Ri+1 can be tricked
into accepting and forwarding any packet.

7. IMPLEMENTATION AND EVALUATION
We implemented OPT in Section 5.3 with DRKey as a user-level

application that performs source authentication and path validation.
The cryptographic operations performed by a router during packet

forwarding are purely symmetric cryptographic operations, which
we instantiate with the AES block cipher. We list the cryptographic
functions used in the implementation. To compute MACs, we used
CBC-MAC based on AES, since it requires a single AES opera-
tion to authenticate a 128-bit value. For computing the PRF, we
also use the same CBC-MAC. We implement AES using AESni, a
new CPU instruction set provided by recent Intel and AMD CPUs
to speed up AES operations. AESni is fast: According to Intel,
executing an encryption using AES-128 in CBC mode takes 4.15
cycles per byte to encrypt a 1 KB buffer [13]. While this number
bounds the processing latency per byte, router throughput can be
increased, as we can process 4 blocks in parallel on a single core
in AES-128 in CBC mode, resulting in 1.33 cycles per byte. We
implemented authenticated encryption using Galois/Counter Mode
(GCM) with AES.

We use SHA-3 for computing hashes on long strings, such as
the hash of the payload DATAHASH. We truncate the hash from

Table 2: Per-session storage (σ), long-term storage (LT) related

to the key setup, and communication overhead of DRKey’s and

ICING’s key setup for a path of length n.
Router Source Destination

Storage
DRKey (σ) 0 n+2 n+2

[#items]
ICING (σ) 2 n+1 2∗n+1

DRKey (LT) 1 1 2
ICING (LT) ≤ 400,000 0 0

Key setup DRKey 2
[#packets] ICING 4∗n+4

a 256-bit value to a 128-bit value. For computing hashes on short
strings, such as H(PKσ), we use the Merkle-Damgard construction
with a Matyas-Meyer-Oseas AES-based compression function that
makes use of the fast hardware AESni instructions. We choose a
single-block-length compression function that outputs 128-bit hash
values. We use 128-bit hash values to obtain a smaller OPT header
size. Nevertheless, this decision does not pose security concerns:
an adversary besides the source needs to perform a second-pre-
image collision attack, which is still in the order of O(2128) for
SHA-3 and close to O(2128) for Matyas-Meyer-Oseas.

For signatures, we use Ed25519 [6], providing high efficiency
and security, and small signatures. For a security level of 2128 oper-
ations, Ed25519 signature generation and verification on a 3.4GHz
Core i7 takes 20us and 60us, respectively. Public keys and signa-
tures are only 32 and 64 bytes, respectively. Certificates can thus be
as small as 128 bytes, enabling routers to add their certificate to the
key setup message. As explained in Section 3, router certificates
can be generated by an AS and signed with the AS’s private key.
The AS’s public key can be obtained and verified through RPKI.

For encrypting routers’ keys in DRKey, we use RSA-2048, which
offers fast encryption. Although decryption is an order of magni-
tude slower, it is performed by the endhost which is less perfor-
mance critical.
ICING implementation and configuration. We compare OPT
with ICING, the code of which we obtained from their website3.
To ensure the fairness of our comparison, we implemented ICING
that also uses AESni. In ICING, the source obtains a proof of con-
sent (PoC) from the consent server of each node on the path. A
PoC certifies that the node consents to the full path. Furthermore,
each node has an associated tag that describes a set of actions that
the source can take for packets. The authors describe an optimiza-
tion for computing the tag keys needed for the PoCs [25], which
can diminish the number of required PRF rounds to 0. In our IC-
ING implementation, we favor ICING and consider that computing
these keys has no computational or memory lookup overhead.

Another important concept in ICING is the proofs of provenance
(PoPs)—proofs to the nodes that the packet originates from the
sender. Computing PoPs requires shared symmetric keys between
each pair of ICING nodes on the path. These keys can be either de-
rived on demand, using non-interactive Diffie-Hellman, or cached
once computed. Since non-interactive Diffie-Hellman is expensive
and impractical on the fast path, PoP keys are always retrieved from
the cache in our ICING implementation.

7.1 DRKey Evaluation
DRKey enables the design of low-overhead protocols in terms

of router resources, such as OPT. In OPT, we use DRKey for key
setup, which is executed once per session. Thus, the key setup cost
is amortized over an OPT session.

Table 2 provides an analysis of storage overhead at the source,

3http://www.cs.utexas.edu/icing/

Table 3: Packet latency during DRKey processing.

Entity Path length Latency

Router Irrelevant 381 µs

Source
2 621 µs
4 609 µs
8 628 µs

Destination
2 3820 µs
4 5520 µs
8 14814 µs

destination, and intermediate routers for DRKey and ICING. We
also compare the communication overhead for setting up keys.

Given a path of length n (excluding the source and the destina-
tion), DRKey requires the source and the destination to store, per
session, n+1 symmetric keys and a public-private session key pair.
The long-term storage of the source and the destination, which out-
lives multiple sessions, consists of their shared symmetric key and
the destination’s secret value. The OPT routers do not store any
per-session information. Instead, the routers merely store a single
local secret each.

In contrast, ICING’s source and destination need to store n+ 1
symmetric keys. Each ICING router needs to store pairwise keys
with every router in the Internet, which, according to the ICING au-
thors, is within 400,000. The source also stores PoCs of all entities
in the path.

Regarding the communication overhead of the key setup in DRKey,
the source and the destination send one message each, resulting in
2 messages per session regardless of the path length. In ICING,
however, the source contacts the PoC server of every node on the
path (routers and destination), which leads to 2∗ (n+1) messages
for a path of length n. The source also sets up pairwise shared keys
with each entity on the path, requiring at least a round trip (2 mes-
sages) per entity, resulting in at least 2 ∗ (n+ 1) messages. We do
not count the messages that are necessary to set up pairwise shared
keys between ICING routers, because these keys are set up once
between all entities in the Internet and then stored at each entity.

To prove the efficiency of DRKey, we evaluate the per-packet

computation overhead at the source, destination and intermediate
routers. Our experiment measures the latency of key setup packets
while they transit the network entities. For the experiment, we use
a traffic generator that initiates key setup operations and connects
to a server that performs the key setup operations of the source,
router, or destination. After the key setup, the server forwards the
packets back to the traffic generator, which measures the receive
rate.

Table 3 presents the latency of DRKey packets at the source,
routers, and the destination. The results show that our crypto-
graphic algorithm choices optimize router performance, which is
in any case independent of path length.

For the source and the destination, a longer path increases the
amount of computation. In the case of the source, this is hardly no-
ticeable, because the source does not perform public-key cryptogra-
phy operations that depend on the path length. In contrast, the des-
tination performs per-hop public-key decryption using RSA-2048
to obtain the shared keys, which is expensive and considerably af-
fects the latency. Nevertheless, the results satisfy our objectives:
since the source and the destination have a significantly lower traf-
fic throughput than routers, they can spend more cycles on perform-
ing key setup.

7.2 OPT Evaluation
We evaluate OPT with respect to the desired performance proper-

0 200 400 600 800 1000 1200 1400
20

30

40

Packet Size (B)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Baseline

Figure 5: Throughput of I/O Engine. Since our experiments

use I/O Engine for traffic delivery, I/O engine represents our

baseline.

ties for source and path validation, namely efficient forwarding and
scalable state, and the cost associated with meeting them. Specif-
ically, we examine (1) OPT’s overhead in terms of per-packet pro-
cessing by measuring both the throughput (the bandwidth utilized
by whole packets including the Ethernet header)4 and goodput (the
bandwidth used to transmit the payload of the packets, excluding
the OPT protocol header); and (2) scalability with respect to the
path length. For our evaluation, we set up a software router that
validates the source and the path of the incoming packets before
forwarding them. Our comparison is with ICING [26], which we
discuss in more detail in Section 9 since both provide similar se-
curity guarantees. We experiment with OPT and ICING to per-
form source and path validations and we use PacketShader’s I/O
Engine [15] to send/receive packets to/from the NICs.

A central aspect of our work is the forwarding speed of a router.
Since OPT does not keep any per-source or per-flow state, an OPT
router’s forwarding speed is not influenced by varying the num-
ber of sources sending packets or the number of flows transiting
a router. In contrast, we analyze the impact of (1) cryptographic
operations and (2) memory lookup of cryptographic keys, because
the forwarding overhead of path validation protocols that use cryp-
tography depends on these metrics.
Evaluation system. Our testbed consists of two routers A and B.
Both are equipped with two Intel Ethernet Server Adapter X520-
T2 NICs, and they both run Ubuntu Linux Kernel version 3.2.0-3.
System A runs a traffic generator featuring 6 x 2GB DDR3 RAM
and two Xeon L5640 2.26GHz (6 cores) processors. System B
runs our software router code featuring 16 x 4GB DDR3 RAM and
two Intel Xeon E5-2680 2.70GHz (8 cores) processors. The traffic
generator generates traffic at a rate of 40Gbps, which is processed
on the software router and sent back for measurement.

7.3 Experiment setup
We first describe how packets are forwarded from one router to

the other. Then we describe the software router implementation for
source authentication and path validation for OPT and ICING.

We use PacketShader’s I/O Engine [15], a high-speed open source
implementation to send/receive packets to/from the NICs. On the
sending router, I/O Engine takes the packets generated by the user-
level traffic generator and sends them to the NIC. When the packets
arrive at the second router’s NIC, I/O Engine takes the packets from
the NIC and delivers them to the user-level application, where they
are processed according to the protocol (OPT or ICING). The last
step is to send these packets back to the first router. In the remainder
of this section we consider the packet processing that takes place at
the second router from the moment I/O Engine delivers the packets
to the user-level application and until the packets are ready to be
sent back.
Experiments. We measure the forwarding speed of the software
router for OPT and ICING. Our experiments consider AS-level
path validation scenarios, where path validation is performed at a

4We add 20B Ethernet overhead in computing the throughput.

single router (e.g., ingress router) within an AS. Since an AS is ad-
ministered by a single authority and its internal routing topology
is confidential, redundant path verifications are unlikely to happen
inside an AS in practice. Consequently, we perform tests with a
maximum path length of 10 hops (without counting the source).
The minimum path length is 2 hops, corresponding to the case of a
source, an intermediate hop, and a destination.

To measure the forwarding overhead at a router, which includes
the memory overhead for storing keys and for retrieving them, we
consider a network where each node has α neighbors. The param-
eter α is important only if the router performs work that depends
on the number of neighbors. This is not the case for OPT, because
the router merely computes the key it shares with the source to
verify its OPV field, then computes the hash of the payload and
finally updates the PVF field. These operations do not depend on
the number of neighbors the router has nor on the path length.

However, in ICING the router has to look up the shared sym-
metric keys with each node on the path in a table that contains the
keys of all the nodes the router had previously seen on a path. For
a path of maximum length n, these nodes are located within n-hop
distance away from the router. Our choice for the parameter α = 3

and the maximum path length of 10 hops gives
(311−1)

2 = 9841 as
a maximum key table size, which is within ICING’s maximum key
table size of 400,000 [25].

The router receives packets at a line rate of 40Gbps. To quantify
the throughput and goodput with respect to the overhead of OPT
and ICING, we perform tests with payload sizes of 20B, 256B,
576B, 768B, and 1024B. We add to these values the OPT and IC-
ING header overhead, respectively, whose size corresponds to the
tested path length. The 20B of the smallest payload size correspond
to the TCP header size to simulate TCP/ICING and TCP/OPT. We
note that TCP/OPT includes the IP header since OPT runs over the
IP network; whereas TCP/ICING does not include the IP header
since ICING is designed to replace IP. Hence, the goodput compu-
tation favors ICING.

The biggest payload size is computed by subtracting from the
MTU the header size of ICING for the longest tested path (10
hops), as ICING has a higher header overhead than OPT. More
precisely, ICING has a per-hop overhead of 42B plus 24B for the
source identifier and 13B of common fields, which gives a header
length of 457B for a 10-hop path. The computation is 1500B−
457B = 1043B, which explains our choice of 1024B of the maxi-
mum payload. In case of OPT, 52B common fields, 16B per-hop
overhead and 40B TCP/IP header result in 252B. As a result, the
maximum payload size is dictated by the size of the ICING header
for the longest path considered.
Method. We generate traffic for 10 seconds at a rate of 40Gbps,
which is forwarded to the router running the protocol for source
authentication and path validation, and then forwarded back to the
source. To measure the throughput, we employ I/O Engine’s scripts,
which operate as follows. These scripts read the RX and TX counter
values of the NIC at the beginning of the experiment and then read
the values again every second to compute the number of packets
sent and received. Consequently, we obtain the throughput values
every second, which we then average to compute the final through-
put value. For goodput results we subtract the OPT or ICING
header, respectively, from the packet size.

7.4 Forwarding Overhead
We evaluate the most computationally intensive protocol version

of OPT described in Section 5.3. The evaluation results show that
OPT outperforms ICING by a significant margin. Since the other
versions of OPT feature smaller packet headers and less computa-

0 200 400 600 800 1000 1200
0

10

20

30

40

Packet Size (Payload)

B
a

n
d

w
id

th
 (

G
B

p
s
)

OPT − Throughput
ICING −Throughput

OPT − Goodput
ICING − Goodput

(a) 2-hop path

0 200 400 600 800 1000 1200
0

10

20

30

40

Packet Size (Payload)

B
a

n
d

w
id

th
 (

G
B

p
s
)

OPT − Throughput
ICING −Throughput

OPT − Goodput
ICING − Goodput

(b) 4-hop path

0 200 400 600 800 1000 1200
0

10

20

30

40

Packet Size (Payload)

B
a

n
d

w
id

th
 (

G
B

p
s
)

OPT − Throughput
ICING −Throughput

OPT − Goodput
ICING − Goodput

(c) 8-hop path

0 200 400 600 800 1000 1200
0

10

20

30

40

Packet Size (Payload)

B
a

n
d

w
id

th
 (

G
B

p
s
)

OPT − Throughput
ICING −Throughput

OPT − Goodput
ICING − Goodput

(d) 10-hop path

Figure 6: Throughput and goodput (i.e., throughput obtained

only for the payload part of the packet) of OPT and ICING

for different packet sizes expressed in bytes and path lengths

varying from 2 to 10 hops.

tional overhead, they would outperform ICING with an even larger
margin.

Figure 6 depicts the results for throughput and goodput for OPT
and ICING. We performed experiments for different path lengths
and packet sizes described in Section 7.3, and the numbers we ob-
tained show consistent results over all experiments, as explained in
the next paragraphs.

A first observation is that throughput registers higher values than
goodput, as expected, due to the OPT or ICING header overhead
that adds to the packet size, yet is not accounted for when mea-
suring goodput. We also notice that, for all path lengths, OPT’s
throughput is close to 40Gbps except for the smallest packet size
(i.e., 20B). We note that OPT’s throughput for small packets is
mainly limited by I/O Engine’s throughput as shown in Figure 5.
As the path length grows, I/O Engine’s bottleneck becomes re-
leased because of the reduced number of packet copies between the
NIC and the user-level packet processing engine5; and as a conse-
quence, OPT’s throughput becomes close to 40Gbps. This result is
consistent with Figure 5.

For each path length, the goodput of both OPT and ICING in-
crease as the packet size increases, because the protocol header rep-
resents a smaller fraction of the total packet size as the payload size
increases. Even though ICING’s throughput also increases with
the packet size, its value is much smaller than OPT’s throughput.
Given the choices for our ICING implementation, as explained ear-
lier, this result is mainly due to the key table lookup for the PoP
keys. Instead, OPT uses AESni operations to derive the keys shared
with the source, on the fly. This choice in protocol design therefore
proves to be decisive in obtaining a higher forwarding speed in OPT
as much as 10Gbps in comparison to ICING.

7.5 Path Length Scalability
In order to analyze the protocols’ scalability with respect to the

path length, we depict in Figure 7 the ratio between the goodput and
the throughput (named goodput ratio) for 256B and 1024B packets.
We vary the path length from 2 to 10 hops.

The goodput ratios of 256B packets are lower than those of 1024B
packets since small packets have higher header overhead (see previ-
ous section). Path length increase adds more overhead to the packet
header, resulting in goodput degradation for both OPT and ICING.

5The increased header size reduces the number of packets needed
to saturate the link bandwidth.

2 4 6 8 10
0

20

40

60

80

100

Path Length (Hops)

G
o
o
d
p
u
t
R

a
ti
o
 (

%
)

OPT−256B
ICING−256B

OPT−1024B
ICING−1024B

Figure 7: The goodput ratio (i.e., goodput/throughput) of OPT

and ICING for small and large packets, in the context of path

lengths varying from 2 to 10 hops.

The figure shows that OPT has better path length scalability than
ICING since the goodput ratio of OPT decreases slower than that of
ICING as the path length increases. Specifically, when the 2-hop
path is used as a baseline, for 256B packets, OPT’s average per-

hop goodput degradation ratio is
(64.7−49.0)

64.7·8 = 3.03%, while IC-

ING’s is
(64.5−34.9)

64.5·8 = 5.74%; for 1024B packets, OPT’s goodput

degradation ratio per hop is
(88.1−79.3)

88.1·8 = 1.25%, while ICING’s is
(87.9−68.2)

87.9·8 = 2.80%.

8. DISCUSSION
Key lifetime. The keys associated with a session σ are valid as long
as (1) PATHσ between S and D in the session σ does not change,
and (2) S or D do not terminate the session due to application-driven
session lifetime requirement.

According to the first point, the maximum key lifetime is deter-
mined by route stability. Recent end-to-end route stability anal-
yses reveal that most of network routes are stable from tens of
minutes to days, even when ISPs apply traffic engineering tech-
niques [9, 18, 22]. Although many routes are still short-lived, en-
tities send packets over long-lived routes (longer than 6 hours) for
96% of the times [9]. In particular, considering the fact that the
load balancing within an ISP causes most route variations (i.e., up
to 82%), OPT running at AS-level uses more stable routes than
router-level OPT. Furthermore, when routers perform per-flow or
per-destination load balancing, paths used in OPT are not affected.

Yet an attacker could cause changes in network routes, as demon-
strated by numerous incidents such as Man-in-the-Middle BGP route
hijacking [8]. In this case, the network routes could flap as the
attacker wishes. Yet, some future Internet architecture proposals
(Nebula [2], Pathlets [12], SCION [41], XIA [14]) relieve this pain
point by having packets carry forwarding information in the packet
header, so that the source is always aware of the path and would set
up a new session if the path changes.

We expect paths to be stable on the order of at least tens of min-
utes. Similarly, we expect that applications re-key sessions at the
earliest at a granularity of tens of minutes. Thus, the key setup
overhead represents a tiny fraction of the total computation and
communication overhead of a long-lived high-bandwidth connec-
tion.
Efficient packet content authentication. As described in Sec-
tion 5.3, each intermediate router uses the DATAHASH field in the
OPT header when it verifies its OPV field. Such a verification does
not authenticate the packet content since a malicious intermediate
router could alter the data without changing DATAHASH. To mit-
igate such an attack, a router can verify the DATAHASH field in
parallel while the packet is being scheduled for transmission.

As an alternative, probabilistic verification schemes [16] can be

applied such that every router decreases the verification probabil-
ity if the DATAHASH verification succeeds. However, if a router
detects a packet with a bogus hash value, the probability to run
hash verification increases. Furthermore, as soon as a router re-
ceives multiple mismatching hash values, it immediately performs
hash verification on all subsequent packets. As a result, the routers
neighboring a malicious router would verify all hashes of packets
incoming on interfaces arriving from the malicious router. With
such a probabilistic verification approach, we can further improve
the efficiency and practicality while providing data authentication.
OPT in the current Internet. OPT could be incrementally de-
ployed in the current Internet. An AS could announce its OPT
functionality within BGP update messages (as a transitive attribute)
or as extension to RPKI certificates, enabling the selection and con-
struction of end-to-end OPT paths at source ASes. Endhosts could
obtain OPT path information from a local route server which col-
lects BGP and RPKI information.

To carry OPT-based information in packets, the simplest ap-
proach would be an IPv6 extension header. In IPv4, spare IP header
bits would need to be used to indicate the presence of an extra
OPT header or trailer, but an extra header after the IP header may
disrupt processing at legacy firewalls or other middleboxes. With
the increasing support for IPv6, we prefer incremental deployment
via the IPv6 extension header. Since the DRKey information is
larger than the 256 bytes that fit into an IPv6 extension header, we
propose to use a new protocol number for DRKey packets, which
routers would check for and process in the slow path. Alternatively,
ASes could specify addresses of DRKey servers that would handle
DRKey packets to set up the keys for the routers and thus would
share the secret keys KRi

of routers. An endhost could then place
a sequence of DRKey server addresses (similar to a loose source
routing option in IPv4) into the DRKey packet, which would be
sequentially processed and forwarded until the destination. This
latter approach avoids routers from analyzing the IP protocol field.

9. RELATED WORK
The most closely related work for source authentication and path

validation is ICING by Naous et al. [26]. In a nutshell, the source
pre-computes a verifier MAC (Vi) for each intermediate router Ri

using the respective shared secret key as well as the hash value of
the path and the static content in the header. For each packet, Ri first
reconstructs and XORs the MAC for the source and each upstream
router, and verifies if the XORed MACs are equivalent to what is
stored in Vi. Then Ri (1) computes a MAC for each downstream
router on the path using the shared secret key, the hash of the path,
and the data, and (2) XORs the MAC for each downstream router
with each V j (j ≥ i).

ICING is more heavy-weight than OPT. ICING requires each
Ri to derive a Diffie-Hellman (DH) key with each router R j on
the path, which requires routers to cache keys to avoid the heavy-
weight DH computation during packet forwarding. For the case
the keys are not cached any more, ICING suggests adding the 20-
byte public key of each router into each packet, resulting in a high
per-packet overhead. Also, ICING requires each node to insert a
MAC for each subsequent verifier, requiring each node to compute
n+1 MAC operations per packet. In contrast, OPT does not require
routers to store keys shared with sources or other routers, nor per-
form a MAC computation for each router on the path. In terms of
security, even ICING intermediate routers can detect colluding path
deviation attacks mounted by the source and a malicious router to
another intermediary router. In contrast, Extended-OPT supports
the destination to detect such attacks. More specifically, the ori-
gin and path validation property of the routers still depends on the

correct behavior of the source, but not on the destination. Conse-
quently, Extended-OPT offers the same security guarantee as IC-
ING for the destination. In other words, if the source is malicious,
an illegitimate packet travels longer in Extended-OPT than ICING,
but will be rejected by the destination. Beside the malicious source
collusion attack, OPT and ICING provide the same kind of source
and path authenticity properties for the destination. On the other
hand, retroactive key setup OPT with path tracing (which only en-
ables the destination to verify the path) can mitigate the coward
attack, which ICING fails to mitigate.

Liu et al. propose Passport for intermediate routers to perform
source authentication [21]. Passport proposes that BGP route ad-
vertisements carry Diffie-Hellman public keys, which enables any
two ASes to compute a shared secret based on Diffie-Hellman key
exchange. Using the respective shared secret key with each down-
stream AS, the source AS computes a MAC for each AS on the
path, and inserts it in the Passport header. Each intermediate AS
authenticates the source AS by recomputing the MAC using the
shared key and confirming that it matches the MAC in the Pass-
port header. Similar to Passport, the accountability service by
Bender et al. [5] requires the source AS to embed an authenti-
cator for subsequent ASes. In SNAPP, the sender sets up keys
with routers through a key derivation mechanism that is similar to
DRKey (although it cannot provide retroactive key setup) and uses
these keys for embedded source authenticators [29]. Passport and
the accountability service provide weaker security guarantees than
OPT, as they provide only source AS authentication, and fail to
defend against source and data spoofing, as well as path deviation
attacks. While SNAPP does prevent against source and data spoof-
ing, it does not prevent path deviation attacks.
Other source and path validation schemes. In IP traceback, re-
searchers proposed mechanisms that require routers carry per-packet
state [19, 32], perform packet marking [31, 33], or active path in-
terrogation [27]. Pi suggests a path identifier to detect source IP
address spoofing [37]. Unfortunately, these schemes are suscepti-
ble to attacks listed in Section 2.3, because they were designed for
a different purpose. Similarly, network capability mechanisms [3,
30, 38, 39] cannot provide source authentication or path validation
as the capability can be easily copied and inserted by the last AS.

10. CONCLUSION
Despite the importance of network-based source authentication

and path validation, these primitives have not been implemented
so far, perhaps because of the lack of an efficient protocol that does
not burden the router. This paper introduces (1) DRKeys as efficient
and dynamically recreatable key setup protocols, and (2) OPT as an
extremely lightweight, scalable, and secure protocol that provides
source authentication and path validation. Compared with currently
proposed solutions, OPT achieves performance improvements with
minimal latency and computational overhead on routers regardless
of the path length. Moreover, OPT does not require routers to main-
tain per-source or per-flow state, further improving its practical-
ity. We also introduce a retroactive key setup process that protects
against coward attacks, as routers cannot know in advance which
paths are being monitored subsequently. We anticipate that OPT’s
security and performance properties will bring source authentica-
tion and path validation into the realm of practicality.

11. ACKNOWLEDGMENTS
We thank George Danezis, Yue-Hsun Lin, Raphael Reischuk,

members of the XIA team, our shepherd Ratul Mahajan, and the
anonymous reviewers for their insightful feedback and suggestions.

We gratefully acknowledge funding support for this research from
CyLab at Carnegie Mellon, NSF under award CNS-1040801, Euro-
pean Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC grant agreement 617605,
and a gift from KDDI.

12. REFERENCES
[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet Protocol
(AIP). In Proceedings of ACM SIGCOMM, 2008.

[2] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer,
C. Cotton, M. Freedman, A. Haeberlen, Z. Ives,
A. Krishnamurthy, W. Lehr, B. Loo, D. Mazières,
A. Nicolosi, J. Smith, I. Stoica, R. van Renesse, M. Walfish,
H. Weatherspoon, and C. Yoo. The nebula future internet
architecture. In A. Galis and A. Gavras, editors, The Future
Internet, volume 7858 of Lecture Notes in Computer
Science, pages 16–26. Springer Berlin Heidelberg, 2013.

[3] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet Denial-of-Service with Capabilities. In Proceedings
of Hotnets-II, 2003.

[4] ARIN. Resource Public Key Infrastructure (RPKI).
https://www.arin.net/resources/rpki/.

[5] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee.
Accountability as a Service. In Proc. of USENIX SRUTI,
2007.

[6] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang. High-speed high-security signatures. In Proc. of
CHES, 2011.

[7] J. Cowie. The new threat: Targeted internet traffic
misdirection. http://www.renesys.com/2013/11/mitm-
internet-hijacking/, Nov. 2013.

[8] J. Cowie. The New Threat: Targeted Internet Traffic
Misdirection. Popular Mechanics,
http://www.renesys.com/2013/11/mitm-internet-
hijacking/, Nov 2013.

[9] I. Cunha, R. Teixeira, and C. Diot. Measuring and
characterizing end-to-end route dynamics in the presence of
load balancing. In Proc. of PAM’11, 2011.

[10] Y. Gilad and A. Herzberg. Plug-and-Play IP Security:
Anonymity Infrastructure Instead of PKI. In Proceedings of
ESORICS, 2013.

[11] B. Godfrey, S. Shenker, and I. Stoica. Pathlet Routing. In
Proc. of SIGCOMM, 2009.

[12] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet
routing. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, 2009.

[13] S. Gueron. Intel Advanced Encryption Standard (AES) New
Instructions Set, Mar. 2010. white paper 323641-001,
Revision 3.

[14] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste. XIA: Efficient support
for evolvable internetworking. In Proceedings of USENIX
Conference on Networked Systems Design and
Implementation, 2012.

[15] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated software router. ACM SIGCOMM
Computer Communication Review, Aug. 2010.

[16] H.-C. Hsiao, A. Studer, C. Chen, A. Perrig, F. Bai, B. Bellur,
and A. Iyer. Flooding-Resilient Broadcast Authentication for
VANETs. In Proc. of MobiCom, 2011.

[17] L. Jia, C. Basescu, T. H.-J. Kim, A. Perrig, Y.-C. Hu, and
F. Zhang. Mechanized network origin and path authenticity
proofs. Technical Report CMU-CyLab-14-007, Carnegie
Mellon University, 2014.

[18] M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire
Attack. In Proc. of IEEE Security and Privacy, 2013.

[19] J. Li, M. Sung, J. Xu, and L. Li. Large-Scale IP Traceback in
High-Speed Internet: Practical Techniques and Theoretical
Foundation. In Proc. of IEEE Security and Privacy, 2004.

[20] B. Liu, J. T. Chiang, J. J. Haas, and Y.-C. Hu. Coward
Attacks in Vehicular Networks. Mobile Computing and
Communications Review, 2010.

[21] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure
and Adoptable Source Authentication. In Proc. of NSDI,
2008.

[22] H. V. Madhyastha, E. Katz-Bassett, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane Nano: Path
Prediction for Peer-to-peer Applications. In Proc. of NSDI,
2009.

[23] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating Key Mangement from File System Security. In
Proceedings of SOSP, 1999.

[24] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP)
Architecture, May 2006.
http://tools.ietf.org/html/rfc4423.

[25] J. Naous. Path-policy Compliant Networking and a Platform
for Heterogeneous IAAS management. In PhD thesis, 2011.

[26] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller,
and A. Seehra. Verifying and Enforcing Network Paths with
ICING. In Proceedings of ACM CoNEXT, 2011.

[27] V. N. Padmanabhan and D. R. Simon. Secure Traceroute to
Detect Faulty or Malicious Routing. ACM SIGCOMM
Computer Communications Review, January 2003.

[28] J. Pappalardo. New Transatlantic Cable Built to Shave 5
Miliseconds off Stock Trades. Popular Mechanics,
http://www.popularmechanics.com/technology/
engineering/infrastructure/a-transatlantic-
cable-to-shave-5-milliseconds-off-stock-
trades, Oct 2011.

[29] B. Parno, A. Perrig, and D. Andersen. SNAPP: Stateless
Network-Authenticated Path Pinning. In Proceedings of
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2008.

[30] R. Raghavan and A. C. Snoeren. A system for authenticated
policy-compliant routing. In Proc. of ACM SIGCOMM,
2004.

[31] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. In Proc. of
SIGCOMM, 2000.

[32] A. C. Snoeren, C. Partridge, L. A. Galindo, C. E. Jones,
F. Tchakounito, S. T. Kent, and W. T. Strayer. Hash-Based IP
Traceback. In Proceedings of ACM SIGCOMM, 2001.

[33] D. X. Song and A. Perrig. Advanced and Authenticated
Marking Schemes for IP Traceback. In Proceedings of IEEE
INFOCOM, 2001.

[34] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana.
Internet indirection infrastructure. In Proc. of SIGCOMM,
2002.

[35] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes No Longer
Considered Harmful. In Proceedings of OSDI, 2004.

[36] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives:
Improving SSH-style host authentication with multi-path
probing. In Proceedings of USENIX Annual Technical
Conference, June 2008.

[37] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification
Mechanism to Defend against DDoS Attacks. In Proc. of
IEEE Security and Privacy, 2003.

[38] A. Yaar, A. Perrig, and D. Song. An Endhost Capability
Mechanism to Mitigate DDoS Flooding Attacks. In Proc. of
the IEEE Security and Privacy, May 2004.

[39] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
Network Architecture. In Proc. of SIGCOMM, 2005.

[40] X. Zhang. Secure and Efficient Network Fault Localization.
PhD thesis, Carnegie Mellon University, 2012.

[41] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen. SCION: Scalability, control, and isolation
on next-generation networks. In Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), May 2011.

