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Abstract: Over half of all visits to websites now take
place in a mobile browser, yet the majority of web pri-
vacy studies take the vantage point of desktop browsers,
use emulated mobile browsers, or focus on just a sin-
gle mobile browser instead. In this paper, we present
a comprehensive web-tracking measurement study on
mobile browsers and privacy-focused mobile browsers.
Our study leverages a new web measurement infrastruc-
ture, OmniCrawl, which we develop to drive browsers
on desktop computers and smartphones located on two
continents. We capture web tracking measurements us-
ing 42 different non-emulated browsers simultaneously.
We find that the third-party advertising and tracking
ecosystem of mobile browsers is more similar to that
of desktop browsers than previous findings suggested.
We study privacy-focused browsers and find their pro-
tections differ significantly and in general are less for
lower-ranked sites. Our findings also show that com-
mon methodological choices made by web measurement
studies, such as the use of emulated mobile browsers
and Selenium, can lead to website behavior that devi-
ates from what actual users experience.
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1 Introduction
When a user browses a website, their behavior is typi-
cally recorded by both the website itself and third-party
scripts. The web tracking technology used by these sites
has evolved from using cookies to using stateless meth-
ods (i.e., fingerprinting), where characteristics of the
browser or the hardware it runs on are measured by
scripts running in web pages to identify the browser out
of millions of other browsers [8, 26, 42, 56, 57, 83, 102].
Data gleaned from tracking is most often used for
targeted advertising but also has other uses, such as
fraud prevention. Regardless of motive, web tracking
is widely recognized as a persistent threat to online
privacy as web browsing habits often reveal sensitive
personal information [87]. Multiple studies have mea-
sured the extent of web tracking [19, 33, 43, 61]. Their
results show a landscape of pervasive tracking, moti-
vating the need to develop tools to mitigate tracking,
such as ad and tracker block lists [12, 36, 41], ad-
blocking extensions [18, 29, 46], and privacy-focused
browsers [23, 30, 37, 76, 98].

Mobile browsers have become the dominant web
browsing platform, overtaking desktop browsing in mar-
ket share as of 2016 [92]. Mobile browsers present addi-
tional avenues to track users due to their JavaScript-
accessible sensor APIs, such as those for orientation
and motion. These sensor APIs give scripts access to
precise hardware-dependent information about a de-
vice that could be used for fingerprinting. For instance,
Das et al. showed that motion sensors could be used
to generate unique fingerprints [34]. Further, the con-
tent served to mobile browsers can differ greatly from
that served to desktop browsers. WTPatrol found that
25.9% of sites in a sample of the Alexa top 1 million
had mobile-specific pages with large structural devia-
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tion from their desktop counterparts [106]. Studying
web tracking in the context of mobile browsers is an
important topic and is the subject of several recent
projects [14, 33, 45, 53, 106].

Existing measurement studies either use emulated
mobile browsers [33], which can differ significantly in
behavior from real mobile browsers, or focus on mo-
bile Firefox [45, 106], which is used by far fewer people
than Chrome. Hence, there is still a need for a compre-
hensive study of web tracking on mobile browsers that:
(1) analyzes data from a variety of browsers, includ-
ing browsers with the largest market share and privacy-
focused browsers; and (2) uses a crawling infrastructure
that makes it more difficult for tracking scripts to rec-
ognize that crawled pages are visited by automated in-
frastructure and not by humans (e.g., tracking scripts
are allowed to read real phone sensor data).

Testing with both mainstream and privacy-
preserving browsers is important for several reasons.
Browsers differ in what APIs they support and how that
support is implemented (e.g., Chrome and Firefox can
return different results for the DeviceMotion API [70]),
potentially causing different tracking behavior. Hence, it
is important for tracking measurement results to include
browsers that are most commonly used. Consequently,
our measurement includes Chrome, which has nearly
135 times greater market share than mobile Firefox and
is employed by 63% of users [94]. Further, in a desktop
setting it is common to evaluate the impact of tracker-
and ad-blocking extensions and browsers [85]. Similarly,
some mobile browsers claim to enhance user privacy, in-
cluding by limiting tracking, but their relative strengths
and weaknesses have not yet been carefully measured.
We study several such browsers that have each been
downloaded more than a million times.

As important as the selection of browsers is the
methodology and infrastructure for collecting data (fea-
ture 2). Prior work has largely used Selenium [15] to
operate browsers; however, without careful modifica-
tion Selenium has been shown to be detectable by web-
sites [54]. Another platform used by previous work,
OpenWPM-Mobile [33], uses emulated mobile browsers
in lieu of running browsers on real mobile phones. Mo-
bile browsers are emulated by loading pages in a desk-
top browser and spoofing the browser’s responses to
JavaScript API calls to look like those of a mobile
browser. This has practical advantages, but since em-
ulated mobile browsers are not backed by real phones,
their behavior can diverge from the hardware-dependent
fingerprints of real phones [20, 88]. For example, the
Canvas fingerprint, which is GPU-dependent, may be

different. These methodological choices could affect the
ecological validity of results.

Just as the data-collection methodology can affect
the veracity of any results, so can the method by which
collected data is analyzed and synthesized into high-
level findings. For example, data may be noisy enough
that computing and comparing aggregate statistics such
as averages may not be a reliable method for compar-
ing two distributions. To increase confidence that any
findings are solidly supported by data, our analyses rely
on statistical tests that are common in other domains
(e.g., clinical medical studies) but less often used in web
measurement.

With a robust statistical testing pipeline, our work
aims to investigate several questions. First, we evaluate
infrastructure and methodological design choices: Q1a:
Is it ecologically valid to use emulated browsers in a web
measurement study? Q1b: Can the method by which
the browsers are driven impact results? Q1c: Can con-
tent be equalized between desktop and mobile browsers?
Second, we conduct a comprehensive comparison of web
tracking between mobile, desktop, and privacy-focused
browsers: Q2a: How do mainstream mobile and desk-
top browsers compare in terms of tracking and adver-
tising? Q2b: How effective are privacy-focused browsers
at blocking tracking and advertising? Q2c: Do privacy-
focused browsers differ in effectiveness on mobile and
desktop? Q2d: What are the strengths and weaknesses
of individual privacy-focused browsers? Q2e: How does
location affect tracking behavior?

To answer these questions we developed Omni-
Crawl: a comprehensive, cross-platform, web-privacy
measurement infrastructure that leverages desktop com-
puters and smartphones located. Using OmniCrawl,
we perform a web crawl using seven mobile browsers:
Chrome and Firefox, as well as five popular privacy-
focused browsers: Brave, Tor, Firefox Focus, Duck-
DuckGo, and Ghostery. In addition to comparing in-
dividual browsers, we also compare against the desktop
counterparts of four of these mobile browsers: Chrome
and Firefox, which collectively hold 70% of browser mar-
ket share [82], and the privacy-focused Brave and Tor.
We visit 20,000 websites with a total of 42 browser in-
stances running in parallel across four desktop comput-
ers and 18 mobile phones on two continents.

We find that using an emulated mobile browser, as
well as some ways of using the popular Selenium browser
driver, can each cause statistically significant differences
in observed tracking behavior. We also find that while
mobile browsers exhibit fewer tracking and advertising
requests than desktop browsers, the same entities are
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responsible for tracking and advertising on mobile and
desktop browsers. Privacy-focused browsers are effective
at reducing tracking and advertising requests, but their
performance varies substantially. We also demonstrate
a new heuristic for detecting ad-blocker evasion via reg-
istration of seemingly unrelated domains.
In summary:
– We develop and make publicly available (at https:

//github.com/OmniCrawl) a scalable web-crawling
infrastructure capable of simultaneously visiting
websites with multiple non-emulated desktop and
mobile browsers. This is an improvement over prior
tools that supported just a single real mobile device.

– We evaluate common methodological choices for
measuring tracking on mobile web browsers and find
that some choices can negatively impact the ecolog-
ical validity of a study.

– We compare the amount of tracking experienced
by users of popular desktop web browsers with the
amount of tracking experienced on the correspond-
ing mobile browsers and find that the third-party
ecosystems of both platforms are more homogenous
than previously approximated.

– We evaluate the efficacy of privacy-focused
browsers’ tracking protections and find them less
effective against less common tracking entities than
against more common ones. We also find significant
differences in the behavior of individual privacy-
focused browsers.

– We present a heuristic for detecting ad-blocker eva-
sion by registering seemingly unrelated domains.

2 OmniCrawl Infrastructure
To enable our web tracking measurement to run ro-
bustly on real phones across two different continents,
and synchronously collect data from multiple browser
instances, our crawling infrastructure needed to sur-
mount a number of engineering challenges: (1) Provi-
sioning and managing multiple physical Android phones
in an automated way; (2) Synchronizing crawling be-
tween browsers; (3) Ensuring the infrastructure does
not use components that can negatively impact ecologi-
cal validity; (4) Aggregating and preprocessing the large
amount of data generated by each browser.

We considered several tools for measuring web
tracking (Section 5.3). Most of these tools do not by de-
fault support simultaneous crawling with multiple real
mobile and desktop browsers and thus do not solve the
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Fig. 1. OmniCrawl overview and workflow. All browsers are run-
ning on physical computers or mobile phones.

above engineering challenges. OpenWPM-Mobile [33]
comes close to supporting parallel crawling with mul-
tiple browsers, but has one key limitation: it uses emu-
lated mobile browsers rather than mobile browsers run-
ning on real mobile devices. As we show in Section 4.1.1,
this design choice can lead to divergence in website be-
havior from what a real mobile browser would experi-
ence. As a result, we decided to create our own tool.

We built OmniCrawl, which supports multiple
physical devices and browser instances while allowing
large-scale web measurement across geographically dis-
tributed locations. In our study, we ran 42 browsers si-
multaneously, on 18 Android phones and two desktops,
in two locations. The design and workflow of Omni-
Crawl is illustrated in Figure 1. The central controller
of OmniCrawl is the main crawler, which controls desk-
top browsers through custom bash scripts and mobile
browsers through Appium. We use custom scripts in-
stead of Selenium [15], a web automation tool widely
used by previous work [8, 33, 43], because websites may
be able to detect the use of Selenium via the exis-
tence of modified JavaScript properties [88]. Our evalua-
tion confirms that tracking observed on Selenium-driven
desktop browsers differs from tracking on non-Selenium-
driven browsers (Section 4.1.2). For mobile browsers, we
build our own automation tool using Appium and An-
droid Debug Bridge (ADB). We treat a mobile browser
as a generic Android application and use Appium’s Go
to URL function to navigate to websites. The main
crawler also ensures that all browsers access the same
website within 130 seconds, reducing the influence of dy-
namic web content on our study. Our evaluation shows
no significant difference in website content due to vari-
ability of load time within this window (Section A.2).

To scalably support multiple browsers, OmniCrawl
uses mitmproxy [32] to intercept traffic and inject
scripts to instrument JavaScript APIs. We install a cus-
tom root certificate on the mobile phones and desktop
computers so the proxy can decrypt HTTPS traffic. We
store all the request and response payloads except media
files (e.g., images, fonts, and videos) larger than 4 KB.

https://github.com/OmniCrawl
https://github.com/OmniCrawl
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This allows us to keep useful data such as JavaScript
files while remaining efficient and conserving disk space.

JavaScript instrumentation is injected to each
loaded HTML page and iframe. Compared with the
instrumentation used in previous work [33, 43, 66],
OmniCrawl instruments a more comprehensive set
of APIs (including Chromedriver automation, math,
XMLHttpRequest, fetch, and WebGL APIs) and logs
API function arguments and return values, which are
helpful for identifying fingerprinting techniques. For ex-
ample, we heuristically identify canvas and WebGL fin-
gerprinting (Appendix A.1) based on the canvas size and
the image data embedded in the function argument and
return value. Table 2 lists the APIs we instrumented
that are most pertinent to fingerprinting. Besides mo-
tion, we also instrumented mobile sensor APIs such as
magnetometers, proximity, and ambient light in accor-
dance with prior work. These APIs were once supported
by some browsers but have been removed or disabled
in all browser versions we tested due to privacy con-
cerns [73–75]. A limitation of an instrumentation-based
infrastructure [33, 43, 66] such as ours is that the instru-
mentation may be detectable by the page scripts’ checks
for certain properties, e.g., the variables and functions
defined in global scope by the instrumentation. While
this can affect ecological validity, we reduce the risk to
validity by using custom driver scripts and real mobile
browsers; an effort, to our knowledge, only matched by
two studies [45, 106] that only support Firefox.

To allow execution of OmniCrawl’s injected inline
script on pages with strict Content Security Policies
(CSPs), we intercept and automatically rewrite the CSP
header. If a nonce or hash directive is present in the CSP
header, we append the nonce or hash of our injected
script; otherwise we append an unsafe-inline directive.
While adding unsafe-inline may allow the execution of
unwanted inline scripts that are already on the page and
may change the page’s behavior, the impact on our re-
sults is negligible: for the 20K websites we visited, we
added unsafe-inline to the CSP headers of only three.

3 Methodology
In this section we discuss our choice of browsers and
explain our crawl configuration, resulting dataset, and
the statistical methodology we use in our analysis.

Category Browser Notes
Chrome 88.0.4324.0 -
Chrome 88.0.4324.0 Identical for comparison
Chrome 88.0.4324.0 Scroll down after 45 seconds
Chrome 88.0.4324.0 Driven by Selenium
Firefox 86.1.1 -
Firefox 86.1.1 Driven by Selenium
Firefox 86.1.1 Ghostery extension v8.5.5

Desktop
Browsers

Firefox 45.9.0 -

Brave 1.20.103 -
Tor Browser 10.0.12 Not using Tor network

Privacy-
focused

Emulated
Mobile
Browsers

Firefox 45.9.0
Firefox 86.1.1

OpenWPM-mobile [33]
OpenWPM-mobile

Chrome 88.0.4324.181 -
Chrome 88.0.4324.181 Spoofed desktop user-agent
Chrome 88.0.4324.181 Scroll down after 45 secondsMobile

Browsers Firefox 86.1.1 -

Brave 1.20.103 -
Tor Browser 10.0.12 Not using Tor network
Ghostery 1.0.2033 Build 22251829
DuckDuckGo 5.77.2 -

Privacy-
focused

Firefox Focus 8.13.1 -

Table 1. The browsers used in our crawl. We use the latest ver-
sion of each browser as of February, 2021.

3.1 Browser Selection

To examine differences between tracking on mobile and
desktop (Q2a), we chose two mainstream browsers
(Chrome and Firefox) for an accurate picture of the typ-
ical user’s experience. To understand the effectiveness of
browsers that claim to enhance privacy as their primary
feature (Q2b-d), we chose several popular browsers
from the Google Play Store that make this claim.

For desktop browsers, we chose Chrome, Firefox,
and two privacy-focused browsers, Brave and Tor, which
have 15M [22] and 2M [99] monthly users, respectively.
We use two identical Chrome instances to measure the
baseline variability between visits to the same website
(Appendix A.2). We included Selenium-driven versions
of Chrome and Firefox to study the differences between
emulated and real browsers (Q1b; Section 4.1.2). We in-
clude one version of Chrome that scrolls down the page
in the last 45 seconds of a site visit (Q2c; Section 4.1.3).
We run one instance of Firefox with the Ghostery plu-
gin [29] to compare with the mobile Ghostery browser,
based on Firefox. Firefox 45 was included to compare
with the emulated mobile browser OpenWPM-Mobile,
based on Firefox 45 (Q1a; Section 4.1.1). We summa-
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rize our browser selection and configuration in Table 1.
All browsers use default settings (e.g., whether to allow
third-party cookies) loaded upon installation. During in-
stallation, if prompts appeared (e.g., whether to share
analytics data), defaults were accepted.

For mobile browsers, we use counterparts to the
desktop versions of Chrome and Firefox, and five popu-
lar browsers that claim to enhance privacy as a primary
feature on their Google Play Store pages: Brave [23],
Tor [98], Firefox Focus [76], DuckDuckGo [37], and
Ghostery [30], each with 1M+ to 10M+ downloads as
of Feb. 2021.

3.2 Measurement Setup

We crawled 20,000 websites from two different locations
between February and June, 2021.

Website List. We selected websites from the Tranco
website ranking1 [58]. The Tranco ranking is designed to
be manipulation resistant and stable over time, and thus
is more representative than the Alexa website ranking.
We crawled the top 10,000 Tranco websites and 10,000
lower-ranking websites randomly selected among every
10 sites ranked from 10,000 to 110,000 to ensure our
dataset contains representative lesser-known websites.

Seed Profiles. A browser profile is a set of cookies and
local storage representing a user’s client-side state. Like
prior work [43], we built a seed profile for each browser
and reset the browser state to it before each website
visit so that order of website visits does not affect the
data we collect. Following prior work [43], we visited
the Tranco top 1K websites using every browser in par-
allel and saved the resulting profiles as seed profiles.
We chose the top 1K sites after small-scale experiments:
We crawled the Tranco top 5K on desktop and mobile
Chrome and measured the number of unique third-party
domains that appear on more than five websites. Visit-
ing the top 1K sites accounted for 87% of those domains,
after which there was little increase.

Website Loading Time. Upon visiting a site, we al-
lowed 90 seconds for the browser to load its content.
This time was determined through a small-scale exper-
iment that found that for most websites, the number
of new requests diminished significantly after the 90-
second mark. After this 90-second soft timeout, we redi-
rected each browser to the next site. If a browser was

1 Available at https://tranco-list.eu/list/4ZWX.

unresponsive, we allowed for a maximum of 130 seconds
total to pass before restarting the browser. We synchro-
nized the browsers (e.g., ensured that they were all set
to visit the same site next) after every ten sites.

Locations. We collected data from two different loca-
tions: the United States, in North America (NA), and
Taiwan, in Asia (AS). Both were rated “Free” in the
2018 Freedom on the Net report [47]. Both locations
are in a university network. We set up nine Android 8.1
Motorola G5 Plus in NA, and nine Android 8.1 ASUS
ZenFone Max (M2) in AS.2 All desktop browsers were
on a Windows 10 machine, as the majority of desktop
users use Windows [82]. The emulated mobile browsers
were on an Ubuntu 18.04 LTS machine, with screen sizes
set to be identical to the Android phones.

Data Gathered. For each website that was visited
during the crawl, our infrastructure intercepted and
recorded all requests that were made and JavaScript
browser APIs that were accessed, including the count of
accesses, by the website itself and by iframed content.
We are able to distinguish first-party and third-party re-
quests, and we log which script performed an API access
and separate the accesses into 13 categories (Table 2).
Distinguishing API accesses in these categories allows
us to understand precisely what type of information is
being collected by page scripts.

3.3 Data Preprocessing and Classification

Prior to analysis, we removed requests that were initi-
ated by browsers rather than websites and determined
the type (e.g., first-party, third-party, tracking and ad-
vertising) and provenance of each request.

To find requests that are browser-generated, we
count how many web sites we observe each third-party
URL. We then manually examine all third-party URLs
that were requested by at least 50 websites on just one
browser but not others. Through this we identify re-
quests that are browser-generated, such as requests that
Chrome browsers send to Google services.

Requests are classified as either first-party or third-
party based on the comparison of the domain of the re-
quest to the domain3 the request originated on. We also
classified requests as tracking-and-advertising by refer-

2 Motorola G5 Plus was no longer available in Asia at the time
we began our study.
3 eTLD+1 ; Public suffix with one additional label (e.g., exam-
ple.com) [77].

https://tranco-list.eu/list/4ZWX
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API category Instrumented objects
Canvas HTMLCanvasElement
Screen screen

Motion DeviceMotionEvent, Accelerometer,
Gyroscope, LinearAccelerationSensor

Battery BatteryManager
Storage localStorage, sessionStorage, indexedDB

Audio
AudioContext, OfflineAudioContext,
OscillatorNode, AnalyserNode, GainNode,
ScriptProcessorNode

WebRTC RTCPeerConnection

Automation navigator.webdriver, chrome.app,
document.cdc_asdjflasutopfhvcZLmcfl_

WebGL WebGLRenderingContext, WebGL*
Plugin navigator.plugin
CSS font {CSSStyleDeclaration,CSS2Properties}.font*

Orientation
screen.orientation, DeviceOrientationEvent,
AbsoluteOrientationSensor,
RelativeOrientationSensor

Configuration navigator.{platform,userAgent,appCodeName,
appName,appVersion,maxTouchPoints}

Table 2. Instrumented JavaScript fingerprinting API categories.

ring to community-maintained ad and tracker-blocking
lists: EasyPrivacy [41] and AdGuard’s Tracking Protec-
tion Filter [12] for tracking; a variant of EasyList (with-
out filter rules for adult domains) [40], AdGuard’s Base
Filter [9], and AdGuard’s Mobile ads filter [11] for adver-
tising. We also include an Asia-specific block list from
AdGuard in order to better identify tracking and ad-
vertising in Country B [10]. Like related work [43, 66],
we do not have knowledge of the server-side behavior of
websites; instead we rely on these block lists to approx-
imate the extent of tracking and advertising.

Finally, for every request, we used webXray [62] data
to determine the provenance of the requests (e.g., which
company owns the domain associated with the request).
For example, a request to youtube.com is considered to
belong to Google, the parent company of YouTube. For
requests whose domains did not have an entry in we-
bXray’s dataset, the owner is the domain itself.

3.4 Fingerprinting Heuristics

We define five fingerprinting categories, shown in Ta-
ble 3. Those fingerprinting categories are used in
a popular open-sourced fingerprinting library finger-
printjs2 [101], as well as in prior fingerprinting stud-
ies [24, 42]. The fingerprinting behaviors in each cate-
gory are detected using heuristics applied to a scripts’
API access patterns. For example, to detect font finger-

Category Description
WebRTC Extract private IP address [33, 43]

Audio Extract info. from underlying audio stack
[33, 43, 56]

Font Enumerate system fonts [8, 43, 83]

Canvas Render text and 2D objects on
CanvasRenderingContext2D [7, 33, 43, 57, 69]

WebGL
image

Render text and 2D/3D objects with GPU on
WebGLRenderingContext [26, 69]

Table 3. JavaScript fingerprinting heuristics categories. Detailed
heuristics are presented in Appendix A.1.

printing we check for scripts enumerating system fonts.
All five heuristics are at least as strict as those defined
in related work; details of each are in Appendix A.1.

3.5 Statistical Methodology

For statistical analysis we used standard tests (com-
monly used in medical research (e.g., [39, 90]) as well
as privacy studies (e.g., [16, 21, 59, 63, 80, 91])). The
distributions we examined were sufficiently skewed such
that non-parametric tests were applicable. Thus, for
each kind of comparison (two groups, multiple browsers,
etc.) we used the appropriate non-parametric statistical
test. We used the Wilcoxon signed-rank [104] and Mann-
Whitney U [64] tests for comparisons of two groups
of equal and unequal size, respectively. When we per-
formed multiple tests, we made a testing correction
using the Holm-Bonferroni method [51]. We used the
Friedman test for comparison of more than two groups
(omnibus) [48]. When the Friedman test showed a signif-
icant difference between some of the groups, we applied
the Conover Squared Ranks test to determine which
groups were significantly different [31].

4 Results
In this section we present findings on the two sets of re-
search questions: methodological design choices (Q1a-
c), and comparisons of mobile, desktop, and privacy-
focused browsers (Q2a-e). Except for location compar-
isons (Q2e), comparisons of individual browsers use the
NA dataset to avoid introducing location as a variable.
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4.1 Evaluation of Methodological Choices

The methodological design choices of a web measure-
ment study can impact the ecological validity of results.
We extend previous work by investigating several di-
mensions in parallel: Q1a: Is it ecologically valid to use
emulated browsers in a web measurement study? Q1b:
Can the method by which the browsers are driven im-
pact results? Q1c: How can content be equalized be-
tween desktop and mobile browsers, and what effect
does this have on web-privacy measurements?

4.1.1 Validity of Emulated Mobile Browsers

An emulated mobile browser is a desktop browser
modified to appear to websites as a mobile browser.
OpenWPM-Mobile used this kind of browser in lieu of
a mobile browser running on a mobile phone [33].
Q1a: Is it ecologically valid to use emulated browsers
in a web measurement study?

Prior work has shown that using a desktop browser
configured to impersonate a mobile browser may affect
tracking measurement [106]: many Alexa Top 100 pages
exhibited differences in the DOM and JavaScript con-
tent shown in an emulated mobile browser compared
to a real mobile browser. However, the emulation in
that work was limited to changing desktop Firefox to
use the User-Agent string and screen resolution of mo-
bile Firefox. Other modifications were not implemented,
e.g., sensor API results were not spoofed, although they
are often used to fingerprint mobile devices [20].

In comparison, OpenWPM-Mobile modifies browser
properties and spoofs sensor API calls to the point that
the browser fingerprint is almost identical to real mo-
bile Firefox, except for the Canvas and WebGL finger-
prints, which are difficult to emulate as they depend on
the underlying graphics hardware [33]. While Selenium-
driven, OpenWPM-Mobile avoids some of the poten-
tially problematic browser modifications that Selenium
makes (Section 4.1.2). Such deep modifications require
regular updating as browser and web APIs change.

We included both OpenWPM-Mobile’s emulated
Firefox browser and its non-emulated counterpart, mo-
bile Firefox, in our crawl. Our findings indicate that
these two browsers’ distributions of first-party, third-
party, and third-party tracking-and-advertising requests
all differ significantly (Figure 12). The median num-
ber of first-party requests is the same, but OpenWPM-
Mobile has significantly more third-party (3%) and

third-party tracking-and-advertising (6%) requests on
average. However, the entities themselves are similar
(the top 5 are Google, Facebook, Adobe Systems, Mi-
crosoft, and Amazon for both browsers). This mirrors
what we see when comparing mainstream mobile and
desktop browsers (Section 4.2.1): different distributions
of number of entities, but the entities themselves are
largely the same.

We also measured the number of API accesses by
the pages they browsers loaded. The browsers differ
significantly in the numbers of APIs accessed for all
API categories besides Audio and WebRTC (Figure 13).
For some APIs implicated in fingerprinting, the differ-
ences are fairly large: Plugin (50% more on OpenWPM-
Mobile), Storage (21%), and Screen (8%). The Plugin
category has the largest difference because those APIs
are primarily used on desktop; support for plugins on
Firefox for Android was removed in 2016 [71]. Web-
sites may be treating OpenWPM-Mobile as a desktop
browser and thus trying to access Plugin APIs.

We further examined websites in the Tranco top
500 that showed the largest differences: alipay.com, en-
gadget.com, yandex.ru, fideity.com, 6.cn, avito.ru. In-
vestigating the JavaScript loaded by these sites uncov-
ered multiple forms of fingerprinting, including Canvas
fingerprinting. OpenWPM-Mobile cannot emulate the
Canvas fingerprint of a mobile device because it is us-
ing the graphics hardware of a desktop machine [33];
these websites may be recognizing OpenWPM-Mobile
as a desktop browser. These findings suggest that even a
carefully emulated browser like OpenWPM-Mobile can
cause significant differences in tracking measurements,
potentially due to difficult-to-emulate hardware differ-
ences from its real counterpart.
Result 1a: Emulated browsers may not be suitable
for use in a web privacy studies that measure counts
of requests and accesses to browser APIs because
their use can result in measurements that differ from
real mobile browsers.

4.1.2 Method of Driving Browsers

A crawling infrastructure typically interfaces with a
browser through a driver program, which may modify
the browser in a manner detectable to websites.
Q1b: Can the method by which the browsers are driven
significantly impact results?

Selenium [15] is a popular method for controlling
browsers. However, previous work has shown that Se-
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lenium is detectable by websites since it injects and
modifies JavaScript properties of the browser [54, 88].
Hence, we use custom scripts to launch and direct
browsers without modifying any browser properties. To
determine if using Selenium can cause significant differ-
ences in the results of a measurement study we com-
pare Selenium-driven and non-Selenium-driven versions
of desktop Chrome and of desktop Firefox.

We find that Selenium-driven Firefox experiences
far fewer third-party (84% fewer) and third-party
tracking-and-advertising (86%) requests than non-Sele-
nium-driven Firefox (Figure 15). We also observe a sig-
nificant difference in API accesses to the Automation
and Storage categories (Figure 16). Selenium-driven
Firefox sets navigator.webdriver to indicate it is auto-
mated [72]. We find more accesses to this property on
Selenium-driven Firefox, which suggests that websites
may be checking and not deploying ads (i.e., making
third-party requests) if it is set.

Selenium-driven Chrome experiences significantly
more third-party requests (20% more) than non-
Selenium-driven Chrome. Selenium-driven Chrome also
has significantly fewer accesses for the Automation cat-
egories. When Selenium is driving Chrome, it adds a
property to the document object that indicates automa-
tion: document.$cdc_asdjflasutopfhvcZLmcfl_ [28]. We in-
spected some scripts performing accesses to the Au-
tomation category APIs and found logic specifically to
detect Selenium (e.g., see Figure 11).
Result 1b: Selenium can measurably affect the eco-
logical validity of a web measurement study due to
websites’ bot detection efforts.

4.1.3 Difference in Desktop and Mobile Content

Desktop browsers generally use a larger screen size than
mobile browsers and thus may show more content. This
can confound comparisons of the amount of requests or
API accesses between desktop and mobile browsers.

Q1c: How can content be equalized between desk-
top and mobile browsers, and what effect does this have
on web-privacy measurements?

Equalization of content is difficult because web-
sites may dynamically increase the amount of content
they show. This is exhibited in the two different kinds
of scrolling behavior websites have: dynamic-scrolling,
where one can keep scrolling and new content is loaded,
and static-scrolling, meaning that the page has a fixed
bottom. We identify scrolling behavior by programmat-
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Fig. 2. Effect of scrolling on number of requests for static-scroll-
ing sites. Bolded request types indicate significant differences.

ically scrolling down the page and observing whether
document.body.scrollHeight changes.

The difficulty of equalization is exacerbated because
websites often have a different layout on mobile browsers
than on desktop browsers. For example, the desktop ver-
sion of youtube.com renders as a two-dimensional grid
of “suggested” videos. On a mobile browser a single col-
umn of videos is shown, with ads interspersed. In this
case, does equalization mean that scrolling should be
performed so that the mobile browser shows the same
number of videos as the desktop browser? In small-scale
experiments on youtube.com and other video sites we
scrolled down on the mobile browser so that the same
number of videos was shown as on the desktop browser
and found little correlation between that form of equal-
ization and new requests made on the mobile browser;
some sites made more requests while others did not, and
the new requests themselves were often unrelated to the
content, e.g., periodic logging requests.

We suggest a different standard: Each browser
should show in its viewport all the content fetched as
a result of the top-level HTTP request. This is more
difficult on dynamic-scrolling sites, as new content will
continue to be loaded as the page is scrolled down. For
these sites, we stop scrolling at what was the bottom
of the page before new content was loaded (the “orig-
inal bottom”). For static-scrolling websites, there is a
fixed amount of content, which allows for content-based
equalization. Static-scrolling sites make up about 70% of
the sites in our crawl. We measure the effects of equaliza-
tion by scrolling to the fixed bottom of static-scrolling
and original bottom of dynamic-scrolling sites.

We compare request and API access behavior of mo-
bile and desktop Chrome, with and without scrolling.
For static-scrolling sites (Figure 2) we find that scrolling
does increase content; mobile and desktop Chrome with
scrolling have significantly more requests (6% on aver-
age) than their non-scrolling counterparts for every re-
quest type except for first-party tracking and advertis-
ing. For dynamic-scrolling sites we observe similar be-
havior (Figure 17). In both cases the increase in each
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category of requests is proportional; both mobile and
desktop Chrome with scrolling increase by a similar
amount, with average increases within 1% of each other.
Trends and conclusions in results will not change with
this equalization; for example, mobile Chrome still has
fewer first-party requests than desktop Chrome. Thus,
the results we present (Section 4.2), do not use equal-
ization via scrolling.
Result 1c: Equalization via scrolling results in pro-
portional changes to mobile and desktop website be-
havior and thus does not affect conclusions about
differences in website behavior.

4.2 Comparison of Browser Conditions

In this section we answer the following two sets of re-
search questions. For Chrome and Firefox (mainstream
browsers), which hold the largest market share of our
browsers [82]: Q2a: How do mainstream mobile and
desktop browsers compare in terms of tracking? We
also compare a set of browsers that claim to include
privacy-enhancing features (privacy-focused browsers):
Q2b: How effective are privacy-focused browsers at
blocking tracking and advertising? Q2c: Do tracking
protections afforded by privacy-focused browsers differ
in effectiveness between their mobile and desktop ver-
sions? Q2d: What are the strengths and weaknesses of
individual privacy-focused browsers? Finally, consider-
ing both mainstream and privacy-focused browsers, we
ask: Q2e: How does location affect tracking behavior?

4.2.1 Mainstream Mobile and Desktop Browsers

Q2a: How do mainstream mobile and desktop browsers
compare in terms of tracking?

Previous work examined mobile and desktop Fire-
fox [45, 106] but not mobile and desktop Chrome, which
together hold 66% of total mobile and desktop market
share. We compare mobile Chrome and mobile Firefox
(termedMobile) to desktop Chrome and desktop Firefox
(termed Desktop) in terms of first-party and third-party
requests, third-party tracking-and-advertising entities,
API accesses, and potential fingerprinting.

Tracking and Advertising Requests. Figure 3
shows the differences between the number of mobile
and desktop requests. The difference between the dis-
tributions for every request type is significant. For Fire-
fox, the difference is particularly large for first-party
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Fig. 3. Number of requests on mobile and desktop browsers.

(53% more on desktop) and third-party (55%) requests.
For Chrome, the differences are largest for third-party
(45% more on mobile) and third-party tracking-and-
advertising (27%) requests. The difference in the num-
ber of third-party tracking-and-advertising requests ex-
perienced by a user on mobile or desktop depends on
the browser: mobile Chrome experiences more requests
than desktop Chrome, but desktop Firefox experiences
more requests than mobile Firefox.

Since many domains have the same owner, we use an
updated fork of the webXray domain owner list [61] to
trace tracking-and-advertising requests to domain own-
ers (see Section 3.3). We then aggregate tracking find-
ings at the level of the parent entity to reveal the full
reach of an entity. While we do find a significant differ-
ence in the distributions of entity counts, the median
number of entities requested by the mobile and desktop
versions of both browsers is the same (Figure 18). Like-
wise, the top four most prevalent entities are the same:
Google, Facebook, Adobe Systems, and Microsoft.

Comparing the mobile browsers jointly against the
desktop browsers, we find that none of the top 100 en-
tities (by prevalence) is exclusive to mobile or desk-
top. Of the 5326 third-party tracking-and-advertising
entities we recorded, just 357 are mobile-specific and
523 are desktop-specific. While prior work has pointed
out this long tail of tracking [43, 106], we also re-
port on their prevalence: The most prevalent mobile-
specific entity, ymetrica1.com accounts for just 0.16%
of the mobile requests in our crawl. Likewise, the
most prevalent desktop-specific entity, netshelter.net ac-
counts for just 0.01% of desktop requests. Collectively,
all of the mobile-specific and desktop-specific entities
account for just 0.45% requests in our crawl. The third-
party tracking-and-advertising ecosystem on mobile and
desktop hence seems more homogeneous than suggested
by prior work.
Result 2a-1: The mobile and desktop versions of
Chrome and Firefox experience significantly differ-
ent amounts of third-party tracking-and-advertising
requests, but the ecosystem of third-party entities is
more homogeneous than previously reported.



OmniCrawl: Comprehensive Measurement of Web Tracking With Real Desktop and Mobile Browsers 236

Au
dio

Au
tom

ati
on

Ba
tte

ry
Ca
nva

s

Co
nfi

gu
rat

ion CS
S

Ge
olo

cat
ion

Plu
gin

Scr
een

Sto
rag

e
Web

GL

Web
GL
ext

Web
RT
C

API Category

10−5.0

10−4.0

10−3.0

10−2.0

10−1.0

100.0

101.0

102.0

103.0

# 
of

 A
cc

es
se

s

Platform
M-Chrome-NA
D-Chrome88-NA
M-Firefox-NA
D-Firefox86-NA

Fig. 4. APIs accessed on mobile and desktop browsers. The y-axis
is the averaged number of API accesses on a page, normalized
between mobile and desktop, and log-scaled for clarity.

JavaScript API Accesses and Fingerprinting.
Measuring the behavior of a website in terms of its ac-
cess to browser APIs is critical for quantifying the extent
of tracking. Figure 4 shows the number of API accesses
on mobile and desktop Chrome and Firefox for each
sensitive JavaScript API category (Section 2).

Mobile Chrome and Firefox both experience signif-
icantly more API accesses to the Screen (54% more,
on average) and Storage (42%) categories. Mobile
Chrome also experiences significantly more accesses to
the CSS category (57%). The above differences are
largely due to more activity on mobile for googlesyndica-
tion.com and googletagservices.com, which respectively
are 10th and 11th most prevalent third-party tracking-
and-advertising domains [38]. For googletagservices.com
and googlesyndication.com we see a greater number of
API accesses (401% and 155%, respectively) on the mo-
bile versions. The API access behavior of these two
domains jointly account for 35% of total API accesses
of the top 100 third-party tracking-and-advertising do-
mains on mobile, underscoring the outsized effect of
highly prevalent entities on the browsing experience of
users. Desktop Chrome and Firefox experience signifi-
cantly more API accesses to the Plugin category (50%
more). This is unsurprising; the last remaining 3d-party
plugin was Flash and it was not available on Android
by default after Android 4.1 [89].

The APIs in the above categories are well-known
vectors for fingerprinting (see Appendix A.1). For ex-
ample, the APIs in the Screen category allow a website
to determine a browsers’ screen size, which has shown
to result in differences in DOM and JavaScript content
shown by the Alexa Top 100 websites [106]. However,
these APIs have legitimate uses outside of fingerprint-
ing. To reduce false positives, we apply several cate-
gories of fingerprinting heuristics (see Appendix A.1)
and for each browser count the number of websites iden-
tified as performing fingerprinting in each category.
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that the fingerprinting category is present on all browsers.

We find significant differences for the WebRTC
(21% more on mobile, on average), Audio (10%), We-
bGL image (6%), and Canvas (4%) categories (Fig-
ure 5). To investigate further, we selected ten websites
with large differences in fingerprinting behavior and
manually reviewed the scripts loaded by those sites. We
looked for characteristics of fingerprinting scripts [101]
and found several mobile-specific scripts. For example,
antifraudjs.friends2follow.com serves mobile browsers
scripts that we detect performing WebGL image fin-
gerprinting (confirmed by the domain’s privacy policy
which states that the script will perform browser fin-
gerprinting [49]). We speculate the fingerprinting script
is conditionally loaded by websites based on the plat-
form. Additionally, scripts from googletagservices.com
and googlesyndication.com, which play a large role in the
greater number of API accesses to sensitive API cate-
gories, are recognized as performing fingerprinting [38].
Result 2a-2: Mobile Chrome and Firefox experience
significantly more API accesses than their desktop
counterparts for key APIs implicated in fingerprint-
ing. These browsers also make requests to more pages
whose behavior is indicative of fingerprinting.

4.2.2 Effectiveness of Privacy-focused Browsers

We next compare privacy-focused browsers—Ghostery,
Firefox Focus, DuckDuckGo, Tor, and Brave—to
Chrome and Firefox. Here we discuss only mobile
browsers; an evaluation of their desktop counterparts,
omitted for space, reaches the same conclusion.
Q2b: How effective are privacy-focused browsers at
blocking tracking and advertising?

Tracking and Advertising Requests. When com-
paring the distributions of requests between privacy-
focused (termed Privacy) browsers and Chrome and
Firefox (termed Mainstream) we find that Privacy
browsers overall experience significantly fewer third-
party requests (Figure 19); most importantly, Main-
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advertising requests per entity achieved by privacy-focused mobile
browsers, as compared to mainstream browsers. For example,
we find that 235 entities have a 51-60% reduction in third-party
tracking-and-advertising requests.

stream browsers experience 70% more third-party
tracking-and-advertising requests on average. Privacy
browsers also experience significantly fewer third-party
tracking-and-advertising entities (Figure 21); Main-
stream browsers experience double the number.

We examine which entities are responsible for the
third-party tracking-and-advertising requests in each
group. For both groups the top four most prevalent
entities were Google, Facebook, Adobe Systems, and
Microsoft. Privacy-focused browsers do not reduce the
number of requests from these entities uniformly: As
a group, they block about 60% of the tracking-and-
advertising requests associated with Google, 66% for
Facebook, 56% for Adobe Systems, and 67% for Mi-
crosoft. For the top 1000 entities find that the reduction
in tracking is widely distributed, with a median reduc-
tion of 55% (Figure 6).

As a consequence, as we consider less prevalent
third-party entities, we find less effective blocking be-
havior. For example, there is only a 22% reduction in
tracking-and-advertising requests from Tencent. In the
top 1000, there are 84 entities where Privacy browsers
have a reduction of 30% less. For seven of those entities
the Privacy browsers do not differ significantly from the
Mainstream browsers in terms of third-party tracking-
and-advertising.

These results suggest that the blocking lists used by
privacy-focused mobile browsers are only consistently
effective at reducing tracking-and-advertising requests
from prevalent sources. This may be because (1) block-
ing lists are often community-generated and thus can-
not cover all entities and (2) as blocking lists add rules
for lower-ranked entities, the performance for querying
the list degrades [93]. Therefore, rules for less-prevalent
entities are excluded because of their performance cost.

JavaScript API Accesses and Fingerprinting.
Since Privacy browsers are effective at reducing re-
quests to prevalent third-party tracking-and-advertising
entities, we examine how this correlates with API ac-

cesses. We find significant differences between the Pri-
vacy and Mainstream browser groups for every API ac-
cess category besides Automation (Figure 20). The dif-
ferences are large for several sensitive API categories:
Screen (80% reduction), Storage (77%), and Configu-
ration (46%). By blocking some of the most prevalent
trackers, privacy-focused browsers also remove many
potentially fingerprinting API accesses. Using our fin-
gerprinting heuristics we confirm that privacy-focused
browsers experience fingerprinting on significantly fewer
websites for all categories, most notably WebGL Image
(48% reduction) and Canvas (44%) (Figure 26).
Result 2b: Privacy-focused browsers experience a
significant reduction in accesses to sensitive APIs
as compared to mainstream browsers, and a re-
duction in third-party tracking-and-advertising re-
quests. However, these reductions occur predomi-
nantly for prevalent tracking-and-advertising enti-
ties, suggesting a need for prioritizing block list com-
prehensive over performance for privacy.

4.2.3 Comparing Privacy-focused Mobile and
Desktop Browsers

In Section 4.2.1, we showed that mainstream mo-
bile browsers experience significantly different amounts
third-party tracking-and-advertising requests than their
desktop counterparts. Now, we perform the same com-
parison for privacy-focused browsers.
Q2c: Do tracking protections afforded by privacy-
focused browsers differ in effectiveness between their
mobile and desktop versions?

We investigate this question through a comparison
of two privacy-focused browsers that have a desktop
and a mobile version: Brave and Tor. We find that the
mobile versions of the browsers have significantly fewer
first-party (6% less) requests than their desktop coun-
terparts (Figure 22). While their distributions of third-
party and third-party tracking-and-advertising requests
differ significantly, the median number of requests is the
same. Comparing the entities responsible for third-party
tracking-and-advertising requests, we find that the dis-
tribution of entity counts differ significantly for both
Brave and Tor (Figure 24). However, the median num-
ber of entities is the same for both mobile and desktop,
as are the five most prevalent entities: Google, Face-
book, Adobe Systems, Microsoft, and Amazon.

Of the top 1000 entities, seven are visited only by
privacy-focused mobile browsers and six only by their
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desktop counterparts. These entities only receive 0.37%
and 0.04% of requests, respectively, in the whole crawl.
Investigation of the API access behavior of these enti-
ties did not show any notable differences in mobile or
desktop behavior. We conclude that largely the same ac-
tors are performing tracking and advertising on privacy-
focused desktop and mobile browsers.

In terms of API accesses, we find significant dif-
ferences for all API accesses categories except Battery
and WebRTC (Figure 23), with Screen (200% more
on mobile) and Storage (100%) showing the greatest
difference. We earlier reported similar differences be-
tween mainstream mobile and desktop browsers. How-
ever, on average the differences are 2.5 times larger in
the privacy-focused comparison. This indicates that the
API access differences intrinsic to mainstream mobile
and desktop browsers are present for privacy-focused
browsers to a greater degree.

We reported in Section 4.2.2 that privacy-focused
browsers’ tracking protections were effective at reduc-
ing third-party tracking-and-advertising. It is clear that
this effect is proportional to the amount of tracking
and advertising that mobile and desktop experience, re-
spectively. Privacy-focused mobile and privacy-focused
desktop browsers have a similar level of reduction of
tracking-and-advertising requests. The difference be-
tween privacy-focused mobile and desktop browsers par-
allels the fewer requests and increased API accesses
that mainstream mobile browsers have in comparison
to mainstream desktop browsers.
Result 2c: Mobile and desktop privacy-focused
browsers experience a similar amount of third-
party tracking-and-advertising requests. Like mobile
and desktop mainstream browsers, mobile privacy-
focused browsers access sensitive APIs more often
than their desktop counterparts.

4.2.4 Comparing Individual Privacy-focused Browsers

We reported in Section 4.2.2 that privacy-focused
browsers are effective at reducing third-party tracking-
and-advertising. However, we find variance in how well
they perform, which leads to the following question.
Q2d: What are the relative strengths and weaknesses
of individual privacy-focused browsers?

The term “privacy browser,” commonly used on mo-
bile app marketplaces, is overloaded, as different such
browsers have different features. We categorize claimed
features as follows: (1) ad blocking, (2) tracker block-
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tracking-and-advertising requests.

ing, (3) tracking protection, and (4) fingerprinting pro-
tection. (1) and (2) are well-defined in that they re-
spectively imply reduction in third-party advertising
and tracking requests. It is less clear what (3) im-
plies, and (4) is counterintuitive because of what Eck-
ersley called the “Paradox of Fingerprintable Privacy
Enhancing Technologies” [42]: the presence of ad and
tracker blocking can make a browser more fingerprint-
able. Thus, (4) may actually imply no reduction in third-
party tracking-and-advertising requests and so can be in
conflict with (1) and (2).

On the Google Play Store (as of June 2021): Brave
claims (1) and (3) [1]. Tor claims (2) and (4) [6]. Firefox
Focus claims (1) and (2) [4]. DuckDuckGo claims (2) [2].
and Ghostery claims (1) and (2) [5]. While not primar-
ily marketed as privacy-focused, we also include Firefox
in this comparison as it too includes built-in tracking
protection and claims (2) [3].

We investigate the request behavior of each browser
(Figure 7). Brave is the most effective at reducing third-
party tracking-and-advertising requests; its claim to (1)
is supported. The other privacy-focused browsers vary
significantly in terms of reducing third-party tracking-
and-advertising requests. Firefox Focus and Ghostery
differ significantly in how much they reduce third-
party tracking-and-advertising requests, but the perfor-
mance of both supports their claims, (1) and (2). Fire-
fox is least effective at reducing third-party tracking-
and-advertising requests. This is unsurprising, as Fire-
fox’s enabled-by-default “standard” tracking protection
“blocks fewer trackers” [79]. It errs on the side of caution
in what it blocks, focusing on restricting tracking cook-
ies, social-media trackers, and fingerprinting scripts; it
does not block other content (loaded ads, videos) that
may perform tracking [78, 105]. Thus, while Firefox
claims (2), its blocking of tracking and advertising is
limited with its default settings.

Tor also claims (2), but it is the second least effec-
tive at reducing third-party tracking-and-advertising re-
quests. What may be unclear to users is that this occurs
by design: Tor is developed with the goal that “all Tor
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users should have the exact same fingerprint” [84]. As a
result, the Tor browser does not include any ad-blocking
plugins and discourages users from adding such plugins
as they would make the browser more unique [97], sup-
porting the claim to (4). As discussed previously, (2)
and (4) are at odds; Tor’s claim to (2) could be clarified
or removed to reduce potential confusion.

When it comes to the number of API accesses each
browser experiences, the browsers also vary significantly
(Figure 25): On average over all API categories, Brave
has the fewest API accesses; 25% less than the group
average. Firefox performs the worst overall, with 41%
more accesses than the group average. Tor again per-
forms the second-worst, with 35% more API accesses
than the group average. As a result of blocking fewer
third-party tracking-and-advertising requests, Tor has
significantly more API accesses for several categories:
Plugin (200% more), Screen (170%), Storage (77%), and
Configuration (44%). However, when it comes to sensor
APIs (Audio, Battery, and Geolocation), Tor has the
least accesses. This is because Tor disables these APIs
in order to reduce its fingerprinting surface [96].

The variation in the behavior of these browsers in-
dicates a need for more clarity on app marketplaces as
to what a “privacy browser” delivers. If a user’s goal
is to reduce ads and trackers on the web page (e.g., to
receive the least number of tracking-and-advertising re-
quests) then Brave is the clear winner. However, if the
goal is to reduce access to sensor APIs that can be used
for fingerprinting, Tor is the more effective option.
Result 2d: Privacy-focused mobile browsers vary
significantly in effectiveness and, in some cases, de-
viate from what they claim to provide. This suggests
a need for more clarity on app marketplaces as to the
privacy implications of each browser.

4.2.5 Effect of Location on Tracking

We compare the amount of tracking on mainstream and
privacy-focused browsers in North America (NA) and
Asia (AS) to answer the following question.
Q2e: How does location affect tracking behavior?

The number of third-party tracking-and-advertising
requests made by mainstream mobile and desktop
browsers in NA is significantly different (4% more on
mobile) than the number of requests made by those
browsers in AS (Figures 27–28). Comparing privacy-
focused browsers in NA to their counterparts in AS, we
find that while the distributions of third-party tracking-

and-advertising differ significantly, the median number
of requests remains the same (Figures 29–30). This
suggests that there is more third-party tracking-and-
advertising in NA than AS and that privacy-focused
browsers are effective at reducing third-party tracking-
and-advertising in both locations.

Next, considering third-party tracking-and-adver-
tising entities, we again find that while the distributions
of entities differ significantly between NA and AS, the
median number of entities remains the same. Further ex-
ploring country-specific tracking behavior, we find that
the top four third-party tracking-and-advertising enti-
ties are the same in NA and AS: Google, Facebook,
Adobe Systems, and Microsoft. Overall, 1091 entities
(20%) are observed only in NA and 539 entities (10%)
only in AS. However, these entities account for only
1.14% of the third-party tracking-and-advertising re-
quests in NA and 2.32% of those in AS. Apart from dif-
ferences in lower-ranking entities, we observe a country-
specific tracking entity: AT&T, which ranks 5th on mo-
bile and 7th on desktop in AS but outside the top 50
in NA. Specifically, the domain *.adnxs.com, owned by
AT&T, is a country-specific ad-and-tracking domain in
AS. The observation of country-specific entities con-
forms with previous work [52].
Result 2e: Mainstream browsers experience signifi-
cantly more third-party tracking-and-advertising re-
quests in NA. Privacy-focused browsers are effective
at reducing this tracking-and-advertising in both NA
and AS. While 20% percent of NA entities and 10%
of AS entities performing tracking and advertising
differ based on browser location, they account for a
small fraction of requests, and the most prominent
entities are the same.

4.3 Other Interesting Findings

Ad-blocker Circumvention. Websites have tried to
evade ad-blocking by using URLs not black-listed by
ad-blockers. Our study found evidence that some com-
panies have attempted to evade block lists by registering
multiple seemingly unrelated domains.

We say that Domain A is an evading domain of a
known tracking-and-advertising Domain B if A is not
a known tracking-and-advertising domain but A and B
share the same URL paths and HTTPS certificate. We
find that B is often used to serve the same tracking-
and-advertising content blocked by blocklists targeting
A (but missing B).
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Domain A shares a URL path with Domain B if it
has at least one URL path fully matching a tracking-
and-advertising request on Domain B, which implies
that the two domains may use the same backend. Do-
main A shares a certificate with Domain B if the
Subject Alternative Name or Common Name of do-
main A’s certificate is also valid for Domain B or vice
versa, which implies that A and B may belong to the
same entity. For instance, we found that s.adnxtr.com,
s.cdnsynd.com, and s.xlgmedia.com are evading do-
mains of a known tracking domain, s.tagsrvcs.com.
Those evading domains have the request URL path
/2/4.69.1/main.js, which is the same as the tracking
request s.tagsrvcs.com/2/4.69.1/main.js. Additionally,
all of them share the same HTTPS certificates.

Among the 73,142 (28,787 eTLD+1) domains that
are not tracking-and-advertising domains in our crawl,
we found 34,800 (20,217) domains that can be linked
to at least one tracking-and-advertising domain using
only the URL path. Furthermore, we found 2253 (1410)
domains in our dataset that share the same HTTPS
certificate with a tracking-and-advertising domain. By
computing the intersection of these sets of domains, we
identify 989 (681) evading domains.

While advanced ad-blockers may be able to use the
above heuristic to identify and blacklist evading do-
mains, the heuristic has the following false positives.
We observe the prevalence of third-party websites/CDN
hosting services that use the same certificate for all the
hosted domains, conforming with previous findings [25].
For example, the Subject Alternative Names field of a
tracking-and-advertising domain cdn.bee7.com includes
www.berkeley.edu, a website of a US university, and m-
i-d.co.jp, an online boutique shopping website in Japan.
It is unlikely that they all belong to the same entity.
Similarly, with respect to URL matching, a common
path such as /jquery.min.js, a popular JavaScript li-
brary, could flag benign domains. An interesting fu-
ture direction is to study the impact of such certificate-
sharing practices and the effectiveness of certificate or
path matching on ad-blocking.

Similar Fingerprinting Code Snippets. In our
study, we observed several scripts sharing similar fin-
gerprinting code snippets. For example, out of the 1444
unique scripts that match at least one fingerprinting
category, 277 (14%) contain all the magic strings of
fingerprintjs2, a popular open-source library [101]. The
magic strings mmmmmmmmmmlli (m takes up maxi-
mum width, lli adds entropy) and Cwm fjordbank glyphs
vext quiz (English-language pangram) used for canvas

fingerprinting appear in 250 and 319 of the scripts, re-
spectively. 207 scripts use both the magic strings, and
162 of them directly embed the word fingerprintjs. Since
magic strings are deliberately chosen to enable effective
canvas fingerprinting, it is reasonable that they are left
unchanged even if an entity would like to develop its own
fingerprinting script. This could serve as a lightweight
method to detect fingerprinting attempts.

Magic-string matching gives us a lower bound on the
fraction of reused fingerprinting code snippets. However,
it is challenging to determine the prevalence of code
reuse and similarity for JavaScript, because most scripts
are minified or obfuscated and may have runtime-
resolved objects. Further analysis of code similarity is
left for future work.

5 Related Work
In this section, we discuss related work on web track-
ing studies for both desktop and mobile platforms and
compare our infrastructure with others.

5.1 Metrics to Measure Tracking

Tracking has evolved from stateful and cookie-based to
stateless and fingerprinting-based, most recently lever-
aging hardware characteristics for fingerprinting, such
as WebGL [26, 57, 69] and mobile sensors [14, 20, 33,
35, 108]. Unlike some earlier work [43, 44, 60, 86], our
work did not analyze cookies. Also, similar to recent
work, we analyze web requests to known tracking do-
mains as a main metric for tracking [17, 43, 85, 106].
We additionally used webXray [61] data to understand
tracking at the level of entities. Also similar to recent
work, our second metric to measure tracking is the
number of JavaScript API calls that could be used for
fingerprinting [106]. We instrument a wider collection
of sensitive APIs than previous work in order to in-
crease the coverage of potential fingerprinting behav-
iors, such as WebGL, fetch and Selenium automation
APIs. A final metric that we use to estimate tracking
is fingerprinting heuristics. We adopt and refine some
of the definitions used in literature to reduce false pos-
itives [7, 8, 33, 43, 57, 83].

Next, we expand on our design decisions of metrics
that we did not use to measure tracking.

Cookie-based Tracking. Identifying identifier cook-
ies used for tracking typically requires heuristics and is
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Stateful Browser
Platform name Desktop browsers Mobile browsers JavaScript instrumentation crawl driver Scrolling
FPDetective [8] PhantomsJS, Chrome - Native WebKit code # S #
OpenWPM [43] Firefox - Browser-dependent plugins  S #
OpenWPM-mobile [33] Imitate mobile Firefox on desktop Firefox Browser-dependent plugins‡ # S*  
FourthParty [66] Firefox (plugin) - Browser-dependent plugins # C #
webXray [61, 62] Chrome - - # S #
Eubank et al. [45] - Firefox -  C #
WebCapsule [81] Blink-based browsers† - Blink DevTool # C #
WTPatrol [106] Firefox Firefox Browser-dependent plugins‡ # C  
CRAWLIUM [67] Firefox - § Browser-dependent plugins‡ # S #
OmniCrawl Chrome, Firefox, Tor,

Brave, ...
Chrome, Firefox,
Tor, Brave, ...

Browser-independent JavaScript  C  

Fig. 8. Comparison of web crawling platforms.  : supports, H#: partially supports, #: does not support. † = Chromium, Microsoft
Edge, Brave, and Opera. ‡ = Uses OpenWPM’s instrumentation. § = Focuses on Android applications, not browsers. Browser driver: S
= Selenium, C = non-Selenium custom driver. * = Based on a modified Selenium as described in Section 4.1.1.

not precise [43, 44, 60, 86]. Further, counting requests to
known tracking domains is a reasonable approximation.
Nonetheless, our measurement infrastructure is config-
ured to store cookies, and therefore, can be used by
future studies that want to analyze cookies.

Entropy-based Fingerprinting. To analyze Java-
Script-based fingerprinting, researchers have also per-
formed entropy-based [19, 26, 42, 50, 56, 57, 102] and
clustering-based analysis [33], which require knowing
the distribution of API return values or the intents of
different scripts, respectively. Without access to such
distributions, we cannot perform entropy-based analy-
sis. Our code and dataset will be made publicly available
to facilitate such analyses in the future.

Network-level Tracking. Researchers have demon-
strated how to perform browser-independent tracking
via DNS requests [55], TLS implementations [95], and
IP addresses [68]. Also, because our work aims at getting
measurements on the client side, we do not cover server-
side HTTP headers fingerprinting [26, 50, 57], whose
results cannot be observed on the client.

5.2 Tracking on Mobile Phones.

After researchers identified fingerprintable APIs unique
to mobile browsers [14, 20, 27, 33–35, 65, 108], a few
studies measured such tracking with real [45, 106] or
emulated [33] mobile browsers. Ours is the most com-
prehensive to date, in (1) the number of browsers (18
mobile and 24 desktop); (2) the type of browsers (main-
stream and privacy-focused); (3) the realism of the
crawling infrastructure (emulated vs. on real phone,

Selenium-based vs. directly driven via Appium); and (4)
the number of fingerprinting APIs monitored.

Fingerprinting by Mobile-specific Sensors. Al-
though studies have shown that some fingerprinting
techniques do not work well on mobile devices [53, 57],
recent work has proposed new fingerprinting tech-
niques via mobile-specific sensor APIs, such as mo-
tion [20, 34, 35, 108], proximity [33], ambient-light sen-
sors [14], and magnetometers [27, 65]. OmniCrawl in-
struments these APIs to measure their use in the wild,
even though, except for motion, the APIs are by default
disabled in modern browsers (our browsers). Our results
show prevalent use of these APIs, in line with prior re-
sults, that is not entirely mitigated by privacy-focused
browsers.

Tracking Measurements Using Real and Emu-
lated Mobile Devices. Eubank et al. compare state-
less tracking behaviors on real desktop and mobile
devices (all running the Firefox browser) [45]. How-
ever, they did not consider other types of non-emulated
browsers, and their measurement involved only 500
sites. Van Goethem et al. investigate the security
of mobile-specific websites, using a modified desktop
Chromium browser emulating a mobile browser [100].
Das et al.’s OpenWPM-Mobile is an emulated mobile
browser running on desktop Firefox, whose fingerprint
is almost identical to real mobile Firefox, except the
Canvas and WebGL fingerprint [33]. Finally, Yang et
al. performed a comparison of tracking on desktop and
mobile Firefox on websites that have mobile-specific ver-
sions [106].

We compare a wide collection of non-emulated and
emulated browsers (including OpenWPM-Mobile) and
show that even though careful emulation improves eco-
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logical validity, it is still insufficient for completely ac-
curate results. Nonetheless, our results using Chrome
and other browsers agree with prior findings using Fire-
fox: desktop browsers typically visit more tracking and
advertising third-parties than mobile browsers. We ad-
ditionally show results on privacy-focused browsers.

5.3 Web Measurement Infrastructure

Figure 8 compares nine web crawling tools with Omni-
Crawl with respect to desktop and mobile browser im-
plementation, JavaScript instrumentation, the support
of stateful crawl, automation driver, and scrolling sup-
port. While existing tools require considerable effort to
support different browsers on both mobile and desk-
top platforms, OmniCrawl is designed to reduce browser
dependency, which is beneficial for synchronized cross-
browser and cross-platform crawling.

5.4 Measurement Study Ecological
Validity

Ahmad et al. qualitatively evaluated a set of crawling
tools to determine their suitability for particular types
of measurement studies [13]. They compare command-
line tools like cURL to browser drivers like Selenium
and the measurement platform OpenWPM and find that
user-layer crawlers (ULC) like OpenWPM provide more
accurate measurements of online tracking than simpler
crawlers like cURL. OmniCrawl is a ULC and thus is
suitable for online tracking measurement. We also exam-
ine the relative impacts of different crawling approaches,
but we focus more narrowly and deeply on the large-
scale effects of emulated browsers and browser drivers.

Vastel el al. measured the detection of automated
crawlers within the Alexa top 10K sites and investigate
the techniques to detect crawlers [103]. They found 291
websites that block crawlers and identify that 32% of
these websites use fingerprinting to perform detection of
crawlers. This finding is consistent with our finding that
the behavior of websites can change when a Selenium-
driven browser is used (Section 4.1.2). However, unlike
Vastel el al. we also measure the ecological validity (in
terms of differences in counts of requests and API ac-
cesses) of OpenWPM-Mobile, which focuses on faith-
fully simulating a real mobile browser (Section 4.1.1).

Several studies investigate the representativeness of
automated crawls in comparison to real user behav-
ior [52, 107] and suggest that automated crawlers might

over-approximate the amount of third-party trackers a
real user would experience. This is a limitation inherent
to automated crawlers that may be ameliorated by fu-
ture work on informing crawler behavior with real user
behavior. Our evaluation focuses on the scope of validity
of automated crawlers, real user behavior notwithstand-
ing. To this extent, our comparison of baseline variation
is similar to Zeber et al.’s [107]; we also reach the conclu-
sion that automated crawler visiting sites at the same
time receive similar content and thus can serve as a basis
for comparison of other variables.

6 Conclusion
We build OmniCrawl, a scalable web crawling infras-
tructure capable of visiting websites with many browsers
in parallel and on mobile phones and desktop com-
puters. Using OmniCrawl, we perform a comprehen-
sive analysis of web tracking on mobile, desktop, and
privacy-focused browsers. We find that mobile browsers
receive fewer tracking-and-advertising requests than
desktop browsers, but also that the same entities are
responsible for tracking and advertising on mobile and
desktop browsers. Privacy-focused browsers are effec-
tive at reducing tracking-and-advertising requests, al-
though they perform very differently from each other.
Our results also suggest a trade-off between reducing
tracking and advertising requests and being susceptible
to fingerprinting. Our analysis also shows that common
methodological choices, such as using an emulated mo-
bile browser or a browser driver like Selenium, can easily
impact the accuracy of web tracking measurement.
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A Appendix

A.1 Fingerprinting Heuristics

We define five fingerprinting heuristics, all of which are
at least as strict as those used in related work.
1. WebRTC: Invoke at least the four functions create-

DataChannel, createOffer, setLocalDescription and
onicecandidate in the WebRTC APIs. [33, 43]

2. Audio: Satisfy both (1) Access at the 3 functions,
destination, startRendering and oncomplete, in any
AudioContext object. (2) Invoke createOscillator or
createDynamicsCompressor [33, 43, 56].

3. Font: Satisfy both (1) Set ≥ 50 distinct fonts
using fontFamily. (2) Detect element offset more
than 50 times using HTMLElement.offsetWidth
HTMLElement.offsetHeight or CanvasRendering-
Context2D.measureText [8, 43, 83].

4. Canvas: Satisfy the following four conditions (1)
Both width, height of the canvas must be ≥ 16 pix-
els. (2) Access toDataURL to retrieve image data.
The image must not be JPEG. (3) Invoke fillText or
strokeText and write at least 10 distinct characters.
(4) Must not call save and restore APIs [7, 33, 43].

5. WebGL Canvas: Satisfy the following four condi-
tions (1) Both width and height of the canvas must
be larger than 16 pixels. (2) Access toDataURL and
WebGL canvas to retrieve image data. The image
must not be JPEG. (3) Attach at least one shader.
(4) The image is not meaningful (through manual
verification) [57, 69].

A.2 Baseline Variability in Website
Behavior

We measured a baseline for how much websites vary
in terms of requests, API accesses, and third-party
tracking-and-advertising entities in a given visit. by in-
cluding two identical copies of desktop Chrome running
on the same machine in our crawl.
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Fig. 9. Identical browsers compared in terms of requests.
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Fig. 10. Identical browsers compared in terms of API accesses.

First, looking at the four request types (Figure 9),
we find that the two browsers measure nearly identi-
cally for all types, the difference between the two is not
significant for any of the types. Next, we look at the
third-party tracking-and-advertising entities and find
that there isn’t a significant difference in the number
of entities. The entities are almost entirely the same,
the top 1000 entities do not differ at all. Finally, con-
sidering API accesses (Figure 10) we likewise see that
there isn’t a significant difference for any of the API
categories.
Result: The baseline level of variation in the sites
we visit does not significantly affect our results.

A.3 Additional Figures

In this section we present additional figures referenced
in the main text.

var r = [" __webdriver_evaluate ", "
__selenium_evaluate " ,...];

function s() {
if (u(q)) return !0;
var a = l(r, function (a) {

return g. document [a] ? !0 : !1
});
if (a) return !0;
... }

Fig. 11. A JavaScript snippet for detection of Selenium from
https://connect.facebook.net/en_US/fbevents.js.
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Fig. 12. OpenWPM-Mobile compared to mobile Firefox in terms
of requests.
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Fig. 13. OpenWPM-Mobile compared to mobile Firefox in terms
of API accesses.
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Fig. 14. OpenWPM-Mobile compared to mobile Firefox in terms
of third-party tracking-and-advertising entities.

First-party FP-Ad-Track Third-Party TP-Ad-Track
Request Type

0

20

40

60

80

100

 #
 o

f R
eq

ue
st

s

Browser
D-Chrome88-S-NA
D-Chrome88-NA
D-Firefox86-S-NA
D-Firefox86-NA

Fig. 15. Comparison of Selenium-driven vs non-Selenium-driven
Browsers’ Requests.
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Fig. 16. Comparison of Selenium-driven vs non-Selenium-driven
Browsers’ API Accesses.
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Fig. 17. Effect of scrolling on number of requests for dynamic-
scrolling sites.
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Fig. 18. Third-party tracking and advertising entities on mobile
and desktop browsers.
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Fig. 19. Privacy-focused compared to mainstream mobile
browsers in terms of requests.
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Fig. 20. Privacy-focused compared to mainstream mobile
browsers in terms of API accesses.
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Fig. 21. Privacy-focused compared to mainstream mobile
browsers in terms of third-party tracking-and-advertising entities.
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Fig. 22. Privacy-focused mobile and desktop browsers in terms of
requests.
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Fig. 23. Privacy-focused mobile and desktop browsers in terms of
API accesses.
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Fig. 24. Privacy-focused mobile and desktop browsers in terms of
third-party tracking-and-advertising entities.

Au
dio

Au
tom

ati
on

Ba
tte

ry
Ca
nva

s

Co
nfi

gu
rat

ion CS
S

Ge
olo

cat
ion

Ori
en
tat

ion
Plu

gin
Scr

een

Sto
rag

e
Web

GL

Web
GL
ext

Web
RT
C

API Category

10−4.0

10−3.0

10−2.0

10−1.0

100.0

101.0

102.0

103.0

# 
of

 A
cc

es
se

s

Browser
M-Brave-NA
M-Duckduckgo-NA
M-Firefoxfocus-NA
M-Ghostery-NA
M-Tor-NA
M-Firefox-NA

Fig. 25. Privacy-focused browsers compared by API category.
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Fig. 26. Comparison of mobile privacy and mainstream browsers’
fingerprinting behaviors.
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Fig. 27. Mainstream desktop browsers in Asia and NA in terms of
requests.
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Fig. 28. Mainstream mobile browsers in Asia and NA in terms of
requests.
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Fig. 29. Privacy-focused desktop browsers in Asia and NA in
terms of requests.
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Fig. 30. Privacy-focused mobile browsers in Asia and NA in terms
of requests.

A.4 Test Statistics

Test statistics were computed with a significance level
of 0.05 unless otherwise stated. MW-2 and WSR-2
stand for two-sided Mann-Whitney U test and Wilcoxon
signed rank test, respectively. Ms are the group medians
ordered as the test is named (e.g., Mobile vs Desktop
means the first median is for mobile, the second median
is for desktop).

Test Result
OpenWPM-Mobile vs mobile Firefox
Requests

First-party Ms: [33.0, 33.0] WSR-2 W = 13631027.0,
e = 0.18, n1 = n2 = 12460, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 106169.0,
e = 0.00, n1 = n2 = 12460, p = 0.79

Third-Party Ms: [38.0, 37.0] WSR-2 W = 19749497.0,
e = 0.25, n1 = n2 = 12460, p = 0.00

TP-Ad-Track Ms: [19.0, 18.0] WSR-2 W = 8651805.0,
e = 0.11, n1 = n2 = 12460, p = 0.00

Third-party tracking-and-advertising entities
TP-Ad-Track Ms: [3.0, 3.0] WSR-2 W = 1429658.0,

e = 0.02, n1 = n2 = 12460, p = 0.00
API Accesses

Audio Ms: [0.0, 0.0] WSR-2 W = 1071.5,
e = 0.00, n1 = n2 = 12460, p = 0.99

Automation Ms: [0.0, 0.0] WSR-2 W = 250110.0,
e = 0.00, n1 = n2 = 12460, p = 0.00

Canvas Ms: [0.0, 0.0] WSR-2 W = 955759.5,
e = 0.01, n1 = n2 = 12460, p = 0.03

Configuration Ms: [32.0, 31.0] WSR-2 W = 8525026.5,
e = 0.11, n1 = n2 = 12460, p = 0.00

CSS Ms: [39.0, 39.0] WSR-2 W = 3783624.5,
e = 0.05, n1 = n2 = 12460, p = 0.00

Geolocation Ms: [0.0, 0.0] WSR-2 W = 8385.5,
e = 0.00, n1 = n2 = 12460, p = 0.03

Orientation Ms: [0.0, 0.0] WSR-2 W = 30233.5,
e = 0.00, n1 = n2 = 12460, p = 0.00

Plugin Ms: [3.0, 2.0] WSR-2 W = 902595.0,
e = 0.01, n1 = n2 = 12460, p = 0.00

Screen Ms: [14.0, 13.0] WSR-2 W = 1427159.5,
e = 0.02, n1 = n2 = 12460, p = 0.00

Storage Ms: [29.0, 24.0] WSR-2 W = 3907641.5,
e = 0.05, n1 = n2 = 12460, p = 0.00

WebGL Ms: [0.0, 0.0] WSR-2 W = 444.5,
e = 0.00, n1 = n2 = 12460, p = 0.00

WebGLext Ms: [0.0, 0.0] WSR-2 W = 0.0, e = 0.00,
n1 = n2 = 12460, p = 0.00

WebRTC Ms: [0.0, 0.0] WSR-2 W = 188.5,
e = 0.00, n1 = n2 = 12460, p = 0.31

Selenium vs non-Selenium driver
Requests
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First-party Ms: [13.0, 13.0, 12.0, 16.0]
χ2(3) = 635.00, e = 0.11, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 20.52,
e = 0.00, p = 0.00

Third-Party Ms: [6.0, 5.0, 0.0, 8.0] χ2(3) = 3689.07,
e = 0.62, p = 0.00

TP-Ad-Track Ms: [0.0, 0.0, 0.0, 2.0] χ2(3) = 1814.77,
e = 0.31, p = 0.00

API Accesses
Audio Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 0.83,

e = 0.00, p = 0.84
Automation Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 198.16,

e = 0.03, p = 0.00
Battery Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 298.80,

e = 0.05, p = 0.00
Canvas Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 28.09,

e = 0.00, p = 0.00
Configuration Ms: [3.0, 2.0, 2.0, 3.0] χ2(3) = 66.16,

e = 0.01, p = 0.00
CSS Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 460.96,

e = 0.08, p = 0.00
Geolocation Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 15.68,

e = 0.00, p = 0.01
Plugin Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 890.80,

e = 0.15, p = 0.00
Screen Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 128.65,

e = 0.02, p = 0.00
Storage Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 81.06,

e = 0.01, p = 0.00
WebGL Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 174.27,

e = 0.03, p = 0.00
WebGLext Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 15.78,

e = 0.00, p = 0.01
WebRTC Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 5.64,

e = 0.00, p = 0.26
Static-scrolling comparison
Requests

First-party Ms: [34.0, 37.0, 35.0, 36.0]
χ2(3) = 1062.79, e = 0.03, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 95.93,
e = 0.00, p = 0.00

Third-Party Ms: [49.0, 51.0, 34.0, 35.0]
χ2(3) = 11681.81, e = 0.33, p = 0.00

TP-Ad-Track Ms: [15.0, 16.0, 11.0, 12.0]
χ2(3) = 5173.84, e = 0.14, p = 0.00

Dynamic-scrolling comparison
Requests

First-party Ms: [35.0, 44.0, 37.0, 40.0]
χ2(3) = 1238.16, e = 0.16, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 58.87,
e = 0.01, p = 0.00

Third-Party Ms: [80.0, 91.0, 59.0, 61.0]
χ2(3) = 2232.77, e = 0.29, p = 0.00

TP-Ad-Track Ms: [40.0, 46.0, 30.0, 29.0]
χ2(3) = 1699.63, e = 0.22, p = 0.00

Mainstream mobile vs desktop
Requests

First-party Ms: [32.0, 33.0, 32.0, 49.0]
χ2(3) = 13358.51, e = 0.31, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 4215.13,
e = 0.10, p = 0.00

Third-Party Ms: [48.0, 33.0, 30.0, 46.0]
χ2(3) = 17259.17, e = 0.40, p = 0.00

TP-Ad-Track Ms: [14.0, 11.0, 14.0, 19.0]
χ2(3) = 5261.37, e = 0.12, p = 0.00

Third-party tracking-and-advertising entities
TP-Ad-Track Ms: [3.0, 3.0, 3.0, 3.0] χ2(3) = 2087.28,

e = 0.05, p = 0.00
API Accesses

Audio Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 49.59,
e = 0.00, p = 0.00

Automation Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 6257.52,
e = 0.15, p = 0.00

Battery Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 4648.81,
e = 0.11, p = 0.00

Canvas Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 730.45,
e = 0.02, p = 0.00

Configuration Ms: [28.0, 21.0, 26.0, 28.0]
χ2(3) = 3324.88, e = 0.08, p = 0.00

CSS Ms: [36.0, 23.0, 29.0, 29.0]
χ2(3) = 2364.53, e = 0.06, p = 0.00

Geolocation Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 156.80,
e = 0.00, p = 0.00

Plugin Ms: [2.0, 4.0, 2.0, 2.0] χ2(3) = 7394.04,
e = 0.17, p = 0.00

Screen Ms: [11.0, 6.0, 10.0, 8.0] χ2(3) = 4194.24,
e = 0.10, p = 0.00

Storage Ms: [19.5, 11.0, 17.0, 16.0]
χ2(3) = 3251.32, e = 0.08, p = 0.00

WebGL Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 947.29,
e = 0.02, p = 0.00

WebGLext Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 628.67,
e = 0.01, p = 0.00

WebRTC Ms: [0.0, 0.0, 0.0, 0.0] χ2(3) = 53.53,
e = 0.00, p = 0.00

Mobile privacy vs mainstream
Requests

First-party Ms: [31.0, 31.0] MW-2 W = 207332798.5,
e = 82933119.40,
n1 = 32270, n2 = 12908, p = 0.45

FP-Ad-Track Ms: [0.0, 0.0] MW-2 W = 194454082.5,
e = 77781633.00,
n1 = 32270, n2 = 12908, p = 0.00

Third-Party Ms: [23.0, 39.0] MW-2 W = 144938698.0,
e = 57975479.20,
n1 = 32270, n2 = 12908, p = 0.00



OmniCrawl: Comprehensive Measurement of Web Tracking With Real Desktop and Mobile Browsers 250

TP-Ad-Track Ms: [1.0, 13.0] MW-2 W = 115292059.0,
e = 46116823.60,
n1 = 32270, n2 = 12908, p = 0.00

Third-party tracking-and-advertising entities
TP-Ad-Track Ms: [1.0, 3.0] MW-2 W = 127995861.0,

e = 51198344.40,
n1 = 32270, n2 = 12908, p = 0.00

API Accesses
Audio Ms: [0.0, 0.0] MW-2 W = 206309182.0,

e = 82523672.80,
n1 = 32270, n2 = 12908, p = 0.00

Automation Ms: [0.0, 0.0] MW-2 W = 208461834.5,
e = 83384733.80,
n1 = 32270, n2 = 12908, p = 0.75

Battery Ms: [0.0, 0.0] MW-2 W = 197821681.0,
e = 79128672.40,
n1 = 32270, n2 = 12908, p = 0.00

Canvas Ms: [0.0, 0.0] MW-2 W = 196218463.0,
e = 78487385.20,
n1 = 32270, n2 = 12908, p = 0.00

Configuration Ms: [14.0, 26.0] MW-2 W = 156905816.0,
e = 62762326.40,
n1 = 32270, n2 = 12908, p = 0.00

CSS Ms: [22.0, 31.0] MW-2 W = 197390698.5,
e = 78956279.40,
n1 = 32270, n2 = 12908, p = 0.00

Geolocation Ms: [0.0, 0.0] MW-2 W = 202853023.5,
e = 81141209.40,
n1 = 32270, n2 = 12908, p = 0.00

Orientation Ms: [0.0, 0.0] MW-2 W = 196581024.5,
e = 78632409.80,
n1 = 32270, n2 = 12908, p = 0.00

Plugin Ms: [0.0, 2.0] MW-2 W = 124349292.0,
e = 49739716.80,
n1 = 32270, n2 = 12908, p = 0.00

Screen Ms: [2.0, 10.0] MW-2 W = 128551457.0,
e = 51420582.80,
n1 = 32270, n2 = 12908, p = 0.00

Storage Ms: [4.0, 17.0] MW-2 W = 163406441.5,
e = 65362576.60,
n1 = 32270, n2 = 12908, p = 0.00

WebGL Ms: [0.0, 0.0] MW-2 W = 205280915.5,
e = 82112366.20,
n1 = 32270, n2 = 12908, p = 0.00

WebGLext Ms: [0.0, 0.0] MW-2 W = 199089793.5,
e = 79635917.40,
n1 = 32270, n2 = 12908, p = 0.00

WebRTC Ms: [0.0, 0.0] MW-2 W = 207208807.5,
e = 82883523.00,
n1 = 32270, n2 = 12908, p = 0.00

Privacy-focused mobile vs desktop
Requests

First-party Ms: [31.0, 33.0] WSR-2 W = 98981165.0,
e = 0.23, n1 = n2 = 29318, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 670602.5,
e = 0.00, n1 = n2 = 29318, p = 0.00

Third-Party Ms: [38.0, 38.0] WSR-2
W = 197782498.0, e = 0.46,
n1 = n2 = 29318, p = 0.00

TP-Ad-Track Ms: [1.0, 1.0] WSR-2 W = 22231393.5,
e = 0.05, n1 = n2 = 29318, p = 0.00

Third-party tracking-and-advertising entities
TP-Ad-Track Ms: [1.0, 1.0] WSR-2 W = 5636394.5,

e = 0.01, n1 = n2 = 29318, p = 0.00
API Accesses

Audio Ms: [0.0, 0.0] WSR-2 W = 1104.5,
e = 0.00, n1 = n2 = 29318, p = 0.18

Automation Ms: [0.0, 0.0] WSR-2 W = 90153.0,
e = 0.00, n1 = n2 = 29318, p = 0.00

Battery Ms: [0.0, 0.0] WSR-2 W = 323.5,
e = 0.00, n1 = n2 = 29318, p = 0.00

Canvas Ms: [0.0, 0.0] WSR-2 W = 1725138.5,
e = 0.00, n1 = n2 = 29318, p = 0.00

Configuration Ms: [15.0, 12.0] WSR-2 W = 41728423.0,
e = 0.10, n1 = n2 = 29318, p = 0.00

CSS Ms: [23.0, 13.0] WSR-2 W = 47548281.0,
e = 0.11, n1 = n2 = 29318, p = 0.00

Geolocation Ms: [0.0, 0.0] WSR-2 W = 1877.0,
e = 0.00, n1 = n2 = 29318, p = 0.00

Plugin Ms: [0.0, 0.0] WSR-2 W = 8141242.5,
e = 0.02, n1 = n2 = 29318, p = 0.00

Screen Ms: [3.0, 1.0] WSR-2 W = 7938657.5,
e = 0.02, n1 = n2 = 29318, p = 0.00

Storage Ms: [4.0, 2.0] WSR-2 W = 16820777.0,
e = 0.04, n1 = n2 = 29318, p = 0.00

WebGL Ms: [0.0, 0.0] WSR-2 W = 25536.0,
e = 0.00, n1 = n2 = 29318, p = 0.00

WebGLext Ms: [0.0, 0.0] WSR-2 W = 63598.5,
e = 0.00, n1 = n2 = 29318, p = 0.00

WebRTC Ms: [0.0, 0.0] WSR-2 W = 318.0,
e = 0.00, n1 = n2 = 29318, p = 0.31

Mobile privacy browser comparison
Requests

First-party Ms: [30.0, 35.0, 30.0, 30.0, 30.0, 31.0]
χ2(5) = 13266.76, e = 0.41, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 4700.25, e = 0.14, p = 0.00

Third-Party Ms: [41.0, 11.0, 13.0, 10.0, 29.0, 30.0]
χ2(5) = 17881.97, e = 0.55, p = 0.00

TP-Ad-Track Ms: [0.0, 1.0, 2.0, 1.0, 13.0, 14.0]
χ2(5) = 20143.08, e = 0.62, p = 0.00

API Accesses
Audio Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

χ2(5) = 267.46, e = 0.01, p = 0.00
Automation Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

χ2(5) = 3205.47, e = 0.10, p = 0.00
Battery Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

χ2(5) = 2093.22, e = 0.06, p = 0.00
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Canvas Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 1977.78, e = 0.06, p = 0.00

Configuration Ms: [10.0, 12.0, 15.0, 13.0, 24.0, 26.0]
χ2(5) = 12290.93, e = 0.38, p = 0.00

CSS Ms: [19.0, 24.0, 22.0, 20.0, 26.0, 28.0]
χ2(5) = 2177.32, e = 0.07, p = 0.00

Geolocation Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 1020.50, e = 0.03, p = 0.00

Orientation Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 1392.75, e = 0.04, p = 0.00

Plugin Ms: [0.0, 0.0, 0.0, 0.0, 2.0, 2.0]
χ2(5) = 14260.06, e = 0.44, p = 0.00

Screen Ms: [0.0, 0.0, 2.0, 0.0, 9.0, 9.0]
χ2(5) = 15425.69, e = 0.48, p = 0.00

Storage Ms: [1.0, 4.0, 6.0, 3.0, 13.0, 17.0]
χ2(5) = 7773.47, e = 0.24, p = 0.00

WebGL Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 909.98, e = 0.03, p = 0.00

WebGLext Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 562.14, e = 0.02, p = 0.00

WebRTC Ms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
χ2(5) = 122.43, e = 0.00, p = 0.00

Desktop mainstream browser location comparison
Requests

First-party Ms: [39.0, 34.0] WSR-2 W = 25857342.0,
e = 0.12, n1 = n2 = 20488, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 1262064.0,
e = 0.01, n1 = n2 = 20488, p = 0.00

Third-Party Ms: [37.0, 42.0] WSR-2 W = 67049737.5,
e = 0.32, n1 = n2 = 20488, p = 0.00

TP-Ad-Track Ms: [14.0, 14.0] WSR-2 W = 41677315.5,
e = 0.20, n1 = n2 = 20488, p = 0.00

API Accesses
Audio Ms: [0.0, 0.0] WSR-2 W = 11854.5,

e = 0.00, n1 = n2 = 20488, p = 0.00
Automation Ms: [0.0, 0.0] WSR-2 W = 501491.0,

e = 0.00, n1 = n2 = 20488, p = 0.63
Battery Ms: [0.0, 0.0] WSR-2 W = 38665.5,

e = 0.00, n1 = n2 = 20488, p = 0.00
Canvas Ms: [0.0, 0.0] WSR-2 W = 3890345.0,

e = 0.02, n1 = n2 = 20488, p = 0.00
Configuration Ms: [24.0, 26.0] WSR-2 W = 35138389.0,

e = 0.17, n1 = n2 = 20488, p = 0.00
CSS Ms: [24.0, 37.0] WSR-2 W = 24751544.5,

e = 0.12, n1 = n2 = 20488, p = 0.00
Geolocation Ms: [0.0, 0.0] WSR-2 W = 144654.0,

e = 0.00, n1 = n2 = 20488, p = 0.24
Plugin Ms: [3.0, 4.0] WSR-2 W = 13011204.0,

e = 0.06, n1 = n2 = 20488, p = 0.00
Screen Ms: [7.0, 10.0] WSR-2 W = 17160618.5,

e = 0.08, n1 = n2 = 20488, p = 0.00
Storage Ms: [12.0, 17.0] WSR-2 W = 22470767.0,

e = 0.11, n1 = n2 = 20488, p = 0.00
WebGL Ms: [0.0, 0.0] WSR-2 W = 50387.0,

e = 0.00, n1 = n2 = 20488, p = 0.00

WebGLext Ms: [0.0, 0.0] WSR-2 W = 458317.5,
e = 0.00, n1 = n2 = 20488, p = 0.05

WebRTC Ms: [0.0, 0.0] WSR-2 W = 3137.0,
e = 0.00, n1 = n2 = 20488, p = 0.00

Mobile mainstream browser location comparison
Requests

First-party Ms: [31.0, 31.0] WSR-2 W = 22574578.0,
e = 0.07, n1 = n2 = 25346, p = 0.89

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 564379.0,
e = 0.00, n1 = n2 = 25346, p = 0.89

Third-Party Ms: [38.0, 37.0] WSR-2
W = 101819482.0, e = 0.32,
n1 = n2 = 25346, p = 0.00

TP-Ad-Track Ms: [13.0, 12.0] WSR-2 W = 46696229.5,
e = 0.15, n1 = n2 = 25346, p = 0.00

API Accesses
Audio Ms: [0.0, 0.0] WSR-2 W = 4067.0,

e = 0.00, n1 = n2 = 25346, p = 1.00
Automation Ms: [0.0, 0.0] WSR-2 W = 39511.0,

e = 0.00, n1 = n2 = 25346, p = 0.00
Battery Ms: [0.0, 0.0] WSR-2 W = 55765.5,

e = 0.00, n1 = n2 = 25346, p = 0.00
Canvas Ms: [0.0, 0.0] WSR-2 W = 1290565.5,

e = 0.00, n1 = n2 = 25346, p = 0.29
Configuration Ms: [25.0, 24.0] WSR-2 W = 16413878.5,

e = 0.05, n1 = n2 = 25346, p = 0.00
CSS Ms: [28.0, 27.0] WSR-2 W = 21845818.0,

e = 0.07, n1 = n2 = 25346, p = 1.00
Geolocation Ms: [0.0, 0.0] WSR-2 W = 52993.5,

e = 0.00, n1 = n2 = 25346, p = 0.00
Orientation Ms: [0.0, 0.0] WSR-2 W = 152488.5,

e = 0.00, n1 = n2 = 25346, p = 0.00
Plugin Ms: [2.0, 2.0] WSR-2 W = 3322200.0,

e = 0.01, n1 = n2 = 25346, p = 0.00
Screen Ms: [9.0, 9.0] WSR-2 W = 14390598.5,

e = 0.04, n1 = n2 = 25346, p = 1.00
Storage Ms: [17.0, 15.0] WSR-2 W = 17027372.5,

e = 0.05, n1 = n2 = 25346, p = 0.00
WebGL Ms: [0.0, 0.0] WSR-2 W = 9376.5,

e = 0.00, n1 = n2 = 25346, p = 0.29
WebGLext Ms: [0.0, 0.0] WSR-2 W = 172081.0,

e = 0.00, n1 = n2 = 25346, p = 0.00
WebRTC Ms: [0.0, 0.0] WSR-2 W = 1974.5,

e = 0.00, n1 = n2 = 25346, p = 1.00
Mobile privacy browser location comparison
Requests

First-party Ms: [32.0, 32.0] WSR-2 W = 2063538.5,
e = 0.07, n1 = n2 = 7865, p = 0.32

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 32917.0,
e = 0.00, n1 = n2 = 7865, p = 1.00

Third-Party Ms: [23.0, 23.0] WSR-2 W = 7210762.0,
e = 0.23, n1 = n2 = 7865, p = 1.00

TP-Ad-Track Ms: [1.0, 1.0] WSR-2 W = 1182248.5,
e = 0.04, n1 = n2 = 7865, p = 0.00
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Desktop privacy browser location comparison
Requests

First-party Ms: [32.0, 33.0] WSR-2 W = 17316676.0,
e = 0.07, n1 = n2 = 23036, p = 0.00

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 172898.0,
e = 0.00, n1 = n2 = 23036, p = 0.00

Third-Party Ms: [35.0, 60.0] WSR-2 W = 28078233.0,
e = 0.11, n1 = n2 = 23036, p = 0.00

TP-Ad-Track Ms: [1.0, 1.0] WSR-2 W = 6201978.5,
e = 0.02, n1 = n2 = 23036, p = 0.00

Identical desktop Chrome
Requests

First-party Ms: [32.0, 33.0] WSR-2 W = 6351146.5,
e = 0.05, n1 = n2 = 15577, p = 0.36

FP-Ad-Track Ms: [0.0, 0.0] WSR-2 W = 146367.5,
e = 0.00, n1 = n2 = 15577, p = 0.43

Third-Party Ms: [34.0, 34.0] WSR-2 W = 25662234.5,
e = 0.21, n1 = n2 = 15577, p = 0.36

TP-Ad-Track Ms: [11.0, 11.0] WSR-2 W = 11391107.5,
e = 0.09, n1 = n2 = 15577, p = 0.17

Entities
TP-Ad-Track Ms: [11.0, 11.0] MW-2 W = 121095987.5,

e = 121095987.50,
n1 = 15577, n2 = 15577, p = 0.78

API accesses
Audio Ms: [0.0, 0.0] WSR-2 W = 1268.5,

e = 0.00, n1 = n2 = 15577, p = 1.00
Battery Ms: [0.0, 0.0] WSR-2 W = 70478.5,

e = 0.00, n1 = n2 = 15577, p = 1.00
Canvas Ms: [0.0, 0.0] WSR-2 W = 554852.5,

e = 0.00, n1 = n2 = 15577, p = 1.00
Configuration Ms: [21.0, 21.0] WSR-2 W = 8788251.5,

e = 0.07, n1 = n2 = 15577, p = 0.62
CSS Ms: [23.0, 23.0] WSR-2 W = 5972573.0,

e = 0.05, n1 = n2 = 15577, p = 0.76
Geolocation Ms: [0.0, 0.0] WSR-2 W = 12231.0,

e = 0.00, n1 = n2 = 15577, p = 1.00
Plugin Ms: [4.0, 4.0] WSR-2 W = 1939014.5,

e = 0.02, n1 = n2 = 15577, p = 0.27
Screen Ms: [6.0, 6.0] WSR-2 W = 4416821.5,

e = 0.04, n1 = n2 = 15577, p = 0.27
Storage Ms: [11.0, 11.0] WSR-2 W = 6820344.0,

e = 0.06, n1 = n2 = 15577, p = 0.19
WebGL Ms: [0.0, 0.0] WSR-2 W = 2286.0,

e = 0.00, n1 = n2 = 15577, p = 1.00
WebGLext Ms: [0.0, 0.0] WSR-2 W = 110072.0,

e = 0.00, n1 = n2 = 15577, p = 0.12
WebRTC Ms: [0.0, 0.0] WSR-2 W = 430.0,

e = 0.00, n1 = n2 = 15577, p = 1.00
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