
Automatically Enforcing Fresh and Consistent Inputs
in Intermittent Systems

Milijana Surbatovich
Carnegie Mellon University

Pittsburgh, PA, USA
milijans@andrew.cmu.edu

Limin Jia
Carnegie Mellon University

Pittsburgh, PA, USA
liminjia@andrew.cmu.edu

Brandon Lucia
Carnegie Mellon University

Pittsburgh, PA, USA
blucia@andrew.cmu.edu

Abstract

Intermittently powered energy-harvesting devices enable
new applications in inaccessible environments. Program exe-
cutions must be robust to unpredictable power failures, intro-
ducing new challenges in programmability and correctness.
One hard problem is that input operations have implicit con-
straints, embedded in the behavior of continuously powered
executions, on when input values can be collected and used.
This paper aims to develop a formal framework for enforcing
these constraints. We identify two key propertiesÐfreshness
(i.e., uses of inputs must satisfy the same time constraints
as in continuous executions) and temporal consistency (i.e.,
the collection of a set of inputs must satisfy the same time
constraints as in continuous executions). We formalize these
properties and show that they can be enforced using atomic

regions. We develop Ocelot, an LLVM-based analysis and
transformation tool targeting Rust, to enforce these prop-
erties automatically. Ocelot provides the programmer with
annotations to express these constraints and infers atomic re-
gion placement in a program to satisfy them. We then formal-
ize Ocelot’s design and show that Ocelot generates correct
programs with little performance cost or code changes.

CCS Concepts: · Computer systems organization → Em-
bedded software; · Software and its engineering → Source
code generation.

Keywords: intermittent computing, energy harvesting, time-
liness

ACM Reference Format:

Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2021. Auto-
matically Enforcing Fresh and Consistent Inputs in Intermittent
Systems. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation

(PLDI ’21), June 20ś25, 2021, Virtual, Canada. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3453483.3454081

PLDI ’21, June 20ś25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454081

1 Introduction

Energy-harvesting computer systems collect their operating
energy from the environment, enabling autonomous opera-
tion over long periods of time without the need for battery
maintenance. The key challenge of energy-harvesting sys-
tems is that power fails if there is insufficient energy to
harvest. When an energy-harvesting system runs software,
a power interruption may impede forward progress [23, 46],
leave memory state inconsistent [31, 53], leave I/O state [5,
47] or data [51, 52] inconsistent with execution state, or leave
I/O data inconsistent with a device’s environment [20, 27].
Intermittent execution [31] of software enables sophisti-

cated computation on energy-harvesting systems, leveraging
tightly integrated non-volatile memory to retain state across
failures. There are many approaches to address the software
reliability challenges of intermittent computing. Most prior
efforts focus primarily on problems related to progress and
memory consistency. To save state, these techniques rely on
in-code checkpointing (or tasks) [11, 31ś33, 46, 48, 53, 57], or
rely on a dynamic “just-in-timež (JIT) checkpointing mecha-
nism [2, 3, 15, 23, 34, 35, 37, 56] that captures a snapshot of
volatile state just before power fails.

Most intermittent computing happens on sensor-enabled
devices destined for deeply-embedded deployment, where
I/O drives the computation. Fortunately, recent work has
begun investigating the unique challenges of I/O in inter-
mittent systems. Some work ensures the basic, correct op-
eration of peripherals and their drivers across power fail-
ures [5, 7, 30, 34, 36, 47], avoiding crashes, hangs, and driver
state corruption. Other work addresses subtle interactions
between I/O and checkpointing that lead to data corrup-
tion [51, 52]. These efforts enable correct basic operation of
I/O devices in an intermittent execution. Operating in the
real world, however, places correctness requirements on an
intermittent system that go beyond ensuring that drivers
and data remain uncorrupted.

Unlike a continuously-powered execution, an intermittent
execution may violate implicit constraints on when inputs
should be collected and used, due to the unpredictable time
spent recharging after a power failure. An intermittent ex-
ecution may use an input that is too old (i.e., stale) if the
system checkpoints after the input is collected, but power
fails before it is used. The need to avoid use of stale inputs
is a freshness requirement. Some programs require multiple

851

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3453483.3454081
https://doi.org/10.1145/3453483.3454081
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3453483.3454081&domain=pdf&date_stamp=2021-06-18

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

input values to be sampled together (e.g., a pressure and a
humidity reading) so that they come from a consistent point
in time. The need to ensure that multiple inputs are sam-
pled together is temporal consistency, which is violated by a
checkpoint and power failure between these readings.

Freshness and temporal consistency belong to the broader
category of timeliness requirements on inputs. Prior work
explored timely intermittent execution [15, 20, 27, 45] but
lacks formally specified correctness conditions. Existing ap-
proaches rely on the addition of hardware to track time
during power failures and often require writing extra code
to mitigate the misuse of expired inputs. Moreover, existing
work focuses on freshness (e.g., using inputs before they
expire) and does little to enforce temporal consistency.

In this work, we introduce formal definitions of freshness
and temporal consistency and develop Ocelot, which auto-
matically enforces specified timing constraints in intermit-
tent systems without needing timekeeping hardware. Ocelot
gives the programmer constructs to specify what timing
properties matter for their program and enforces that specifi-
cation by leveraging atomicity, generating programs that are
correct-by-construction. Instead of enforcing programmer-
specified expiration times, Ocelot enforces freshness and
temporal consistency by ensuring that an intermittent exe-
cution does what some continuous execution would do; the
continuous execution is the specification of correct behaviour.
Ocelot asks the programmer to express freshness and tem-
poral consistency requirements only and asks neither for
real-time specification on the collection or use of inputs,
nor for mitigation actions to handle expired inputs. Ocelot’s
atomic region inference algorithm then automatically inserts
atomic regions that contain input-derived variable defini-
tions and uses. If power fails during an atomic region, the re-
gion re-executes (idempotently) from the start. Outside of an
atomic region, the system defaults to a baseline intermittent
execution model (i.e., in our work, JIT checkpoints [3, 34]).
We formalize this notion of freshness and temporal con-

sistency using a modeling language and investigate how to
prove our design correct. We implement Ocelot for Rust us-
ing analyses built in LLVM [29]. We evaluate our implemen-
tation on a real energy-harvesting hardware platform [12]
using a collection of applications taken from prior work, and
a new tire safety monitoring application that we developed.
Our results show that Ocelot effectively identifies atomic re-
gions that enforce both freshness and temporal consistency.
Ocelot imposes less than 10% runtime overhead compared to
both JIT checkpoints and to atomic regions implementations
from prior work. Ocelot demands less of the programmer,
compared to two systems from prior work that address I/O
timeliness [27, 34]. Most importantly, Ocelot provides a for-
mally defined correctness criterion for collection and use of
intermittent inputs, which no prior system provides.
To summarize, the main contributions are:

• We provide the first formal definitions for freshness
and temporal consistency and show that atomicity is
sufficient to enforce these properties.
• We develop Ocelot, an analysis that inserts atomic
regions to enforce these properties without asking
the programmer to think about real-time constraints,
mitigations for timeliness failures, or added hardware.
• We prototype Ocelot for Rust and use it to add atomic
regions to a set of programs from prior work and a tire
monitoring program we developed.
• We evaluate Ocelot on real energy-harvesting hard-
ware and show that its atomic regions ensure these
properties at little runtime or programming overhead.

Due to space, we relegate detailed formalisms to the ap-
pendices, located at https://arxiv.org/abs/2104.04616.

2 Background and Motivation

Software executes intermittently on energy-harvesting sys-
tems, relying on system support to ensure progress and mem-
ory correctness despite power failures. I/O complicates an
intermittent system, requiring additional correctness reason-
ing to ensure both correct device operation and the freshness
and temporal consistency properties addressed by Ocelot.

2.1 The Basics of Intermittent Computing

Software executing intermittently on an energy-harvesting
system makes forward progress only as sufficient energy
is available. We show this in the graph in Figure 1, top. A
system collects energy using, e.g., a solar panel or radio wave
collector, storing small amounts of energy in a tiny battery
or capacitor (red segments). After a system-specific amount
of energy accumulates, hardware activates the system to
begin executing, quickly consuming the energy (green seg-
ments). The executing system may collect sensor inputs,
run computations (e.g., machine learning to process sensor
data [16, 17, 38]) on an ultra-low-power CPU or microcon-
troller, and log or transmit results via a wireless radio link.

Prior work identified and addressed several progress [23,
37, 46] and correctness [2, 3, 11, 21, 23, 31, 32, 34, 35, 37, 46,
48, 53, 57] challenges to intermittent execution. The main
idea in these works is to ensure that non-volatile memory
remains consistent as execution proceeds in bursts. There

x = a; a =1

1 x = a;

2 a = 1;

3 (ckpt)

4 z = in();

x = a; a =1

V
o

lt
a

g
e

JIT

Ckpt

z = in()

x = a; a =1 z = in()

Time

Restore

Save

Code

Figure 1. JIT and Checkpoint based intermittent execution

852

https://arxiv.org/abs/2104.04616

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

Intermittent

Execution

Continuous

Execution Behaviors

log(???)

0 x := tmp();

1 if x > 5

2 alarm();

3 y := pres();

4 z := hum();

5 log(y,z);

Code

No Alarm

tmp()

alarm()

tmp()

tmp()
Powerfail

JIT ckpt

Reboot
if x > 5

No Alarm

pres()

Reboot

hum()

pres()

log(Fair)

hum()

pres()

log(Storm)

hum()

. . .

X stale!

Inconsistent!

T
im

e

. . . .

Powerfail

JIT ckpt

tmp

2

tmp

10

Figure 2. Freshness and temporal consistency problems.

are two broad classes of solutions, “just-in-timež checkpoint-
ing systems [3, 23, 34] and checkpoint- (or “task-ž) based
systems [31, 32, 48, 53]. We illustrate the difference using the
code snippet in Figure 1. A JIT checkpointer uses hardware
to monitor energy. The software runtime backs up volatile
state (registers, stack) just before power fails. On reboot, the
system restores volatile state and continues. In the example,
power fails after executing line 2. On reboot, the execution
resumes from line 4. A checkpoint-based system encoun-
ters explicit code points where it collects a checkpoint and
continues executing, such as line 3. After a power failure,
the system resumes from the last saved explicit checkpoint.
If power fails after executing line 2, the execution restarts
from line 1. The checkpoint saves volatile state, like JIT, but
also saves some non-volatile state to ensure that they remain
consistent. Prior work showed that a checkpoint must back
up non-volatile memory that will be accessed after the check-
point first by a read, then by a write, i.e., a Write-After-Read
(WAR) dependence [31, 53] (a in the example.)

Inputs complicate checkpointing. Unlike checkpoint-based
systems, a JIT system never re-executes code after reboot.
In some cases, however, correctness requires re-executing
to re-collect an input; in such cases JIT checkpointing al-
ways renders execution incorrect. Prior work showed that
checkpointing causes incorrect behavior if a value derived
from an input is not correctly backed up [51, 52]. To avoid
the incorrect behavior, a system must add to the checkpoint
conditionally-written, non-volatile data not already check-
pointed due to aWAR dependence (the “exclusive may-writež
or EMW set [51, 52]). Even after resolving these memory con-
sistency issues, inputs still complicate intermittent correct-
ness, because of input timeliness constraints [12, 20, 27, 45].

2.2 Inputs Violating Freshness and Consistency

Intermittent execution can violate freshness and temporal

consistency, which are implicit correctness constraints illus-
trated in Figure 2. The example program reads a thermometer,

raising an alarm for high temperatures. The program then
logs pressure and humidity sensor data that may indicate
a storm. Time flows down and at left are possible continu-
ous executions, each corresponding to the weather in the
middle. On the right are intermittent executions (using JIT
checkpointing). Power fails between instructions 0 and 1 and
between 3 and 4, spending arbitrary time while powered off.

Violating Freshness The time delay after a power failure
violates data freshness, causing incorrect behavior if the tem-
perature changes during the delay. The continuous execution
raises the alarm at high temperature. The intermittent execu-
tion, however, senses cold, then checkpoints and powers off.
On reboot, it raises no alarm, despite the high temperature.
The code implicitly requires 𝑥 to be fresh when used, but the
power failure prevents this. For an intermittent execution to
match a continuous execution, power must not fail between
sensing the temperature and executing the branch on 𝑥 .

Violating Temporal Consistency The time delay after a
power failure may compromise the temporal consistency of a
collection of sensor data. With initially fair weather that be-
comes stormy, a continuous execution may sense high pres-
sure and low humidity (i.e., no storm), or sense low pressure
and high humidity (i.e., a storm), logging either condition.
The intermittent execution, however, reads high pressure
before power fails (fair weather), and high humidity after re-
booting (storm). The sensed values are inconsistent with the
fair or stormy weather seen by continuous executions. For in-
termittent execution to match continuous execution, power
must not fail between the pressure and humidity readings.

2.3 Prior Approach: Timeliness

Freshness and temporal consistency are correctness condi-
tions on when data from input operations may be used, simi-
lar but distinct from timeliness conditions in prior work [20].
Recent work on input timeliness requires an input value to
be used within a programmer-specified “expirationž window
after collection [15, 27, 45]. These approaches add hardware
to keep track of time during power failures. On use of an
expired value, the program must recollect the value or treat
the use as an exceptional error case and run mitigation code.
While prior work has made progress toward the goal of

timely intermittent execution, fundamental challenges re-
main unaddressed. First, the notion of timeliness (which
we call “freshnessž) ignores important cases in which two

input values must be from the same moment in time, but
have no absolute expiration constraint. We call this timing
property “temporal consistencyž, drawing inspiration from
data-centric concurrency control [8, 9, 18]. Temporal con-
sistency ensures that multiple values (e.g., the pressure and
humidity readings) come from the same point in time.
Second, prior techniques burden the programmer by re-

quiring reasoning about real time and demanding a distinct
expiration time for each value. If the programmer incorrectly

853

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

assigns expiration times, an execution may misbehave with-
out an expiration time violation. While identifying the data
that require an expiration time may be simple, assigning the
right expiration time requires choosing the correct real time
value for a given program, platform, and deployment, which
is not simple. Some systems [20, 27] demand more of the
programmer, asking for a recovery action for expired data.

Third, prior timeliness techniques add extra time-keeping
hardware: a low-power real-time clock [20, 27] or a time-
keeper based on charge remanence [15, 45, 56]. The need
for time-keeping hardware precludes the adoption of these
techniques on unmodified platforms.
Fourth, and most critically, prior approaches do not for-

mally define the timeliness properties they aim to provide,
nor do they relate the behavior of an intermittent execution
to that of a continuous execution. Lacking formal definitions
and correctness relations makes it difficult or impossible
to reason if a system is correct. A key contribution of this
work is to formally define correctness criteria in relation to
continuously-powered executions and to use these defini-
tions to develop a formalism to prove if a system is correct.

3 Ocelot: Correct Inputs via Atomicity

The core of Ocelot is a compiler analysis that inserts atomic
regions into code to enforce freshness and temporal consis-
tency in intermittent executions of Rust programs. Ocelot
is the first system designed to support the development of
software for intermittently operating systems using Rust.

3.1 Continuous Execution as a Correctness Spec

Ocelot’s correctness definitions use the idea that a continu-
ous program execution is implicitly a specification of behav-
ior that should be allowed by an intermittent execution, in-
cluding freshness and temporal consistency properties. The
arbitrary time that passes during a power failure can cause
an intermittent execution to operate on inputs with timing
impossible in any continuous execution, leading to incorrect
behavior. Prior work [11, 32, 48, 57] uses atomicity of a code
region to keep memory consistent. We show that atomicity
is also linked to freshness and temporal consistency.

An atomic region saves memory state at its start. If power
fails during a region, the region restores the saved state and
execution continues from the start of the region on reboot.
A partially executed region’s updates to state are not visible.
If a region completes, its effects become visible to later oper-
ations. Moreover, the region must have executed without a
power failure. If a region executes without a power failure,
i.e., atomically, its span of code will match the timings of a
continuous execution. If multiple input operations execute
atomically, the operations are temporally consistent. If an
input operation and user of the input value execute atomi-
cally, the value will be fresh when used. Ocelot leverages this

observation and uses atomic regions as the mechanism to en-
force time constraints in intermittent executions. Code with
freshness or temporal consistency requirements executes in
an atomic region; atomicity ensures that the execution be-
havior will match some continuous execution. Code with no
such requirements executes with JIT checkpoints, enjoying
the low overheads of taking action only when power fails.

Jit + Atomic ExecutionModel Ocelot combines JIT check-
points with atomic regions as an execution model, modularly
working with any JIT checkpoint and atomic region imple-
mentation. The JIT checkpoint mechanism must checkpoint
volatile memory and registers when energy is low, restoring
from that checkpoint on reboot. The atomic region imple-
mentation must disable JIT checkpoints at the region’s entry,
instead checkpointing volatile system state and sufficient
non-volatile state to ensure idempotent re-execution of the
region [31, 32, 53]. Ocelot allows nested or overlapping re-
gions, flattening them into a single regionwith the outermost
region bounds. We describe the implementation of the JIT
and Atomic runtimes used in the evaluation in Section 6.3
and show the small-step semantics in Appendix H.

3.2 From Annotations to Correct Executables

Ocelot relies on simple programmer-provided annotations
to generate programs whose freshness and temporal con-
sistency constraints are automatically enforced. Figure 3
illustrates Ocelot’s workflow. The programmer annotates (in
blue, upper-left) which variables have freshness or consis-
tency constraints. Section 4 defines the precise meaning of
these annotations. Ocelot must ask programmers for anno-
tations as freshness and temporal consistency requirements
are highly application- and deployment-dependent. Consider
the program in Figure 2. The code logs a pair of values repre-
senting sensed pressure and humidity at line 5. If power fails
between executing lines 4 and 5, the values are consistent but
not fresh. If power fails between executing lines 3 and 4, the
values are neither consistent nor fresh. Without annotations,
it is not explicit from program syntax which of temporal
consistency and freshness matter for the pair of values.
Ocelot uses the annotations to infer atomic regions sat-

isfying the constraints. Ocelot’s region inference algorithm
searches for operations that must execute atomically to en-
force each annotation. These operations include inputs that
each operation depends on and each operation’s uses of
annotated data. The algorithm computes points that domi-
nate all such operations, and adds a region enclosing those
points. Section 5 describes the algorithm and its correctness;
Section 6 gives the implementation details. Ocelot links the
transformed code to its JIT checkpointing and atomic region
runtime library, generating a correct executable.

854

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

[let x,

if x, alarm]

1 [IO:fn = tmp, pres, hum]

2 fn app() -> (){

3 let x = tmp();

4 Fresh(x);

5 if x < 5{

6 alarm();

7 }

8 let y = pres();

9 Consistent(y,1);

10 let z = hum();

11 Consistent(z,1);

12 log(y,z)

13}

Annotated Rust Program

findDomPoints

call atomic_start

%x = call tmp

%1 = cmp %x 5

br %1 bb2 bb3

…
join bb2 bb3

call atomic_end

Region Inference

getAnnotations

OCELOT

instrument

Rust

Core

llvm-ir

llvm-ir

asm

C Main App

JIT

Runtime

Ocelot-Enabled

Executable

searchOps

Fresh(x)

[s: let x, e: join]

Atomics

Runtime

Figure 3. Visualization of the Ocelot toolchain.

3.3 Benefit of Targeting Rust

To our knowledge, Ocelot is the first intermittent computing
toolchain to target Rust. Enabling correct intermittent execu-
tion of Rust programs is valuable to the community. Further,
Rust provides memory safety, which contributes to correct
intermittent execution in the following two ways. First, as
energy-harvesting devices are often deployed to inaccessible
or remote environments, a memory-unsafe program that
corrupts non-volatile memory may be difficult or impossible
to patch, making the device useless. Second, current intermit-
tent systems, including Ocelot, rely on the soundness of static
analyses for their correctness guarantees. These static analy-
sis identify variables to checkpoint [31, 32, 51, 52] or where to
place checkpoint bounds [53]. Pointer alias analysis is a hard
problem in C. Missing an alias leads to memory corruption if
the compiler fails to checkpoint an aliased memory location
that must be checkpointed. Rust’s ownership and immutabil-
ity properties make alias analysis more precise [1]. Sections 5
and 6 describe how this precision benefits Ocelot’s analyses.
Finally, combining Ocelot with emerging formalisms and
frameworks for Rust, such as Rustbelt [14, 24] and Iris [25]
creates a path toward fully formally verified intermittent
system implementations.

4 Formalizing Freshness and Consistency

We define a simple modeling language and introduce anno-
tations for freshness and temporal consistency as discussed
in Section 2. Then, we define their meaning by reference to
allowed correct intermittent executions.

4.1 A Simple Language

This language includes accesses to references and arrays.
A program 𝑝 consists of a set of function declarations. We
assume that the program starts at the main function. We
show key syntax belowÐthe rest is in Appendix A.

func. decls FD ::= · | FD, 𝑓 (arg) = 𝑐; ret 𝑒

instructions 𝜄 ::= skip | 𝑥 := 𝑒 | 𝑎[𝑖] := 𝑒 | ∗ 𝑥 := 𝑒

commands 𝑐 ::= 𝜄 | if 𝑒 then 𝑐1 else 𝑐2 | 𝑐1; 𝑐2
| let 𝑥 = 𝑒 in 𝑐

| let 𝑥 = 𝑓 (𝑣) in 𝑐 | let 𝑥 = IN() in 𝑐

| startatom (aID, 𝜔); 𝑐; endatom

Commands include if statements, sequencing, variables bind-
ings, function calls, input operations, and atomic regions,
which are parameterized with a unique ID aID and set of
checkpointed locations 𝜔 . For simplicity, we assume that let

bound variables are immutable and their uses obey Rust’s
type system, which is the case in our benchmarks. Com-
mands use values 𝑣 , which are numbers, booleans, or ref-
erences, and expressions 𝑒 , which are variables, values, or
operations on sub-expressions. A command can also be an
instruction 𝜄, which includes assignments to a dereferenced
variable and skip. We do not have a general loop construct
as bound loops can be unrolled to if statements. Unbounded
loops do not introduce technical difficulties, but complicate
the presentation. We do not support recursive functions,
which many intermittent systems disallow.

The operational semantic rules for continuous executions
are of the form: (𝜏1, 𝑁1, 𝑆1, 𝑐1) −→ (𝜏2, 𝑁2, 𝑆2, 𝑐2), where
𝜏 is the logic time stamp, 𝑁 is the nonvolatile memory, 𝑆
is the calling stack, and 𝑐 is the command to be executed.
Intermittent executions are of the form (𝜏, 𝜅, 𝑁 , 𝑆, 𝑐) =⇒
(𝜏 ′, 𝜅 ′, 𝑁 ′, 𝑆 ′, 𝑐 ′), where 𝜅 is the saved execution context. Ap-
pendix H details these rules. These intermittent semantics
model Ocelot’s runtime. Continuously powered execution
traces are sequences of −→ transitions and intermittently
powered execution traces are sequences of =⇒ transitions.
The difference is that the latter saves and restores context at
power failure and reboots, as described in Section 3.1.

4.2 Annotations for Freshness and Consistency

Ocelot introduces two annotations:Fresh andConsistent(id).

commands 𝑐 ::= · · · | let fresh 𝑥 = 𝑒 in 𝑐

| let consistent(n) 𝑥 = 𝑒 in 𝑐

Here, let fresh 𝑥 and let consistent(n) 𝑥 create immutable
variables. The annotation for Rust code is shown in the first
box of Figure 3. On Line 4, Fresh(𝑥), declares that any input
operations 𝑥 could depend on and any uses of 𝑥 must not be
interleaved with a power failure. The Fresh(𝑥) annotation is
violated if the input on which 𝑥 depends executes before a
power failure and a use of 𝑥 executes after that failure. The
Consistent annotation specifies temporal consistency. The
annotation associates a group of variables together into a

855

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

consistent set. For any variable in the consistent set depen-
dent on an input operation, those input operations must
have executed together with no interleaving power failures.
The annotation takes an ID as a parameter. All variables
annotated as Consistent with the same ID are in the same
set, such as 𝑦 and 𝑧 in Figure 3. Any input operations that 𝑦
and 𝑧 depend on must execute together as if they were in a
continuously powered execution.

4.3 The Meaning of Freshness and Consistency

Figure 4 illustrates freshness and temporal consistency by
relating the intermittent and continuously-powered execu-
tions. A double arrow is an intermittent execution trace, and
a solid single arrow is a continuous execution trace. The
vertical lines mark the transitions (steps) at operations. A
dashed arrow denotes a dependence between operations (i.e.,
control- and data-flow). Each operation occurs at a logical
time 𝜏 , which increases with each instruction executed.

For all

intermittent

executions

𝒅𝒆𝒇 𝒚 𝒚. 𝒖𝒔𝒆𝒓𝒚. 𝒖𝒔𝒆𝒓…𝝉 𝝉′
𝑰𝑵 () 𝑰𝑵 () 𝒅𝒆𝒇 𝒚𝝉𝟐 𝝉𝟐′𝒚. 𝒖𝒔𝒆𝒓𝒚. 𝒖𝒔𝒆𝒓…
𝑰𝑵 () 𝑰𝑵 ()

Matching

continuous

subtrace

(a) Freshness

𝒅𝒆𝒇 𝒚𝟎 𝒅𝒆𝒇 𝒚𝒎
dependence

…𝝉𝝉𝟐 𝝉′𝝉𝟐′
𝑰𝑵 () 𝑰𝑵 ()

𝑰𝑵 () 𝑰𝑵 ()

For all

intermittent

executions

Matching

continuous

subtrace

𝝉
logical time

(b) Temporal Consistency

Figure 4. Illustrating the properties via execution traces

The definition of freshness is in Figure 4 (a). An inter-
mittent system ensures that a variable 𝑦 is fresh if, for all
intermittent execution traces that include input operations
on which 𝑦 depends (in blue), the definition of 𝑦 (in black),
and dependents of 𝑦 (in green), there exists a possible contin-
uous execution of the program that has the same sequence
of operations from the first input to the final dependent op-
eration. Furthermore, the time span between the first input
to final dependence on the intermittent executionÐmarked
by the red timestampsÐmust match that of this continuous
execution. In this illustration, a user of 𝑦 is any instruction
or command using an expression 𝑒 where one of the terms
of 𝑒 is 𝑦. Consider a power failure between 𝑦’s definition and
its first use. A JIT checkpointing execution resumes from
that point on reboot, but after an arbitrary period of time.
The freshness property does not hold: there is no continuous
execution with the same operation sequence and times.

The definition of temporal consistency is in Figure 4 (b).
A set of variables 𝑦0 . . . 𝑦𝑚 is consistent if, for all intermit-
tent traces with a set of input operations that 𝑦𝑖 depends
on (in blue), there exists a continuous execution with the
same sequence of input operations and the same time dif-
ference between the first and last input operation. A power
failure between input operations violates the property: an
arbitrary duration may pass during power failure, and no
continuous execution could have the same time difference
between operations. The definitions of 𝑦𝑖 do not need to be
in an intermittent subtrace matching a continuous trace for
temporal consistency to hold.
Formal definitions are in Appendix C. The key is to aug-

ment the semantics with taint tracking and store the input
dependency information in memory so we can identify the
input operations on which an annotated variable depends.

5 Ocelot Design

Ocelot’s design generates programs that satisfy freshness
and consistency constraints and we describe how to prove
the correctness of the Ocelot design.

5.1 Ocelot Components

Ocelot has two key components to generate programs that
are correct-by-construction. First, given an annotated pro-
gram, Ocelot needs to identify the instructions that are rel-
evant to each annotation; we call this record of an annota-
tion and relevant instructions a policy. To construct a pol-
icy, Ocelot must identify the inputs on which an annotated
variable depends, and the uses of any fresh variable. Ocelot
constructs a policy using a static taint analysis to track data
and control flow originating at input operations, and builds
a taint summary for each function. Second, given a set of
constructed policies, Ocelot adds atomic regions to the pro-
gram so that all instructions in a policy are within a single
atomic region. To add an atomic region for a policy, Ocelot
identifies each program point that dominates all instructions
in the policy and inserts the start of an atomic region at those
points. The analysis inserts the end of the atomic region after
the last of the instructions in the policy.

We formalize policies and summaries of input dependence
in Figure 5.We assume that each instruction inside a function
is given a unique label; consequently, a function name and
label pair uniquely identifies an instruction. To be context
sensitive, we use provenance, the sequence of calls ending in
an input operation, to distinguish different calls to the same
input operation (example to follow). A freshness policy is a
record containing the declaration, a list of input operations
and their provenance, and a list of uses. A temporal consis-
tency policy contains a list of declarations and a list of input
operations and their provenance.

The purpose of provenance information is to disambiguate
multiple calls to the same function in a policy. We show an

856

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

provenance 𝜌 ::= nil | (𝑓1, ℓ1) :: 𝜌 policy pol ::= fresh(decl : (𝑓 , ℓ), inputs : Puses :
−−−−−→
(𝑓1, ℓ1))

policy decls PD ::= · | PD, pID ↦→ pol | consistent(decls :
−−−−−→
(𝑓1, ℓ1), inputs : ®𝜌)

policy map PM ::= · | aID ↦→
−−→
pID type of taint fromtp ::= local(ℓ) | retBy(𝑓 , ℓ) | pbr(𝑓 , ℓ) | argBy(fromtp)

taint map tmap ::= ret←↪ inInfo Inputs inInfo ::= ∅ | inInfo, (input : (𝑓 , ℓ), fromTp : fromtp)

| &arg←↪ inInfo local sum. lSum ::= local(
−−−→
tmap)

| arg←↪ inInfo caller sum. CSum ::= call(𝑐𝑎𝑙𝑙𝑒𝑟 : (𝑓 , ℓ),
−−−−→
𝑡𝑚𝑎𝑝)

func sum. fsum ::=
−−−→
𝑙𝑆𝑢𝑚,

−−−−→
𝐶𝑆𝑢𝑚 func sums. FS ::= · | FS, 𝑓 ↦→ fsum

Figure 5. Syntax for policies and taint maps

example in Figure 6 (b). The main function app calls confirm .
confirm calls the pressure sensor twice consistently. Both
calls to pres must occur in the same atomic region. To reflect
this in the policy declaration, each input is associated with
its call chain (indicated in purple) to distinguish the same
input with different calling contexts.

fn app() {

1:x := tmp()

2:Fresh(x)

3:log(x)

}

fn tmp() -> u16 {

1:t := sense()

2:t’ := norm(t)
3:return t’

}

(a) Fresh transformation

fn confirm() {

1:y := pres()

2:Consistent(y,1)

3:y’ := pres()

4:Consistent(y’,1)
}

fn pres()-> u16

{

1:p := sense()

2:p’ := norm(p)
3:return p’

}

fn app() {

1:confirm()

}

(b) Consistent transformation

fn tmp() -> u16 {

1:t := sense()

2:t’ := norm(t)
3:return t’

}

fn app() {

1:start_a()

2:x := tmp()

3:log(x)

4:end_a()

}

fn confirm() {

1:start_a()

2:y := pres()

3:y’ := pres()

4:end_a()

}

fn pres()-> u16

{

1:p := sense()

2:p’ := norm(p)
3:return p’

}

fn app() {

1:confirm()

}

OCELOT
OCELOT

Figure 6. Policies for longer call chains

To present the results of both components, we define pol-
icy declarations PD, whichmap policy IDs to policies; a policy
map PM , which maps atomic region IDs to policies that it
enforces; and function summaries fsum, which are lists of
local and caller summaries. A function summary contains
a taint map entry, which is a link in a call chain describing
how tainted information flowed into and out of the func-
tion. The entry records if taint flows through the return
(retBy(𝑓 , ℓ)), into a pass-by-reference parameter (pbr(𝑓 , ℓ)),
or is passed in by an argument (argBy(fromtp)). A local sum-
mary lsum is used if the taint was generated within the
function, in which case taint flows to any caller. For exam-
ple, input is generated within the function pres and passed
through the return, so pres has a local summary local(ret←↪

(input:(sense, 0), fromTp:local(1)). A caller summary CSum

is used when taint was passed in, in which case taint flows
back only to that calling context. For example, norm is called
by pres with a tainted argument which flows to the return,
so norm has a summary including the taint map call(𝑐𝑎𝑙𝑙𝑒𝑟 :
(pres, 2), arg ←↪ (input:(sense, 1), fromTp:local(1))), ret ←↪

(input:(sense, 1), fromTp:argBy((pres, 2)))). Linking taintmap
entries uncovers the entire provenance.

The two components of Ocelot are: buildSummary(FD) =
(FS, PD) and inferAtomic(FD, FS, PD) = (PM , FD’). We show
more implementation details in Algorithm 1 in Section 6.

5.2 Sanity Checks for Results

Instead of directly proving the algorithms correct, we show
a set of sanity checking rules for the results and prove that
programs that pass these checks can be executed correctly
intermittently. These rules resemble how the algorithms
work and can additionally serve as a validation tool.

Checking Summary and Policy Declarations We first
check that a function summary is correct and that the correct
sets of operations are in policy declarations. The judgment
is of the form: FD; PD, FS; (𝑔, ℓ); 𝑓 ;𝑀; 𝐼 ⊩ 𝑐 : 𝑀 ′; 𝐼 ′. FS is the
summary for all functions. We are checking the summary
for when 𝑓 is called from 𝑔 on line ℓ . 𝑀 and 𝐼 denote the
may-alias and input-dependence information prior to exe-
cuting 𝑐 .𝑀 ′ and 𝐼 ′ are updated with any may-alias and input
dependence information from 𝑐 .

Call-nr

𝑣 not a ref. checkUse(PD, 𝑣) ins = 𝐼 (𝑣) FS(𝑔) = 𝑠

ins ⊆ 𝑠 (call, 𝑓 , ℓ, arg) outs = 𝑠 (local, ret) ∪ 𝑠 (call, 𝑓 , ℓ, ret)

outs′ = outs[fromTp ↦→ retBy(𝑔, ℓ)]

FD; PD, FS; 𝑐; 𝑓 ;𝑀; 𝐼 ∪ (𝑥 ←↪ outs′) ⊩ 𝑐 : 𝑀 ′; 𝐼 ′

FD; PD, FS; 𝑐; 𝑓 ;𝑀; 𝐼 ⊩ ℓ : let 𝑥 = 𝑔(𝑣) in 𝑐 : 𝑀 ′\𝑥 ; 𝐼 ′\𝑥

Let-fresh

ins = 𝐼 (𝑒) callChain(FS, ins) ⊆ PD(fresh, 𝑓 , ℓ).ins

FD; PD, FS; 𝑐; 𝑓 ;𝑀 ∪ (𝑥 ↦→ 𝑀 (𝑒)); 𝐼 ∪ (𝑥 ←↪ ins) ⊩ 𝑐 : 𝑀 ′; 𝐼 ′

FD; PD, FS; 𝑐; 𝑓 ;𝑀; 𝐼 ⊩ ℓ : let fresh 𝑥 = 𝑒 in 𝑐 : 𝑀 ′\𝑥 ; 𝐼 ′\𝑥

The rule Call-nr shows an example of checking function
summaries. When calling 𝑔 with an argument 𝑣 (not a refer-
ence), if 𝑣 depends on inputs, there must be a caller summary
for 𝑔 that records that 𝑓 propagates taint to 𝑔. Furthermore,
if 𝑔 returns tainted information, either locally-generated
or due to 𝑓 , those outputs must be propagated to 𝑥 when
checking the sub-command. We update the provenance in-
formation in the outputs to reflect the fact that the taint from
𝑓 ’s perspective comes from 𝑔. Further, the second premise
checkUse(PD, 𝑣) checks that if 𝑣 is a use of fresh policy, it has
to be in the policy declaration.

857

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

The rule Let-fresh checks the fresh annotation. Any in-
put provenance that the expression of an annotated variable
depends on must be in policy associated with that annota-
tion. We use callChain(FS, ins) to reconstruct the call chain.
In Figure 6 the policy for the freshness example in (a) must
contain the input operation sense and its call chain through
the return into 𝑥 indicated in purple. The rule to check the
consistent annotation (omitted) is similar. For our example,
the two inputs are (app, 1)::(confirm, 2)::(pres, 1)::(sense(), 0)
and (app, 1)::(confirm, 3)::(pres, 1)::(sense(), 0), showing two
different calls to pres.

To check the entire program, we write FD; PD, FS ⊢ FS : ok

to mean that all the functions are checked under all specified
calling contexts in the summary FS.

Finally, propagating input dependence information is sim-
ple in this modeling language as there are no mutable aliases
allowed. The may-alias set for a location is always a single-
ton set. We can easily find out whether we are writing to a
reference that is passed from the caller, which is difficult for
C and thus the reason why we use Rust.

Atomic Region Checking This check is to make sure that
all the instructions and their call chains mentioned in the
policy declaration only appear in the correct atomic region.
We write FD; PD, PM; 𝑓 ; 𝜌; pol𝑠; aID ⊩ 𝑐 : pol𝑠 ′ to mean that
command 𝑐 in function 𝑓 is currently called from the call
chain 𝜌 , within atomic region aID. pols are the polices that
aID enforces. After 𝑐 is checked, instructions in pols′ still
need to appear in this atomic region. When the 𝑐 is not in
an atomic region, pols and aID are empty and the end of
the judgment is : ok. These rules follow each call chain. For
each instruction, the rule checks whether the call chain and
instruction is mentioned in PD. If so, the current atomic
region ID must match that in the PM . Then, this instruction
is marked as reached. At the end of an atomic region, the rule
checks that all instructions in pols are reached. Key rules are
shown in Appendix D. For a program consisting of function
declarations FD, we say it passes the atomic region check if
FD; PD, PM;main; ·; ∅; · ⊩ FD(main) : ok.

5.3 Correctness

We prove the following correctness theorem.

Theorem 1. Given a program 𝑝 consisting of functions in FD,

FD; PD, FS ⊩ FS : ok, and PM covers all policies in PD, and

FD; PD, PM;main; ∅; · ⊩ FD(main) : ok, then 𝑝 satisfies all

the policies.

The proof relates the static checking rules to the execu-
tion traces, showing that if a program 𝑝 passes the checks
then all input operations that an annotated fresh variable
depends on, as well as any uses of the variable, will be in
the same atomic region. Any input operations that any item
in a consistent set depends on will be in the same region.
As the committed execution of a region never experiences a
power-failure, the committed execution always has the same

timing-behaviour as a continuous execution for any oper-
ations in the region. Thus, w.r.t. to freshness and temporal
consistency, any intermittent execution of 𝑝 will preserve
input freshness and temporal consistency.

To proveOcelot correct, we only need to prove that Ocelot’s
algorithms produce results that pass those checks. This setup
allows us to integrate seamlessly with prior work on proving
memory consistency of intermittent systems [52].

Correctness of Region Size There are many possible re-
gion placements that could pass the policy checkÐtrivially,
startatom (aID, 𝜔); FD(main); endatom. Another aspect to cor-
rect intermittent execution, however, is that any atomic re-
gion must be able to complete with the energy that can be
stored in the buffer. Thus, Ocelot must infer the smallest
regions that satisfy the checks to increase the likelihood
that a program is also correct with respect to energy con-
sumption. If the smallest possible region that guarantees
correctness w.r.t. to timing policies is too large to complete,
such a program fundamentally cannot run correctly.

6 Ocelot Implementation

Ocelot’s implementation in LLVM uses the region inference
algorithm to transform an annotated program FD into a
program FD’ that passes the checks of Section 5.2. The Ocelot
implementation analyzes LLVM intermediate representation
code generated from an annotated Rust program, determines
the policy for each annotation, and infers and inserts atomic
regions satisfying the policies. Ocelot then links with the JIT
checkpointing and undo-logging atomic region runtimes.

6.1 Mapping Annotations to Policies

The implementation of the policy building component closely
matches the checking rules in 5.2, except that instead of
checking that an operation is in the policy declaration, as
in rule Let-fresh, the algorithm starts with empty pol-
icy declarations and adds the operations to the policies at
those points. The algorithm first finds all annotation instruc-
tions, which are implemented as calls to the empty functions
Fresh (var) and Consistent (var , id). The algorithm builds
a taint map associating variable definitions with inputs and
the provenance of the input. Appendix I shows the map-
building algorithm, which uses a taint tracking analysis that
is inter-procedural, context-sensitive, and leverages Rust’s
ownership model to simplify pointer aliasing. We also as-
sume no mutable globals, which are unsafe in Rust. Using
the input-dependence map, the algorithm adds provenance
information to the policies as described in Section 5.2. After
computing the policies, the pass erases the annotations and
starts region inference.

6.2 Inferring Atomic Regions

Algorithm 1 performs region inference. Given the function
summary and policy declarations generated at lines 2 and 3, it

858

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

aims to generate regions that pass the policy check. The algo-
rithm calculates a point that dominates all operations in the
policy to begin the region and a point that post-dominates
operations to end the region. The main challenge is that the
policy operations may not be in the same function scope.
The algorithm first finds a candidate function where all op-
erations are either in the function or in a descendant of the
function. It then associates each policy operation with the
point in the candidate function that reaches the operation.
To find the candidate, the algorithm maps each policy

operation to its basic block (Line 5) and calls findCandidate
with the block map and the root of the program. The function
is recursive and tracks which basic blocks in the map execute
in successor functions from the root. If all blocks in the map
are executed in the current root or its successors and no
candidate is set, then the root returns itself as the candidate.
Consider example (b) in Figure 6. findCandidate starts
from app and calls itself on confirm . The invocation on
confirm marks that it contains some blocks and calls itself
on the calls to pres . These return the blocks that they called,
but no candidate, as neither call to pres contains all blocks.
Combining the results of its successors, confirm does contain
all blocks. The invocation marks confirm as the candidate
function, returning this to the invocation on app. While
app is also a root of all the blocks, the candidate is already
set, so the invocation returns confirm . Placing the region in
confirm results in a smaller region than placing it in app.

1: function inferAtomic(Cmd)
2: map ← buildSummary (Cmd)
3: pol ← buildPolicies (Cmd ,map)
4: for all set ∈ pol do
5: ∀item ∈ set, blocks [item] ← item .basicBlock

6: goalFunc ← findCandidate (blocks,Cmd .root)
7: for all item ∈ set do
8: while blocks [item] .func ≠ goalFunc do

9: calls ← blocks [item] .func .callers ()
10: for all call ∈ calls do
11: if call ∈ set then
12: blocks [item] ← call .basicBlock

13: end if

14: end for

15: end while

16: end for

17: startDom ← closestCommonDom (blocks)
18: endDom ← closestCommonPostDom (blocks)
19: (S ,E) ← truncate (startDom, endDom, set)
20: Cmd .insertRegAt (S ,E)
21: end for

22: end function

Algorithm 1. Atomic Region Inference

To find the points in the goal function that reach a policy
operation, the algorithm traverses the call graph aided with

the basic block map (lines 8-15). Until the function of each
basic block in the map is the goal function, the algorithm
gets the callers of the function and checks if the callsite is
in the policy, as the policy includes the provenance. If it is,
traversing this path will get the basic block closer to the goal
function. The algorithm sets the map value to the basic block
of the callsite. For the freshness example in Figure 6, the
basic block of the assignments to 𝑡, 𝑡 ′ is in the function tmp.
tmp is called by app at the callsite 𝑥 := tmp. This operation
is in the policy, so the map values for 𝑡, 𝑡 ′ are set to the basic
block of the callsite. Now all blocks in the map are in app.

Once all blocks associated to the policy operations are in
the same function, the algorithm uses LLVM’s built-in clos-

estCommonDominator and closestCommonPostDomina-
tor passes to return candidate startDom and endDom basic
blocks (lines 17-18). Multiple returns in the source function
do not cause the post-dominance analysis to break, as the
compiled code has a return landing-pad that post-dominates
all paths through the function. Taking these blocks, the al-
gorithm calls Truncate, which finds the latest point in the
starting block that dominates everything in the set and the
earliest point in the ending block that post-dominates every-
thing in the set. Inserting region start and end instructions
at these points creates an atomic region containing all the
operations in the policy.

6.3 Runtime Implementation

To implement atomic regions with undo logging, we used
WAR and EMW analysis code publicly available from prior
work [32, 52], porting both to work for Rust code. The ex-
isting implementation has a currentContext variable that
tracks region metadata. We add to it a mode field that is
either jit or atomic. The value is atomic in an atomic re-
gion, and is jit otherwise. An atomic region’s checkpoint
also saves volatile execution context (registers, stack) along
with performing undo-logging. The routines to save and re-
store volatile execution context are the same for both JIT
checkpoints and atomic regions, and are similar to Hiber-
nus [3]. The checkpoint routine copies registers and stack to
a dedicated non-volatile memory region. Restoration copies
values from non-volatile memory back into the context.

We target the Capybara energy-harvesting hardware plat-
form [12], which has a built-in comparator to monitor en-
ergy, the only hardware needed for JIT checkpointing. The
firmware triggers an interrupt on low energy. We raised the
voltage level on which the interrupt triggers and modified
the ISR to handle JIT mode and atomic mode. In JIT mode,
the ISR checkpoints volatile state and shuts down. In atomic
mode, the ISR only shuts down. Similarly to Samoyed [34],
we assume that the extra energy gained from raising the trig-
ger point will always be enough to complete the checkpoint.
As pointed out in prior work [27, 33, 34], this assumption
may not be true for programs with large and unpredictable
stack sizes. None of our benchmarks have this behaviour

859

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

Table 1. Benchmark Characteristics. The origins: [27, 31, 34]

Origin App LoC Sensors Constraints

TICS
Activity 470 Accel* Con, Fresh
Greenhouse 170 Hum, Temp Con

Samoyed
Photo 68 Photo Con
Send Photo 92 Photo Fresh

DINO CEM 292 Temp* Fresh
Ocelot Tire 338 Pres*, Temp*, Accel* Fresh, Con, FreshCon

and our implementation is sufficient to demonstrate Ocelot’s
correctness improvements with low overhead.

7 Evaluation

We evaluate the performance and correctness of programs
generated by Ocelot and the programmer effort of using
Ocelot. We measure runtime overhead of a set of bench-
marks compiled with Ocelot, with just JIT checkpoints, and
with just Atomic regions (similar to the execution model of
DINO [31]). We measure the runtimes on continuous power,
showing the inherent performance overheads of Ocelot and
Atomics even when energy is plentiful, and on intermittent
power. While JIT is fastest, it is incorrect. Ocelot has a mean
7% runtime increase and is correct by construction. To show
correctness empirically, we run the Ocelot programs with
simulated power failure points chosen to be sufficient to un-
cover any timing violations and on real intermittent power.
Finally, we compare the code changes needed to write cor-
rect programs with Ocelot, TICS [27], and Samoyed [34]. We
further discuss the difference between annotating code and
manually adding atomic regions in Section 8.

7.1 Benchmarks

We use the following 6 benchmarks that are representa-
tive of sensor applications in the intermittent computing
domain. Activity , an activity recognition app, Greenhouse ,
a greenhouse monitor app, CEM , a compression logger,
Photo, an app that takes the average of 5 photo-resistor
readings, SendPhoto, an app that samples a photo resis-
tor and sends a radio packet if the value is too high, and
Tire , a tire pressure monitor. All benchmarks except for
Tire were originally written in C, ported to Rust by us.
Activity and Greenhouse were obtained from the TICS ar-
tifact [27], Photo and SendPhoto were microbenchmarks
used in Samoyed [34] and were obtained from the authors,
and CEM is originally from DINO [31]. Tire we wrote our-
selves. We characterize the benchmarks in Table 1. The table
shows the provenance of each benchmark, the lines of code,
the sensors used or simulated (denoted with an asterisk), and
the constraints used. Comma-separated values mean that
the constraints apply to separate pieces of data. "FreshCon"
means that both constraints were used on the same piece of
data. Both unaltered and annotated benchmarks are located
at https://github.com/CMUAbstract/ocelot.

7.2 Overheads

The goal of the performance evaluation is to make a gener-
alizable comparison of Ocelot, which uses a JIT + Atomics
execution model, to systems that use just Atomics [20, 31ś
33, 48, 53] or just JIT [2, 3, 23, 37]. We ran the benchmarks
on the Capybara hardware platform [12], harvesting energy
from a PowerCast [41] antenna placed 10 inches away.

activity cem greenhouse photo send_photo tire gmean
0.95

1.05

1.15

1.25

No
rm

al
ize

d
Ru

nt
im

e

2.5

JIT only
Atomics-only
Ocelot

Figure 7. Continuous runtimes of JIT, Atomics, and Ocelot

Figure 7 shows the runtimes on continuous power of
the benchmarks compiled with JIT checkpoints only (yel-
low columns), with Ocelot-inferred Atomic regions (blue
columns), and with Atomic regions only (teal columns). To
enable correct output, calls to the UART were guarded by a
small atomic region, generating a constant overhead for all
configurations. Runtimes are normalized to the JIT execu-
tion, which has the least overhead at the cost of correctness,
both of timing constraints and of basic peripheral opera-
tion [5, 7, 34, 47].The y-axis shows the runtime increase, and
the x-axis shows the benchmarks. The Atomics-only pro-
grams are entirely divided into atomic regions. We manually
placed regions where Ocelot-inferred regions would go, to
ensure that the correctness properties will still be satisfied,
which is otherwise not guaranteed. If statically-placed check-
points or tasks were used on the program in a prior work
(Greenhouse , Activity , and CEM), we tried to place atomic
regions as similarly as possible. CEM required a few code
changes to run on the device, as the original program had a
region with a WAR dependence on a large structure. Backing
the entire structure to the undo log caused the program to
be too large to flash to the device. We changed the code to
remove any WAR dependences on that structure. Generally,
atomic regions, whether manually placed or inferred add
a reasonable amount of run time overhead. The geometric
mean runtime increase of Ocelot programs to JIT is around
7%. Atomics-only experiences similar overheads, except for
CEM which has a 2.5 runtime increase. CEM grabs a sen-
sor value once and then performs lookup and insertion into
a compressed log. The inferred atomic region is small and
infrequently executed, resulting in an Ocelot runtime that
is close to JIT. With Atomics-only, all lookup and insertion
code is in regions even though re-execution is unnecessary
for either timing or memory correctness, resulting in a large

860

https://github.com/CMUAbstract/ocelot

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

overhead. Tire , in contrast, is slightly faster with Atomics-
only than with Ocelot. The Atomics-only version nests a
frequently executing inferred region within a larger, less
frequently executing region. At runtime, only the outermost
bounds are treated as an atomic region.
Next, we show the runtimes of the benchmarks on in-

termittent power in Figure 8. All bars are normalized to
the JIT execution time on continuous power. Again, yellow
represents JIT, blue represents Ocelot, and teal represents
Atomics-only. For each benchmark, the lower, colored bar
represents the time spent running the application, and the
stacked grey bar represents the time spent off, charging.
The lower sublot shows a closer view of the time spent run-
ning the application. Since JIT cannot execute peripheral
operations correctly [5, 7, 34, 47], we changed Greenhouse ,
Photo, and Send − Photo to simulate sensors . Generally,
the intermittent overheads have the same proportion as the
continuous ones. A notable difference between the plots is
that the runtime is dominated by charging time. The bench-
marks were run on real hardware and harvested energy; the
off, charging times are dictated by the physical environment.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
In

te
rm

itt
en

t R
un

tim
e

activity cem greenhouse photo send_photo tire gmean
1

3

5

7

9

11
18 13

JIT only
Atomics only

Ocelot
Off, Charging

activity cem greenhouse photo send_photo tire gmean
1.0
1.2
1.4
1.6 2.9

Figure 8. Intermittent runtimes of Ocelot, JIT, and Atomics

7.3 Correctness

We showed how to check Ocelot’s correctness on the simple
modeling language in Section 5. Here we empirically show
the correctness of the implementation. Power can potentially
fail at any instruction in an intermittent execution. To de-
termine if a program will violate freshness and consistency
policies, however, we need only to consider power failures at
a few key locations; there must not be a visible power-failure
between the inputs and the dependencies of a fresh vari-
able, and there must not be a visible power failure between
the inputs of a consistent set. Power failures outside these
sub-traces do not affect if the policy is upheld. We insert
simulated power failures immediately before the use of a
fresh variable and between input operations in a consistent
set. Power-failing at each instruction is unnecessary, as these
failure points are sufficient to expose if the atomic region is
placed correctly and will re-execute all necessary inputs.

Table 2. Correctness comparison of Ocelot to JIT

(a) Violating % with pathological power failure points

Percentage Violating
Exec. Model Activity CEM Greenhouse Photo Send Photo Tire

Ocelot 0% 0% 0% 0% 0% 0%
JIT 100% 100% 100% 100% 100% 100%

(b) Violating % while running intermittently

Exec. Model Activity CEM Greenhouse Photo Send Photo Tire

Ocelot 0% 0% 0% 0% 0% 0%
JIT 50% 0% 24% 77% 50% 3%

To determine if an input is gathered before a power fail-
ure, we add bit vector in nonvolatile memory. Each sensor
operation has a unique position in the bit vector. On an input
operation, the sensor’s position in the bit vector is set to 1.
On power failure, the bit vector is cleared. On the use of a
fresh variable, the bits of any dependent sensors are checked.
On an input operation in a consistent set, the bits of any
preceding operations in the set are checked. If the sensor has
not been re-executed, the checked bit will be zero, generating
an error. Table 2 (a) shows the results of injecting these sim-
ulated power failures. Ocelot programs did not experience
any violations, whereas JIT programs always did.
The previous experiment shows that a policy violation

cannot occur on Ocelot programs. To show that violations do
occur practically as well as theoretically on JIT programs, we
ran the programs with the added bit vector on intermittent
power, using the simulated sensor versions of Greenhouse ,
Photo, and SendPhoto. We ran each benchmark for a fixed
time of 100 seconds and recorded the percentage of complete
runs of the benchmark that contained a policy violation.
Each benchmark completed between 50 - 450 times, depend-
ing on the program runtime. The results are in Table 2 (b).
All benchmarks except CEM experienced a policy violation
within that window. CEM is a compute heavy benchmark,
and the freshness constraint only applies for a few instruc-
tions. A policy violation is possible, but experiencing a power
failure at exactly the right point is rare. Benchmarks like
Activity , Photo, and SendPhoto have time constraints that
cover much of the program, so violations are frequent.

7.4 Code Changes of Ocelot vs. TICS and Samoyed

We characterize the effort of using Ocelot. We compare the
JIT baseline, Ocelot, and Atomics-only, plus the prior works
TICS and Samoyed in Table 3. The first column of the table
shows the system. Column Constructs shows the language
constructs each system provides to the programmer to enable
correct execution with inputs. Column Strategy lists in brief
the method to use the constructs. Column LoC Changes

estimates the lines of code needed to implement the strategy.
The last column indicates if themethods succeed in providing
fresh and temporally consistent intermittent executions.

861

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

Table 3. Characterizing the Strategy of Using Ocelot

System Constructs Strategy LoC Changes Correctly Upholds Freshness and Consistency

Ocelot Time-constraint Types Annotate inputs, 1*(num inputs) Correct. Intermittent execution
time-constrained data + 1*(data with constraint) must match the continuous specification

JIT None Do nothing 0 Incorrect

Atomics Atomic Regions Annotate inputs, 1*(num inputs) Programmer-dependent
manually place regions. + 2*(num atomic regions) could place regions incorrectly
Reason about control, data flow.

TICS Timestamp alignment, Add real-time expiry date, 3*(time-sensitive data) Real-time timeliness
Expiration Catch, timestamp alignment operations, + Σ

𝑛

𝑖=0
(LoC of handleri) No clear mapping to temporal consistency

Timely Branches and expiration/branch points.
Write exception handlers.

Samoyed Atomic Functions Reason about control, data flow. Σ
𝑛

𝑖=0
(rewrite cost of 𝑓𝑖) + Programmer-dependent

Rewrite code to be function, Σ
𝑛

𝑖=0
(LoC of scalingRulei) + could put wrong code in atomic function

(opt) provide software fallback, Σ
𝑛

𝑖=0
(LoC of fallbacki)

(opt) scaling rules.

Ocelot requires only a small, bounded amount of code
changes. The programmer must declare which functions
generate input and apply Fresh and Consistent annotations
to variables. Each annotation requires adding a single line of
code, and the programmer never has to write new program
logic. The resultant program is correct by construction.
JIT checkpointing provides nothing to the programmer,

requiring no effort but offering no correctness. Atomics-only
requires the programmer to reason about the dataflow and
relationships of input operation to each other and place the
regions. Since undo-logging backs up EMW sets [52], the
programmer must also specify inputs. If the programmer
reasons correctly, the resultant program will be correct.

TICS [27] offers the programmer annotations that require
reasoning about real time. It provides expiry times, a times-
tamp alignment operator, an expiration check, and a timely
branch check. The latter checks also allow the programmer to
specify an exception-like handler to execute if the check fails.
Handlers impose an unknown burden on the programmer as
they have to write new logic. If the original program has ex-
plicit real-time checks and exception handling, the process is
straightforward and is a good match for TICS. Otherwise, the
programmer must generate these from scratch. TICS ensures
that stale data is not processed, similar to freshness, though
it does not guarantee the existence of a continuous execu-
tion with the same behaviour. If the programmer chooses an
expiration time poorly, the program could behave in unde-
sired ways. The TICS concept of timeliness does not cover
temporal consistency.
Samoyed [34] focuses on safe peripheral operations and

provides the programmer with atomic functions. Samoyed
requires more rewriting work than simple atomic regions,
as the code to be executed atomically must be a function.
The programmer can also specify scaling rules and fallbacks,
if the function takes too much energy to execute within a
power cycle. If the programmer carefully reasons about the
dependencies and relationships of input operations, they can
use atomic functions to uphold freshness and consistency.

Table 4. Using Ocelot vs. TICS and Samoyed

LoC Changes Real-time Data-flow
Sys Act CEM G-house Photo S-Photo Tire Reasoning Reasoning

Ocelot 5 2 7 2 4 9 No No

TICS 20 8 12 8 8 32 Yes No
Samoyed 18 4 6 12 4 24 No Yes

In Table 4, we estimate the concrete lines of code needed
to enable correct execution on each of our benchmarks for
Ocelot, TICS, and Samoyed. For TICS, we estimate that each
handler will take five lines of code. For consistent sets, we
estimate that each variable incurs 2 LoC changes (expiry and
timestamp alignment), but that there is only one expiration
check and accompanying handler per set. For Samoyed, we
estimate that restructuring into atomic functions will take a
fixed 3 LoC (creating the atomic function signature, adding
the callsite), plus an additional line for each parameter to
the function. Scaling rules take 3 LoC, fallbacks take 5 LoC,
and these are provided for any atomic function with a loop.
For all benchmarks, Ocelot requires the fewest annotations.
Moreover, Ocelot does not require reasoning about real-time
values, about information flow from inputs, or writing excep-
tion handling, instead enforcing correctness by construction.

8 Discussion of Annotation Benefits

In this section we discuss the benefits of Ocelot annotations
as compared to manually adding atomic regions. Instead of
using Ocelot annotations and allowing the system to infer
atomic region placement, programmers can carefully place
atomic region constructs to uphold timing constraints, but
such an approach has several drawbacks.

Annotation Simplicity andMeaningWhile addingOcelot
annotations and manually adding atomic regions both re-
quire the programmer to be aware of timing invariants in
their program, programmers must use additional reasoning
to correctly place atomic regions. Figure 9 shows a code
snippet from the tire benchmark. The snippet describes the
decision whether or not to send out a burst tire alarm. This

862

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

1 FreshConsistent(avgDiff, 1);

2 FreshConsistent(&currMotion,1);

3 if isMoving(&currMotion) && avgDiff > 0 {

4 sendData("urgent_burst_tire!\r\n\0");

5 *urgentWarningCount +=1;

6 }

Figure 9. Tire code snippet

1 fn main () { fn confirm() {

2 //should be consistent let y = pres();

3 confirm(); Consistent(y,1);

4 } let y' = pres();

5 Consistent(y,1);

6 ... //more processing

7 }

Figure 10. The intuitive atomic region around confirm

could be too expensive

decision should happen on a fresh sensor reading, and vari-
ables in the branch should be consistent with each other.
Such a level of knowledge about program behaviour is suffi-
cient to add Ocelot annotations ś currMotion and avgDiff
should be marked Fresh and Consistent as in lines 1-2.

To manually place an atomic region, the programmer has
to examine the data each of the variables depends on and
make sure any inputs in that data flow are included in the
atomic region. The programmer must know the invariants in
either case, but adding an atomic region that includes every
input the variables depends on and every use of the vari-
ables requires more work than annotating the variables at
the declaration point only. Even knowing the invariants, the
programmer could make a mistake when manually adding a
region, which would not be detected by the system as added
atomic regions do not carry any specification information.
The program has no explicitly declared guarantees of what
properties are met. When using Ocelot annotations, however,
the programmer is explicitly giving a specification of the tim-
ing properties that must be upheld, and the Ocelot-generated
program will correctly uphold that specification.

Region Size As discussed in Section 5.3, Ocelot’s implemen-
tation aims to find the smallest region that satisfies the speci-
fied timing constraints. A programmer-added region may be
uncessarily large. Consider the programming pattern in Fig-
ure 10. The functionmain calls function confirm which has
a temporal consistency constraint on the assignments to𝑦,𝑦 ′.
Programs with this pattern will likely do more processing on
𝑦,𝑦 ′ in confirm . If a programmer manually adding regions
knows that confirm calls sensors that need to be consis-
tent, they may simply wrap the entire function in an atomic
region. While such a region placement does preserve the
timing constraints, it uncessarily includes any processing in
confirm , while the Ocelot region would not. If sampling the
sensors and processing the data takes more energy than can
fit in the buffer, the program with manually-added regions
would fail to complete, while the Ocelot program would not.

If an Ocelot program fails to complete, the specified timing
constraints are fundamentally unsatisfiable with the energy
capacity of the device.

Using added regions and Ocelot together Programmers
may have programs that already have atomic regions placed,
e.g., if they used Samoyed [34] to write programs with safe
peripheral operations, or otherwise want manual control
over atomic region placement (that they are sure will run
to completion). Ocelot can be used with programs that al-
ready have atomic regions. In this use case, Ocelot’s analy-
sis confirms that the region placement meets a program’s
annotated timing constraints. If the input to Ocelot is a pro-
gram that already has atomic regions as well as annotations,
Ocelot adds regions to enforce the annotations. While these
added regions may overlap or duplicate existing ones, only
the outermost bounds of nested regions execute (see Ap-
pendix H). The resultant program respects the atomicity of
both programmer-specified and inferred regions without
extra runtime overhead. Thus, Ocelot in conjunction with
manually added regions can give the programmer control
and correctness. Additionally, extending Ocelot with a true
checker mode is straightforward. After generating the policy
sets, Ocelot could merely check that all instructions in each
set are dominated by existing region boundaries, instead of
inferring and placing the region boundaries.

9 Related Work

Areas related to Ocelot are intermittent systems with timeli-
ness and reactivity, work on persistent memory correctness
and crash-consistency, and data-centric concurrency.
Intermittent Systemswith InputsMayFly [20] introduced
the concept of timeliness, but its solution is complicated, re-
quiring programmers to write programs as dataflow graphs
with expirations on the edges. TICS [27] is most similar
to this work, providing timely intermittent computation
through annotations on existing programs. In contrast to
Ocelot, both these works require reasoning about real-time,
do not examine temporal-consistency, and require additional
hardware to keep time through power failures [15, 56]. TICS
also presents an architecture for constant-time checkpoints,
which is complementary and can be used with Ocelot.

Samoyed [34], RESTOP [47], Sytare [5] and Karma [7]
all address the problem of safe peripheral manipulation on
intermittent systems, but do not consider application-level
time-constraints. Samoyed provides atomically executing
functions which can be used to ensure freshness and con-
sistency, though at more effort than Ocelot. Samoyed also
provides fallbacks if an atomic function is too large, which
Ocelot does not. Karma additionally considers asynchronous
inputs, i.e., from interrupts, which Ocelot does not.
Capybara [12] is a hardware platform with a reconfig-

urable energy buffer, allowing for larger atomic regions to

863

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

be executed when needed. HomeRun [26] also explores hard-
ware support for atomicity in I/O events. Accumulative Dis-
play Updating [36] explores relaxing atomicity constraints
for long-running peripheral operations, such as updating
displays, which does not meet the correctness definitions of
Ocelot. Coati [48] and InK [57] focus on event-driven execu-
tion and are task-based. Tasks can be used with programmer
effort to ensure freshness and consistency.
Correctness Reasoning Prior works [4, 13, 52] model the
correctness of intermittent systems. Intermittent comput-
ing correctness is also similar to correctness of persistent
memory [22, 39, 40, 42ś44] and to file system crash consis-
tency [6, 10, 28, 50]. Our notion of correctness follows most
closely from [6, 28, 52], which define intermittent (or crashy)
executions as correct if they are a refinement of some con-
tinuous (or non-crashy) execution. However, all these works
define correctness in terms of memory consistency, and this
continuous execution may pause arbitrarily. In this work, we
show that these pauses introduce behaviour in the intermit-
tent execution that is undesirable, even though memory is
consistent. Our definitions of fresh and temporal consistency
impose constraints on where these pauses are allowed.
Transactions andData-Centric ConcurrencyAtomic re-
gions are similar to transactions [19, 49], though transactions
use atomicity for concurrency, not timely processing of in-
puts. We draw the concept of consistent sets from the line of
data-centric concurrency control research [8, 9, 18, 54, 55].
The data-centric approach is that programmers should indi-
cate data that need to be synchronized, rather than onerously
reasoning about operations and trying to place synchroniza-
tion constructs accordingly. Data-coloring [9] is a program-
ming model to automatically infer transaction placement
for data consistency, but it does so dynamically, requiring
hardware support. [54, 55] use types and static analysis to au-
tomatically infer synchronization operation placement, such
as locks, that guarantees correctness for specified atomic
sets, but the meaning of correctness is different. An atomic
set is correct if it is serializeable; intermittent programs may
experience timing violations even when memory safe.

10 Conclusion and Future Work

We present the properties of freshness and temporal consis-
tency for intermittent executions, linking the correct timing
behaviour of an intermittent execution to that of a contin-
uous execution. Using these definitions, we observe that
atomicity can be used to provide correct timing behaviour
as well as memory consistency. To help enforce timing con-
straints, we develop Ocelot, which is lightweight, and unlike
prior work does not require external hardware or complex
reasoning about real-time expiration or dataflow. Ocelot uses
simple annotations indicating which data should be fresh or
temporally consistent to infer atomic regions placement that
automatically enforces correct behaviour at runtime. The

development of Ocelot additionally leads to several avenues
of future work.

IntegrationwithRust formalismsOcelot is the first inter-
mittent computing toolchain to target Rust programs. Rust
is an attractive target for intermittent computing systems as
Rust programs are memory safe, reducing the likelihood that
memory bugs will make a device inoperable after deploy-
ment to a remote environement. To prove that intermittence
does not subvert the safety guarantees of Rust, however,
future work should integrate intermittent computing seman-
tics into existing Rust formalisms [14, 24].

User Studies on Programmer EffortWe discuss the state-
gies and model the lines of code needed to use Ocelot, TICS,
and Samoyed in Section 7.4. Truly comparing programmer
effort and usability, however, needs to be done via user study.
Ocelot raises the usability questions of real-time versus im-
plicit annotations, as well as annotations versus manually
added regions. Carrying out a comprehensive user study on
such features would benefit future system designers.

Reasoning about Forward Progress Along with memory
consistency and timing-constraints, another key issue of cor-
rectness for intermittent computing systems is ensuring that
programs can execute to completion. Analyses that identify
the minimum atomic regions necessary for correct execution,
such as Ocelot’s, can serve as a foundation for developing
tools and formalisms to reason about forward progress and
the inherent energy constraints of a program.

Acknowledgements

We thank the anonymous reviewers for their feedback and
Martin Rinard for shepherding this work. We also thank
members of the Abstract Research Lab for their insightful
comments on initial drafts. This work was generously funded
in part through National Science Foundation Award 2007998,
National Science Foundation CAREER Award 1751029, and
the CMU CyLab Security & Privacy Institute.

References
[1] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-

rojit Panda, Zvonimir Rakamari, and Leonid Ryzhyk. 2017. System
Programming in Rust: Beyond Safety. SIGOPS Oper. Syst. Rev. 51 (Sept.
2017). https://doi.org/10.1145/3139645.3139660

[2] D. Balsamo, A. Weddell, A. Das, A. Arreola, D. Brunelli, B. Al-Hashimi,
G. Merrett, and L. Benini. 2016. Hibernus++: A Self-Calibrating and
Adaptive System for Transiently-Powered Embedded Devices. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems PP, 99 (2016), 1ś1. https://doi.org/10.1109/TCAD.2016.2547919

[3] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustain-
ing computation during intermittent supply for energy-harvesting
systems. IEEE Embedded Systems Letters 7, 1 (2015), 15ś18. https:

//doi.org/10.1109/LES.2014.2371494

[4] Gautier Berthou, Pierre-Évariste Dagand, Delphine Demange, Rémi
Oudin, and Tanguy Risset. 2020. Intermittent Computing with Periph-
erals, Formally Verified. In The 21st ACM SIGPLAN/SIGBED Conference

864

https://doi.org/10.1145/3139645.3139660
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1109/LES.2014.2371494

Automatically Enforcing Fresh and Consistent Inputs in Intermittent Systems PLDI ’21, June 20ś25, 2021, Virtual, Canada

on Languages, Compilers, and Tools for Embedded Systems (LCTES ’20).
85ś96. https://doi.org/10.1145/3372799.3394365

[5] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and
Guillaume Salagnac. 2017. Peripheral state persistence for transiently-
powered systems. In 2017 Global Internet of Things Summit (GIoTS).
https://doi.org/10.1109/giots.2017.8016243

[6] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. 2016. Specifying and Checking File
System Crash-Consistency Models. SIGARCH Comput. Archit. News

44, 2 (March 2016), 83ś98. https://doi.org/10.1145/2980024.2872406

[7] Adriano Branco, Luca Mottola, Muhammad Hamad Alizai, and Ju-
naid Haroon Siddiqui. 2019. Intermittent Asynchronous Peripheral
Operations. In Proceedings of the 17th Conference on Embedded Net-

worked Sensor Systems (SenSys ’19). 55ś67. https://doi.org/10.1145/

3356250.3360033

[8] Luis Ceze, Pablo Montesinos, Christoph von Praun, and Josep Tor-
rellas. 2007. Colorama: Architectural Support for Data-Centric Syn-
chronization. In Proceedings of the 2007 IEEE 13th International Sympo-

sium on High Performance Computer Architecture (HPCA ’07). 133ś144.
https://doi.org/10.1109/HPCA.2007.346192

[9] Luis Ceze, Christoph von Praun, Calin Cascaval, Pablo Montesinos,
and Josep Torrellas. 2008. Concurrency control with data coloring. In
Proceedings of the 2008 ACM SIGPLAN workshop on Memory Systems

Performance and Correctness: held in conjunction with the Thirteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’08), Seattle, Washington,

USA, March 2, 2008, Emery D. Berger and Brad Chen (Eds.). 6ś10.
https://doi.org/10.1145/1353522.1353525

[10] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for
Certifying the FSCQ File System. In Proceedings of the 25th Symposium

on Operating Systems Principles (SOSP ’15). 18ś37. https://doi.org/10.

1145/2815400.2815402

[11] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for
Reliable Intermittent Programs. In Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA). https://doi.org/10.1145/2983990.2983995

[12] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfig-
urable Energy Storage Architecture for Energy-harvesting Devices.
In Proceedings of the Twenty-Third International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’18). https://doi.org/10.1145/3173162.3173210

[13] Manjeet Dahiya and Sorav Bansal. 2018. Automatic Verification of
Intermittent Systems. In Verification, Model Checking, and Abstract

Interpretation, Isil Dillig and Jens Palsberg (Eds.). https://doi.org/10.

1007/978-3-319-73721-8_8

[14] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. 2019. RustBelt Meets Relaxed Memory. Proceedings of the ACM
on Programming Languages 4, POPL, Article 34 (Dec. 2019), 29 pages.
https://doi.org/10.1145/3371102

[15] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Prze-
mysław Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for
Intermittent Computing. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’20). 53ś67. https://doi.org/10.1145/

3373376.3378464

[16] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelli-
gence Beyond the Edge: Inference on Intermittent Embedded Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’19). 199ś213. https://doi.org/10.1145/3297858.3304011

[17] Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Is-
genc, Nathan Beckmann, and Brandon Lucia. 2019. MANIC: A Vector-
Dataflow Architecture for Ultra-Low-Power Embedded Systems. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO ’52). 670ś684. https://doi.org/10.1145/

3352460.3358277

[18] Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip. 2008.
Dynamic Detection of Atomic-Set-Serializability Violations. In Pro-

ceedings of the 30th International Conference on Software Engineering

(ICSE ’08). 231ś240. https://doi.org/10.1145/1368088.1368120

[19] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In Proceedings

of the 20th Annual International Symposium on Computer Architecture

(ISCA ’93). 289ś300. https://doi.org/10.1145/165123.165164

[20] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution
on Intermittently Powered Batteryless Sensors. In Proceedings of the

15th ACM Conference on Embedded Network Sensor Systems (SenSys

’17). Article 17. https://doi.org/10.1145/3131672.3131673

[21] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent
Computation. In Proceedings of the 44th Annual International Sympo-

sium on Computer Architecture (ISCA ’17). https://doi.org/10.1145/

3079856.3080238

[22] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects Under a Full-System-
Crash Failure Model. In Distributed Computing, Cyril Gavoille and
David Ilcinkas (Eds.). 313ś327.

[23] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.
QUICKRECALL: A Low Overhead HW/SW Approach for Enabling
Computations across Power Cycles in Transiently Powered Computers.
In Proceedings of the 2014 27th International Conference on VLSI Design

and 2014 13th International Conference on Embedded Systems (VLSID

’14). 330ś335. https://doi.org/10.1109/VLSID.2014.63

[24] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. Proceedings of the ACM on Programming Languages 2, POPL,
Article 66 (Dec. 2017), 34 pages. https://doi.org/10.1145/3158154

[25] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal

of Functional Programming 28 (2018), e20. https://doi.org/10.1017/

S0956796818000151

[26] Chih-Kai Kang, Chun-Han Lin, Pi-Cheng Hsiu, and Ming-Syan Chen.
2018. HomeRun: HW/SW Co-Design for Program Atomicity on Self-
Powered Intermittent Systems. In Proceedings of the International Sym-

posium on Low Power Electronics and Design (ISLPED ’18). Article 29.
https://doi.org/10.1145/3218603.3218633

[27] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemysław Pawełczak. 2020. Time-Sensitive Intermittent
Computing Meets Legacy Software. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’20). 85ś99. https://doi.

org/10.1145/3373376.3378476

[28] Eric Koskinen and Junfeng Yang. 2016. Reducing Crash Recoverability
to Reachability. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’16). 97ś108. https://doi.org/10.1145/2837614.2837648

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceed-

ings of the International Symposium on Code Generation and Opti-

mization: Feedback-directed and Runtime Optimization (CGO ’04). 75ś.
http://dl.acm.org/citation.cfm?id=977395.977673

[30] Y. Lin, P. Hsiu, and T. Kuo. 2019. Autonomous I/O for Intermittent IoT
Systems. In 2019 IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). 1ś6. https://doi.org/10.1109/ISLPED.

2019.8824923

[31] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. In Proceedings

865

https://doi.org/10.1145/3372799.3394365
https://doi.org/10.1109/giots.2017.8016243
https://doi.org/10.1145/2980024.2872406
https://doi.org/10.1145/3356250.3360033
https://doi.org/10.1145/3356250.3360033
https://doi.org/10.1109/HPCA.2007.346192
https://doi.org/10.1145/1353522.1353525
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/3173162.3173210
https://doi.org/10.1007/978-3-319-73721-8_8
https://doi.org/10.1007/978-3-319-73721-8_8
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3297858.3304011
https://doi.org/10.1145/3352460.3358277
https://doi.org/10.1145/3352460.3358277
https://doi.org/10.1145/1368088.1368120
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1109/VLSID.2014.63
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3218603.3218633
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/2837614.2837648
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/ISLPED.2019.8824923
https://doi.org/10.1109/ISLPED.2019.8824923

PLDI ’21, June 20ś25, 2021, Virtual, Canada Milijana Surbatovich, Limin Jia, and Brandon Lucia

of the 36th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI 2015). https://doi.org/10.1145/2737924.

2737978

[32] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: In-
termittent Execution Without Checkpoints. Proceedings of the ACM
on Programming Languages 1, OOPSLA, Article 96 (Oct. 2017), 96:1ś
96:30 pages. https://doi.org/10.1145/3133920

[33] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In Proceedings

of the 12th USENIX Conference on Operating Systems Design and Im-

plementation (OSDI’18). 129ś144. http://dl.acm.org/citation.cfm?id=

3291168.3291178

[34] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in
Intermittent Systems with Just-in-Time Checkpoints. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2019). 1101ś1116. https://doi.org/10.1145/

3314221.3314613

[35] Kiwan Maeng and Brandon Lucia. 2020. Adaptive Low-Overhead
Scheduling for Periodic and Reactive Intermittent Execution. In Pro-

ceedings of the 41st ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI 2020). 1005ś1021. https:

//doi.org/10.1145/3385412.3385998

[36] Hashan Mendis and Pi-Cheng Hsiu. 2019. Accumulative Display Up-
dating for Intermittent Systems. ACM Transactions on Embedded Com-

puting Systems 18 (10 2019), 1ś22. https://doi.org/10.1145/3358190

[37] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar.
2013. Idetic: A high-level synthesis approach for enabling long com-
putations on transiently-powered ASICs. In Pervasive Computing

and Communications (PerCom), 2013 IEEE International Conference

on. https://doi.org/10.1109/PerCom.2013.6526735

[38] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia.
2019. Camaroptera: A Batteryless Long-Range Remote Visual Sensing
System. In Proceedings of the 7th International Workshop on Energy

Harvesting & Energy-Neutral Sensing Systems (ENSsys’19). 8ś14. https:

//doi.org/10.1145/3362053.3363491

[39] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium

on Computer Architecuture (ISCA ’14).
[40] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2015. Mem-

ory Persistency: Semantics for Byte-addressable Nonvolatile Memory
Technologies. IEEE Micro 35, 3 (2015), 125ś131. https://doi.org/10.

1109/MM.2015.46

[41] PowerCast Inc. 2020. PowerCast Antennae Information. https://

www.powercastco.com/products/powercaster-transmitter/. Visited
November 19th, 2020.

[42] Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics for
Weak Memory: Integrating Epoch Persistency with the TSO Memory
Model. Proceedings of the ACM on Programming Languages 2, OOPSLA,
Article 137 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276507

[43] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.
Persistency Semantics of the Intel-X86 Architecture. Proceedings of
the ACM on Programming Languages 4, POPL, Article 11 (Dec. 2019),
31 pages. https://doi.org/10.1145/3371079

[44] Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Per-
sistency Semantics from the Ground Up: Formalising the Persistency
Semantics of ARMv8 and Transactional Models. Proceedings of the
ACM on Programming Languages 3, OOPSLA, Article 135 (Oct. 2019),
27 pages. https://doi.org/10.1145/3360561

[45] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber,
Wayne P. Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence
Decay in SRAM to Implement Secure Protocols on Embedded Devices
without Clocks. In 21st USENIX Security Symposium (USENIX Security

12). 221ś236. https://www.usenix.org/conference/usenixsecurity12/

technical-sessions/presentation/rahmati
[46] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:

System Support for Long-running Computation on RFID-scale Devices.
In Proceedings of the Sixteenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

XVI). https://doi.org/10.1145/1950365.1950386

[47] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V Merrett, and
Alex S Weddell. 2018. RESTOP: Retaining External Peripheral State in
Intermittently-Powered Sensor Systems. Sensors 18, 1 (2018), 172.

[48] Emily Ruppel and Brandon Lucia. 2019. Transactional Concurrency
Control for Intermittent, Energy-Harvesting Computing Systems. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2019). 1085ś1100. https:

//doi.org/10.1145/3314221.3314583

[49] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.
In Proceedings of the Fourteenth Annual ACM Symposium on Principles

of Distributed Computing (PODC ’95). https://doi.org/10.1145/224964.

224987

[50] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In 12th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 16). 1ś16. https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/sigurbjarnarson

[51] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2019. I/O Depen-
dent Idempotence Bugs in Intermittent Systems. Proceedings of the
ACM on Programming Languages 3, OOPSLA, Article 183 (Oct. 2019),
31 pages. https://doi.org/10.1145/3360609

[52] Milijana Surbatovich, Brandon Lucia, and Limin Jia. 2020. Towards
a Formal Foundation of Intermittent Computing. Proceedings of the
ACM on Programming Languages 4, OOPSLA, Article 163 (Nov. 2020),
31 pages. https://doi.org/10.1145/3428231

[53] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Com-
putation without Hardware Support or Programmer Intervention. In
Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation (OSDI’16). 17ś32.
[54] Mandana Vaziri, Frank Tip, and Julian Dolby. 2006. Associating

Synchronization Constraints with Data in an Object-Oriented Lan-
guage. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL ’06). 334ś345.
https://doi.org/10.1145/1111037.1111067

[55] Mandana Vaziri, Frank Tip, Julian Dolby, Christian Hammer, and Jan
Vitek. 2010. A Type System for Data-Centric Synchronization. In
Proceedings of the 24th European Conference on Object-Oriented Pro-

gramming (ECOOP’10). 304ś328.
[56] Harrison Williams, Xun Jian, and Matthew Hicks. 2020. Forget Failure:

Exploiting SRAM Data Remanence for Low-Overhead Intermittent
Computation. In Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS ’20). 69ś84. https://doi.org/10.1145/3373376.

3378478

[57] Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. 2018. InK: Reactive
Kernel for Tiny Batteryless Sensors. In Proceedings of the 16th ACM

Conference on Embedded Networked Sensor Systems (SenSys ’18). 41ś53.
https://doi.org/10.1145/3274783.3274837

866

https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3133920
http://dl.acm.org/citation.cfm?id=3291168.3291178
http://dl.acm.org/citation.cfm?id=3291168.3291178
https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3358190
https://doi.org/10.1109/PerCom.2013.6526735
https://doi.org/10.1145/3362053.3363491
https://doi.org/10.1145/3362053.3363491
https://doi.org/10.1109/MM.2015.46
https://doi.org/10.1109/MM.2015.46
https://www.powercastco.com/products/powercaster-transmitter/
https://www.powercastco.com/products/powercaster-transmitter/
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/224964.224987
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3428231
https://doi.org/10.1145/1111037.1111067
https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/3274783.3274837

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Basics of Intermittent Computing
	2.2 Inputs Violating Freshness and Consistency
	2.3 Prior Approach: Timeliness

	3 Ocelot: Correct Inputs via Atomicity
	3.1 Continuous Execution as a Correctness Spec
	3.2 From Annotations to Correct Executables
	3.3 Benefit of Targeting Rust

	4 Formalizing Freshness and Consistency
	4.1 A Simple Language
	4.2 Annotations for Freshness and Consistency
	4.3 The Meaning of Freshness and Consistency

	5 Ocelot Design
	5.1 Ocelot Components
	5.2 Sanity Checks for Results
	5.3 Correctness

	6 Ocelot Implementation
	6.1 Mapping Annotations to Policies
	6.2 Inferring Atomic Regions
	6.3 Runtime Implementation

	7 Evaluation
	7.1 Benchmarks
	7.2 Overheads
	7.3 Correctness
	7.4 Code Changes of Ocelot vs. TICS and Samoyed

	8 Discussion of Annotation Benefits
	9 Related Work
	10 Conclusion and Future Work
	References

