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Abstract—The large amount of third-party packages available
in fast-moving software ecosystems, such as Node.js/npm, enables
attackers to compromise applications by pushing malicious up-
dates to their package dependencies. Studying the npm repository,
we observed that many packages in the npm repository that are
used in Node.js applications perform only simple computations
and do not need access to filesystem or network APIs. This offers
the opportunity to enforce least-privilege design per package,
protecting applications and package dependencies from malicious
updates. We propose a lightweight permission system that pro-
tects Node.js applications by enforcing package permissions at
runtime. We discuss the design space of solutions and show that
our system makes a large number of packages much harder to
be exploited, almost for free.

Index Terms—security, malicious package updates, supply-
chain security, package management, permission system, sand-
boxing, design trade-offs

I. INTRODUCTION

Modern software applications are commonly built on top of
many reusable packages that are constantly evolving [11, 22,
49], which raises a risk of supply-chain attacks through mali-
cious packages updates. Such kind of attacks target applications
or its users, but are performed through updates in applications’
package dependencies, which are downloaded into an applica-
tion automatically or manually by unsuspecting developers.

The risk from malicious package updates, beyond transport
security [12, 54, 65], has long been ignored or seen as
a theoretical possibility only [33, 64]. However, recently,
more and more cases of malicious package updates have
been discovered in multiple large open-source repositories
[5, 6, 14, 23, 27, 69]. Attackers keep finding ways to obtain
control of developer accounts (e.g., using leaked credentials,
targeting weak passwords, or offering help to maintain a
package). When in control of an account, attackers can publish
a modified malicious version of the package, which is then
downloaded (often automatically) by applications depending
on this package. Figure 1 shows an excerpt of a real attack.

While malicious package updates are a potential problem in
all software projects with external dependencies, we will argue
that common practices and design decisions in the Node.js/npm
ecosystem make such JavaScript applications a particularly
attractive target for malicious package updates. Among others
(see Sec. II for details), they tend to depend on many small
external libraries, they tend to allow automatic updates of
minor updates, and the runtime gives all packages the same
application-level privileges. When faced with numerous updates
from many direct and indirect dependencies, Node.js/npm

1 var https = require("https");
2 https.get({ hostname: "pastebin.com", path: "/evil" },
3 r => { r.on("data", c => { eval(c); }); }
4 ).on("error", () => {});

(a) After a malicious update, the package now downloads and executes
the script below.

1 var fs = require("fs");
2 var npmrc = require("path").join(...,".npmrc");
3 if (fs.existsSync(npmrc)) {
4 var content = fs.readFileSync(npmrc, "utf8")
5 var https = require("https");
6 https.get({ hostname: "evil.com", method: "GET",
7 headers: {Referer: "http://1.a/"+content}},()=>{}
8 ).on("error",()=>{});
9 }

(b) Downloaded malicious script reads and leaks npm package manager
credentials.

Fig. 1: Essence of the eslint-scope@3.7.2 attack.

developers often enable automated updates, despite potential
security risks.

Many defenses against supply-chain attacks have been
developed [12, 18, 25, 31, 51, 54–56, 65, 66, 68], but they
tend not to be practical in many realistic software engineering
settings. Defenses include carefully reviewing all dependen-
cies and dependency updates [25], hardening the package
infrastructure (e.g., transport security, two-factor authentica-
tion) [12, 54, 56, 65], and various forms of program analysis
and anomaly detection [18, 31, 51, 55, 66, 68]. However, as
we will discuss, in a practical software engineering perspective
current approaches either (a) are too expensive for practical use,
(b) require a complete redesign of the Node.js module system or
runtime environment that is unlikely to see adoption in practice,
or (c) only defend against already known vulnerabilities.

In this paper, we design a lightweight permission system
and a corresponding enforcement mechanism that protects
applications against malicious updates from a large number
of packages in direct and indirect package dependencies. Our
solution is partial, in that it only defends against attacks of
a subset of packages, but it is explicitly designed to be easy
to adopt and has negligible runtime overhead, making it an
important and practical building block in defending against
malicious package updates.

We build on the insight that many Node.js packages perform
simple computations and do not need access to security-
relevant resources, such as the filesystem or the network
APIs or metaprogramming constructs. Our solution effectively
sandboxes the large number of simple third-party packages
in the Node.js/npm ecosystem that do not require access to



security-critical resources, making malicious updates attacks
that attempt to elevate packages’ privileges ineffective.

The novelty of our permission system lies in the design of
a practical and lightweight solution that focuses on providing
useful and easy to adopt, albeit partial protections. Where
existing sandboxing solutions require invasive changes to
infrastructure or package implementations, or impose severe
runtime overhead [35, 73, 74], ours integrates with the current
Node.js infrastructure without changes to the implementation
of existing packages and imposes negligible runtime overhead.
Even though we cannot protect all packages, taking a software
engineer’s system perspective in the fast paced world of
open-source software ecosystems, we argue that even a
10 percent reduction in attack surface that can actually
be enacted broadly would result in significant saving of
community resources for security reviews and would make
it harder for attackers to find packages that they can exploit.

Our evaluation shows that 31.9% of all npm packages can be
protected by our design and that 52 percent of one year’s pack-
age updates in 120 popular npm packages and applications are
for those protected packages. In addition, our implementation’s
average performance overhead is negligible (� 1%).

Overall, we make the following contributions: (1) we design a
lightweight permission system that protects Node.js applications
against malicious package updates for a significant number
of packages, (2) we discuss design trade-offs to highlight
how the chosen partial but low-cost solution fits into a
larger security strategy, (3) we evaluate the solution on a
large number of packages and applications, and (4) we make
both the implementation and evaluation benchmarks available
(https://github.com/gabrielcsf/malicious-updates-icse2021).

II. THE PROBLEM: MALICIOUS UPDATES, NPM, AND
CURRENT DEFENSES

We focus on malicious package updates in the Node.js/npm
ecosystem, which is the largest, most popular, and fastest
growing open-source ecosystem with over one million reusable
packages available to download. Several actual attacks were
found recently (discussed below), emphasizing the importance
of the problem.

Node.js/npm: To explain the problem and our solution,
it is important to understand how packages and updates work
in Node.js/npm. Node.js is a runtime system that provides
powerful APIs to interact with the host system (files, network,
processes), which enable programmers to write applications
beyond JavaScript’s traditional use in a browser. While early
applications were heavily biased toward backend web servers,
Node.js is also popular for command-line, desktop, robotics,
and IoT applications.

Node.js provides its own module system, where each
JavaScript file is loaded as a module. Once loaded, modules
are represented as JavaScript objects. Node.js projects are
structured into modules, which are grouped into named
packages or applications. Core APIs are offered through a
small set of native modules, but developers routinely import a
large number of additional modules from third-party packages.

Besides JavaScript files, a package contains a manifest file that
lists package dependencies required for it to work properly.

Node.js is tightly integrated with npm, a package manager
and a repository for Node.js packages. The package manager
npm provides convenient mechanisms to download, install, and
update packages and their recursive dependencies from the npm
repository. In a typical applications’s (or package’s) installation
process, the package manager interprets the content of the man-
ifest file, resolves packages versions, and downloads the source
code of direct and indirect packages listed as dependencies.

The design of the npm package manager encourages auto-
matic updates and favors ease of publishing packages [11].
Package dependencies can be pinned down to specific ver-
sions or defined as version ranges [20, 26, 62]; the use
of ranges to automatically install minor updates is very
common [15, 26, 40, 82].

Node.js/npm’s characteristics facilitate malicious update
attacks: Attacks through malicious package updates are possi-
ble in most software ecosystems, though certain characteristics
make Node.js/npm a particularly attractive target:
• The JavaScript language and Node.js platform provide only

a small set of native modules and essentially no standard
library, leaving it up to the community to develop packages
even for standard tasks such as string manipulation and
collections. Hence, developers often depend on many third-
party packages, even for simple functionality, contributing
to a large attack surface.1

• The Node.js/npm community prefers a model of many small
packages (inspired by the Unix philosophy) [1]. Thus, it is
common to depend on a large number of packages, where
each of those packages contributes to a large attack surface.

• Developers commonly provide version ranges on depen-
dencies, such that patch-level updates are automatically
installed, depending on version labels set by the package
maintainer [40]. The practice of installing updates automati-
cally in development, test, and sometimes even production
systems, contributes to making applications easy to exploit.

• The Node.js/npm community values ease of publishing,
where updates can be published with a single command-line
instruction (typically with locally stored credentials) without
further quality checks or reviews [11]. Due to a constant
stream of updates, developers update frequently, to avoid
having to update many packages across many versions at
once [11]. This also makes applications easy to exploit.

• Most packages also have dependencies of their own, so
adding a single package dependency often comes with many
indirect package dependencies that are de-facto invisible
to developers. Hence, indirect dependencies are an attractive
target for attackers, making applications easy to exploit.

• Node.js applications are typically deployed as single-threaded
applications, in which all loaded packages inherit the
applications’ privileges to use security-relevant resources

1Informally, we consider the number of accounts that can update any of an
application’s dependencies as the attack surface; the more accounts involved,
the higher the chance that any one of them may be compromised.
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from accessing local files and the network, to modifying
global objects and other packages, to generating code at
runtime [63]. As a consequence, loaded malicious packages
have a high potential for damage.
We exemplify the ease of exploit and the potential damage

with three recent attacks detected in the last three years:
• In 2019, the npm, Inc. security team identified and reported

a malicious version of the electron-native-notify package [6].
The attacker published the package with useful functionality
and waited until it was added as a dependency of the Agama
wallet application before publishing a malicious update. The
attacker stole about $13 million dollars in bitcoin tokens.

• Also in 2019, the popular event-stream package was updated
maliciously to steal bitcoins [69]. The malicious update was
discovered only after 2.5 month and 8 million downloads.
The original maintainer of the event-stream package had
handed over the account to the attacker when he offered
to help maintain the project (i.e., social engineering).

• In 2018, the eslint-scope package, part of a widely used
JavaScript linter, was also a target of a malicious update.
The attack aimed at stealing the npm package manager
credentials from users of the linter and affected around
4500 accounts (see Figure 1).

State-of-art defenses: In current practice in Node.js/npm,
a number of strategies can lower the risk from malicious
package updates, though all have severe limitations:
• Inspection: Node.js developers are unlikely to carefully audit

the large number of direct and indirect dependencies and
their updates. Developers typically hope that the community
at large will find and report vulnerabilities quickly, but past
attacks remained undetected for months or caused significant
damage within short periods. Current static analysis and
anomaly detection tools detect usually only very specific
issues and produce many false alarms [18, 31, 66, 80].

• Tracking known vulnerabilities: Many third-party services
scan the dependency tree of Node.js applications for known
vulnerabilities (e.g., Snyk.io, npm, GitHub). This strategy
is reactive, and research has shown that developers are
developing notification fatigue and are slow to update [11,
19, 24, 44, 53, 79].

• Avoiding automatic updates: Rather than using automatic
updates with version ranges, developers may lock package
versions or use bots to only update dependencies after
executing tests [34, 53, 78]. However, it is not clear that
automated test executions would detect malicious updates.

• Infrastructure hardening: two-factor authentication in the
npm package manager [56] reduces some attack vectors but
does not protect against attacks using social engineering as
in past incidents.

• Application-level sandboxing: Some Node.js applications are
deployed within a sandbox (e.g., containers [58]), reducing
potential damage. However, sandboxing is done at application
level where all packages have the same capabilities as the
application (where the application often rightfully has access
to files, databases, or the network).

All these practices help but offer only limited protection.
More secure solutions from academic security research on
isolating individual packages or tracking information flows
(cf. Sec. IV & VI) are not adopted in practice because of their
limitations. We complement existing practices with an easy to
adopt and low-overhead sandboxing strategy at the package
level that can substantially reduce the attack surface.

III. PERMISSION SYSTEM DESIGN

We propose a permission system that sandboxes packages and
enforces per-package permissions in Node.js applications, i.e.,
we enforce a least-privilege design [75] at the package level.

Our approach is not the first to sandbox individual npm
packages [35, 73, 74] (cf. Sec. VI), and there is a large design
space for possible solutions, as we will discuss in Sec. IV.
However, our approach identifies a novel design that provides
protections for a large subset of packages without requiring
changes to package implementations and with negligible
overhead. We align our design with the requirements and
values of the Node.js/npm community and propose it as one
useful building block in a security strategy.

A. Goals and Assumptions

The design of the permission system focused on three main
goals that are important for it to be relevant in practical software
engineering settings: First, the permission system should
actually reduce the attack surface of applications by containing
certain types of attacks. Second, the permission system
should not require major infrastructure changes, be backward
compatible, and not break existing user code (assuming
sufficient permissions). Lastly, the proposed permission
enforcement technique should have low performance overhead,
which is relevant for practical adoption.

In this work, we focus exclusively on malicious package
updates, which are attacks following the following pattern: First,
an attacker obtains credentials of package developers by using
leaked npm package manager credentials in Git repositories,
gaining access to a package developer’s machine, buying
packages, or using traditional tactics such as targeting weak
passwords, phishing, social engineering, and typo-squatting.
Note, it is sufficient to compromise the credentials of a single
developer among an application’s often hundreds of transitive
dependencies. Second, once the attacker uses the credentials to
publish malicious code with an update, applications that directly
or indirectly depend upon the package and install updates
(automatically or manually) are at risk. Once a malicious
package is loaded in a running application, it may import native
modules, import modules from other packages, and use metapro-
gramming constructs to perform malicious actions (see Fig. 1).

B. Package Permissions

We follow a familiar permission strategy, as known from
mobile apps or web-browsers extensions: (1) developers declare
required permissions from a small set of common and easy
to understand permissions for their packages, which would be
shown in the npm repository and by the command-line tools, (2)
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the system enforces that the package does not use not-required
permissions, and (3) developers who add or update a package
dependency must accept the package’s permissions at instal-
lation time and again when permissions change in an update.

On permission systems: These kinds of permissions
systems are well understood by users, easy to use for developers,
and also well studied, including problems of developers
asking for too many permissions, and users ignoring permis-
sions [7, 28, 37, 77]. Our design shares similar challenges, but
we expect fewer practical problems due to fewer monetization
concerns (e.g., many Android permissions are needed just for
targeted advertising) and a different target audience: Package
users are developers and can usually clearly understand why
a package would or would not need specific permissions (e.g.,
a string template engine needing network access would raise
immediate suspicion). As permission changes on Node.js/npm
are rare and suspicious, especially for minor and patch updates
(see Sec. V-C), developers and the community at large are
much more likely to focus their attention on such updates.

Set of permissions: Our design is not limited to a specific
set of permissions (i.e., other specific permissions can be
defined and mapped to other security-relevant resources, if
desired), but for our discussion, implementation, and evaluation
we consider four easy to understand permissions:
• The network permission is required to reference APIs to

communicate with remote servers (e.g., HTTP, sockets).
Specifically, the native modules http, http2, https, and net
require this permission. Without the network permission,
malicious code cannot leak data over the network.

• The filesystem permission is required to reference APIs to
access the local filesystem, especially the native module fs.
Without this permission code cannot perform attacks that
read, write, or delete local files.

• The process permission is required to reference APIs for
interacting with operating-system processes, particularly
the native module child_process. Without this permission,
malicious code cannot open reverse shells or kill processes.

• The all permission is required to use metaprogramming con-
structs (e.g., eval, with). Without this permission, malicious
code cannot affect applications globally (e.g., modify the
prototypes of native objects) and cannot evade the permission
system. The all permission is a superset of the other
permissions, since the use of metaprogramming constructs
enables packages to obtain references to the security-relevant
resources enabled by the other three permissions.
In our specific design, each package may require one or

multiple permissions, which then apply to all modules in that
package. Intuitively, the code of a package can only import
modules from packages that have the same or fewer permissions.
Permissions of native modules are hard-coded.

As we will explain, mapping permissions to code, a
source object from a module with permissions X may only
hold a reference to a value originating from a module with
permissions Y if Y ⊆ X .

Package permissions are composed transitively: To
depend on another package, a package must have at least

the same permissions. For packages, this implies that they
cannot circumvent the permission system by delegating critical
tasks to packages that have the suitable permissions.

For developers, this means that they can easily (i) interpret
a package’s permissions without also investigating all indirect
dependencies and (ii) declare the needed permissions for their
own packages based on which permissions imported packages
need.

Permission enforcement: The challenge when designing
a permission system is in enforcing permissions, to prevent that
attackers gain access to resources for which a package does not
have permission. Intuitively, our enforcement mechanism needs
to ensure that source objects from a module cannot import
target objects from another module, including native modules,
for which they do not have permission to import.

We considered different enforcement design options, but
settled on a lightweight sandboxing strategy that combines
dynamic checks with static analysis. We arrived at this design
after exploring alternative designs in the design space for a
practical and lightweight, yet effective solution; we discuss
alternative designs and their trade-offs in Sec. IV.

C. Specification: Protecting Security-Relevant Resources

Given the dynamic nature of JavaScript and the design of
Node.js, there are many ways code can gain references to
objects from other modules. In Figure 2, we define a concrete
policy that our permission system aims to enforce: If a module
has the all permission, we do not enforce any restrictions
(case 1), otherwise we only allow references to objects from
modules with the same or fewer permissions, typically received
via import (case 2), with the global object being a special case
that may always be referenced (case 3). In addition, we allow
three recursive mechanisms from which modules can derive new
references from legally held references: received as arguments
from a function call where the caller was allowed to hold the
reference (case 4), received as return value from a call to a
legally referenced function (case 5), or received by accessing
the properties of a legally referenced object with the exception
of a few restricted properties (case 6).

More intuitively, the specification prohibits actively im-
porting objects from modules without suitable permissions,
but it allows code to receive and hold references without
corresponding permissions when those references are explicitly
provided by other modules through function parameters, return
values of function calls, or global variables. This design allows
modules to pass objects (including callback functions) to
modules with fewer permissions. It is the caller’s responsibility
not to provide security-critical references to untrusted code and
it is unlikely that a malicious package update for a package
without permissions can expect being passed the right security-
critical resource (e.g., the http module) as an argument. This
restriction puts some burden on developers, but is standard in
the design of permission and effect systems [50].

In case 6, we restrict the following properties from the
require, module, and global objects: {require.main,

module.paths, module._load, module.globalPaths,
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A source object (representing module A) may hold a reference to a
value v originating from a module B if and only if:

(1) package A has the all permission, or
(2) A has at least the same permissions as B, or
(3) v is the global object, or
(4) v was received from a third object as a parameter in a function

call to the source object, where the third object may hold a
reference to v, or

(5) v is the resulting value of calling a function f and the source
object may hold a reference to f, or

(6) v is the value held by property p of an object o where the
source object may hold a reference to o, unless property p is
restricted for object o

Fig. 2: Protecting Access To Security-Relevant Resources.

module.constructor, module.parent, module.children,

global.eval, global.Function, global.process}. In
addition, we restrict {prototype, __proto__, create,

setPrototypeOf} for native objects (e.g., Object). All of
these may lead to unprotected import mechanisms or enable
non-local changes via metaprogramming such as prototype
pollution attacks [60]; modules rarely use these access paths
in practice, and they can still continue to do so if needed,
requesting the all permission.

D. Enforcement: Protecting Security-Relevant Resources

To prevent active access to objects from other modules with-
out suitable permissions we need to effectively perform checks
only for two actions: First, we need to control module imports
with Node.js’ require function and, second, we need to control
property access for certain restricted properties (which could
be used for accessing other import mechanisms and evading
the sandbox). By working with the existing implementation
structures of Node.js and making small modifications to the
runtime, both restrictions can be enforced without requiring
developers to modify their packages and with negligible runtime
overhead, as we will explain.

(1) Mediating the main import mechanism (require):
Performing additional runtime checks during imports is straight-
forward with only small modifications of the Node.js runtime
(without any modifications of the modules).

Node.js provides a function require to every module that
can be called to import packages (technically using the Module
Pattern [59]). This design is beneficial for us, since each
module already receives its own require function. To intercept
all imports, we simply wrap the provided require with one that
conducts permission checks for this module with a one-line
modification of the Node.js runtime shown in Figure 3 – thus
comparing the permissions of the importing package with those
of the imported package. Beyond the one-line modification
to insert the wrapper, our implementation for loading and
comparing permissions is less than 100 lines of code.

Note that a module can potentially gain access to a require
function of a different module. To prevent active access to
other module’s require functions, the access path module.parent
is restricted.

1 Module._compile = function(code, file) {
2 var rcode = propAccessRewrite(code);
3 var wcode = Module.wrap(rcode);
4 var cwpr = vm.runInThisContext(wcode);
5 var dir = path.dirname(file);
6 var wreq = wrapRequire(require, dir);
7 var args = [this.exports, wreq, this, dir];
8 return cwpr.apply(this.exports, args);
9 }
10 function wrapRequire(require, currentModule) {
11 var permA = lazy(loadPermissions(currentModule));
12 return function(targetModule) {
13 var permB = loadPermissions(targetModule);
14 if (!subset(permA(), permB))
15 throw new Error(’...’);
16 return require(targetModule);
17 }}

Fig. 3: Package loading mechanism in the Node.js runtime
system. Our modifications are highlighted in blue: the re-writing
of property accesses (Line 2) and the wrapping of the require
function with permission checks (Lines 6).

(2) Mediating property accesses in special objects: The
second part of our enforcement, preventing access to certain
restricted properties for certain objects, requires slightly more
extensive changes, but is also fairly straightforward. Since
we cannot fully statically reason about property access in
JavaScript, we combine static analysis with selected dynamic
checks. At load-time, we automatically rewrite the code of each
module without the all permission to insert dynamic checks for
every property access for which we cannot statically exclude
that it may access a restricted property.

Our rewrite rules, which we apply to all modules without
the all permission at load time work in two steps: normalizing
references to global variables and introducing dynamic checks.
First, using scope analysis, we rewrite references to global
variables to make the property access visible, for example,
rewriting console.log to global.console.log (the with statement
which may prevent accurate scope analysis requires the all
permission). Second, for every property access in the form
x.y or x[y] (outside the right-hand side of an assignment),
we introduce a dynamic check $$prop(x, y), unless y can
be resolved statically (name or string literal) to a name that is
not in the list of restricted properties. Function $$prop (fresh
random name generated for every module) checks whether the
object-property combination is restricted, as shown in Figure 5.

Our rewrite technique conservatively combines static and
dynamic analysis. For many property access locations, we
can statically identify the property name and avoid dynamic
checks if the name is never restricted. If the name is restricted
for some objects, we insert a runtime check to determine
whether the target object is the restricted one; if we cannot
statically resolve the property name, we introduce a dynamic
check, as illustrated in Figure 4. In practice few dynamic
checks are needed in most modules.

Implementation: We implement our permission system
with the described extensions to the Node.js platform. We
store declared permissions in a dedicated file in the package.
We use esprima to rewrite code and escope to analyze scope.
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z.cache;
var x = b
x.foo()
eval("...")
o[f()]
o["ma"+"in"]

⇒

global[’z’][’cache’]
var x = global[’b’]
x.foo()
$$prop(global, ’eval’)(’...’)
$$prop(global[’o’], global[’f’]())
$$prop(global[’o’], ’ma’ + ’in’)

Fig. 4: Examples of member expressions re-writing (including
normalization of global properties).

1 restrictedMap["parent"] = module;
2 restrictedMap["eval"] = global;
3 restrictedMap["prototype"] = Object;
4 ...
5 function $$prop(obj, p) {
6 if (obj == undefined) return undefined;
7 if (restrictedMap[p] && obj == restrictedMap[p])
8 throw new Error(’...’);
9 return obj[p];
10 }

Fig. 5: Simplified code of dynamic checks with $$prop.

IV. DESIGN SPACE

Notice how our solution is lightweight, intercepting calls
to require with small changes to the Node.js runtime and
dynamically ensuring that certain properties are not referenced.
No further expensive information flow or origin tracking is
needed to enforce the policy at runtime.

When designing our permission system, both policy and
corresponding enforcement system, we explored many design
alternatives and settled on the presented design after multiple
experiments and iterations. While our design may appear
simple, limited, or even obvious in retrospect, it is actually the
result of careful consideration of multiple trade-offs, involving
provided security guarantees, flexibility and understandability,
backward compatibility and ease of adoption, and runtime
overhead. In the following, we describe the design space,
alternative designs, and justify our design decisions. Let us start
by discussing general concerns before exploring two obvious
alternative designs.

Permission granularity: We assign permissions at the
granularity of packages, rather than entire applications or
modules within those packages. Application-level permissions
can already be assured with traditional sandboxing techniques
(e.g. containers), though this would give malicious packages
all resources the application may rightfully have. Package-level
permissions, as opposed to module-level permissions, is suitable
because packages are the building blocks that developers install
and refer to in their applications, whereas modules within a
package are rarely referred directly (information hiding).

We settled on the set of 4 simple permissions after multiple
iterations reflecting that they correspond to the most important
resources and to allow for flexible and advanced metaprogram-
ming behavior in trusted packages if needed. The approach
could be extended with a more fine-grained permission model
where access to individual access paths or permissions for
specific parameters could be restricted (e.g., file access in
a specific directory only), but such approach would raise
complexity and runtime overhead. Given that either design
would be limited to a subset of modules, we opted for the
simpler, more runtime-efficient, and easier to adopt design.

Integration with user-facing tools: The integration of the
permission system with current tools and developers workflow
are an important part for its adoption in practice. Even though
we do not evaluate the integration in this paper, we outline the
changes in user-facing tools and in developers’ workflow that
would be required to integrate the permission system in the
Node.js/npm ecosystem.

Package owners are expected to manually declare required
permissions in the package’s manifest file before publishing
a package. Package users can see required permissions in the
npm repository before installation and will be notified about
permission changes and potential permission mismatches at
installation/update time. For example, one might be notified
that their own package does not have permissions to import
another package, so one has to update one’s own permissions.
Tools like npm or yarn package managers are expected to not
automatically update packages when additional permissions are
requested in the update, but instead require extra confirmation,
encouraging a closer look at the update.

Alternative: Taint Tracking: The most obvious alterna-
tive solution would be a policy that restricts the flow of sensitive
information to security-sensitive sinks using information-flow
analysis [4, 8, 38], such that packages require permissions
to initiate certain flows. Such policy is much more flexible,
because rather than completely restricting access to packages
with requiring additional permissions, we can allow packages to
import other packages as long as they do not use them (directly
or indirectly) to leak sensitive information; it would allow more
flexible differentiation of which information may flow into
which sinks independent of which packages are involved; it
might also depend less on the fact that many packages are
simple in their implementation. In addition, such a policy could
be enforced uniformly independently of how modules obtain
references to other modules (actively or passively) and, given a
suitable information-flow tracking system, we would not need
to restrict eval and metaprogramming.

However, we ruled out information-flow policies because
corresponding static information-flow analyses are notoriously
difficult to implement precisely in a dynamic language like
JavaScript [36, 70] and dynamic information-flow analysis
tend to have unacceptable performance overhead to consider
adoption in practice (often 40x-100x performance overhead) [4,
9, 13, 45]. Neither the performance overhead nor a requirement
for developers to rewrite or annotate their code would have
made ecosystem-wide adoption plausible.

Alternative: Restricting Inter-Module Communication:
While our policy restricts the access to other packages (and their
resources), an alternative design could assign permissions to
modules (as in our design) and then restrict the communication
across package boundaries: A corresponding policy could
simply state that no code originating from a module with
permissions X shall call code from a module with permissions
Y unless Y ⊆ X , restricting packages from calling code from
other packages that require more permissions.

Checking function calls to packages is more flexible than
checking imports of packages, as it provides further opportuni-
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ties for inspecting arguments and return values, and observing
how packages communicate. More importantly, such design
could ensure that a package can only call other packages
with suitable permissions even when a reference to a security-
relevant resource is received passively, e.g., passed in by the
user of the package as argument. Such design could also avoid
special handling of restricted properties that our design requires
to avoid unchecked access to certain references.

Such designs have previously been explored to sandbox
individual code fragments, usually a single third-party code
fragment included on a web page [2, 61] or a single module
in a Node.js application [35]. The key is to track origins of
all functions (e.g., when a function is passed from module A
to B it still needs to be associated with A) and to intercept
all calls that cross module boundaries to check permissions
corresponding to origin modules of the calling and called
functions. In JavaScript, a typical solution is to install monitors
between package boundaries using proxy objects, following
the Membrane Pattern [17, 35, 73], but also replacing calls by
inter-process communication has been explored [74].

Despite its elegance, this policy and the corresponding
implementations impose at least three severe challenges that
limit its practical use:
• The performance overhead of the Membrane Pattern is

nontrivial. Prior work, isolating only a single package,
reported about a 20 percent slowdown [17, 35, 73]; we
observed similar and slightly higher slowdowns in our own
experiments installing membranes among all packages. This
overhead may discourage adoption in many settings for
server-side applications.

• Node.js packages and many native modules heavily rely on
callback functions, for example, to asynchronously return
the result of an I/O operation. Since callback calls also
cross package boundaries, it would be subject to the same
permission checks, essentially requiring the same permissions
for caller and callee, making this policy way too restrictive in
the context of typical Node.js programming patterns. Instead,
we would have to design a policy that specifically allows
certain call patterns, which is nontrivial and would eventually
permit most passive means of accessing security-critical
resources also allowed in our design.

• Implementing enforcement with the Membrane Pattern is
technically challenging. First, while it is easy to install
a membrane for modules, using the membrane or other
mechanisms to handle the global object and its properties
requires invasive changes into Node.js and the underlying
JavaScript engine. Second, installing proxy objects for objects
breaks many existing implementations since proxies are not
entirely transparent (e.g., object identity is no longer reliable).
We implemented a prototype to run experiments with the
Membrane Pattern and had to adapt many existing imple-
mentations. While technical challenges can potentially be
addressed in an automated way (invasive changes to Node.js
runtime, automated code rewriting to account for proxy
behavior), such implementation is complex and difficult to
maintain with frequent updates to the Node.js engine.

While the policy to restrict inter-module communication seems
more elegant and requires fewer exceptions, performance and
implementation challenges are too severe to justify its marginal
benefits. To account for callbacks and global, actual policies
would likely have similar limitations as our own policy.

Design space summary: Overall, while we cannot support
the flexibility of a policy based on taint tracking, our approach
provides similar protections to prior approaches checking inter-
module communication, but with a much simpler implementa-
tion and with negligible performance overhead.

While our design cannot provide protections for modules
that legitimately need access to security-critical resources or
metaprogramming as part of their implementation (neither can
approaches based on restricting inter-module communication),
it protects those small and simple packages that are common
in Node.js/npm and do not need any permissions almost for
free; Source modules may still need to be inspected, to ensure
that they do not provide security-critical resources to target
modules with fewer permissions.

V. EVALUATION

To evaluate our proposed permission system, we consider
the goals of our design (see Sec. III-A) and show that our
permission system (1) can significantly reduce the attack
surface of applications and npm in general, (2) is useful
in containing real attacks, (3) incurs negligible performance
overhead, and (4) can reduce review effort for security purposes
on package updates. Specifically, we answer the following
research questions:

• RQ1: How many packages in the npm repository could
we protect with our permission system?

• RQ2: How effective could the permission system be to
contain attacks like the eslint-scope, event-stream, and
electron-native-notify attacks?

• RQ3: What performance overhead would the permission
system cause in Node.js applications and is the permission
system transparent?

• RQ4: How much review effort could be saved on package
updates with our permission system in a realistic setting?

The evaluation of our proposed permission system maps
directly to our design goals (see Sec. III-A). Research questions
RQ1 and RQ2 map to our first design goal described in
Sec. III-A, which is to propose a solution that reduces the attack
surface of applications by containing certain types of attacks.
RQ3 maps to our second and third design goals, which aim
at demonstrating transparency and low performance overhead
of our proposed permission system design, both important
aspects for practical adoption. Finally, RQ4 aims at illustrating
another benefit of our (partial) solution: its saves review effort
on package updates. It also shows how permission changes are
rare and suspicious, especially for minor and patch updates,
and that the developer community is much more likely to focus
their attention on such updates.
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A. Protected Packages (RQ1)
To show how our permission system can help protect

packages and applications, significantly reducing the attack
surface of applications and npm in general, we approximate
the required permission for all packages in the npm repository
and report how many packages can no longer gain access
to security-relevant resources, making malicious updates or
other exploits targeting those packages ineffective. To answer
RQ1, we report the relative amount of all packages in the npm
repository that would need each permission (either directly or
indirectly through its dependencies).

Data Collection and Study Design: To answer RQ1,
we use a snapshot of the entire npm repository with the
latest versions of all packages. We gathered a total of
703,457 packages (February 2018), from which 604,159 contain
valid JavaScript code. For each package, we analyze both
the manifest file and all JavaScript source files (modules)
to identify declared dependencies, imports to other modules,
and expressions with property accesses. We infer permissions
by searching for require calls to native modules. We then
assign permissions to each package, recursively considering the
permissions of its direct and indirect dependencies, as defined
by our compositional permission model (see Sec. III-B).

Since not all packages in the npm repository are equally
used and updated [22], we also analyze packages samples of
size 100 according to four criteria: most downloaded, most
depended on within the npm repository, most stars on GitHub
(a common popularity measure), and most updated in the year
prior to our sample date. We gathered downloads, dependencies,
and updates statistics from the npm repository and stars
from GitHub. Note that these criteria look at the dataset
from different facets, for example, downloads may be biased
more toward utility packages used by many other packages,
dependencies indicate popularity among library developers,
updates highlight packages that are creating a particularly high
review load if one was to review all updates, and stars indicate
popularity or attention by users more broadly.

Note that our permission inference is an approximation,
whereas in practice we would expect developers to manually
declare required permissions. Our inference may miss some
required permission (that our runtime enforcement would catch),
for example, when imports use dynamically computed names
to import native modules (dynamic imports are found in 8% of
all packages, though they rarely seem to import native modules)
and may sometimes infer the all permission for non-problematic
access to restricted paths. We validate the accuracy of our
permission inference by manually identifying permissions of
30 randomly chosen packages and found that those all matched
the automatically inferred ones, except 7 cases where we
unnecessarily inferred the all permission. Furthermore, we
did not encounter issues from missing permissions in our
experiments (Table II), further indicating accurate inference.

Results: Based on our permission inference, we found
that 192,585 packages in the npm repository (31.9%) do not
need any permission and another 9.4% need only a subset of all
permissions. Among the most downloaded, depended, starred,

Permissions all downl. dep. stars upd.
no perm. 31.9% 27% 15% 14% 33%
only network perm. 1.2% 0% 1% 0% 3%
only filesys. perm. 4.8% 8% 11% 1% 6%
only process perm. 0.7% 0% 1% 0% 0%
multiple perm. 2.7% 5% 2% 0% 2%
all perm. 58.7% 60% 70% 85% 56%

TABLE I: Distribution of permissions of all packages and the
100 most downloaded/depended/starred/updated packages.

and updated packages, a higher percentage of packages needs
some or all permissions, but still a significant number of those
packages need no (14–33%) or only some permissions (1–11%)
as shown in Table I. The differences in different populations
are to be expected, as popular (starred) packages tend to be
larger end-user packages, whereas downloads favor smaller,
often indirectly used utilities.

Note, many packages require permissions primarily due to
dependencies: We infer that 21.9% of all packages directly
need the all permission, while another 36.8% inherit the all
permission from depended on packages. Among packages that
directly need the all permission, around 5% directly use eval
while the remaining of packages change the prototype of native
objects such as Object, String, Array, and others. Similarly,
we infer that only 4.7, 15.6, and 2.1% of all packages need
the network, filesystem, and process permissions. Multiple
permissions refer to combinations of permissions (e.g., net-
work+process) and packages that need them are rarely found
in the npm repository.

Overall, while there are a large number of packages that
genuinely need access to security-critical APIs and a significant
number of packages that use language features that cannot be
contained by our mechanism (hence the all permission), these
results also confirm that many packages published on the npm
repository are indeed fairly simple and can be protected with
our lightweight permission and enforcement system. Since
permissions are enforced for all packages (including their
clients), any attempt of a package to import a security-relevant
resource that does not correspond to its permissions would fail,
even if a package uses a transitive dependency relationship
with another package.

In summary, our permission system can protect the 14–33%
packages that need no permission and partially protect another
1–11% percent that need only a subset of all permissions.
These packages can no longer gain access to security-relevant
resources, making malicious updates that attempt to elevate
packages’ privileges ineffective. Thus, reducing the attack sur-
face for the npm repository and for typical Node.js applications
that use these packages.

B. Containing Past Attacks (RQ2)

Our permission system is a general defense mechanism, but
is not designed to detect new malicious attacks in the wild.
It is designed to contain attacks. We illustrate the usefulness
of the proposed permission system by containing some past
attacks. To that end. we replay the eslint-scope, event-stream,
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and electron-notify-native attacks using our modified Node.js
engine and show that the attacks would be ineffective.

Data Collection and Study Design: To evaluate the con-
tainment, we considered two versions of each attacked package:
(i) the version that preceded the attack and (ii) the attacked
version. First, we inferred the permissions of the version that
preceded the attack and assigned the same permissions to the
attacked version. Then, we installed the attacked version with
the npm install command, which installs package dependencies
and executes the installation scripts of the package. To replay
the attacks on the eslint-scope, event-stream, and electron-
notify-native packages, we used versions 3.7.2; 0.1.1 of the
flatmap-stream package; and 1.1.6, respectively.

Results: None of the packages with malicious updates
required any permissions in their latest release before the attack.
When replaying the attacks, we observed in each case that
the permission system contains all three attacks by preventing
unauthorized imports of security-relevant resources and by
denying the use of metaprogramming constructs at runtime.
For example, when the malicious version 3.7.2 of the eslint-
scope package is installed, a post-install script is executed, but
the permission system prevents the imports of the http and fs
modules. This occurs because the malicious version 3.7.2 did
not have the corresponding permissions. An attacker would
have had to explicitly request additional permissions, which
makes the detection of the attack much more likely.

In summary, our permission system can successfully contain
past malicious updates.

C. Performance and Transparency (RQ3)

To evaluate practicality, which is important for adoption (see
Sec. III-A), we measure the performance overhead caused by
the enforcement mechanism for our policy (see Sec. III-D) and
whether it transparently supports the execution of packages
without modifications (assuming sufficient permissions).

To be realistic, we measure the runtime overhead of ap-
plications, which represent actual usage scenarios relevant
for end users, rather than conducting microbenchmarks on
individual packages. To answer RQ3, we evaluate and report
the performance overhead caused for 20 Node.js applications
when executing them with and without the permission system.

Data Collection and Study Design: As subject systems,
we collected 20 command-line applications and corresponding
realistic workloads; which are common modern use cases
for Node.js and released as open source (e.g., whereas for
web services most public examples are demos or tutorials,
most production servers are closed source). We selected the
20 most popular npm public applications that depend on
the commonly used commander package, which provides
command-line interfaces for Node.js applications. For each
application, listed in Table II, we read the documentation and
identified common inputs. Then, we selected a realistic large
workload (usually a large JavaScript/JSON file) and measured
performance when executing each application with an input.

To mitigate systematic errors in our performance mea-
surements, we followed standard guidelines [32], running

Application Baseline Overhead Import Property
(in ms) (in %) Checks Checks

d3-dsv 5268.0 0.3 25 408
docco 5148.5 0.0 71 65774
dot-object 5339.5 0.2 40 2
dox 5408.5 0.0 3478 21
findup 5227.5 0.1 12 0
html-minifier 5700.5 0.0 44 3
js-cfb 5300.0 0.0 10 0
js-xss 5261.5 0.3 11 0
js-yaml-front-matter 5200.0 0.0 7 7
json-refs 5894.5 0.0 88 750
json2csv 5317.0 0.1 15 3
juice 6143.0 -0.3 301 1104
metalsmith 5828.5 0.3 148 127
mocha 5141.5 0.0 116 5
mock 4947.0 1.3 7 0
node 6627.5 0.2 934 106
sails 6792.0 0.2 1364 36455
svgicons2svgfon 5427.5 0.1 57 2
traceur-compiler 13784.0 0.5 52 2
uglify-js 12468.0 0.9 10 1

TABLE II: Applications and performance results; runtime of the
unmodified Node.js (Baseline) and the overhead of the modified
Node.js with the permission system (Overhead); reporting also
the number of executed import and property access checks.

each application 10 times under each experimental condition,
interleaving the runs across applications, and reporting the
median execution time. To avoid the noise problems of
microbenchmarks, we selected large workloads taking at least
five seconds. All measurements were performed on a MacBook
Pro equipped with a 2.8GHz Intel Core i7 processor and 16GB
1600MHz DDR3 of memory. The benchmarks are also shared
with the project’s repository.

Results: We report the observed performance differences
in Table II, which across all applications, is negligible. The per-
mission system causes a small performance overhead—barely
distinguishable from measurement noise—typically under
1 percent (average 0.2%). The difference in overhead between
the executions with the unmodified and the modified Node.js
is not significant (Welch’s t(0.0218) = 37.9964, p < 0.9827).

Notice how the overhead caused by the permission system
is negligible, compared to alternative isolation and compart-
mentalization solutions [35, 73, 74] with > 20% overhead
or information flow solutions with > 20× overhead; cf.
Sec. IV). The number of dynamic import checks and property
checks needed in those applications (including all direct and
indirect dependencies) differ substantially from application
to application depending on how many and what kind of
dependencies they use, but they are usually low, explaining
the low runtime overhead. For instance, docco and sails are
both HTML generators. While the amount of actually executed
property checks is much larger for these two applications (as we
show in Table II), the amount of rewritten property checks is not.
For these two applications, the rewritten property checks get
executed several times when generating HTML. By inspecting
their code, we observed they change the prototype of several

9



native objects (e.g., String, Object), which cause the rewrites.
Even in systems with higher numbers of property access

checks, the overhead of these checks is dwarfed by the main
computations and I/O operations of these applications.

Furthermore, our experiments confirm that our solution is
entirely transparent for the executed applications, if permissions
are correctly set. All applications work as before without any
source code modification of the application or its dependencies.

In summary, our permission system is transparent and causes
negligible performance overhead (� 1%).

D. Review Effort Reduction on Package Updates (RQ4)

Our final research question hypothesizes a scenario in which
developers would review all package updates (which may be
recommended but is rarely done systematically in practice, cf.
Sec. II). We argue that even though, in practice, developers
do not review all updates, our permission system would allow
developers to save even more effort if they skip reviews
for those packages that do not need any permissions and
pay particular attention to updates that request additional
permissions. Thus, we evaluate how our permission system can
reduce the review load in this scenario, indirectly demonstrating
the potential usefulness of our (partial) solution.

Data Collection and Study Design: We analyze package
updates and observe how permissions evolve by replaying
the evolution and updates of dependencies for a sample of
packages and applications over a one-year period. We observe
updates both from the perspective of a package maintainer
of highly depended packages and from the perspective of
an application developer by analyzing two datasets: (i) the
100-most-depended-upon packages in the npm repository that
we previously described for RQ1 and (ii) the 20 Node.js
applications from RQ3. For each of the 120 analyzed packages
and applications, we computed their entire dependency tree
(including resolving the latest version of a dependency when
version constraints are declared as a range) for each day in
2018 and identified all package updates that happened in that
time period. This is equivalent to installing or updating these
applications every day, approximating common practice among
Node.js developers [11].

We downloaded all distinct packages and their versions to
infer approximate permissions (as in RQ1). For each update,
we collect whether and how the corresponding permissions
have changed. In total, we analyzed 4,962 distinct depen-
dency versions for the 100 most-depended-upon packages and
1,310 distinct dependency versions for the 20 applications.

Results: During the one-year period, a total of 5,042 pack-
age updates occurred for all direct and indirect dependencies
of the 100-most-depended-upon packages; an average of 66
updates per year per subject. Among these, 2,644 updates (52
percent) were to packages that did not need any permissions
before or after and could be installed without any review –
this represents a substantial reduction in review effort in our
scenario. The percentage of no-permission updates naturally
differed among the datasets, but represented a substantial
number of updates in most cases. Applications, on average,

no

2644 (52.4%) filesystem7 (0.1%)

all13 (0.3%)
12 (0.2%)

388 (7.7%)

7 (0.1%)

11 (0.2%)

7 (0.1%)

1698 (33.7%)

other

131 (2.6%)

Fig. 6: Permission changes for the 100-most-depended-upon
packages and all its direct and indirect dependencies. Nodes
represent permissions, edges represent permission changes in
updates, and labels indicate the absolute and relative number
of changes over a year.

had a lower proportion of no-permission updates (6 percent),
explained by the larger number of non-trivial packages they
depended on. Updates from packages with all permissions
make up 33 and 86 percent of all updates in the top libraries
and applications respectively.

Changes among the permissions in updates in the top libraries
were generally rare, as shown in Figure 6. There are only 27
updates (0.5 percent) that needed more permissions than the
previous one; most maintainers would not face such an update
more than once a year, making it realistic that they would
analyze such packages more closely. Nodes that represent
other permissions (e.g., the network node) and and edges
that represent other permission changes (e.g., the edge from
filesystem to the network) are grouped in the other node and
account for only 2 percent of the updates (see Figure 6).

In summary, our permission system can reduce review effort
for updates substantially (6–52%) in our scenario.

E. Threats to Validity

First, different subpopulations of packages in the npm
repository may have different characteristics and may need
more or fewer permissions on average; our results must be
interpreted as averages over all of packages and averages
over popular packages in the npm repository. Second, it is
challenging to assemble a representative set of benchmarks
of Node.js applications: while libraries are published on the
npm repository, applications are often proprietary and not
public on the npm repository or GitHub. We use publicly
released command-line utils to represent applications, but
generalizations must be made with care. Third, as discussed,
our permission inference is only an approximation of the
permissions a developer would manually declare; despite our
careful validation we may miss permissions or developers
may choose to over-permission their packages affecting the
results. Finally, the evaluation of review effort makes strong
assumptions on developer behavior and uniform review effort
per package that may not be realistic in practice, especially
with often observed complacency or a false sense of security
from a security mechanism like ours; readers may extrapolate
other behavior from the reported numbers.

VI. RELATED WORK

Security challenges with the JavaScript programming lan-
guage and the limits of JavaScript analysis techniques have
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been widely explored in the web browser context, with less
focus on the Node.js/npm ecosystem.

Node.js/npm Ecosystem: Ojamaa and Düüna [57]
discussed security challenges of the Node.js platform, pointing
out typical pitfalls of JavaScript programming, such as the
single-threaded event-loop-based architecture, eval, lack of
isolation, but also highlighting the possibility of attacks
through malicious package updates. Some of the pitfalls (e.g.,
eval) could result in insecure applications and are partially
addressed by our permission system. Wittern et al. [79] found
that the number of direct dependencies of Node.js packages
grows over time and that over 40% of all packages allow
automatic updates of minor revisions. These results reinforce
the common but problematic practice of accepting automatic
package updates (see Sec. II). Decan et al. [19] reported that
the npm repository has an abundant number of packages whose
failure can impact the ecosystem, some affecting more than
30 percent of the packages available on the npm repository.
Abdalkareem et al. [1] studied the pervasive use of small,
single purpose packages in the npm repository, which motivated
our permission system focused on the many simple packages.

Hejderup [40] analyzed dependencies among packages
published on the npm repository and found that known
vulnerabilities in packages often affect many other dependent
packages in the ecosystem, with many packages depending
on vulnerable versions for a significant time after a patch has
been released. Similarly, Decan et al. [21] analyzed packages
in the npm repository over six years and found that package
vulnerabilities affect many dependent packages, but it still takes
a long time for them to be discovered and fixed. Zimmermann
et al. [83] further reported many unmaintained packages in
the npm repository, which no longer receive patches, indirectly
threatening the security of the Node.js/npm ecosystem. Staicu
et al. [70] further reported how injection vulnerabilities are
prevalent in the Node.js/npm ecosystem. These results highlight
an orthogonal but relevant issue: not updating vulnerable
package dependencies can cause as much damage as accepting
malicious package updates. In practice, many developers rely
on tools to track known vulnerabilities (Sec. II).

JavaScript Analysis: It is well understood that analyzing
and sandboxing JavaScript code is difficult. Prior work, usually
focused on untrusted scripts embedded in web pages, restricts
how third-party code can interact with application code, a
browser, or the web page. Due to the dynamic nature of
JavaScript programs, many existing analysis approaches com-
bine static analysis with runtime mechanisms, like our approach.
Strategies typically either define and enforce a safe subset of
JavaScript [10, 16, 30, 43, 48, 61], isolate scripts/packages in
different execution environments (e.g., iframes) [42, 46, 52, 71],
modify the browser to enforce restrictions at runtime [51], or
attempt to sandbox a script/package without JavaScript engine
modifications by rewriting it [2, 35, 72–74].

We combine several of these ideas (language subset, rewrit-
ing, runtime modification) in a lightweight design. More
precise dynamic information flow techniques have been widely
investigated in academic literature, but usually require very

invasive changes to execution engines and are very slow
[4, 13, 38, 39]; static information flow analysis is only feasible
with requiring developers to write fine-grained annotations [3].

Permission Systems and Sandboxing: Permission sys-
tems are common to provide controlled access to security-
relevant resources, allowing users to monitor, review, and
revoke applications’ permissions, if applications’ behaviors (or
intentions) are misaligned with application users’ expectations.
Our permission system is inspired by the one available in
Android OS, which has been broadly studied [7, 28, 29, 41, 77],
which isolates apps from each other rather than packages
within a single application. While the systems are not directly
comparable and have different user populations, we can learn
from their experience, including well studied problems such as
developers asking for too many permissions and users ignoring
permissions [7, 28, 37, 77].

Sandboxes are important building materials to harden the
security of diverse software systems and are typically used
simultaneously as (i) encapsulation and as (ii) policy enforce-
ment mechanisms [47]. In our case, we effectively implement
a sandbox in the Node.js engine, to enforce our permission-
dependent policy to limit the behaviors of packages at runtime.
More commonly, sandboxing isolates programs in the operating
system or in containers [67, 76, 81], or, for JavaScript, isolates
untrusted code in the browser [2, 16, 61].

VII. CONCLUSION

In this paper, we discuss the emerging security challenges of
malicious package updates which recently surfaced in multiple
software ecosystems [5, 6, 14, 23, 27, 69]. We design a
permission system with a policy and corresponding enforcement
mechanism that sandboxes individual packages, rather than
entire applications, ensuring that malicious updates cannot
use security-critical resources for which they do not have
permissions. We design our system to be simple, easy to adopt,
with marginal runtime overhead and show that 31.9% of all
packages can be protected at almost no cost.
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