
Automated Verification of Safety Properties
of Declarative Networking Programs

Chen Chen
University Of Pennsylvania

chenche@seas.upenn.edu

Lay Kuan Loh
Carnegie Mellon University

lkloh@cmu.edu

Limin Jia
Carnegie Mellon University

liminjia@cmu.edu

Wenchao Zhou
Georgetown University

wzhou@cs.georgetown.edu

Boon Thau Loo
University Of Pennsylvania
boonloo@cis.upenn.edu

Abstract
Networks are complex systems that unfortunately are ridden with
errors. Such errors can lead to disruption of services, which may
have grave consequences. Verification of networks is key to elim-
inating errors and building robust networks. In this paper, we pro-
pose an approach to verify networks using declarative networking,
where networks are specified in NDlog, a declarative language. We
focus on analyzing safety properties. We develop a technique to
statically analyze NDlog programs: first, we build a dependency
graph of the predicates of NDlog programs; then, we build a sum-
mary data structure called a derivation pool to represent all pos-
sible derivations and their associated constraints for predicates in
the program; finally, properties specified in first-order logic are
checked on the data structure with the help of the SMT solver Z3.
We build a prototype tool and demonstrate the effectiveness of the
tool in validating and debugging several SDN applications.

Keywords Declarative networking, static analysis

1. Introduction
As more and more services are offered over the Internet, ensur-
ing the security and stability of networks has become increasingly
important. Unfortunately, networks are complex systems that are
ridden with errors. Such errors can lead to disruption of services,
which may have grave consequences. Verification of networks
is key to eliminating errors and building robust networks. Much
work on network verification has focused on verifying topological-
specific network configurations [18, 22, 33, 38]. Practical testing
tools for finding undesired behavior in protocol implementation
have also been proposed [16, 25]. With the emerging technol-
ogy of software-defined networking (SDN), modeling networks
as programmable software has gained unprecedented popularity.
Researchers began to apply program verification techniques to the
verification of SDNs [8, 9].

Our goal is to develop a general automated technique that can be
applied to network verification. The first step towards that goal is to
find the right abstraction for networks. Declarative networking [31]
is one of the first research efforts to demonstrate that high-level lan-
guages can be used to program networks. In declarative network-
ing, network protocols are written in a declarative language ND-
Log, which is a distributed Datalog. Declarative networking tech-
niques have been used in several domains including fault tolerance
protocols [45], cloud computing [4], sensor networks [13], over-
lay network compositions [34], anonymity systems [44], mobile

ad-hoc networks [27, 36], wireless channel selection [26], network
configuration management [12], and forensic analysis [53–55]. An
open-source declarative networking system called RapidNet [43]
has been integrated with the ns-3 [39] simulator, so protocols can
be tested. It has also been shown that network verification can be
carried out using the declarative network framework [10, 47, 48]. In
summary, NDLog is a great intermediary language for bridging the
gap between network specification, verification, and implementa-
tion, so we use NDLog as our specification language for networks.

Unfortunately, all of the verification tools related to NDLog re-
quire manual proofs, which makes verification very labor intensive.
What is worse is that when the proofs cannot be constructed, it is
nontrivial to find out what went wrong. Either there are bugs in the
program, or the invariants used in the proofs are not correct. There
is little tool support for identifying problems under these circum-
stances. In this paper, we develop an automated static analysis tech-
nique to analyze the safety properties of NDLog programs. When
properties do not hold, our tool provides a concrete counterexam-
ple to further aid program debugging. The properties that we are
interested in include invariants of the network and desirable behav-
ior of nodes in the network. For instance, we would like to know if
every forward entry corresponds to a route announcement packet,
or if a successfully delivered packet indicates proper forwarding ta-
ble setup in the switches that the packet traverses. One observation
we have is that a large fragment of the interesting properties of net-
works can be expressed in a simple fragment of first-order logic.
Leveraging this limited expressive power, we are able to develop
static analysis for NDLog programs.

Our static analysis examines the structure of the NDLog pro-
gram and builds a summary data structure for all derivations of that
program. Properties specified in the restricted format of first-order
logic are checked on the summary data structure with the help of the
SMT solver Z3 [50]. The challenge is how to deal with recursive
programs. For such programs, the number of possible derivations
for recursive predicates is infinite. We use a concise representation
for recursive predicates, so all possible derivations can be finitely
represented. To evaluate our analysis, we built a prototype tool, and
verified several safety properties of a number of SDN controller
programs, where the SDN’s controller program and switch logic
are specified in NDLog.

This paper makes the following technical contributions.

• We developed algorithms for automatically analyzing a class of
safety properties of NDLog programs.

• We proved the correctness (soundness and completeness) of our
algorithms for non-recursive programs and proved the sound-
ness of our algorithms for recursive programs.
• We implemented a prototype tool and verified a number of

safety properties of SDN controller programs.

The rest of this paper is organized as follows. In Section 2, we
review declarative networks and NDLog, and describe our analysis
at a high-level. Then, we explain our algorithm for non-recursive
programs in Section 3. Next, we extend the algorithm to handle
recursive programs in Section 4. The case studies are described in
Section 5. We discuss related work in Section 6 and then conclude.

Due to space constraints, we omit many technical details. They
can be found in our companion technical report [11].

2. Overview
We first review declarative networking and NDLog through exam-
ples. Then, we present an overview of our analysis.

2.1 Declarative Networking
Declarative networks are specified using Network Datalog (ND-
Log), which is a distributed recursive query language used for
querying network graphs. Declarative queries are a natural and
compact way to implement a variety of routing protocols and (over-
lay) networks. For example, traditional routing protocols such as
path vector and distance-vector protocols can be expressed in a few
lines of code [29], and the Chord distributed hash table in 47 lines
of code [28]. When compiled and executed, these NDLog programs
perform efficiently relative to imperative implementations.

NDLog is based on Datalog [42]. A Datalog program consists
of a set of declarative rules. Each rule has the form p :- q1, q2,
..., qn., which can be read as “q1 and q2 and ... and qn im-
plies p”. Here, p is the head of the rule, and q1, q2,...,qn is a list of
literals that constitutes the body of the rule. Literals are either pred-
icates with attributes (which are bound to variables or constants),
or Boolean expressions that involve function symbols (including
arithmetic) applied to attributes, which we call constraints.

Datalog rules can refer to one another in a mutually recur-
sive fashion. Commas are interpreted as logical conjunctions. The
names of predicates, function symbols, and constants begin with a
lowercase letter, while variable names begin with an uppercase let-
ter. The following example NDLog program computes full reacha-
bility between any pair of nodes. In the runtime, derived predicates
are stored as tuples in database tables, so we use predicate and tuple
interchangeably for the rest of this paper.
REACHABLE:
d1 reachable(@X,Y,C) :- link(@X,Y,C).
d2 reachable(@X,Y,C) :- link(@X,Z,C1),

reachable(@Z,Y,C2), C=C1+C2.
d3 reachable(@X,Y,C) :- reachable(@X,Z,C1),

link(@Z,Y,C2), C=C1+C2.

The program REACHABLE takes as input link(@X,Y,C) tuples,
where each tuple corresponds to a copy of an entry in the neighbor
table, and represents an edge from the node itself (X) to one of its
neighbors (Y) of cost C. NDLog supports a location specifier in each
predicate, expressed with @ symbol followed by an attribute. This
attribute is used to denote the source location of each corresponding
tuple. For example, link tuples are stored based on the value of the
X field. The program REACHABLE derives reachable(@X,Y,C)
tuples, where each tuple represents the fact that X has a path to
Y with cost C. Rule d1 derives reachable tuples from direct links.
Rule d2 and d3 compute transitive reachability: if there exists a link
from X to Z with cost C1, and Z knows about a path to Y with cost
C2, then, X can reach Y with cost C1+C2. Rule d3 is similar to d2.

As our driving example, we will use the following erroneous
program. The following non-recursive set of rules computes one-
, two-, and three-hop reachability information within a network.
There is an error in rule r2, where onehop X Z C2 should be
onehop Z Y C2, thus this program cannot derive three-hop paths.
THREEHOPS (With a deliberate error in r2):
r1 onehop(@X,Y,C) :- link(@X,Y,C).
r2 twohops(@X,Z,C) :- link(@X,Z,C1),

onehop(@X,Z,C2),C = C1+C2.
r3 threehops(@X,Y,C) :- onehop(@X,Z,C1),

twohops(@Z,Y,C2),C=C1+C2.
r4 threehops(@X,Y,C) :- twohops(@X,Z,C1),

onehop(@Z,Y,C2),C=C1+C2.

2.2 Analysis Overview
The static analysis mainly consists of two processes: a process that
summarizes all derivations of predicates in an auxiliary data struc-
ture, which we call a derivation pool, and a process that queries
properties on the derivation pool. NDLog programs are represented
abstractly as dependency graphs. Recursive programs are more
complicated than non-recursive programs, so we explain the algo-
rithms for non-recursive programs first, before we discuss exten-
sions to support recursive programs. The dependency graph and the
properties to be checked are of the same form for both recursive and
non-recursive programs. Next, we formally define the dependency
graph and the format of the properties.

Dependency graph A dependency graph has two types of nodes,
predicate nodes, denoted Np, and rule nodes, denoted Nr . Each
predicate node corresponds to a tuple in the program. A predicate
node consists of a unique ID for the node, the name of the predicate
and its type, and a tag indicating whether the predicate is on a cycle
in the graph. The tag cyc means that the node is on a cycle and
ncyc means the opposite. Each rule node corresponds to a rule
in the program. A rule node consists of a unique ID, the head of
the rule, the body of the rule, which is a list of predicates, and
the constraints. The edges, denoted E, are directional. Each edge
points either from a rule node to the predicate node which is the
head of that rule node, or from a predicate node to a rule node
where the predicate is in the rule body.

Predicate type τ ::= Pred | bt ⊃ τ
Dependency graph G ::= (Np List,Nr List,E List)
Predicate node Np ::= (nID , p:τ, cyc) | (nID , p:τ, ncyc)
Rule node Nr ::= (rID , hd , body , c)
Edge E ::= (rID ,nID) | (nID , rID)
Rule head hd ::= p(~x)
Rule body body ::= p1(~x1), · · · , pn(~xn)
Rule constraints c ::= e1 bop e2 | c1∧c2 | c1∨c2 | ∃x.c
To make variable substitutions easier, each predicate takes unique
variables as arguments. For instance, the following two NDLog
rules are equivalent, but we use r1 as the normal form.
r1: p(x,y) :- q(x1), s(y1), x1=y1, x=x1, y=y1.
r2: p(x,y) :- q(x), s(y), x=y.

Properties We focus on safety properties, which state that bad
things have not happened yet. We use trace-based semantics of
NDLog [10, 40]. The advantage of trace-based semantics over fixed
point semantics is that the order in which predicates are derived
can be clearly specified using traces. Fixed point semantics only
care about what is derivable in the end, and are not precise enough
to capture transient faults that appear only in the middle of the
execution of network protocols.

To make it possible for automated analysis, we restrict the form
of properties to be the following:
ϕ = ∀ ~x1.p1(~x1) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1 · · · ~xn) ⊃
∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1 · · · ~xn, ~y1 · · · ~ym)

The meaning of the property is the following: if all of the
predicates pi are derivable, and their arguments satisfy constraint
cp, then each of the predicate qj must be in one of the derivations
of pi, and the constraint cq must be true. We implicitly require qis
to be derived before pis. A lot of the correctness properties can be
specified using formulas of this form. For instance, we can specify
the following three properties of our THREEHOPS program:
Q1: ∀x, y, z, threehops x y z ⊃ ∃x′, z′, twohops x x′ z′

Q2: ∀x, y, z, threehops x y z
⊃ ∃x1, x2, z1, z2, z3, link x x1 z1 ∧ link x1 x2 z2
∧ link x2 y z3

Q3: ∃x, y, z, threehops x y z
Q1 states that to derive threehops x y z, it is necessary to derive

twohops x x′ z′, for some x′ and z′. Q1 does not hold because
there are two ways to derive threehops and one of them does not
contain such a twohops tuple as a sub-derivation. Q2 states that to
derive a threehops tuple, three links connecting those two nodes
are necessary. Q2 should hold. Q3 states that threehops tuple is
derivable for some x, y, and z.

3. Analyzing Non-recursive Programs
In this section, we first explain how to compute the derivation
pool for a non-recursive NDLog program. Then, we show how
to check properties. Next, we show how to incorporate network
constraints into our property checking algorithm. Finally, we prove
the correctness of our algorithm and analyze its time complexity.

3.1 Derivation Pool Construction
For a non-recursive program, its derivation pool maps each predi-
cate to the set of all derivation trees rooted at that predicate. It is
formally defined as follows.

Derivation pool dpool ::= · | dpool , (nID , p:τ) 7→ ∆
Entries ∆ ::= · |∆, (c,D)
Derivation D ::= (BT, p(~x)) | (rID , p(~x),D List)

We write dpool to denote derivation pools. We write ∆ to denote
lists of pairs of a constraint and a derivation tree, denoted D. At
a high-level, D can be instantiated to be a valid derivation of p(~t)
using rules in the program, if c is satisfiable. A derivation tree, D,
is inductively defined. The base tuples, denoted (BT, p(~x)), are the
leaf nodes. A non-leaf node consists of the unique rule ID of the last
rule of the derivation, the conclusion of that rule (p(~x)), and the list
of derivation trees for the body predicates of that rule (D List). We
write dpool(p) to denote dpool(nID , p:τ), which returns ∆.

Figure 1 and 2 present the main functions used for constructing
a derivation pool from a dependency graph. The top-level function
GENDPOOL is defined in Figure 1. This function follows the topo-
logical order of the nodes in the dependency graph G. We keep track
of a working set P , which is the set of nodes whose derivations can
be summarized currently. We also keep track of the set of edges that
the function has not traversed yet. The function terminates when all
of the edges in the dependency graph have been traversed and the
derivations for all of the predicates in the dependency graph are
built. In the body of GENDPOOL, we remove one predicate node
p from P , and build all derivations for it. A base tuple’s only pos-
sible derivation is one with itself as the leaf node. The constraint
associated with this derivation is the trivial true constraint > (Line
8). When p is not a base tuple, derivations for tuples that p’s deriva-
tions depend on have been stored in dpool . The GENDS function
constructs derivations for p given the dependency graph and the
current derivation pool (explained later).

After the derivations for a predicate p are constructed, outgoing
edges from p are removed (Line 13), so predicates that depend on
p can be processed in later iterations. Function REMOVEEDGES

1: function GENDPOOL(G)
2: E ← G’s edges
3: P ← G’s predicate nodes that have no incoming edges
4: while E 6= empty || P 6= empty do
5: remove (nID , p:τ) from P
6: ~x← fresh(p:τ)
7: if p is a base tuple then
8: dpool← dpool [(nID , p) 7→ {(>, (BT, p(~x)))}]
9: else

10: d← GENDS(G, dpool , (nID , p:τ))
11: dpool← dpool ∪ d
12: (* done processing p, remove edges *)
13: P,E ←REMOVEEDGES(P , E, G, nID)
14: end while
15: end function
16:
17: function REMOVEEDGES(P , E, G, nID)
18: remove outgoing edges of nID from E
19: for each rID with no edges of form (, rID) in E do
20: remove edges (rID , nID) from E
21: for each (nID , p:τ) with no incoming edges in E do
22: add (nID , p:τ) to P
23: end function

Figure 1. Construct derivation pools for non-recursive programs

removes outgoing edges from p, and outgoing edges from rule
nodes that now do not have incoming edges. This may result in
predicates enqueued into P for the next iteration of processing.

Function GENDS (Figure 2) takes the dependency graph, the
derivation pool that has been constructed so far, and a predicate p,
as arguments, and returns all derivation pool entries for p. The body
of GENDS calls GENDRULE to construct derivations for each rule
that derives p. The function GENDRULE makes use of List map
and fold operations to construct all possible derivations of p from a
rule of the form r : p(~x):-q1(~y1), ..., qn(~yn), c. dpool has already
stored all possible derivations for each qi. We need to compute all
combinations of the derivations for qis. The LOOKUP function on
line 11 collects the list of derivations for one body tuple and the list
map function returns the list of derivations for all body tuples. More
precisely, the LOOKUP function returns a list of tuples of the form
(σ, c, d), where d is a derivation, c is the constraint associated with
that derivation, and σ is a variable substitution. The domain of σ is
qi’s arguments in the rule node, and the range of σ is qi’s arguments
in the conclusion of the derivations. We need these substitutions be-
cause we alpha-rename the derivations. The constraint in the rule
node needs to use the correct variables. Line 12 uses list fold op-
eration to generate all possible derivations. Function MERGEDLL
and MERGEDL are helper functions to generate the list of deriva-
tions. Function MERGED is the function that takes as arguments,
the list of derivations from qm to qi+1 and one derivation for qi,
and prepends the derivation for qi to the list of derivations from qm
up to qi. Here, the substitutions need to be merged and the resulting
constraint is the conjunction of the two constraints. Finally on line
14, function COMPLETED generates a well-formed derivation for p
using the rule ID and the list of derivations for qis. The constraint
associated with this derivation of p is the conjunction of constraints
for the derivation of qi and the constraint in the rule body. The sub-
stitutions are applied to the constraint c, because all derivations are
alpha-renamed and use fresh variables.

3.2 Property Query
Figure 3 shows the property query algorithm for non-recursive
programs. The top-level function CKPROP takes the derivation

1: function GENDS(G, dpool , (nID , p:τ))
2: ∆← {}
3: for each rule with ID rID where (rID , nID) in G do
4: ∆← ∆∪GENDRULE(G, dpool , (nID , p:τ),rID)

return ∆
5: end function
6:
7: function GENDRULE(G, dpool , (nID , p:τ), rID)
8: (p(~y), Q, cr)← G(rID)
9: (* Q = q1 · · · qm)

10: D is the list of list of derivations for q1 · · · qm *)
11: D ← LIST.MAP (LOOKUP dpool) Q
12: D′ ←LIST.FOLDRIGHT MERGEDLL D nil
13: ~x← fresh(p(~y))
14: return LIST.MAP (COMPLETED cr rID p(~y) ~x) D′

15: end function
16:
17: function MERGED(dci, dc2i)
18: (* dc2i is a derivation for qn · · · qi+1

19: dci is a possible derivation of qi *)
20: (σ2i, c2i, d2i)← dc2i
21: (σi, ci, di)← dci
22: (* σ′

i substitutes new vars in qi for old ones *)
23: (σ′

i, c
′
i, d

′
i)← fresh(ci, di)

24: return (σiσ
′
i ∪ σ2i, c

′
i ∧ c2i, d′i::d2i)

25: end function
26:
27: function LOOKUP(dpool , q(~x))
28: return LIST.MAP (EXTRACTD ~x) dpool(q)
29: end function
30:
31: function EXTRACTD(~x, (c, d))
32: (rID , p(~y), d l)← d
33: return (~y/~x, c, d)
34: end function
35:
36: function COMPLETED(cr , rID , p(~y), ~x, d)
37: (σ, c, d l)← d
38: return (c ∧ cr[~x/~y]σ, (rID , p(~x), d l))
39: end function

Figure 2. Generate derivation pool for one predicate

pool and the property as arguments. On line 3, we separate the
property into the list of predicates to the left of the implication
(P), the constraint to the left of the implication (cp), the list of
predicates to the right of the implication (Q), and the constraint
to the right of the implication (cq). Next, similar to the derivation
pool construction, we construct all possible combinations of the
derivations of all the pis in P between lines 5 to 9. We omit the
definition of MERGEDERIVATION, as it is similar to MERGEDLL.
The only difference is that we do not need to alpha-rename the
derivations. Next, we check that for each possible derivation of
pis in D, all of qis appear in the derivation, and the constraint cq
holds (lines 10 to 14) using function CKPROPD. If for all possible
derivations of pis, we can always find derivations of qis such that
the constraint cq holds, ϕ holds (line 14).

The function CKPROPD checks that in the list of derivations
d, with constraints cd, whether all the predicates in Q appear in
d, and cq is true. On Line 18, we first check whether all the pis
are derivable and constraint cp is satisfiable. If the conjunction
of the derivation constraint cd and cp is not satisfiable, then the
precedent of ϕ is false, so ϕ is trivially true for that derivation. So,
we return valid in the else branch (line 38). If the conjunction is
satisfiable, then there are substitutions for variables so that all the

1: function CKPROP(dpool , ϕ)
2: (* P is p1 · · · pn and Q is q1 · · · qm *)
3: (P, cp, Q, cq)← ϕ
4: (* Get the list of list of derivations for p1 · · · pn *)
5: L← LOOKUP(dpool , P)
6: (* Combine all possible derivations for p1 · · · pn
7: Each entry in D also include substitutions that replace
8: free variables in pi with the variable in the derivation *)
9: D ←MERGEDERIVATION L

10: for each (σ, cd, d) in D do
11: z ←CKPROPD(cd, cpσ, d,Q, cqσ)
12: if z = invalid(d, σr) then
13: return invalid(d, σr)

14: return valid
15: end function
16:
17: function CKPROPD(cd, cp, d,Q, cq)
18: if CHECK SAT cd ∧ cp = (sat, σp) then
19: (* find all occurrences of q in d *)
20: Σ←LIST.MAP (UNIFY d) Q
21: if nil ∈ Σ then
22: (* some qi does not appear in d *)
23: return invalid(d, σp)
24: else
25: (* Find all possible combinations for q1 · · · qm
26: Σq is a list of substitutions of form σq1 :: · · · ::σqλ
27: σq` ∈ Σq is a substitution for variables in one
28: occurrence of q1 to qm in d, for variables that
29: appear in Q *)
30: Σq ←MERGELL Σ

31: ca ← cp ∧ cd ∧
∧λ
`=1 ¬cqσq`

32: if CHECK SAT ca = (sat, σa) then
33: return invalid(d, σa)
34: else
35: return valid
36: else
37: (* Constraints for p1 . . . pn and cp are unsat *)
38: return valid
39: end function

Figure 3. Property query

pis are derivable and the constraint cp is satisfiable. Next, we need
to check whether all qis are derivable. On line 20, function UNIFY
identifies a list of occurrences of qi in the derivation d. That is, for
each qi(~yi) appearing in d, UNIFY returns the list of substitutions:
(~y1/~x)::(~y2/~x):: · · · ::(~yn/~x)::nil, where ~x is qi’s arguments in ϕ.
The list map function returns the list of the list of occurrences for
all the qis inQ. We call it “UNIFY” because we unify the variables
that are qi’s arguments in ϕ with qi’s arguments in the derivation
d. This substitution will be applied to constraint cq later. If some
qi does not appear in d, then UNIFY will return an empty list nil.
Therefore, on line 21, we check whether each qi will appear at least
once in d. If it is not the case, then we return invalid with the current
derivation and one satisfying substitution that makes pis true for
constructing a counterexample. Otherwise, we check whether the
constraint cq can be satisfied. Before doing so, on line 29, we first
compute the list of all possible combinations of occurrences of qis.
Again, the function MERGELL is similar to MERGEDLL and we
omit the details. Now on line 30, for each possible appearance of
qis in d, Σq is a list of substitutions, each of which, when applied
to cq , makes cq use the same variables as those in the derivation.
We ask whether the negation of cq together with the derivation
constraint and the constraint on the arguments of pis are satisfiable.

1: function CKPROPDC(cd, cp, d,Q, cq, β, cb)
2: if CHECK SAT cd ∧ cp = (sat, σp) then
3: (* find all occurrences of b
4: Σb is a list of list of substitutions *)
5: Σb ←LIST.MAP (UNIFY d) β
6: (* Σ′

b is a list of substitutions. Each substitution
7: in Σ′

b corresponds to one combination of bis in d *)
8: Σ′

b ←MERGELL Σb
9: (* Given Σ′

b = σb1:: · · · ::σbµ, c′b =
∧µ
`=1 cbσb` *)

10: c′b ←CONJ(Σ′
b, cb)

11: (* find all occurrences of q in d *)
12: Σ←LIST.MAP (UNIFY d) Q
13: if nil∈ Σ then
14: (* check network constraints *)
15: if CHECK SAT cd ∧ cp ∧ (c′b) = (sat, σc) then
16: (* Network constraints are met *)
17: return invalid(d, σc)
18: else
19: return valid
20: else
21: (* Find all possible combinations for q1 · · · qm
22: Σq is a list of substitutions of form σq1 :: · · · ::σqλ
23: σq` ∈ Σq is a substitution for variables in one
24: occurrence of q1 to qm in d, for variables that
25: appear in Q *)
26: Σq ←MERGELL Σ

27: ca ← cd ∧ cp ∧
∧λ
`=1 ¬cqσq`

28: if CHECK SAT ca = (sat, σa) then
29: (* cq is unsat for any substitutions that make
30: qis appear in d *)
31: cs ← cd ∧ cp ∧

∧λ
`=1 ¬cqσq` ∧ (c′b)

32: if CHECK SAT cs = (sat, σs) then
33: (* Network constraints are met *)
34: return invalid(d, σs)
35: else
36: return valid
37: else
38: (* cq is sat *)
39: return valid
40: else
41: (* Constraints for p1 . . . pn and cp are unsat *)
42: return valid
43: end function

Figure 4. Property query with network constraints

If this is not satisfiable, then we know that there exists a substitution
for variables so that the property ϕ holds. Otherwise, we return the
derivation and the satisfying substitution that makes pis and qis
derivable, but cq false for counterexample construction.

3.3 Network Constraints
Sometimes, the network being analyzed has certain network con-
straints constraints; for instance, every node in the network has
only one outgoing link. Our property query algorithm needs to take
into consideration these network constraints. If we ignore these
constraints, the counterexample generated by the tool may not be
useful as the counterexample could violate the network constraints.

Network constraints that our analysis can handle have simi-
lar form as the properties: ∀ ~x1.b1(~x1) ∧ · · · ∧ ∀ ~xk.bk(~xk) ⊃
cb(~x1 · · · ~xk), where bi is a base tuple. Figure 4 shows the algo-
rithm for checking properties on networks with constraints. For
clarity, we explain the case with one network constraint. Extend-
ing the algorithm to handle multiple constraints is straightforward.

The top-level function CKPROPC (omitted here) is almost the
same as CKPROP, except that it takes a network constraint (ϕnet) as
an additional argument and uses the function CKPROPDC, which
additionally checks network constraints compared to CKPROPD.
The function CKPROPDC takes as additional arguments, a list base
tuples B and the constraint cb in the network constraint. In the
body of CKPROPDC, we first check whether the constraint on pis
is satisfiable. If it is not, then this derivation does not violate the
property we are checking. Next, between lines 3 to 10, we find all
occurrences of the base tuples in the constraint ϕnet . We find all
possible combinations of substitutions for arguments of these base
tuples as they appear in the derivation d. For each occurrence of the
base tuples, the constraint cb needs to be true, so we compute the
conjunction of all the cbs. To given an example, if the constraint is
∀x, b(x) ⊃ x > 0. If d has two occurrences of b, b(y) and b(z),
then c′b = y > 0∧z > 0.

Next, we collect the list of the occurrences of qis, the same as
before. If some qis do not appear in d (line 13), we additionally
check whether this derivation d satisfies the network constraint
(line 15). If it is the case, then we find a counterexample. Otherwise,
d does not violate the property being checked.

Then, we compute the combination of all possible occurrences
of qis (line 21) as usual. For each substitution that makes all qis
appear in d, we check whether cq is satisfiable. Between lines 30 to
33, cq is satisfiable, so we need check that the network constraint is
satisfied. If this is the case, d satisfies the property being checked.
Otherwise, we have to try the next substitution that makes all qis
appear in d. On line 34, we finished the loop and cq is not satisfiable
for any of the substitutions that make qis appear in d. Again, we
check the network constraints on d, and report an error only if d
satisfies the network constraint.

3.4 Analysis of the Algorithms
Correctness. We first prove that our derivation pool construction
is correct. Lemma 1 states that an entry for a predicate p in the
derivation pool maps to a valid derivation of p if the constraints of
that derivation is satisfiable; and that if a predicate p is derivable,
then there must be a corresponding entry in the derivation pool.
The function DGRAPH generates a dependency graph for prog,
which can be straightforwardly defined. The semantics of NDLog
programs are bottom up, so a set of base tuples B is needed to
start the execution of the program. We write σ′≥σ to mean that
σ′ extends σ. B denotes a set of ground base tuples of prog. We
write prog, B � d:p(~t) to mean that d is a derivation of p(~t) using
program prog and base tuplesB. We write (c, d′:p(~x)) ∈ dpool(p)
to mean that (c, d′) is an entry in the derivation pool dpool for the
predicate p and that d′ is a derivation tree with p(~x) as the root.

Lemma 1 (Correctness of derivation pool construction).
DGRAPH(prog) = G and GENDPOOL(G) = dpool

1. If prog, B � d′:p(~t), then exists σ where dom(σ) = ~xd and
(c(~xc), d(~xd):p(~x)) ∈ dpool(p) s.t. d(~xd)σ:p(~x) = d′:p(~t)
and � c(~xc)σ.

2. If (c(~xc), d(~xd):p(~x)) ∈ dpool(p) and � c(~xc)σ, then exists
σ′, B where dom(σ′) = ~xd, c(~xcσ) = c(~xcσ

′), and B =
{b | b is a base tuple, b appears in d(~xd)σ

′}
s.t. prog, B � d(~xd)σ

′:p(~x)σ′.

Using the result of Lemma 1, we prove our property checking
algorithm is correct with regard to the formula semantics.

Theorem 2 (Correctness of property query).
ϕ = ∀ ~x1.p1(~x1) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1 · · · ~xn) ⊃
∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1 · · · ~xn, ~y1 · · · ~ym)

DGRAPH(prog) = G and GENDPOOL(G) = dpool ,

1. CKPROP(dpool , ϕ) = valid implies ∀B, prog, B � ϕ.

2. CKPROP(dpool , ϕ) = invalid(d, σ) implies ∃B s.t. prog, B 2
ϕ.

When network constraints are provided, we prove that the prop-
erty checking algorithm is correct with regard to the network con-
straints on base tuples.

Theorem 3 (Correctness of property query with constraints).
ϕ = ∀ ~x1.p1(~x1) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1 · · · ~xn) ⊃
∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1 · · · ~xn, ~y1 · · · ~ym)

ϕnet = ∀ ~u1.b1(~u1) ∧ · · · ∧ ∀ ~uk.bn(~uk) ⊃ cb(~u1 · · · ~uk)
DGRAPH(prog) = G and GENDPOOL(G) = dpool ,

1. CKPROPC(dpool , ϕnet , ϕ) = valid implies ∀B, either B 2
ϕnet or prog, B � ϕ.

2. CKPROPC(dpool , ϕnet , ϕ) = invalid(d, σ) implies ∃B s.t.
prog, B 2 ϕ and B � ϕnet .

Time complexity. We give an upper bound on the time complex-
ity of the property query algorithm (Figure 3). Given an NDLog
program with R rules; each rule contains at most W body tuples.
Also assume |Q| = m and |P | = n. The time complexity of our al-
gorithm isO((RnW

R

)nmWRn). In practice,R andW are usually
small. For example, in our case study, R is bounded by 11 and W
is bounded by 5. In this case,R andW can be viewed as constants.

4. Extension to Recursive Programs
The dependency graph for a recursive program contains cycles.
The derivation pool construction algorithm presented in Figure 1
does not work for recursive programs because it relies on the
topological order of nodes in the dependency graph. In this section,
we show how to augment our data structures and algorithms to
handle recursive programs.

4.1 Derivation Pool for Recursive Predicates
When p is recursively defined, dpool maps p to a pair (c,∆), where
∆ has the same meaning as before. The additional constraint c is
an invariant of p: c is satisfiable if and only if p is derivable.

Constraint pool dpool ::= · · · | dpool , (nID , p:τ) 7→ (c,∆)
Derivation D ::= · · · | (rec, p(~x))
Annotation A ::= · |A, (nID , p:τ) 7→ (~x, c)

Derivation trees include a new leaf node (rec, p(~x)), where p ap-
pears on a cycle in the dependency graph. This leaf node is a place
holder for the derivation of p. We write A to denote annotations for
recursive predicates, provided by the user. A maps a predicate p to
a pair (~x, c), where ~x is the arguments of p and c is the constraint
which is satisfiable if and only if p is derivable.

The structure of the derivation pool construction remains the
same. We highlight the changes in Figure 5. The main difference
is that now when a cycle is reached, the annotations are used to
break the cycle. The working set P , which contains the set of nodes
that can be processed next, includes not only predicate nodes that
do not have incoming edges, but also includes nodes that depend
on only body tuples that have annotations. Consider the following
scenario: Rule r1 derives p and has two body tuples q1 and q2.
Let’s assume that there is no edge from q1 to r1, as q1 has been
processed and q2 has an annotation in A. In this case, we will place
p in the working set. The above mentioned change is encoded in
the new REMOVEEDGES function.

The second change is in constructing derivation pool entries
for a predicate p. In the non-recursive case, each derivation tree
of a predicate p corresponds to the application of a rule to the
list of derivation trees for the body tuples of that rule. In the
recursive case, if one of the body tuples, say q, is on a cycle,
when we process p, q’s entries in dpool have not been constructed.
However, the constraint under which q can be derived is given in

1: function GENDS(G, dpool , (nID , p:τ))
2: ∆← {}
3: for each rule with ID rID where (rID ,nID) in G do
4: ∆← ∆∪GENDRULE(G, dpool , (nID , p:τ),rID)
5: if (nID , p:τ) is on a cycle then
6: (* gather all constraints *)
7: (~x, c)← EX DISJ(∆)
8: if A(p) = (~y, cA) then
9: (* check annotation *)

10: if CHECK SAT ¬(cA[~x/~y]⇔c)=(sat,) then
11: return annotation error
12: else
13: return (cA,∆)

14: else
15: return (c,∆)

16: else
17: return ∆
18: end function
19:
20: function LOOKUP(dpool , q(~x))
21: if q ∈ A then
22: (~y, cA)← A(q)
23: return (~y/~x, cA, (rec, q(~y))::nil)
24: else
25: if dpool(q) = ∆ then
26: return LIST.MAP (EXTRACTD ~x) ∆
27: else
28: dpool(q) = (c,∆)
29: ~y ← fv(∆)
30: return (~y/~x, c, (rec, q(~y))::nil)

31: end function

Figure 5. Construct derivation pools for recursive programs

the annotation A. In this case, we use (rec, q(~x)) as a place holder
for derivations for q, and use the constraint in A as the constraint for
this derivation. The change is reflected in the LOOKUP function for
collecting possible derivations of the body predicates (lines 21-23).

Finally, annotations need to be verified. The GENDS function
checks the correctness of the annotations after all the predicates
have been processed (lines 5-15). For a recursive predicate, the
derivation pool maps it to a summary constraint and a list of pos-
sible derivations (a pair (c,∆)). The requirement of the summary
constraint for p is that it has to be satisfiable if and only if there
is at least one derivation for the recursive predicate p. That is, this
summary constraint has to be logically equivalent to the disjunction
of the constraints associated with all possible derivations of p in ∆.
We consider two cases for a predicate on a cycle of the dependency
graph: (1) there is an annotation for it in A and (2) there is no anno-
tation. For both cases, we need to collect all the possible constraints
for deriving p from ∆. Function EX DISJ computes the disjunction
of constraints in ∆. Each constraint is existentially quantified over
the arguments that do not appear in p. For case (1), we need to
check that the annotation is logically equivalent to the disjunction
of the constraints for all possible derivations of p (line 10). If this is
the case, then the annotated constraint together with ∆ is returned;
otherwise, an error is returned, indicating that the invariant doesn’t
hold. For case (2), we return the disjunctive formula returned by
EX DISJ (Lines 15). When p is not recursive, only ∆ is returned
(line 17).

4.2 Property Query
We use the same property query algorithm for non-recursive pro-
gram. This obviously has limitations, because the derivations of

recursive predicates are not expanded. The imprecision of the anal-
ysis comes from the following two sources. The first is that deriva-
tions represented as (rec, p(~x)) may contain predicates needed by
the antecedent of the property (the qis in ϕ). Without expanding
these derivations, the algorithm may report that ϕ is violated be-
cause qis cannot be found, even though this is not the case in re-
ality. The second is that network constraints cannot be accurately
checked. When we find a suitable derivation d that contains all the
qis such that cq holds, checking the network constraints on d re-
quires us to expand (rec, p(~x))s in d. The algorithm may report that
the property holds, even though, the witness it finds does not sat-
isfy the network constraints. Similarly, when the algorithm reports
that the property does not hold, the counterexample may not satisfy
the network constraints. For the analysis to be precise, we would
need annotations for recursive predicates to provide invariants for
recursive predicates. Our case studies do not require annotations.
Expanding the algorithm to handle recursive predicates precisely
remains our future work.

4.3 Analysis of the Algorithms
Correctness. Similar to the non-recursive case, we prove the
correctness of derivation pool construction. We only prove the
soundness of the query algorithm. Because derivations of recur-
sive predicates are summarized as (rec, p(~x)), the correctness of
the derivation pool construction needs to consider the unrolling of
(rec, p(~x)). First, we define a relation dpool ` d, σ k d

′, σ′ to
mean that a derivation d with the substitution σ can be expanded
using derivations in dpool to another derivation d′ of depth k and a
new substitution σ′.

σ′ ≥ σ
dpool ` (BT, p(~x)), σ 0 (BT, p(~x)), σ′

∀j ∈ [1, n], dpool ` dj , σ k d
′
j , σ

′

dpool ` (rID , p(~x), d1:: · · · ::dn::nil), σ
 k+1 (rID , p(~x), d′1:: · · · ::d′n::nil), σ′

dpool(p) = (c,∆) (ci, dpi) ∈ ∆ � ciσ
′

dpool ` dpi, σ′ k d
′
pi, σ

′′

dpool ` (rec, p(~x)), σ k d
′
pi, σ

′′

The first rule applies to the base tuples. Here, no unrolling is needed
and the depth of the derivation is 0. The second rule unrolls the
premises of a derivation d. The depth of d′ is k + 1. The last rule
is the key rule that unrolls the derivation of recursive predicate
p ((rec, p(~x))) using one of the possible derivations of p from
∆. Here, the unrolling can only use the derivation in ∆, whose
constraint can be satisfied.

Lemma 4 shows that the derivation pool construction algorithm
is correct with respect to an unrolling of the derivation. If a pred-
icate p is derivable, then the derivation pool should have an entry
for p that can be unrolled into that derivation. In the other direc-
tion, for every entry in the derivation pool, it either unrolls into a
finite derivation, or can be further unrolled. This lemma allows the
unrolling to be infinite.

Lemma 4 (Correctness of derivation pool construction (recursive)).
DGRAPH(prog) = G, and GENDPOOL(G,A) = dpool

1. If prog, B � d : p(~t) then
(a) either p is not on a cycle in the dependency graph and exists

σ and (c, d′:p(~x)) ∈ dpool(p) s.t. dpool ` d′, σ |d|
d1, σ, d = d1σ and � cσ.

(b) or p is on a cycle in the dependency graph and exists σ
and (cp,∆p) ∈ dpool(p) s.t. dpool ` (rec, p(~x)), σ |d|
d1, σ, d1σ = d, and � cpσ.

2. (a) If (c, d:p(~x)) ∈ dpool(p) and � cσ, then ∀n, ∃m, m ≤
n, dpool ` d, σ m d′, σ′, either d′ does not contain
(rec, q(~y)), and exists B, s.t. prog, B � d′σ′ : p(~x)σ′ or
d′ contains (rec, q(~y)), and replacing all of the (rec, q(~y))
derivations with a derivation of qσ′ in d′ results in a deriva-
tion for p(~x)σ′

(b) If (cp,∆:p(~x)) ∈ dpool(p) and � cpσ then ∀n, ∃m,
m ≤ n, dpool ` (rec, p(~x)), σ m d′, σ′, either d′

does not contain (rec, q(~y)), and exists B, s.t. prog, B �
d′σ′:p(~x)σ′ or d′ contains (rec, q(~y)), and replacing all of
the (rec, q(~y)) derivation with a derivations of qσ′ in d′

results in a derivation for p(~x)σ′

As we discussed in Section 4.2, we cannot show a general
correctness theorem without annotations for recursive predicates.
We can only prove the soundness of the algorithm when there is no
network constraint.

Lemma 5 (Soundness of property query).
ϕ = ∀ ~x1.p1(~x1) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1 · · · ~xn) ⊃
∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1 · · · ~xn, ~y1 · · · ~ym)

DGRAPH(prog) = G and GENDPOOL(G,A) = dpool ,
and CKPROP(dpool , ϕ) = valid implies prog � ϕ.

Time complexity. The time complexity of the property query al-
gorithm on recursive programs is the same as that of non-recursive
programs. Observe that the height of a derivation in the derivation
pool is still bounded by R (the number of rules in the program).
This is because in the derivation pool construction algorithm (Fig-
ure 5), each rule node is processed at most once. Therefore a path
in a derivation from the root predicate to any leaf predicate could
have at most R rules.

5. Case Study
We apply our tool to the verification of software-defined network-
ing (SDN) applications. SDN is an emerging networking technique
that allows network administrators to program the network through
well-defined interfaces (e.g., OpenFlow protocol [35]). SDNs in-
tentionally separate the control plane and the data plane of the net-
work. A centralized controller is introduced to monitor and man-
age the whole network. The controller provides an abstraction of
the network to network administrators, and establishes connections
with underlying switches. Recently, declarative programming lan-
guages have been used to to write SDN controller applications [38].
Like any program, these applications are not guaranteed to be bug-
free. We show the effectiveness of our tool in validating and debug-
ging several SDN applications. We demonstrate that the tool can
unveil problems in the process of SDN application development,
ranging from software bugs, incomplete topological constraints and
incorrect property specification. All verifications in our case study
are completed within one second.

5.1 Verification process
We first provide a high-level description of the verification process.
When analyzing a property, the user is expected to provide three
types of inputs: (1) formal specification of the property in the form
discussed in Section 2; (2) formal specification of initial network
constraints (e.g., topological constraints and switch default setup);
and (3) formal specification of invariants on recursive tuples.

Our tool takes the above user specifications along with the
NDLog program as inputs. It first checks the correctness of the
invariants on recursive tuples. After invariants are validated, the
tool runs the main algorithm for verification, and outputs either
“True” if the property holds, or “False” if the property is not valid.
For invalid properties, the tool also generates a concrete counter
example to help the programmer debug the program.

Predicate Description
ofconn(@Controller ,Switch) Controller is able to communicate with Switch
ofPacket(@Controller ,Switch, InPort ,

SrcMac, DstMac)
Switch does not have a hit in its flow entry table for a packet that appeared on it,
send by host with mac address SrcMac, to target host with mac address DstMac.
Therefore, Switch forwarded the packet to Controller to ask it how to proceed.

flowMod(@Switch,SrcMac, InPort) Controller generates and sends this tuple to switch Switch to allow it to install host
with mac address SrcMac into its flow entry table.

matchingPacket(@Switch,SrcMac,
DstMac, InPort , Priority)

A packet that appeared on switch Switch via port InPort , from host with mac
address SrcMac, with target host of mac address DstMac, and priority Priority

packet(@OutNei ,Switch,SrcMac,
DstMac)

OutNei received a packet from Switch that was sent by a host with mac address
SrcMac to a target host with mac address DstMac

swToHst(@Switch,OutNei ,OutPort) Switch is connected to OutNei via port OutPort
hstToSw(@Host ,Switch,OutPort) Host is connected to switch Switch via port OutPort
maxPriority(@Switch,TopPriority) packets arriving on Switch have a priority of at most TopPriority , where a larger

priority number indicates greater urgency
initPacket(@Host ,Switch,SrcMac,

DstMac)
Host with mac address SrcMac sends out a packet to a target host with mac address
DstMac to Switch

recvPacket(@Host ,SrcMac,DstMac) Host with mac address DstMac has received a packet address to it, which was sent
out by host with mac address SrcMac

Table 1. Predicates in Ethernet Source Learning

Role Rule Summary
rc1 Controller installs a flow entry on the switch to match on the source address of the incoming packet

Controller rc2 Controller instructs the switch to broadcast the unmatching packet to all neighbors except the upstream neighbor
rs1 Receives a new packet and starts address look-up in the local flow table
rs2 Recursively matches the packet with each flow entry
rs3 If a matching is found for the packet, forwards the packet accordingly

Switch rs4 If no flow entry matches the packet, relays the packet to the controller for further inspection
rs5 Updates the local flow table under the instruction of the controller
rs6 Broadcasts a packet under the instruction of the controller

End Host rh1 Initializes a packet and sends it to the connected switch
rh2 Receives a packet from the connected switch

Table 2. Ethernet Source Learning Rules

5.2 Ethernet Source Learning
The first case study we consider is Ethernet source learning, which
allows switches in a network to remember the location of end hosts
through incoming packets. More specifically, three kinds of entities
are deployed in the network: (1) end hosts (servers or desktops) at
the edge of the network that send packets to the network through
connected switches, (2) switches that forward a packet if the packet
matches a flow entry in the forwarding table, or relay the packet to
the controller for further instruction if there is a table miss, and
(3) a controller that connects to all switches in the network. The
controller learns the position of an end host through packets relayed
from a switch, and installs a corresponding flow entry in the switch
for future forwarding.

Encoding We encode the behaviors of each component in ND-
Log. Due to space limitation, we omit the full program and just
provide a summary of the program in Table 2.

In a typical scenario, an end host initiates a packet and sends
it to the switch that it connects to (rh1). The switch recursively
looks up its forwarding table to match against the received packet
(rs1, rs2). If a flow entry matches the packet, it is forwarded to the
port indicated by the “Action” part of the entry (rs3). Otherwise,
the switch wraps the packet in an OpenFlow message, and relays
it to the controller for further instruction (rs5). On receiving the
OpenFlow message, the controller first extracts the location infor-
mation of the source address in the packet (the OpenFlow message
registers incoming port for each packet), and installs a flow en-
try matching the source address in the switch (rc1). The controller

then instructs the switch to broadcast the mismatched packet to all
its neighbors other than the upstream neighbor who sent the packet
(rc2). Rules rs5 and rs6 specify the reaction of the switch corre-
sponding to Rules rc1 and rc2 respectively — the switch either in-
serts a flow entry into the forwarding table (rs5) or broadcasts the
packet (rs6) as instructed.

Network constraints We use the following basic network con-
straints to limit the topology of the network that runs Ethernet
source learning.

ϕnet1 initPacket(Host, Switch, Src,Dst) ⊃
Host 6= Switch ∧ Host = Src ∧
Host 6= Dst ∧ Switch 6= Dst.

ϕnet2 ofconn(Controller, Switch) ⊃
Controller 6= Switch.

ϕnet3 swToHst(Switch,Host, Port) ⊃
Switch 6= Host ∧ Switch 6= Port ∧ Host 6= Port.

ϕnet4 swToHst(Switch1, Host1, Port1) ∧
swToHst(Switch2, Host2, Port2) ⊃

(Switch1 = Switch2 ∧ Host1 = Host2 ⊃
Port1 = Port2) ∧

(Switch1 = Switch2 ∧ Port1 = Port2 ⊃
Host1 = Host2).

We demand that an end host always initiates packets using its own
address as source, and the switch it connects to cannot be the
source or the destination (constraints on initPacket). In addition,
the controller cannot share addresses with switches (constraints

on ofconn), and a switch cannot have a link to itself (constraints
on single swToHst). Also, each switch should have only one link
connecting the neighbor host, and no two hosts can connect to the
same port of a switch (constraints on any two swToHsts).

Verification results We verify a number of properties that are
expected to hold in a network running the Ethernet Source Learning
program. We discuss two properties in detail.

The first property specifies that whenever an end host receives a
packet not destined to it, the switch that it connects to has no match-
ing flow entry for the destination address in the packet. Formally:

ϕESL2 =
∀EndHost ,Switch,SrcMac,DstMac, InPort ,
OPort ,Outport ,Mac,Priority ,

packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧flowEntry(Switch,Mac,Outport ,Priority)
∧DstMac 6= EndHost ⊃

Mac 6= DstMac

Though this property is seemingly true, our tool returns a neg-
ative answer, along with a counterexample shown in Figure 6. The
counter example reveals a scenario where an endhost (H4) receives
a broadcast packet destined to another machine (H3) (Execution
trace (1) in Figure 6), but the switch it connects to (S1) has a
flowEntry that matches the destination MAC address in the packet
(Execution trace (2) in Figure 6).

In the counter example, switch S1 receives a packet 〈Src :
H6, Dst : H3〉 through port 2 from the upstream switch S2 (1).
Since S1 does not have a flow entry for the destination address
H3, it relays the packet wrapped in an OpenFlow message (i.e.
ofPacket) to the controller C1(2). The controller then instructs
S1 to broadcast the packet to all neighbors except S2 (3). How-
ever, before Server H4 receives the broadcast packet, a new packet
〈Src : H3, Dst : H4〉 could reach switch S1(4), triggering an
ofPacket message to the controller (5). The controller would then
set up a new flow entry at switch S1, matching destination H3
(6 , 7). It is possible that due to network delay, server H4 receives
its copy of the broadcast packet just now(8). Therefore, the ex-
ecution trace generates packet (H4,S1,H6,H3), swToHst (S1,H4,1)
(i.e. the link between S1 and H4), and flowEntry (S1,H3,2,1), with
Mac == DstMac (H3 = H3).

Our tool also generates a counterexample for another seemingly
correct property. This second property specifies that whenever an
end host receives a packet destined to it, the switch it connects to
has a flowEntry matching the end host’s MAC address. Formally:

ϕESL3 =
∀EndHost ,Switch,SrcMac,DstMac,OPort ,

packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧DstMac = EndHost ⊃
∃Switch ′,Mac,Outport ,Priority ,

flowEntry(Switch ′,Mac,Outport ,Priority)
∧Switch ′ = Switch ∧Mac = DstMac

The generated counter example (Figure 7) shows that a packet
could reach the correct destination by means of broadcast — a
corner case that can be easily missed with manual inspection. In
the counter example, switch S1 receives a packet destined to server
H4(1). Since there is no flow entry in the forwarding table to match
the destination address, switch S1 informs the controller of the
received packet (2), and further broadcasts the packet under the
controller’s instruction (3). In this way, server H4 does receive a
packet destined to it (4), but switch S1 does not have a flow entry
matching H4.

With further inspection, the above counter examples, are at-
tributed to incorrect specification of network properties, rather than

bugs in the programs. In the first case, a stricter property would
specify that a received broadcast message indicates an earlier table
miss. While in the second one, the property fails to consider the
possibility of specific broadcast messages in the execution.

5.3 Firewall
Our second case study is a stateful firewall, which is usually de-
ployed at the edge of a corporate network to filter untrusted packets
from the Internet. Compared to a stateless firewall, which makes
decision purely based on specific fields of a packet, a stateful fire-
wall allows richer access control depending on flow history. For
example, the firewall can allow traffic from an outside end host to
reach machines inside the local domain only if the communication
was initiated by the internal machines. We implement a SDN-based
stateful firewall, which can set up filtering policies under the in-
struction of the controller. The controller registers traffic traversal
information and installs appropriate filtering entries.
Verification results We verify a number of properties about the
stateful firewall. We discuss one property here (shown below).
ϕWeakFW =
∀Host ,Port ,Src,SrcPort ,Switch,

pktReceived(Host ,Port ,Src,SrcPort ,Switch) ⊃
∃Cntrl , trustedControllerMemory(@Cntrl ,Switch,Src)

The above property specifies that source destinations of all
packets reaching internal machines are trusted by the controller.
Surprisingly, our tool gives a counterexample for this property
(Figure 8), which depicts the scenario that an internal machine H3
sends a packet to another internal machine H4 in the same domain
through the firewall F1. Because the controller C1 never registers
local machines, the property is violated.

In spite of its simplicity, we find the counterexample interesting,
because it can be interpreted in different ways; each corresponds
to a different approach to fixing the problem. The counterexam-
ple can be viewed as a revelation of a program bug. The program-
mer can add a patch to the program and re-verify the property over
the updated program. Alternatively, the counterexample could be
linked to incomplete specification of network constraints that in-
ternal machines should never send internal traffic to the firewall.
The fix would then be to insert extra constraints over base tuples
of the program. In addition, the problem could also stem from the
property specification, since users may only care about traffic from
outside the domain. In this case, we can change the property spec-
ification, to specify that if a packet is from an external machine,
then the source address must be registered at the controller before.
In real deployment, it is up to the programmer to decide which in-
terpretation is most appropriate.

5.4 Load Balancing
The third case study is load balancing. When receiving packets to
a specific network service (e.g., web page requests), a typical load
balancer splits the packets on different network paths to balance
traffic load. There are a number of strategies for load balancing,
e.g., static configuration or congestion-based adjustment. In our
case study, we implement a load balancer which load balances
traffic towards a specific destination address, and determines the
path of a packet based on the hash value of its source address.

Verification result The property that we verify for load balanc-
ing is called flow affinity, that is, if two servers receives packets
requesting the same service—which means the packets share the
same initial destination address—the source addresses of the pack-
ets must be different.

The property does not hold in the given protocol specification,
and a counterexample is given by our tool. In the counterexample,
two load balancers responsible for different network service could

C1

S1 H4 2 1

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H3

S2

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H3

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H3

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H3

①
② ③

⑧

Execution Trace (1)

packet
NextHop:S1,
PrevHop:S2,
Source: H3,
Destination:H4

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H3,
Destination:H4

flowMod
Switch: S1,
Match: H3,
Port: 2

⑤
⑥

⑦

flowEntry
Switch: S1,
Match: H3,
Port: 2,
Priority: 1

④
C1

S1 H4 2 1 S2

Execution Trace (2)

Figure 6. A counter example for property ϕESL2

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H4)

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H4

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H4

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H4

①
② ③

④

C1

S1 H4 2 1 S2

Figure 7. A counter example for property ϕESL3

pktIn
Firewall: F1,
Source: H3,
InPort: 2(Trust),
Destination:H4

pktReceived
Destination: H4,
OutPort: 1(Trust),
Source: H3,
InPort:2,
Firewall: F1

①
②

Internet

?

C1

F1 H4 2 1 H3

Figure 8. A counter example for property ϕWeakFW

co-exist in the network, and if a server sends packets to both load-
balancers, requesting the same service, it is possible that the packets
are routed to different servers.

Similar to the case of the firewall, the programmer can fix the
counter example of the load balancer by patching the program,
adding network assumption (e.g., assuming no server is connected
to two load-balancers), or changing property specification (e.g.,
“load-balanced packets that are forwarded out of different ports of
the load balancer do not share the same source address”).

5.5 Ethernet Address Resolution
The final case study we focus on is the Address Resolution Protocol
(ARP) in an Ethernet network. End hosts use ARP to request
the destination MAC address corresponding to an IP address that
they want to communicate to. Traditionally, the ARP requests are
broadcast through the domain. In our case study, we replace the
broadcast with a centralized controller that answers ARP requests.

Verification results We verify a number of safety properties on
ARP, and all these properties prove to be true. The detailed results
can be found in Table 3.

5.6 Discussion
We discuss our experience of using the tool and insights obtained
from the case studies.

Cause of property violation The counter examples we discuss
above reveal a common pattern: when a predicate in the program
has multiple derivations, proving properties over the predicate be-
comes harder. The situation is even worse when a property involves
multiple predicates, each with multiple derivations. The increased
complexity of predicate derivations makes it error-prone for human
programmers to write correct programs or specify correct proper-
ties, and serves as the core cause of property violation. Naturally,
the fixes we proposed for counter examples generally fall into two
categories: (1) enriching the property specification to include the
missing derivations, or (2) changing the program to remove the un-
covered derivations.

Iterative application development Another observation is that
reasonable network assumptions (e.g., topological constraints)
helps prune scenarios that would not appear in actual executions,
and generate insightful counter examples. For example, a counter
example may suggest a topology where a switch has a link to itself.
A programmer may start with trivial network assumptions and let
the tool guide the exploration of corner cases and gradually add
(implicit) network assumptions that are not obvious to the pro-
grammer. In fact, our tool enables the programmer to iteratively
develop applications. The generated counter examples could help
the programmer understand (1) applicable domain of the program
(feedback of missing network constraints); (2) implementation cor-
rectness (feedback of bugs in the program); and/or (3) expected
behavior of the program (feedback of incorrect property specifica-
tion). After the programmer fix the problem, she or he can redo the
verification repeatedly until the specified property holds.

6. Related Work
Network verification. In recent years, formal verification has re-
ceived much attention in the network community. There has been
a cloud of prior work on network verification focusing on several
different aspects. One aspect is the verification of network con-
figurations, where the proposed solutions detect network config-
uration errors either 1) through static analysis of the configura-
tion file [2, 17, 18, 37, 49], or 2) by analyzing snapshots of the
data plane—reflecting the aggregate impact of all configurations—
during system execution [22, 23, 33, 51]. These solutions rely heav-
ily on application-specific network models and property specifi-
cations, which limits its adoption in more general scenarios. The
second aspect is to leverage proof-based and model-checking tech-
niques to verify the correctness of both the design and implementa-
tion of network protocols [16, 19, 25, 47, 48]. Such solutions often
demand participation of system administrators during the verifica-
tion phase, and require domain-specific expertise. The third aspect
focuses on security properties, such as origin and route authenticity

Property Property description Formal Specification Result
ϕARP1 If any controller sends an ARP response

for IP address IPA, then some end host
had sent a broadcast ARP request message
for IPA.

∀Controller , IPA,MacA,DstIP ,DstMac,
arpReplyCtl(Controller , IPA,MacA,DstIP ,DstMac) ⊃
∃Qmac, arpRequest(Host ,DstIp,DstMac, IPA,Qmac)

∧ Qmac = 255

true

ϕARP2 If any controller has a map between IP ad-
dress IPA and MAC address MacA, then
host A has sent a broadcast ARP request.

∀Controller , IPA,MacA,
arpMapping(Controller , IPA,MacA) ⊃
∃Host ,SrcIP ,SrcMac,DstIP ,DstMac,

arpReply(Host , IPA,MacA,DstIp,DstMac)
∧ DstMac = 255

true

Table 3. Results of checking safety properties of progARP on our tool

properties, in secure networking protocols that use cryptographic
primitives [5, 6, 10, 14, 52].

Most closely related to ours is the work on verifying network
protocol design using declarative networking [10, 47, 48]. The
general approach of the prior work share similarities with the one
of ours—both model the network behavior using trace semantics,
and properties are specified and verified on the trace-based model.
However, the proposed solution in this paper enables automated
static analysis of safety properties and generates counterexamples
for debugging purposes, whereas the prior work relies on manual
proofs and therefore can handle a richer set of properties.

SDN verification. One special case of network verification is
SDN verification [1, 8, 9, 21, 24, 41, 46]. For example, VeriCon [8]
defines its own special language for modeling SDN controller and
switches [8]. A hoare-logic is developed on this language to prove
properties of SDN controllers. The proof obligations are translated
to constraints and solved by the SMT solver. NICE is a testing tool
for SDN controllers written in Python [9]. NICE combines sym-
bolic execution of the controller programs with state-exploration-
based model checking. An alternative approach is to verify network
configurations generated by SDN controllers in realtime, instead of
verifying the protocols directly [24, 33]. For instance, Anteater re-
duced SDN data plane verification into SAT problems so that SAT
solvers can solve them effectively in practice [33]. NetKAT is a
high-level language designed specifically for programming SDN.
Its semantics are based on Kleene algebra. The correctness proper-
ties of networks programming using NetKAT are tightly connected
to the semantics of Kleene algebra, for instance, reachability, way
points and traffic separation.

All of these tools are specially designed to analyze SDN con-
trollers or data planes. Modeling and verifying SDN controllers is
one example application of our analysis; our analysis can be ap-
plied to analyzing other distributed systems expressible in NDLog.
On the other hand, in the current state, we can only check simple
safety properties, while VeriCon, NICE, and NetKAT can handle
more expressive properties.

Verification of declarative programs. Declarative languages have
been proposed to model systems in a variety of domains such as
networks, mobile agent planning, and algorithms for graph struc-
tures (e.g., Network Datalog (NDLog) [30], MELD [7], Linear
Meld [15], Netlog [20], DAHL [32], Dedalus [3]). However, there
has been few work on analyzing low-level correctness properties
of declarative programs. Notably, Wang et al. [47, 48] developed
a proof system for proving correctness properties of networking
protocols specified in NDlog, where programs are translated into
equivalent first-order logic axioms, that is, all the body tuples are
derivable if and only if the head tuple is derivable.

7. Conclusion
We presented an automated approach to analyzing and debugging
network protocols using declarative networking. By focusing on a
specific class of safety properties, we are able to analyze NDLog
programs with few annotations. Our algorithm reduces property
checking to constraint solving that can be automatically checked
by the SMT solver Z3. We analyzed formal properties of our al-
gorithms and implemented a prototype tool on top of RapidNet, a
compilation and execution framework for NDLog. Using our tool,
we analyzed a number of real-world SDN network protocols. Our
tool can unveil problems ranging from software bugs, incomplete
topological constraints, and incorrect property specification. When
a given safety property is violated, our tool can provide meaningful
counterexamples to help debug the protocol specification.

8. Acknowledgment
We thank the anonymous reviewers for their invaluable com-
ments. This work is supported in part by NSF CNS-1218066,
CNS-1117052, CNS-1115706, CNS-0845552, CNS-1453392 and
AFOSR Young Investigator Award FA9550-12-1-0327.

References
[1] E. Al-Shaer and S. Al-Haj. Flowchecker: Configuration analysis

and verification of federated openflow infrastructures. In SafeConfig,
2010.

[2] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in dis-
tributed firewalls. In INFOCOM, 2004.

[3] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and
R. C. Sears. Dedalus: Datalog in time and space. Technical Report
UCB/EECS-2009-173, EECS Department, University of California,
Berkeley, Dec 2009.

[4] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,
and R. Sears. Boom analytics: Exploring data-centric, declarative
programming for the cloud. In Eurosys, 2010.

[5] M. Arnaud, V. Cortier, and S. Delaune. Modeling and verifying ad hoc
routing protocols. In CSF, 2010.

[6] M. Arnaud, V. Cortier, and S. Delaune. Deciding security for protocols
with recursive tests. In CADE, 2011.

[7] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai. Meld: A declarative approach to programming ensembles.
In IROS, 2007.

[8] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller
programs in software-defined networks. In PLDI, 2014.

[9] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A nice
way to test openflow applications. In NSDI, 2012.

[10] C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou, and B. T. Loo. A program
logic for verifying secure routing protocols. In FORTE, 2014.

[11] C. Chen, L. K. Loh, L. Jia, W. Zhou, and B. T. Loo. Automated verifi-
cation of safety properties of declarative networking programs. Tech-

nical Report CMU-CyLab-15-002, CyLab, Carnegie Mellon Univer-
sity, Jun 2015.

[12] X. Chen, Y. Mao, Z. M. Mao, and J. van der Merwe. Declarative
Configuration Management for Complex and Dynamic Networks. In
Co-NEXT, 2010.

[13] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The Design and Implementation of a Declarative Sensor
Network System. In SenSys, 2007.

[14] V. Cortier, J. Degrieck, and S. Delaune. Analysing routing protocols:
four nodes topologies are sufficient. In POST, 2012.

[15] F. Cruz, R. Rocha, S. C. Goldstein, and F. Pfenning. A linear logic
programming language for concurrent programming over graph struc-
tures. TPLP, 14(4-5):493–507, 2014.

[16] D. Engler and M. Musuvathi. Model-checking large network protocol
implementations. In NSDI, 2004.

[17] N. Feamster and H. Balakrishnan. Detecting bgp configuration faults
with static analysis. In NDSI, 2005.

[18] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network con-
figuration analysis. In NSDI, 2015.

[19] A. Goodloe, C. A. Gunter, and M.-O. Stehr. Formal prototyping in
early stages of protocol design. In WITS, 2005.

[20] S. Grumbach and F. Wang. Netlog, a rule-based language for dis-
tributed programming. In PADL, 2010.

[21] S. Gutz, A. Story, C. Schlesinger, and N. Foster. Splendid isolation: A
slice abstraction for software-defined networks. In HotSDN, 2012.

[22] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
static checking for networks. In NSDI, 2012.

[23] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space
analysis. In NSDI, 2013.

[24] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In HotSDN, 2012.

[25] C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the
critical transition: Finding liveness bugs in systems code. In NSDI,
2007.

[26] C. Liu, R. Correa, H. Gill, T. Gill, X. Li, S. Muthukumar, T. Saeed,
B. T. Loo, and P. Basu. PUMA: Policy-based Unified Multi-radio
Architecture for Agile Mesh Networking. In COMSNETS, 2012.

[27] C. Liu, R. Correa, X. Li, P. Basu, B. T. Loo, and Y. Mao. Declarative
policy-based adaptive mobile ad hoc networking. IEEE/ACM Trans.
Netw., 20(3):770–783, 2012.

[28] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing Declarative Overlays. In SOSP, 2005.

[29] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declar-
ative Routing: Extensible Routing with Declarative Queries. In SIG-
COMM, 2005.

[30] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
Networking: Language, Execution and Optimization. In SIGMOD,
2006.

[31] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
Networking. In CACM, 2009.

[32] N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh. Applying
prolog to develop distributed systems. In ICLP, 2010.

[33] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with anteater. In SIGCOMM, 2011.

[34] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified
Platform for Dynamic Overlay Selection and Composition. In Co-
NEXT, 2008.

[35] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–
74, 2008.

[36] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, R. Correa,
B. T. Loo, and P. Basu. RapidMesh: declarative toolkit for rapid
experimentation of wireless mesh networks. In WINTECH, 2009.

[37] T. Nelson, C. Barratt, D. Dougherty, K. Fisler, and S. Krishnamurthi.
The margrave tool for firewall analysis. In LISA, 2010.

[38] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi.
Tierless programming and reasoning for software-defined networks.
In NSDI, 2014.

[39] Network Simulator 3. http://www.nsnam.org/.
[40] V. Nigam, L. Jia, B. T. Loo, and A. Scedrov. Maintaining Distributed

Logic Programs Incrementally. In PPDP, 2011.
[41] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A

security enforcement kernel for openflow networks. In HotSDN, 2012.
[42] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deduc-

tive Database Systems. Journal of Logic Programming, 23(2):125–
149, 1993.

[43] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
[44] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze.

A3: An extensible platform for application-aware anonymity. In
NDSS, 2010.

[45] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT
Protocols Under Fire. In NSDI, 2008.

[46] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury. Verifiably-
safe software-defined networks for cps. In HiCoNS, 2013.

[47] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative network
verification. In PADL, 2009.

[48] A. Wang, B. T. Loo, C. Liu, O. Sokolsky, and P. Basu. A Theorem
Proving Approach towards Declarative Networking. In TPHOLs,
2009.

[49] L. Yuan, H. Chen, J. Mai, C. N. Chuah, Z. Su, and P. Mohapatra.
Fireman: A toolkit for firewall modeling and analysis. In SRSP, 2006.

[50] Z3. http://z3.codeplex.com/.
[51] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, ,

and A. Vahdat. Libra: Divide and conquer to verify forwarding tables
in huge networks. In NSDI, 2014.

[52] F. Zhang, L. Jia, C. Basescu, T. H.-J. Kim, Y.-C. Hu, and A. Perrig.
Mechanized network origin and path authenticity proofs. In CCS,
2014.

[53] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
Querying and Maintenance of Network Provenance at Internet-Scale.
In SIGMOD, 2010.

[54] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr.
Secure Network Provenance. In SOSP, 2011.

[55] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo,
and M. Sherr. Distributed Time-aware Provenance. In VLDB, 2013.

