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Abstract
The definition of type equivalence is one of the most impor-
tant design issues for any typed language. In dependently-
typed languages, because terms appear in types, this defini-
tion must rely on a definition of term equivalence. In that
case, decidability of type checking requires decidability for
the term equivalence relation.

Almost all dependently-typed languages require this rela-
tion to be decidable. Some, such as Coq, Epigram or Agda, do
so by employing analyses to force all programs to terminate.
Conversely, others, such as DML, ATS, Ωmega, or Haskell,
allow nonterminating computation, but do not allow those
terms to appear in types. Instead, they identify a terminating
index language and use singleton types to connect indices to
computation. In both cases, decidable type checking comes
at a cost, in terms of complexity and expressiveness.

Conversely, the benefits to be gained by decidable type
checking are modest. Termination analyses allow depen-
dently typed programs to verify total correctness properties.
However, decidable type checking is not a prerequisite for
type safety—and, in this context, type safety implies par-
tial correctness. Furthermore, decidability does not imply
tractability. A decidable approximation of program equiva-
lence may not be useful in practice.

Therefore, we take a different approach: instead of a fixed
notion for term equivalence, we parameterize our type sys-
tem with an abstract relation that is not necessarily decid-
able. We then design a novel set of typing rules that re-
quire only weak properties of this abstract relation in the
proof of the preservation and progress lemmas. This design
provides flexibility: we compare valid instantiations of term
equivalence which range from beta-equivalence, to contex-
tual equivalence, to some exotic equivalences.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Dependent type systems promise the smooth integration of
lightweight invariant checking with full program verifica-
tion. In languages with dependent types, the types of a pro-
gram may express and statically verify rich properties about
its behavior.

Central in the design of a dependently-typed language is
the notion of type equivalence. Because types include pro-
grams, type checking requires a definition of term equiva-
lence. Therefore, the decidability of type checking requires
that the term equivalence relation be decidable.

Previous work has almost uniformly insisted on decid-
able type checking, and hence decidable term equivalence.
Some full-spectrum languages, such as Coq [Coq Develop-
ment Team 2009], Epigram [McBride and McKinna 2004] or
Agda [Norell 2007], do so by employing analyses that force
all programs to terminate. This strong requirement has the
benefit that type checking implies total correctness. If a func-
tion has type τ → Σy :τ ′.P y then one can be assured that it
will terminate and produce a value satisfying property P .

Other, phase-sensitive languages, such as Dependent
ML [Xi and Pfenning 1998], ATS [Xi 2004], Ωmega [Sheard]
and Haskell (with GADTs [Peyton Jones et al. 2006]), allow
nonterminating computation and sacrifice total correctness.
They retain decidable type checking by not allowing terms
to appear in types. Instead, they identify a terminating index
language (the type language in the case of Haskell) and use
singleton types to connect indices to computation.

Projects such as Ynot [Nanevski et al. 2008], GURU [Stump
et al. 2008] and PIE[Vytiniotis and Weirich 2007] aim to ex-
tend depedent types to reason about languages with effects
and states. Ynot axiomitized a Hoare Type Theory for reason-
ing about memory as a monad in Coq. To maintain sound-
ness and decidability of type checking, GURU and PIE need
termination and effect analysis.

In both cases, decidable type checking comes at a cost,
in terms of both complexity and expressiveness. Requiring
all programs to terminate severely limits the generality of a
programming language. Furthermore, the complexity of the
termination analysis can make it difficult for programmers
to understand why their code does not type check. In phase-
sensitive languages, singleton types lead to code duplication,
as programs must often be written twice, once in the compu-
tation language, and again in the index language. More trou-
blesome, there is no restriction that the semantics of the index
language match that of the computation language: only their
first-order values are required to agree.

At the same time, the benefits to be gained by decid-
able type checking are modest. Although termination anal-
yses provide stronger correctness guarantees, they do not
need to be integrated into the type system. Partial correctness
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guarantees that are naturally implied by type safety could
be separately extended to total correctness where necessary
by an external termination analysis. Furthermore, decidabil-
ity does not imply practicality or tractability. Why rule out
undecidable specifications a priori, when they could behave
well in practice?

Therefore, we design a full-spectrum, dependently-typed
language λ∼=, pronounced “lambda-eek”, that does not pre-
suppose decidable program equivalence. This language is
both simple and expressive: not only does it include general
recursive function definitions, and dependent products, but
it also supports dependent datatypes (also called inductive
families) with elimination forms to both terms (case expres-
sions) and types (large eliminations).

It is a folklore belief that undecidable type checking is
compatible with type safety for languages similar to λ∼= [Au-
gustsson 1998]. As a demonstration of the simplicity of our
design, λ∼= supports a straightforward proof of type safety
based on standard preservation and progress lemmas. We
have formalized this proof in the Coq proof assistant.

An important aspect of λ∼= is that it is actually a family of
languages because its type system is parameterized by an ab-
stract relation that specifies program equivalence. This three-
place relation, written isEq ( ∆ , e1 , e2 ), asserts when terms
e1 and e2 are equivalent in some context ∆ of assumptions
about the equivalence of terms. This specification of program
equivalence is isolated from the type system, and the type
safety proof depends on properties of program equivalence
that make no reference to the type system. This separation
simplifies the type safety proof.

For generality, we would like weak requirements for
isEq. In particular, we would like to admit call-by-value
versions of beta and contextual equivalences, since the op-
erational semantics of λ∼= is call-by-value. Surpisingly, we
revised our design several times before we found one that
would admit such versions of the equivalence relation.

Although it is impossible to claim that we have the weak-
est set possible, our design permits many different relations:
from standard beta-equivalence, to contextual equivalence,
to some exotic equivalences. The finest equivalence makes
our system admit no more terms than the simply-typed
lambda calculus. More surprisingly, equivalences based on
call-by-name evaluation are also valid, as well as some exotic
equivalences that identify certain terminating and nontermi-
nating expressions.

We also found that the requirements of the preservation
proof force all valid instantiations of isEq to be undecid-
able. However, preservation is not a necessary requirement
for type safety. Any language that type checks strictly fewer
programs than a type-safe language is itself type safe. There-
fore, any decidable, conservative approximation of a particular
notion of program equivalence also defines a type-safe lan-
guage. Consequently, λ∼= can be used as a template for lan-
guages with both decidable and undecidable definitions of
program equivalence.

The organization of this paper is as follows. In Section 2
we introduce the syntax and call-by-value operational se-
mantics of λ∼=. We then describe its type system, parame-
terized by the abstract predicate isEq in Section 3. Working
through a standard proof of preservation and progress leads
to requirements on isEq—we describe those properties in
Section 4. In Section 5 we give several definitions of isEq
that satisfy our requirements. Variations of our type system
lead to stronger requirements on isEq, which we discuss in
Section 6. We discussion extensions to this system and other

Terms e, u : : = x | unit | fun f (x ) = e | e1 e2

| 〈 e1 , e2 〉 | e. 1 | e. 2

| C e | case e of {Ci xi ⇒ ei
i }

Values v : : = unit | fun f (x ) = e | 〈 v1 , v2 〉 | C v

Figure 1. Syntax

( fun f (x ) = e1 ) v2 −→ e1{v2/x}{fun f (x ) = e1/f }
e1 −→ e ′1

e1 e2 −→ e ′1 e2

e2 −→ e ′2

v1 e2 −→ v1 e ′2

e1 −→ e ′1

〈 e1 , e2 〉 −→ 〈 e ′1 , e2 〉
e2 −→ e ′2

〈 v1 , e2 〉 −→ 〈 v1 , e ′2 〉

〈 v1 , v2 〉. 1 −→ v1 〈 v1 , v2 〉. 2 −→ v2

e −→ e ′

e. 1 −→ e ′. 1

e −→ e ′

e. 2 −→ e ′. 2

e −→ e ′

C e −→ C e ′

Cj ∈ Ci
i∈1..n

caseCj v of {Ci xi ⇒ ei
i∈1..n } −→ ej{v/xj}

e −→ e ′

case e of {Ci xi ⇒ ei
i } −→ case e ′ of {Ci xi ⇒ ei

i }

Figure 2. Operational Semantics

issues in Section 7. Finally, in Sections 8 and 9 we discuss re-
lated work and conclude.

All Coq proof developments for this paper are available
online at http://www.cis.upenn.edu/XXX.

2. A call-by-value language
Figure 1 presents the syntax of terms and values of λ∼=. Im-
portantly, terms do not have typing annotations. We use un-
typed terms to isolate the specification of isEq from the type
system of λ∼= and simplify its metatheory. A worry is that
isEq might distinguish between terms with syntactically dif-
ferent but semantically equivalent type annotations. To triv-
ially rule this possibility out, terms do not contain types, and
λ
∼= uses a Curry-style type system, presented in Section 3.

The term language includes only standard features of pro-
gramming languages: variables, unit, (recursive) functions,
applications, binary products, projections, data constructors
and case analysis. We use the metavariables e and u to de-
note terms and v to denote values. In a recursive function
fun f (x ) = e , the variables f and x are bound in the body
of recursive functions. If f does not appear in the body of
the function, then we write it as λx .e . In a case expression
case e of {Ci xi ⇒ ei

i }, the variables xi are bound within
each of the branches ei. We follow the Barendregt conven-
tion for bound variables [Barendregt 1981].

For simplicity, every data constructor must be of arity one
and must always be applied to its argument. This limitation
does not affect expressiveness—unary and multiargument
data constructors can be encoded. Throughout the paper, we
assume a standard Peano encoding of natural numbers, with,
for example, 0 represented as Czero unit and 1 represented
by Csucc (Czero unit). The boolean values true and false
can be similarly encoded.
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Kinds κ : : = ∗ | (x :τ)⇒ ∗
Types τ, σ : : = Unit | (x :τ)→ τ ′ | Σx :τ. τ ′ | T

| τ e | case e 〈T u 〉of {Ci xi ⇒ τi
i }

Signatures Σ :: = · | Σ,C : (x :τ)→ T e
| Σ,T : (x :τ)⇒ ∗

Contexts Γ : : = · | Γ, x : τ | Γ , e ∼= e ′

Eq ctxs ∆ :: = · | ∆ , e ∼= e ′

Pure terms w : : = x | unit | fun f (x ) = e
| 〈w1 , w2 〉 | w . 1 | w . 2 | C w

Figure 3. Types and Contexts

The small-step, call-by-value (CBV) evaluation rules for
λ
∼= appear in Figure 2. This semantics is completely standard.

Importantly, applications of recursive functions only step
when their arguments are values.

3. A parameterized type system
We now define a Curry-style type system for λ∼=. Figure 3
defines the necessary additions to the syntax. The judgment
forms of the type system are summarized in Figure 4. The
rules of the type system itself appear in Figures 5, 6 and 7.

The types of λ∼= are divided into proper types of kind ∗ that
classify terms directly; and indexed types of kind (x :τ) ⇒ ∗
that must first be applied to a single term (of type τ ).

Proper types include Unit, the type of the unit term,
function types (x :τ)→ τ ′ and product types Σx :τ. τ ′. In the
latter two types, the variable x may appear in τ ′. The result
type of a function may depend on the argument value, and
the type of the second component of a product may depend
on the first component.

Data constructors are typed by datatype constants, T ,
which are indexed types. The kinds of datatype constants
and the types of data constructors are recorded by a signature
Σ. We assume that there is one fixed, well-formed signature
Σ0 for an entire program, so we leave it as an implicit part of
the judgments. We also assume that all data constructors and
datatype constants are in the domain of Σ0.

For simplicity, we require that all datatype constants be of
kind (x :τ)⇒ ∗. Standard data types use the uniformative in-
dex unit. For example, the notation Nat abbreviates the type
TNat unit, where the constant TNat has kind (x :Unit)⇒ ∗.
We use a similar definition for the type Bool.

Often, however, the index is informative. For example,
suppose the constant List is indexed by its length, a natural
number. The data constructor nil creates a list of type List 0.
When type checking a case analysis where the scrutinee has
type List x, the type checker can assume that x is equal to 0
in the nil branch.

The type language also includes a strong elimination
form: case analysis of terms to produce types. In a type pat-
tern match, case e 〈T u 〉of {Ci xi ⇒ τi

i }, a finite number
of types τi are indexed by a term e that is expected to be
of type T u . (We discuss the need for this annotation in Sec-
tion 3.3.) This mechanism provides the technique of “Uni-
verses” in dependently-typed languages. For example, in a
context containing the assumption x : Bool, the term

case x of { true ⇒ 1 ; false ⇒ false }
can be assigned the type

case x 〈Bool 〉of { true ⇒ Nat ; false ⇒ Bool }

Formation Judgments Equivalence Judgments
` Σ Signature ` Γ ≡ Γ′ Context
` Γ Context ∆ ` τ ≡ τ ′ Types
Γ ` κ Kinds ∆ ` κ ≡ κ′ Kinds
Γ ` τ : κ Types
Γ ` e : τ Terms

Figure 4. Type System Judgment Forms

The type system is defined in terms of a number of as-
sumption lists. Besides signatures Σ, there are contexts Γ and
equivalence contexts ∆. Contexts are ordered lists of variable
type assumptions and term equivalence assumptions. The
domain of a context is the set of variables for which there
are type assumptions. Equivalence contexts ∆ contain term
equivalence assumptions only. We denote context concatena-
tion with Γ , Γ′ (and ∆ , ∆′). We use Γ? to produce the equiv-
alence context that containing equivalence assumptions in Γ.

One rule of our type system (see below) requires the defi-
nition of pure terms. We use the metavariable w to range over
a simple set of terms that are known to terminate.

3.1 Parameterized equivalence: isEq

As mentioned above, the type system of λ∼= is parametrized
by the predicate isEq ( ∆ , e , e ′ ). This predicate decides
whether the terms e and e′ are equivalent under the set of
equivalence assumptions in ∆.

We use isEq to define two auxiliary relations used for
type checking. First, the predicate incon ( ∆ ) determines if
there exists a contradiction in the equivalence assumptions
of ∆. An equivalence context ∆ is inconsistent when isEq
equates two pure terms headed by different constructors.

DEFINITION 3.1 (Inconsistency).
Define incon ( ∆ ) if there exist terms Ci wi and Cj wj such that
isEq ( ∆ , Ci wi , Cj wj ) and Ci 6= Cj .

Furthermore, we also define when two equivalence con-
texts are equivalent according to isEq.

DEFINITION 3.2 (Equivalence Context Equivalence). We de-
fine the judgment ∆ ≡ctx ∆′ from the following rules:

· ≡ctx ·
∆ ≡ctx ∆′ isEq ( ∆ , e1 , e ′1 ) isEq ( ∆ , e2 , e ′2 )

∆ , e1
∼= e2 ≡ctx ∆′ , e ′1 ∼= e ′2

Most existing dependently typed languages use β−equivalence,
or βη-equivalence to decide term equivalence. In our lan-
guage, we leave isEq abstract. However, to ensure that our
system enjoys standard properties (such as preservation and
progress) isEq must itself satisfy a number of properties that
we describe in Section 4.

The equivalence assumptions in ∆ are equations between
arbitrary terms. These terms do not need to be well-typed or
even have the same type (though our rules only add such
assumptions to the equivalence context). Futhermore, these
equations do not need to be consistent, though when they
are not, all terms are typeable with all types.

3.2 Typing

The type system of λ∼= is defined by two main categories of
judgments (see Figure 4). One set determines when syntac-
tic elements are well-formed. The other set determines when
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` Γ

` · C E
` Γ x 6∈ dom(Γ) Γ ` τ : ∗

` Γ, x : τ
C TERM

` Γ Γ ` e1 : τ Γ ` e2 : τ

` Γ , e1
∼= e2

C EQ

Γ ` κ
` Γ

Γ ` ∗ K TYPE
Γ, x : τ ` κ

Γ ` (x :τ)⇒ κ
K PI

Γ ` τ : κ

` Γ

Γ ` Unit : ∗ T UNIT
` Γ T : κ ∈ Σ0

Γ ` T : κ
T CST

Γ, x : τ1 ` τ2 : ∗
Γ ` (x :τ1)→ τ2 : ∗ T PI

Γ, x : τ1 ` τ2 : ∗
Γ ` Σx :τ1. τ2 : ∗ T SIGMA

Γ ` τ : (x :τ1)⇒ κ1 Γ ` e : τ1
Γ? , x ∼= e ` κ1 ≡ κ Γ ` κ

Γ ` τ e : κ
T APP

Γ ` κ Γ ` e : T u CtrOf(T ) = Ci
i∈1..n

Ci : (xi :τi)→ T ui ∈ Σ0
i∈1..n

Γ, xi : τi , u ∼= ui , e ∼= Ci xi ` τi : κ
i∈1..n

Γ ` case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n } : κ

T CASE

` Γ incon ( Γ? )

Γ ` τ : κ
T INCON

Γ ` τ : κ Γ? ` κ ≡ κ′ Γ ` κ′

Γ ` τ : κ′
T KCONV

Figure 5. Context, kind, and type formation rules

they are equivalent. The formation rules refer to the equiva-
lence rules, but the equivalence rules are independent. How-
ever, we start our discussion with the formation rules, and
discuss the equivalence rules in Section 3.3.

The formation rules appear in Figures 5 and 6. Most
rules are straightforward; we focus on the term typing rules.
One significant departure from standard rules is that we use
equivalence assumptions instead of substitution. For exam-
ple, a standard rule for application substitutes the operand
e2 for the variable in the result type:

Γ ` e1 : (x :τ1)→ τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2{e2/x}
E APP’

However, in λ
∼=, instead of substituting the operand e2

in the result type, rule E APP checks if τ2 is equal to some
τ under an equivalence context that extends Γ? with the
equation x ∼= e2. Furthermore, to ensure that x is not free
in τ , the rule checks that τ is well-formed under the context
Γ. Similarly, the typing rules for dependent pairs, projects
and constructors also extend the context with equivalence
assumptions rather than use explicit substitution.

We use equivalence assumptions instead of substitution
because substituting e into a type leads to stronger require-
ments on the substitution property of isEq. Intuitively, re-
quiring that isEq be closed under substituting an arbitrary e
limits our term equivalence relations to those based on call-

Γ ` e : τ

` Γ x : τ ∈ Γ

Γ ` x : τ
E VAR

` Γ

Γ ` unit : Unit
E UNIT

Γ, x : τ1, f : (x :τ1)→ τ2 ` e : τ2

Γ ` fun f (x ) = e : (x :τ1)→ τ2
E FIX

Γ ` e1 : (x :τ1)→ τ2 Γ ` e2 : τ1
Γ? , x ∼= e2 ` τ2 ≡ τ Γ ` τ : ∗

Γ ` e1 e2 : τ
E APP

Γ ` e1 : τ1 Γ ` e2 : τ ′2
Γ? , x ∼= e1 ` τ ′2 ≡ τ2 Γ, x : τ1 ` τ2 : ∗

Γ ` 〈 e1 , e2 〉 : Σx :τ1. τ2
E SIGMA

Γ ` e : Σx :τ1. τ2

Γ ` e. 1 : τ1
E PROJ1

Γ ` e : Σx :τ1. τ2 Γ ` τ : ∗
Γ? , x ∼= e. 1 ` τ2 ≡ τ

Γ ` e. 2 : τ
E PROJ2

C : (x :σ)→ T u ∈ Σ0 Γ ` e : σ
Γ? , x ∼= e ` T u ≡ τ Γ ` τ : ∗

Γ ` C e : τ
E CTR

Γ ` e : T u CtrOf(T ) = Ci
i∈1..n

Γ ` τ : ∗ Ci : (xi :τi)→ T ui ∈ Σ0
i∈1..n

Γ, xi : τi , u ∼= ui , e ∼= Ci xi ` ei : τ
i∈1..n

Γ ` case e of {Ci xi ⇒ ei
i∈1..n } : τ

E CASE

` Γ incon ( Γ? )

Γ ` e : τ
E INCON

Γ ` e : τ Γ? ` τ ≡ τ ′ Γ ` τ ′ : ∗
Γ ` e : τ ′

E TCONV

Figure 6. Term formation rules (typing)

by-name evaluation. However, our system is call-by-value,
leading to an undesirable mismatch. We discuss this issue
further in Section 6.1.

The typing rule for pattern-match E CASE also uses
equivalence assumptions, but for a different purpose. This
rule first checks that the branch is exhaustive, with the
premise CtrOf(T ) = Ci

i∈1..n
. During execution, if the ith

branch is taken, the scrutinee must match the pattern Ci xi ,
and the index u of the scrutinee’s type must match with the
index ui in the signature. Therefore, this rule checks each
branch under a context that extends Γ with equivalence as-
sumptions that the indices are the same (u ∼= ui) and that the
scrutinee is equal to the pattern (e ∼= Ci xi ).

The fact that λ∼= uses equivalences to represent the infor-
mation gained via case analysis is powerful. In particular, λ∼=
can take advantage of information such as f x ∼= true in a
way that languages, such as Coq and Agda, which use unifi-
cation to specify pattern matching, cannot. For example, sup-
pose we have a datatype T indexed by booleans with con-
structors C1 : T true and C2 : T false. Then, in the follow-
ing context

f : (x :Nat)→ Bool, x : Nat, h : T ( f x )→ Bool
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there are instantiations of isEq such that the following term
typechecks

case f x of {true⇒ h C1; false⇒ false}

To typecheck the application of h, the type checker must
show the equivalence of T ( f x ) and T true in the first
branch, when the equation f x ∼= true is available. Systems
based on unification, cannot make this information available
via a substitution, so require the result of f x to be named.1

Note that in rule E CASE, the order in which the equiva-
lence assumptions are added to the context is important for
maintaining the well-formedness of the context. The type of e
is T u , and the type of Ci xi is T ui . For the extended context
to be well-formed, we need to insert the assumption u ∼= ui

before e ∼= Ci xi , so that u ∼= ui is available for checking that
e and Ci xi have the same type.

The equivalence assumptions in Γ could become inconsis-
tent, for example while checking the false branch when the
scrutinee is true. In that case, the assumption true ∼= false
is added to the context. However, this branch is inaccessible
at runtime, so there is no need to type check it. Therefore, rule
E INCON assigns an arbitrary type τ to e when the equiva-
lence assumptions in Γ are contradictory.

The last typing rule is a conversion rule. If e can be as-
signed type τ , then E TCONV allows e to be given any well-
kinded type that is equivalent to τ .

3.3 Equivalence

Several typing rules require determining when two types are
equivalent. Type equivalence itself depends on kind equiva-
lence. We present these two equivalence judgments for λ∼=
in Figure 7. These judgments do not check well-formedness.
Instead, the formation rules only use the equivalence judg-
ments on well-formed constructs. For instance, in E TCONV
rule, both τ and τ ′ must be well-kinded. This framework
simplifies the metatheory of λ∼= because the properties of
equivalence may be proven independently of those for for-
mation.

Most of the rules are straightforward. Below, we focus on
the type equivalence rules. The type equivalence judgment
has the form ∆ ` τ1 ≡ τ2, where ∆ is the equivalence
context under which τ1 and τ2 are considered.

The first rule, TQ INCON, states that when ∆ is incon-
sistent, any two types are equivalent. The next few rules are
congruence rules stating that two types are equivalent if the
corresponding sub-terms are equivalent. Rule TQ APP uses
isEq to check the equivalence of the two embedded terms.
The congruence rule for case types TQ CASE checks that the
corresponding branches are equivalent with added assump-
tions that the actual index is equal to the stated index of the
constructor and that the scrutinee is equal to pattern for that
branch. Because of the asymmetry of these assumptions,
this rule must check not only the equivalence of the scru-
tinees, but also that the indices in the scrutinees’ types are
equal. Because our equivalence rules do not depend on well-
formedness rules, the only way to find out the type of the
scrutinee is to annotate the case type with 〈T u〉.

The last two rules consider the situation when a case type
could reduce along one of the branches. The rule TQ RED2
is symmetric to TQ RED1. The first premise of TQ RED1
checks if the scrutinee e is equal to some pure term Cj w ,
where Cj heads one of the patterns. The rule also checks that

1 Agda includes some ad hoc machinery that typechecks this partic-
ular example, but breaks down on small variations of it.

∆ ` κ ≡ κ′

∆ ` ∗ ≡ ∗ KQ REFL

∆ ` τ ≡ τ ′ ∆ ` κ ≡ κ′

∆ ` (x :τ)⇒ κ ≡ (x :τ ′)⇒ κ′
KQ PI

∆ ` τ ≡ τ ′
incon ( ∆ )

∆ ` τ ≡ τ ′
TQ INCON

∆ ` Unit ≡ Unit
TQ UREFL

T : κ ∈ Σ0

∆ ` T ≡ T
TQ TREFL

∆ ` τ1 ≡ τ ′1 ∆ ` τ2 ≡ τ ′2
∆ ` (x :τ1)→ τ2 ≡ (x :τ ′1)→ τ ′2

TQ PI

∆ ` τ1 ≡ τ ′1 ∆ ` τ2 ≡ τ ′2
∆ ` Σx :τ1. τ2 ≡ Σx :τ ′1. τ

′
2

TQ SIGMA

∆ ` τ ≡ τ ′ isEq ( ∆ , e , e ′ )

∆ ` τ e ≡ τ ′ e ′
TQ APP

isEq ( ∆ , e , e ′ ) isEq ( ∆ , u , u ′ )

Ci : (xi :σi)→ T ui ∈ Σ0
i∈1..n

∆ , u ∼= ui , e ∼= Ci xi ` τi ≡ τ ′i
i∈1..n

∆ ` case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n } ≡

case e ′ 〈T u ′ 〉of {Ci xi ⇒ τ ′i
i∈1..n }

TQ CASE

isEq ( ∆ , e , Cj w ) Cj ∈ Ci
i∈1..n

Cj : (xj :σj )→ T uj ∈ Σ0

isEq ( ( ∆ , w ∼= xj ) , u , uj )
∆ , w ∼= xj , e ∼= Cj xj ` τj ≡ τ

∆ ` case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n } ≡ τ

TQ RED1

isEq ( ∆ , e , Cj w ) Cj ∈ Ci
i∈1..n

Cj : (xj :σj )→ T uj ∈ Σ0

isEq ( ( ∆ , w ∼= xj ) , u , uj )
∆ , w ∼= xj , e ∼= Cj xj ` τ ≡ τj

∆ ` τ ≡ case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n }

TQ RED2

Figure 7. Kind and Type Equivalence

the index u in e’s type is equal to uj , which is the index of
Cj xj ’s type. If the jth branch τj is equivalent to a type τ
(which does not contain xj by the variable convention), then
we can conclude that the case type is equivalent to τ .

Like E CASE, TQ RED1 extends ∆ with the equation w ∼=
xj rather than using explicit substitution. Notice that when
checking if τj is equal to τ , both w ∼= xj and e ∼= Cj xj are in
the context. Although the latter assumption is semantically
redundant, not including this assumption leads to stronger
requirements for isEq. Another design choice is why we
require a pure term Cj w in the first premise, instead of Cj v
or Cj e . We address this decision in Section 6.1.

Our type equivalence rules are defined to be easily in-
vertible. For example, by examining the rules, we can con-
clude that there does not exist a derivation for ∆ ` T e ≡
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PROPERTY 4.1 (IsEq Weakening).
If isEq ( ( ∆ , ∆′′ ) , e1 , e2 ),
then isEq ( ( ∆ , ∆′ , ∆′′ ) , e1 , e2 ).

PROPERTY 4.2 (IsEq Substitution). If isEq ( ∆ , e1 , e2 ), then
isEq ( ∆{w/x} , e1{w/x} , e2{w/x} ).

PROPERTY 4.3 (IsEq Cut).
If isEq ( ( ∆ , u1

∼= u2 , ∆′ ) , e1 , e2 ), and isEq ( ∆ , u1 , u2 ),
then isEq ( ( ∆ , ∆′ ) , e1 , e2 ).

PROPERTY 4.4 (IsEq Context Conversion).
If isEq ( ∆ , e1 , e2 ), and ∆ ≡ctx ∆′, then isEq ( ∆′ , e1 , e2 ).

PROPERTY 4.5 (IsEq Reflexivity). isEq ( ∆ , e , e ).

PROPERTY 4.6 (IsEq Symmetry). If isEq ( ∆ , e1 , e2 ), then
isEq ( ∆ , e2 , e1 ).

PROPERTY 4.7 (IsEq Transitivity). If isEq ( ∆ , e1 , e2 ), and
isEq ( ∆ , e2 , e3 ), then isEq ( ∆ , e1 , e3 ).

PROPERTY 4.8 (IsEq Injectivity).
If isEq ( ∆ , C w1 , C w2 ), then isEq ( ∆ , w1 , w2 ).

PROPERTY 4.9 (IsEq Beta). If e −→ e ′, then isEq ( · , e , e ′ ).

PROPERTY 4.10 (isEq Empty).
If Ci 6= Cj , then ¬isEq ( · , Ci wi , Cj wj ).

Figure 8. The isEq Properties

(x :τ1)→ τ2 when ∆ is consistent, an important property for
the progress and preservation lemmas. However, type equiv-
alence is an equivalence relation, as we show in Section 4.2.

4. Properties of the type system
The type system of λ

∼= depends on the relation
isEq ( ∆ , e1 , e2 ). Consequently, the type safety property
of λ∼= depends on properties of this relation. In this Section,
we investigate the properties shown in Figure 8 that we use
in the proof of the progress and preservation lemmas. Al-
though these proofs are straightforward, we include details
here to motivate each of the properties listed in Figure 8.

Note that these properties are independent of the type
system. We make no requirements that the arguments to
isEq have the same type, or even have a type, or that the as-
sumptions in the equivalence context are well-formed in any
way. Thus our parameterization is simple and well-defined.

4.1 Basic Lemmas

We start with four basic properties (weakening, substitu-
tion, cut, and context conversion) that should hold for ev-
ery judgement. Because our judgments include isEq as a hy-
pothesis, these properties are required for isEq (see the first
four properties in Figure 8).

Weakening states that if a judgment holds under context
Γ (or ∆), then it also holds under a larger context.

LEMMA 4.1 (Weakening).

1. If ∆1 , ∆3 ` J , then ∆1 , ∆2 , ∆3 ` J .
2. If Γ1 , Γ3 ` J , and ` Γ1 , Γ2 , Γ3, then Γ1 , Γ2 , Γ3 ` J .

The Substitution Lemma states that equivalence judg-
ments are closed under the substitution of pure terms and

that the formation judgments are closed under the substitu-
tion of values.

LEMMA 4.2 (Substitution).

1. If ∆ ` J then ∆{w/x} ` J{w/x}.
2. If Γ, x : τ1 , Γ′ ` J and Γ ` v : τ1

then Γ , Γ′{v/x} ` J{v/x}.
Because our language has a call-by-value semantics, we do
not need this property to be true for arbitrary terms, only
pure terms and values respectively. As a result, isEq need
only be closed over the substitution of pure terms. Prop-
erty 4.2 is a particularly weak requirement. We discuss vari-
ations of it in more detail in Section 6.

The Cut Lemma removes redundant equivalence assump-
tions from the context.

LEMMA 4.3 (Cut).

1. If ∆ , e ∼= e ′ , ∆′ ` J and isEq ( ∆ , e , e ′ )
then ∆ , ∆′ ` J .

2. If Γ , e ∼= e ′ , Γ′ ` J and isEq ( Γ? , e , e ′ )
then Γ , Γ′ ` J .

Finally, both the equivalence judgments and the forma-
tion judgments are closed under equivalent contexts. First,
define context equivalence as follows:

DEFINITION 4.1 (Context equivalence).

` · ≡ · CQ EMPTY

` Γ ≡ Γ′ Γ? ` τ ≡ τ ′

` Γ, x : τ ≡ Γ′, x : τ ′
CQ TERM

` Γ ≡ Γ′ isEq ( Γ? , e1 , e ′1 ) isEq ( Γ? , e2 , e ′2 )

` ( Γ , e1
∼= e2 ) ≡ ( Γ′ , e ′1 ∼= e ′2 )

Then we can show that all formation judgments are stable
under this equivalence, and that all equivalence judgments
are stable under the equivalence context equivalence.

LEMMA 4.4 (Context Conversion).

1. If ∆ ` J and ∆ ≡ctx ∆′ then ∆′ ` J .
2. If Γ ` J and ` Γ ≡ Γ′ and ` Γ′ then Γ′ ` J .

4.2 Properties of Type Equivalence

As mentioned in Section 3, the type equivalence rules shown
in Figure 7 do not contain rules for reflexivity, symmetry, or
transitivity. Instead, we prove the following lemmas about
the equivalence judgments to show that these rules are ad-
missible. Again, to show these properties, they also must be
true of isEq (see Properties 4.5-4.7 in Figure 8).

LEMMA 4.5 (Type equivalence is an equivalence relation).

Refl: ∆ ` τ ≡ τ .
Symm: If ∆ ` τ ≡ τ ′ then ∆ ` τ ′ ≡ τ .
Trans: If ∆ ` τ ≡ τ ′ and ∆ ` τ ′ ≡ τ ′′ then ∆ ` τ ≡ τ ′′.

The proofs of reflexivity and symmetry are straightfor-
ward, but transitivity is less so, so we show one case of the
proof below. This proof motivates the Cut and Injection Prop-
erties as well as our definition of incon. It also explains why
the Subsitution Lemma requires a pure term w . To show tran-
sitivity, we must first generalize the statement of the lemma
so that the contexts of the two type equivalence derivations
are not the same, but are equivalent.
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LEMMA 4.6 (Transitivity’). If ∆ ` τ ≡ τ ′ and ∆′ ` τ ′ ≡
τ ′′ and ∆ ≡ctx ∆′ then ∆ ` τ ≡ τ ′′.

The proof is by a double induction on the structure of
the pair of assumed judgements; call the first one D and the
second second one E . Consider the case where the last rule
used in D is TQ RED2 and the last rule of E is TQ RED1.
Then, these derivations are of the form:

Cj ∈ Ci
i∈1..n

Cj : (xj :σj )→ T uj ∈ Σ0

isEq ( ∆ , e , Cj w ) isEq ( ( ∆ , w ∼= xj ) , u , uj )
∆ , w ∼= xj , e ∼= Cj xj ` σ ≡ τj

∆ ` σ ≡ case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n }

and

Cn ∈ Ci
i∈1..n

Cn : (xn :σn)→ T un ∈ Σ0

isEq ( ∆′ , e , Cn w ′ ) isEq ( ( ∆′ , w ′ ∼= xn ) , u , un )
∆′ , w ′ ∼= xn , e ∼= Cn xn ` τn ≡ σ′

∆′ ` case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n } ≡ σ′

We need to show that ∆ ` σ ≡ σ′. To use the induc-
tion hypothesis, we need to know that both E and D re-
duce using the same branch. In other words, j = n . We
know that isEq ( ∆ , e , Cj w ) and isEq ( ∆′ , e , Cn w ′ ). By
the Symmetry, Transitivity, and Context Conversion Proper-
ties of isEq, we conclude that isEq ( ∆ , Cj w , Cn w ′ ). To
continue the proof, we must conclude either that Cj = Cn

or that ∆ is inconsistent, hence our definition of incon ( ∆ ).
Now suppose that j = n . To apply the induction hypoth-

esis, we must show

( ∆ , w ∼= xj , e ∼= Cj xj ) ≡ctx ( ∆′ , w ′ ∼= xj , e ∼= Cj xj )

We have ∆ ≡ctx ∆′ by assumption, so for these two contexts
to be equivalent, we need only show isEq ( ∆ , w , w ′ ). We
also have isEq ( ∆ , Cj w , Cj w ′ ), so the Injection Property
(4.8) of isEq suffices.

By applying the induction hypothesis, we have ∆ , w ∼=
xj , e ∼= Cj xj ` σ ≡ σ′. By substituting w for xj , we
conclude that ∆ , w ∼= w , e ∼= Cj w ` σ ≡ σ′ (because
xj is not free in ∆, e , σ and σ′). To conclude ∆ ` σ ≡ σ′,
we need only remove w ∼= w and e ∼= Cj w from the context.
We already know these facts via reflexivity and assumption,
so we use the Cut Lemma (4.3), finishing the case.

Note that in this proof we must substitute a pure term
w into the judgment, not a value v . For that reason, our
Substitution Lemma (4.2) on equivalence must hold for pure
terms.

4.3 Type safety

We prove the Type Safety Theorem for our language via the
standard Progress and Preservation Lemmas [Wright and
Felleisen 1994].

LEMMA 4.7 (Preservation). If Γ ` e : τ and e −→ e ′, then
Γ ` e ′ : τ .

The proof is by induction on the reduction relation.
In some of the cases, the typing of e ′ depends on a sub-

term in e ′ that takes a step. Those cases motivate the IsEq
Beta Property (4.9).

We use the case when e = e1 e2 and e2 −→ e ′2 as an
example. By assumption we know that

Γ ` e1 : (x :τ1)→ τ2 Γ ` e2 : τ1
Γ? , x ∼= e2 ` τ2 ≡ τ Γ ` τ : ∗

Γ ` e1 e2 : τ
E APP

By the induction hypothesis, we know Γ ` e ′2 : τ1. We need
to show that Γ? , x ∼= e ′2 ` τ2 ≡ τ . Because Property 4.9
requires isEq to identify e2 and e ′2, we know that the context
Γ? , x ∼= e2 is equalivalent to the context Γ? , x ∼= e ′2. There-
fore, by using the Context Conversion Lemma (Lemma 4.4),
we can conclude Γ? , x ∼= e ′2 ` τ2 ≡ τ .

To show the Progress Lemma, we must first prove Canon-
ical Forms.

LEMMA 4.8 (Canonical Forms). Suppose ¬incon ( Γ? ).

1. If Γ ` v : Unit then v is unit.
2. If Γ ` v : (x :τ1)→ τ2 then v is fun f (x ) = e .
3. If Γ ` v : Σx :τ1. τ2 then v is 〈 v1 , v2 〉.
4. If Γ ` v : T e then v is C v ′ and C : (x :σ)→ T u ∈ Σ0.

To prove the above, we show that the type system does
not equate types with different top level forms when the
assumptions in the equivalence context are consistent.

DEFINITION 4.2 (Value types). A type τ is a value type if it is
of the top level form Unit, Σx :σ1. σ2, (x :σ1)→ σ2, or T e .

LEMMA 4.9 (Value Type Consistency). If ¬incon ( ∆ ) and
∆ ` τ1 ≡ τ2, where τ1 and τ2 are value types, then τ1 and
τ2 have the same top-level structure.

LEMMA 4.10 (Progress). If · ` e : τ , then ∃e ′. e −→ e ′ or e
is a value.

In the proof of this lemma we show that ¬incon ( · ),
so the Canonical Forms Lemma is available. Because
incon ( ∆ ) is defined in terms of isEq, we require that the
empty context be consistent, i.e. that¬isEq ( · , Ci wi , Cj wj )
if Ci 6= Cj (cf. Prop 4.10).

A straightforward application of preservation and
progress gives us the final result: Well-typed λ

∼= programs
do not get stuck.

THEOREM 4.1 (Type Safety). If · ` e : τ , then either there
exists a v such that e −→∗ v or e diverges.

5. Instantiations
Having identified a set of properties of isEq that are strong
enough to prove type safety, we now examine definitions of
term equivalence that satisfy those properties.

It is not hard to see that any instantiation is undecid-
able: let isEqX be some instantiation and consider the predi-
cate φ(e) = isEqX(·, e,C1 unit). The properties require this
predicate to be nontrivial (since φ(C1 unit) but ¬φ(C2 unit))
and respect beta-convertibility, so by a lambda calculus vari-
ant of Rice’s theorem ([Barendregt 1981] p.144) φ is undecia-
ble.

However, we could have a decidable predicate that does
not satisfy the isEq properties but still allows type safety to
hold for λ∼=. Suppose we have an instantiation isEq, and con-
sider a predicate isEq′ which is dominated by isEq, that is if
isEq′ returns true then so does isEq. Then any program that
typechecks using isEq′ will also typecheck using isEq, and
the type safety theorem for isEq tells us that the program
will never reach a stuck state.

What we are seeing here is the need to make a distinction
between type safety and preservation/progress. Any predi-
cate that is dominated by one that satisfies the properties is
sufficiently weak to ensure type safety, so it is safe to use it
in a programming language implementation. Such a predi-
cate will not necessarily be strong enough to typecheck all
the intermediate states of a computation.
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5.1 Beta-equivalence

Many dependently-typed languages use beta-equivalence as
the underlying equivalence of the type system. In this sec-
tion, we show that beta-equivalence is indeed a valid instan-
tiation that satisfies all the properties in Figure 8.

Call-by-value evaluation Some dependently typed lan-
guages test term equivalence by reducing both inputs to a
normal form and then comparing, so one expects this algo-
rithm to be a valid instantiation. Indeed it is, although we
must adjust the definition slightly: because of nontermina-
tion we cannot reduce to normal form, so instead we say that
two terms are isEq if they reduce to some common term (not
necessarily normal). As a result, the predicate is only semide-
cidable because we do not know how long to evaluate. Thus
we define our first instantiation, called isEq−→.

DEFINITION 5.1. Define isEq−→(∆, e, e ′) when there exists u
such that e −→∗ u and e ′ −→∗ u .

LEMMA 5.1. isEq−→ satsfies the isEq properties.

Note that isEq−→ is the finest equivalence satisfying the
properties. Because we require that isEq be an equivalence
relation which includes −→, any valid instantiation must
identify at least as many terms as isEq−→.

LEMMA 5.2. Let isEqX be a predicate which satisfies the isEq
properties. Then isEq−→(∆, e, e′) implies isEqX(∆, e, e′).

Generalized reduction relations The verification that
isEq−→ satisfies the properties does not use many specific
facts about−→. Therefore, we can state a more general result
about an arbitrary reduction relation .

DEFINITION 5.2. If  is a binary relation between expressions,
then define isEq (∆, e1, e2) when there exists a u such that
e1  ∗ u and e2  ∗ u .

LEMMA 5.3. For a given relation on expressions , if

• −→⊆ ,
• e  e ′ implies e{w/x}  e ′{w/x},
• C e0  e ′ implies that e ′ = C e ′0 and e0  e ′0, and
•  ∗ is confluent,

then isEq satisfies the isEq properties.

The added generality of the above lemma shows that
type safety is insensitive to the evaluation order used by the
typechecker. In particular, we can use a parallel reduction
relation for , where terms are nondeterminstically reduced
throughout, including underneath function definitions and
inside case branches. In fact, there are many valid variants of
parallel reduction, based on differences in the beta rules.

We identify three variants of parallel reduction below.

e =⇒ e ′ Require values in active positions
e =⇒w e ′ Require pure terms in active positions
e =⇒n e ′ Allow arbitrary reductions

Surprisingly, all three of these relations are sound, in-
cluding the call-by-name (CBN) variant which permits
β−reductions for arbitrary expressions. For example, this re-
lation allows the typechecker to identify (λx .y ) Ω and y—
a rather strange fact since these terms are not contextually
equivalent under call-by-value evaluation.

However, note that deterministic call-by-name evaluation
−→n, which never evaluates the argument of an application,

is not a valid instantiation. This relation does not contain call-
by-value evaluation, so isEq−→n

does not satisfy the Beta
property (4.9). Nevertheless, isEq−→n

is strictly dominated
by isEq=⇒n

, which is a valid instantiation. This means that
even though our language is CBV, it is safe to use CBN
evaluation in the type checker.

Expressivity The isEq instantiations formally satisfy the
properties and highlight the similarities between our system
and other dependently-typed languages, but they are of min-
imal use: our type system relies on introducing equations
into the context, but isEq does not even look at them! This
is only possible because the properties do not force isEq to
make use of the context; in particular we do not require the
following property:

PROPERTY 5.1 (Assumption).
If e1

∼= e2 ∈ ∆ then isEq ( ∆ , e1 , e2 ).

As we have seen, this property is not necessary for type
safety, so we do not include it in the list. However, it is inter-
esting when we consider the expressivity of our type system.
In fact, the equivalence assumptions provide all the “depen-
dent” features of our type system: if the isEq instantiation
ignores them, we can type no more terms than in the simply
typed lambda calculus.

DEFINITION 5.3. Define a type erasure function (·)o, mapping
types τ to simple types, as follows:

(Unit)o = Unit ((x :τ1)→ τ2)o = (τ1)o → (τ2)o

(T )o = T (Σx :τ1. τ2)o = (τ1)o × (τ2)o

(τ e)o = (τ)o

(case e 〈T u 〉of {Ci xi ⇒ τi
i })o

=

(
(τi)

o if isEq ( · , e , Ci w )

Unit otherwise

We write Γo to denote the pointwise lifting of the erase opera-
tion applied to Γ with all of its equivalence assumptions removed.

LEMMA 5.4 (Erasure). Suppose that isEq ( ∆ , e1 , e2 ) iff
isEq ( · , e1 , e2 ). Then Γ ` e : τ implies Γo `STLC e : τo,
where `STLC is the type system for the simply-typed lambda cal-
culus with unit, products and datatypes.

5.2 Beta-equivalence with assumptions

To extend isEq−→ into a relation satisfying the Assumption
property we can give a direct inductive definition and in-
clude enough rules to satisfy the properties:

DEFINITION 5.4 (isEqFiat).
Define the relation isEqFiat ( ∆ , e1 , e2 ) as the least relation
satisfying the following rules:

e1
∼= e2 ∈ ∆

isEqFiat ( ∆ , e1 , e2 )

e1 −→ e2

isEqFiat ( ∆ , e1 , e2 )

isEqFiat ( ∆ , C w1 , C w2 )

isEqFiat ( ∆ , w1 , w2 )

isEqFiat ( ∆ , e , e )

isEqFiat ( ∆ , e1 , e2 )

isEqFiat ( ∆ , e2 , e1 )

isEqFiat ( ∆ , e1 , e2 ) isEqFiat ( ∆ , e2 , e3 )

isEqFiat ( ∆ , e1 , e3 )

We have proved that isEqFiat is a valid instantiation.
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LEMMA 5.5. isEqFiat satisfies the isEq properties.

Properties 4.5 – 4.9 holds for isEqFiat by its definition.
The properties about substitution and context operations are
proved by easy inductions on isEqFiat ( ∆ , e , e ′ ). Finally
we get the Empty property for free since when ∆ is empty
isEqFiat coincides with isEq−→.

Just like isEq−→, we can vary the evaluation relation used
in the second rule—any relation that works for isEq also
works for isEqFiat. We use the notation isEqFiat for
alternate versions of this relation.

Like isEq−→, isEqFiat−→ is semidecidible. However, its
definition does not suggest a particularly efficient algorithm
to search for derivations. Therefore, isEqFiat is a specifica-
tion of equivalence: the typechecker can safely use any algo-
rithm that is dominated by the full isEqFiat to find deriva-
tions of isEqFiat ( ∆ , e1 , e2 ).

5.3 Contextual equivalence with assumptions

In the previous sections we showed that various beta-
equivalences are valid instantiations. But our ultimate goal
is to find the strongest equivalence we can; then any imple-
mentation can use anything weaker than it and be assured of
type safety. The natural instantiation to aim for then is con-
textual equivalence. If we can show that contextual equiv-
alence satisfies the properties, then an implementation will
be free to use any known technique from the literature in its
equivalence-checking algorithm.

To do this we have to say what it means for two expres-
sions to be contextually equivalent in the presence of equiv-
alence assumptions. We take as our starting point the notion
of CIU-equivalence, which is one of many equivalent defini-
tions of contextual equivalence[Mason and Talcott 1991]. It
says that two expressions are equivalent if all Closed Instan-
tiations (substitutions of values for free variables) of them
have the same termination behaviour when Used (placed in
a closed evaluation context).

The one subtlety here is what evaluation relation we
should consider the termination behavior under. Recall that
the type-equivalence rule for case will reduce with an open
scrutinee C w , while the operational semantics will only
reduce when the scruntinee is a closed value C v . The
isEq predicate is part of typechecking, so it is the for-
mer behaviour that is relevant and shows up in Empty
(Prop 4.9); for instance we must not identify the stuck terms
C1 ( (λx .x ). 1 ) and C2 ( (λx .x ). 1 ) even though they are
contextually equivalent under CBV reduction.

Therefore, we define a “CBW” variant of the evaluation
relation, which we write −→w. This relation is exactly the
same as −→, except that it replaces all v ’s with terminal w ’s.
For example, the beta rule reads:

w2 6−→
( fun f (x ) = e1 ) w2 −→ e1{w2/x}{fun f (x ) = e1/f }

In the definition of contextual equivalence, we use the −→w

relation and let the substitutions range over ws. This change
actually makes the “closed” part of the definition redundant,
but we retain it to stay close to the standard definition.

Note that this subtlety is only for stuck terms. For well-
typed terms, it does not matter whether we use−→ or−→w,
the same terms will be equated. Therefore, we are justified in
considering this a “CBV” contextual equivalence.

DEFINITION 5.5. Define e ⇓ if there exists u such that e −→∗w
u and not u −→w u ′ for any u ′.

Now define evaluation contexts in the standard manner.

DEFINITION 5.6 (Evaluation contexts).

E : : = � | E e | v E | 〈E , e 〉 | 〈 v , E 〉 | E . 1
| E . 2 | C E | caseE of {Ci xi ⇒ ei

i }

DEFINITION 5.7 (CBV Contextual Equivalence). Define
isEqC ( e1 , e2 ) iff ∀E, ∀δ such that δ maps variables to ws, if
E [ δe1 ] and E [ δe2 ] are closed then E [ δe1 ] ⇓ iff E [ δe2 ] ⇓.

As one might expect, isEqC satisfies the isEq properties.
However, it does not make any use of the equivalence con-
text. The key idea to generalize the definition to utilize the
equivalence context is to restrict what instantiations should
be considered. For instance, if the context contains the equiv-
alence e1

∼= e2, we should only consider substitutions that
make e1 and e2 equal. We thus introduce a new judgement
∆ ` δ (pronounced “δ respects ∆”) as follows.

DEFINITION 5.8 (Equivalence respecting substitution).

· ` δ
∆ ` δ isEqC ( δe1 , δe2 )

∆, e1 ∼= e2 ` δ
We define two expressions to be equivalent under an

equivalence context ∆ if they have the same behavior for all
instantiations that respect the context.

DEFINITION 5.9 (CBV Contextual Equiv. with Assumptions).
Define isEqCA ( ∆ , e1 , e2 ) iff ∀E, ∀δ such that δ maps vari-
ables to ws, if E [ δe1 ] and E [ δe2 ] are closed and ∆ ` δ then
E [ δe1 ] ⇓ iff E [ δe2 ] ⇓.

When ∆ is empty, isEqCA coincides with isEqC.

LEMMA 5.6. The relation isEqCA satisfies the isEq properties.

LEMMA 5.7. If e1
∼= e2 ∈ ∆, then isEqCA ( ∆ , e1 , e2 ).

5.4 Exotic Instantiations

Contextual equivalence (isEqCA) is a strong instantiation,
strictly coarser than isEqFiat. But it is not the limit—we
have already seen that isEq=⇒n

can safely identify terms
that are not contextually equivalent. In fact, the isEq proper-
ties place very weak restrictions on what terms may be iden-
tified, the only negative statements are Empty and Injectivity,
and they only apply when both terms are of the form C w .

Therefore, given a valid isEq instantiation, we can cre-
ate another coarser one by merging two of its equivalence
classes, as long as the two classes do not contain pure terms
headed by different constructors; for instance, contextual
equivalence considers all diverging terms to be equal. Cer-
tainly no diverging expression is a contructor value, so we
can create a coarser instantiation by also saying that any non-
terminating term is equal to the integer constant 3 (and all
additional equivalences forced by transitivity). Of course, we
could also make it equal to 4—but we had better not do both,
since then transitivity would make 3 and 4 equal.

This example shows that while there is a weakest valid
instantiation, isEq−→, there is no strongest one. Figure 9
summmarizes the ordering of the various instantiations we
have discussed as a Hasse diagram.

6. Variations
Different versions of our typing rules lead to different re-
quirements for isEq, which in turn affects what instantia-
tions of isEq are valid. Our goal is to design our type system
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isEq→ ( . , (λx.x) 1 , 1 )

isEq⇒w ( . , (λx.x) y ,  y )

isEq⇒n ( . , (λx.x) Ω , Ω )
isEqFiat→ ( x ≅ y , x ,  y )

isEqFiat⇒w ( x ≅ y , (λz.z) y ,  x )

isEqFiat⇒n ( x ≅ y , (λz.x) Ω ,  y )

isEqC ( . , Ω ,  Ω′ )

isEqCA ( x ≅ Ω , x ,  Ω′ )

Exotic Instantiations Exotic Instantiations
... ...

Figure 9. Inclusions between the instantiations

to place the weakest requirements of isEq, and thus allow
the most instantiations. In this section, we present variations
to λ∼=’s type system, show how they lead to stronger proper-
ties for isEq, and discuss what instantiations are no longer
available.

6.1 Values, pure terms or terms

A few rules have flexibility about whether some component
must be a value, a pure term, or an unrestricted term. Al-
though the last is the most permissive, we have chosen in
some cases to restrict to pure terms to weaken the substitu-
tion requirement for isEq.

For example, consider the type equivalence rule below.

isEq ( ∆ , e , Cj w ) Cj ∈ Ci
i∈1..n

Cj : (xj :σj )→ T uj ∈ Σ0

isEq ( ( ∆ , w ∼= xj ) , u , uj )
∆ , w ∼= xj , e ∼= Cj xj ` τj ≡ τ

∆ ` case e 〈T u 〉of {Ci xi ⇒ τi
i∈1..n } ≡ τ

TQ RED1

The first precondition requires the scrutinee to be equal to
a constructor applied to a pure term. Possible alternatives
allow the argument to the constructor to be an arbitrary
expression, or require it to be a value.

If we had used the former version, then the proof of tran-
sitivity in Section 4.2 would require the stronger Substitution
and Empty properties shown below to hold for all instantia-
tions of isEq.

PROPERTY 6.1 (Impure Substitution). If isEq ( ∆ , e1 , e2 ),
then isEq ( ∆{e/x} , e1{e/x} , e2{e/x} ).

PROPERTY 6.2 (Impure Empty). If Ci 6= Cj ,
then ¬isEq ( · , Ci ei , Cj ej ).

Unfortunately, instantiations of isEq that are based on
CBW-evaluation, such as isEqBeta=⇒w

or isEqCA do not
satisfy these properties because they are not closed under
substitution of arbitrary terms. For example, if Ω is a nonter-
minating expression, then (λx .z ) y is equivalent to z under
isEqBeta=⇒w

and isEqCA, but (λx .z ) Ω is not. Further,
although isEqBeta=⇒w

trivially satisfies Impure Empty,
isEqCA does not. All CBW contexts identify Ci Ω and Cj Ω′,
which breaks 6.2.

Alternatively, if we require the scrutinee to be equivalent
to some constructor value, such as Cj v in the second alter-
native, then we would limit the expressiveness of the type
system. For example, the case type

case C1 y 〈T u〉 of{C1 x1 ⇒ Nat | C2 x2 ⇒ Bool }
cannot be shown equivalent to Nat.
Finally, the syntactic categorizaion of pure terms in λ∼= can

be viewed as a very weak and conservative termination anal-
ysis. We envision w as a place holder for terminating terms.

More programs will type check if a more powerful termina-
tion analysis mechanism is plugged into λ∼=. For instance, in
the above example, after replacing C1 y byC1 (factorialn), the
two types are still equivalent.

6.2 Substitution versus equivalence assumptions

As we discussed in Section 3.2, some of our typing rules di-
verge from standard practice in that, instead of substitution,
they add equivalence assumptions to the context. We have
designed our rules in this manner for two reasons. One rea-
son is that we can make the E CASE rule more expressive
by using equations instead. A second reason is that stating
rules with substitution requires a stronger substitution prop-
erty for isEq. With the the alternate E APP’ rule, isEq would
need to be closed under the substitutution of related expres-
sions inside related expressions.

PROPERTY 6.3 (Equivalent substitution).
If isEq ( ∆ , e1 , e2 ), and isEq ( ∆ , e , e ′ ),
then isEq ( ∆{e/x} , e1{e/x} , e2{e ′/x} ).

The reason for this property is the need to show a stronger
substitution property for type equivalence ∆ ` τ{e2/x} ≡
τ{e ′2/x} in the case of the preservation lemma when e is
an application e1 e2 and e2 −→ e ′2. Our previous proof
required a weaker lemma that substituted the same pure
term throughout the judgement.

We could modify the definitions of isEqFiat to satisfy
Equivalent Sustitution Property. However, Property 6.3 im-
plies Impure Substitution Property (Property 6.1); therefore,
neither isEq−→ nor isEqCA satisfies it.

These two examples show two different axes: whether
CBW-respecting relations are allowed and whether the
equivalence must be stronger than reflexivity for binders,
e.g. λx .e is equivalent to λx .e ′ when e reduces to e ′. These
axes are independent; it is possible to design the type system
that interpolates between these two requirements, requir-
ing a “pure equivalent substitution” property, by maintain-
ing the invariant that only ws are ever substituted in terms.
Then isEq=⇒w

satisfies the pure equivalent substitution, but
isEq−→ does not since it does not reduce under the binder.

7. Extensions

Our design of λ∼= has been simplified in a few ways so that
we can emphasize its novel features. Here, we revisit some
aspects of λ∼= and discuss potential extensions that would
make it more practical.

Polymorphism For simplicity, λ
∼= is not polymorphic.

Adding Haskell-style higher-order polymorphism [Jones
1995] would require straightforward changes to the lan-
guage. Another simple extension to the specification of λ∼=
adds first class-polymorphism, as in Curry-style System
F [Girard 1972]. (Note that type checking for Curry-style Sys-
tem F is also undecidable [Wells 1999].) In both cases, type
abstraction and application would be implicit as we do not
wish to include types in the syntax of terms.

Adding abstractions to the type language, such as in Fω ,
would require more significant changes. In particular, our
definition of type equivalence would have to be extended
to include beta-equivalence for these abstractions. A kind-
directed specification, which retains the easy inversions of
our current definition of type equivalence seems possible,
but we leave this extension to future work.
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Church-style type system For reasons discussing in Sec-
tion 2, λ∼= does not include typing annotations in expres-
sions. As a result, the type system can assign multiple non-
equivalent types to the same expressions. Given the difficulty
of complete type inference for dependently-typed languages,
a practical source language would include annotations to
guide type inference and eliminate ambiguity.

An extension to λ
∼= with type annotations would take

the form of an external language that elaborates to and is
defined by λ

∼= typing derivations. This external language
would be free to use any type inference technology available
for elaboration. As long as elaboration produces valid λ

∼=

typing derivations, this external language is type safe.

Type-directed term equivalence Our design decision that
the properties of isEq should not refer to the type system
means that isEq cannot receive any typing information from
the type checker, such as type annotations embedded in the
terms, or the types of the terms, or a typing context. There-
fore, certain type-directed equivalence algorithms [Coquand
1991, Stone and Harper 2000], which use type information
to provide stronger extensionality properties, cannot be used
for isEq. However, in a call-by-value language with nonter-
mination, eta-equivalences are restricted: λx .e x is not equiv-
alent to e because e could diverge. Instead, this equivalence
only holds for pure terms. Therefore, it is not clear how to
extend type-directed equivalences to this setting.

Termination analysis The results of this paper show that a
termination analysis is not a necessary component for type
safety. However, like most type systems, type safety for this
language provides a fairly weak result: if the language termi-
nates, then the resulting value has the expected type. In a depen-
dent type system, if the expected type is Σx :τ.P ( x ), then
this property is a partial correctness proof that the program
satisfies property P . The incorporation of a termination anal-
ysis, as a separate analysis, would allow reasoning about
the total correctness of the program. Users would have more
confidence that the program would behave as expected.

Furthermore, termination analyses provide a significant
source of program optimizations. In a dependently-typed
program, many values are the encodings of irrelevant proofs.
These proofs show that the program type checks, but other-
wise do not affect the actual result of computation. Some lan-
guages [Coq Development Team 2009, Barras and Bernardo
2008, Mishra-Linger and Sheard 2008] distinguish between
computational and proof terms, allowing the latter to be
erased prior to execution. This erasure leads to significant
gains in performance.

Note that in call-by-value language, computationally ir-
relevant code can be erased only if it terminates. Even if x
is not free in e2, let x = e1 in e2 is only equivalent to e2 if
e1 is known to terminate. Optimization must not change the
termination behavior of the program, lest an infinite loop,
which was preventing the program state from reaching a
stuck computation, be removed.

8. Related work
The past decade has seen much research in the design
of dependently-typed programming languages, including
Cayenne [Augustsson 1998], Epigram [McBride and McK-
inna 2004], Ωmega [Sheard], PIE[Vytiniotis and Weirich
2007], DML [Xi and Pfenning 1998], ATS [Xi 2004], DML re-
formulated [Licata and Harper 2005], GURU [Stump et al.
2008], ConCoqtion [Fogarty et al. 2007], Delphin [Poswol-
sky and Schrmann], Ynot [Nanevski et al. 2008] and Liquid

Types [Jhala 2008]. A number of proof assistants, such as
Agda [Norell 2007] and Coq [Coq Development Team 2009],
have also successfully been used as dependently-typed lan-
guages [Leroy 2006, Oury and Swierstra 2008]. We do not at-
tempt to survey this vast field here. Instead, we only describe
aspects of the most related systems. Of these languages, only
Cayenne and DML do not require decidable type checking.
As far as we know, no results, such as type safety, have been
proven about Cayenne.

Dependent ML Like, λ∼=, Dependent ML (DML) [Xi and
Pfenning 1998] is a family of dependently-typed language.
Types in this language depend not on terms, but on ele-
ments of some index language L, a parameter to the system.
This constraint language must include booleans and a binary
function .

=s which must return a boolean for every sort of
the language. The constraint relation φ; ~P |= P , which states
when proposition P about L is derivable from assumptions,
is likewise a parameter to the system. This relation must sat-
isfy a number of regularity rules, somewhat analogous to the
isEq properties in Figure 8. Xi points out that this constraint
relation may be undecidable, but discourages any undecid-
able instances of it.

However, because DML is phase-sensitive, the index lan-
guage L is not the computation language, and is not compu-
tationally relevant. Therefore, there is no analogue of Prop-
erty IsEqBeta for the constraint relation as the index lan-
guage is never evaluated. To program in DML, singleton
types must be used to make a connection between the index
language and computations, leading to redundancy. Further-
more, programmers must understand two different defini-
tions of equivalence to program in DML, one for L, used for
type checking, and another for the computation language, to
understand what their program does. In contrast, λ∼= is a full-
spectrum language, indexing types by actual computation. As
far as we know, λ∼= is the only such language to parameterize
term equivalence.

Pattern matching with dependent types Languages that
support dependently-typed pattern matching, such as Epi-
gram, Coq and Agda, typically specify the rules for pattern
matching using some variant of unification to represent the
static information gained during case analysis.

Of these languages, Agda’s specification of pattern match-
ing is the most sophisticated [Norell 2007]. Agda uses unifi-
cation to match the index of the scrutinee’s type and the in-
dex of the pattern’s type. The unification algorithm will sim-
ply give up when the unification is hard; for instance, uni-
fying a function application with a term. As a result, Agda’s
type checking algorithm is not substitutive; unification be-
tween a variable y and an arbitrary term always succeeds,
however after substituting f x for y , the unification algo-
rithm might fail. In our system, instead of solving a unifi-
cation problem, we add the assumption that the indices are
equivalent in the context. Consequently, substitution is avail-
able in λ∼=.

There are some languages that use equivalence assump-
tions to specify dependently-typed case analysis. A notable
example is Altenkirch and Oury’s core dependently-typed
language ΠΣ [Altenkirch and Oury 2008]. However, as their
goal is decidable type checking, they design an specific
equivalence algorithm. This algorithm β-reduces terms to
normal forms, then rewrites using equations from the con-
text. To make sure that their algorithm terminates they place
restrictions on the equations that could be used and use
boxed terms to control the unrolling of general recursive
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functions. Such ideas could be used in an instantiation of
isEq, although we have not explored that possibility.

Likewise, some specifications of generalized algebraic
datatypes (GADTs, aka guarded recursive datatypes) use
equivalence assumptions [Xi et al. 2003, Pottier and Régis-
Gianas 2006]. In phase-sensitive langauges, GADTs add in-
dex equivalences (but not scrutinee/pattern equivalences) to
the context when type checking pattern matching. In these
settings, the index language is restricted so that there is an
effective algorithm for using these assumptions during type
checking. As a result of this restriction, this specification is
no more expressive than one that uses unification.

9. Conclusion
In this paper, we have explored the trade-off between decid-
able type checking and the complexity of the design of λ∼=, an
expressive, dependently-typed language. Because we have
not insisted in the former, we are able to give a simple spec-
ification to λ∼=, despite its advanced features, which permits
straightforward, modular proof of type saftey. We view this
simplicity as a contribution of our approach.

The second significant contribution of our work is the uni-
formity of λ∼=’s semantics. Although many different instanti-
ations of isEq are valid, we have worked hard to ensure that
isEqCA is one of them. Therefore, the same semantics can
be used to reason about the program both statically and dy-
namically.

The final contribution of our design is its generality. We
can view λ

∼= as an ideal goal for the design of a dependently-
typed language, much as System F is an ideal model of a
polymorphic functional language. Of course, we can never
implement a complete type checker for λ∼= with isEqCA; the
problem is undecidable. We can however, specify and imple-
ment complete type checkers for decidable sublanguages as
any equivalence dominated by isEqCA defines a type safe
language.
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