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Abstract—Scripts on webpages could steal sensitive user
data. Much work has been done, both in modeling and
implementation, to enforce information flow control (IFC) of
webpages to mitigate such attacks. It is common to model
scripts running in an IFC mechanism as a reactive program.
However, this model does not account for dynamic script
behavior such as user action simulation, new DOM element
generation, or new event handler registration, which could
leak information. In this paper, we investigate how to secure
sensitive user information, while maintaining the flexibility of
declassification, even in the presence of active attackers—those
who can perform the aforementioned actions. Our approach
extends prior work on secure-multi-execution with stateful
declassification by treating script-generated content specially to
ensure that declassification policies cannot be manipulated by
them. We use a knowledge-based progress-insensitive definition
of security and prove that our enforcement mechanism is
sound. We further prove that our enforcement mechanism
is precise and has robust declassification (i.e. active attackers
cannot learn more than their passive counterpart).

I. INTRODUCTION

Users are becoming increasingly accustomed to web ser-

vices such as banking, social media, email, and shopping.

Accessing these services often requires sensitive personal

information, such as email addresses, phone numbers, pass-

words, credit card numbers, or even social security numbers.

As a result, it would be profitable for web applications or

third-party scripts to access this information. Indeed, web

attackers are known to steal sensitive user data [23].

There has been much work on the development of in-

formation flow control (IFC) mechanisms in the browser

context to mitigate such attacks. In the theoretical domain,

reactive and interactive models for client-side scripts [13],

[18], detailed models for the DOM [1], [28], and new

definitions for security properties that suit such programming

models have been proposed [12], [18], [31]. On the sys-

tems side, several projects have modified existing browsers,

browser components, or implemented extensions to enforce

IFC [1], [7]–[9], [17], [28], [30].

One of the challenges of IFC is dealing with declas-
sification. How can sensitive information be intentionally

released while maintaining a provably secure system. Al-

lowing principled declassification is particularly important

in the browser context, as many useful scripts, such as

web analytics services, only work when they are allowed to

access some sensitive data. For example, a company may be

interested in knowing where their website is most popular,

so the script will need to access visitor locations. Prior

work that allows declassification by web scripts either did

not prove formal properties about declassification [7], [9],

or used a simplified model that is missing some dynamic

Javascript features that could leak information [31].
Ignoring dynamic features of scripts—such as user action

simulation, new DOM element generation, and new event

handler registration—is problematic because they can be

used to leak information, especially when they interfere with

trusted declassification operations. For instance, consider a

declassification policy that allows a user’s GPS location

to be sent to a server only after the user clicks on the

“AGREE” button. If the IFC mechanism does not distinguish

between a user-generated click and a script-simulated click,

the user’s GPS location will be leaked to the server without

user consent, which is a violation of the policy. This is an

example of a lack of robust declassification [26], in which

an active attacker can abuse declassification components and

trick the system into leaking more information than intended.

Another dynamic feature of scripts that may leak information

is DOM element generation. A script may change which

fields are present on a page based on a secret value. Since a

user can only trigger events for elements which are present

on the page, observing which events are triggered will leak

information.
To reason about declassification precisely, we appeal to

the concept of gradual release [3], which allows us to say a

system is secure if the attacker’s knowledge remains constant

outside of declassification and to quantify over released

information at declassification points.
We aim to provably secure sensitive user information in

the browser context, while maintaining the flexibility of

declassification, even in the presence of active attackers—

those who can simulate user actions, generate new DOM

elements, and register new event handlers. Few papers have

examined this problem before. Our key insight is that script-

generated events and objects need to be prevented from

affecting the declassification mechanism.
This paper makes the following contributions.

• We show, through examples, that naı̈vely including

dynamic components to otherwise secure models in-

troduces information leaks.

• We extend prior work on secure multi-execution (SME)
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with declassification [31] and design new SME rules

that treat script-generated content specially to ensure

that declassification policies cannot be manipulated by

them.

• Instead of trace-based definitions, we use a knowledge-

based progress-insensitive definition of security and

prove that our enforcement mechanism is sound. This

way, the properties of our system can be described by

changes in an attacker’s knowledge—a natural way to

model what an attacker learns by observing a system.

• We prove that our enforcement mechanism is precise

(does not alter the semantics of “good” programs) and

has robust declassification.

To the best of our knowledge, our paper is the first to

study the interaction between these dynamic script features

and declassification. Our results are one more step toward

enforcing IFC in real browsers.

The rest of this paper is organized as follows. We briefly

review systems and concepts that our work builds on in

Section II, and present examples where dynamic features

interfere with declassification in Section III. In Section IV,

we introduce our dynamic reactive program model and

introduce declassification. Our SME system and its formal

properties are presented in Section V. We discuss specific

aspects of our system in Section VI and related work in

Section VII.

Detailed definitions, lemmas, and proofs can be found in

our companion technical report [25].

II. BACKGROUND

In this section, we briefly review the reactive program

model, secure multi-execution, and stateful declassification

to set up the background for our work.

Reactive programs have been used to model event-driven

programs, such as scripts on webpages [13]. In the reactive

model, a program is a set of event handlers. The top-level

event loop is single-threaded and each event handler only

executes when a corresponding event is triggered. In this

model, only one event handler executes at a time and events

waiting to be processed stay in an event queue. To manage

the single-threaded event loop, the runtime keeps track of

system state (consumer or producer state). In the consumer

state, a new event can be processed. Once an event handler

executes, the system enters the producer state. The system

stays in the producer state until the current event handler

finishes, at which point, the system switches back to the

consumer state to process the next event. This model is a

nice and clean abstraction of the single-threaded main event

loop from the JavaScript engine in browsers. Such reactive

programs have been used to model the way that browsers

and IFC mechanisms interact with scripts [10], [29].

Secure multi-execution (SME) was introduced as an infor-

mation flow control (IFC) mechanism for JavaScript on web

pages [17], [18]. A copy of the script runs at each security

level. Consider a two point security lattice with labels L and

H and partial order L � H as an example. The copy that

runs at security level H receives input from both H and L,

outputs to H channels, and its output to L channels is thrown

away. On the other hand, the copy that runs at security level

L receives only L inputs and outputs to L channels. The H
inputs are replaced with default values, and the H outputs

are suppressed. This way, potential information leaks from

H inputs to L outputs are stopped.

To allow scripts that depend on approximated or aggre-

gated secret values (e.g. analytical scripts) to run correctly in

SME, Vanhoef et al. proposed an approach to implementing

stateful declassification policies [31]. In their system, a

projection function specifies what information from a secret

event can be declassified. In addition, a stateful release

function maintains the aggregate information about all se-

cret events seen so far for eventual declassification (e.g.,

total number of clicks). Example stateful policies include:

whether the user pressed a specific shortcut key can be

released, the average of the coordinates of mouse clicks can

be released, and after the user clicks on the “AGREE” button,

the GPS reading can be released.

III. DYNAMIC FEATURES LEAK INFORMATION

We illustrate potential security problems caused by inter-

actions between dynamic features of scripts and declassifica-

tion and demonstrate how knowledge-based noninterference

is used in our setting.

A. Scripts Interfering with Declassification

One of the drawbacks of the reactive programming model

from the prior work discussed in Section II is that it is

overly simplified and omits many security-relevant dynamic

features. The dynamic features that we focus on are user

event simulation, new DOM element generation, and new

event handler registration. We chose these features because

of the clear risk they pose to IFC. We do not model event

bubbling, preemptive events, or DOM element removal,

but plan to extend our model to address these in future

work. Next we show how these features interfere with

declassification if not treated carefully.

Script-simulated events First, in the presence of script-

simulated events, the implementation of declassification

policies needs to consider the provenance of events. In

particular, events generated by scripts should not affect when

and what information is declassified. Consider the following

scenario in which the declassification policy allows the

release of the average coordinates of every two clicks. A

script simulates a click at a constant location l once the user

clicks on the webpage. The script knows l and the average of

l and the location of the user’s click, from which computing

the coordinates of the user’s click is trivial.
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Consider another declassification policy that allows the

release of a GPS reading after the user clicks on a button

authorizing it. Scripts can simulate a click on that button to

cause the information to be released.

These examples show that declassification policies

shouldn’t be affected by script operations. Allowing scripts

to control what is declassified violates the principle of robust
declassification [33], which requires that an active attacker

cannot learn more than a passive attacker. An active attacker

not only observes the system behavior, but can also modify

it. The enforcement mechanism must distinguish between

events triggered by the user and events triggered by scripts

to ensure robust declassification.

Dynamically-generated elements Dynamically-generated

elements can create channels that leak information if their

creation depends on a secret. Consider the policy: button

click events are visible to public scripts and keypress events

are secret and not visible to public scripts. Consider the

following script. For now, assume secret stores the code of

the key that user has pressed and that new(id, t, e) generates

a new object of type t identified by id with attributes e, and

addEh(id, onClick{c}) registers an event handler with body

c for click events from the object identified by id.

case secret of
| 1 ⇒ new(id1,Button, e); addEh(id1, onClick{c1})
· · ·
| n ⇒ new(idn,Button, e); addEh(idn, onClick{cn})

where ci = output attacker.com i.
Here, depending on the value of secret, a different button

will be generated with a distinct event handler. The user only

sees one button, which depends on the value of secret ; if

they pressed key i, (i.e. secret = i), the user sees a button

with the ID id i. Once the user clicks on the button with ID

id i, the onClick event handler associated with that button

will be triggered, sending the value i to the attacker. Thus,

the attacker will receive the value of secret , revealing which

key the user pressed.

Extending SME If we naı̈vely extend the stateful declassi-

fication mechanisms for SME to handle these new features,

we may be too restrictive and risk altering the semantics of

legitimate programs, making it less practical; or we may not

be restrictive enough, making it vulnerable to exploitation

by attackers. In FlowFox [17] (Firefox with SME support),

all DOM APIs are labeled as low, which means that the high

execution cannot add new elements to the DOM since low

outputs are suppressed from the high execution. This is very

restrictive, as websites frequently use JavaScript to modify

parts of the page based on private user data. For example,

a page may highlight a password field which is too weak

on a registration page. The password field is secret, so the

high execution need to modify the DOM to highlight the

Figure 1. The high execution receives the real keypress, so generates only
one button with id idi. The low execution receives the default value, so
generates all n buttons.

field. Since this output is suppressed, the DOM will not be

updated and the user will not see the field change.

To remove this restriction, we give each execution its own

copy of the DOM. However, if we freely allow the high

execution to add new elements then the leak in the second

example can still be exploited. The low execution receives a

default value (denoted dv) instead of secret, so the attacker

adds the following branch.

| dv ⇒ new(id1,Button, e); addEh(id1, onClick{c1});
· · ·
new(idn,Button, e); addEh(idn, onClick{cn})

The high execution has a copy of this script which knows

the real value of secret . It generates a single button for the

user whose ID depends on the value of secret , like before.

But this time, the low execution executes the branch for the

default value, generating n buttons, one for each possible

value of secret . The resulting view for each execution is

shown in Figure 1. The user never sees the buttons from

the low execution and the attacker doesn’t see which button

was generated for the user, but when the declassification

policy releases the button click event, the low execution is

guaranteed to have a matching button to capture the event

since every possible button is present. The value of secret is

leaked to the attacker just as before. In Section V, we show

how to stop leaks through dynamically generated elements.

Next, we show informally that this example violates a

knowledge-based security property.

B. Knowledge-Based Security

We review knowledge-based noninterference and gradual

release, and provide some intuition for how gradual release

is useful to our dynamic program model.

For explanatory purposes, we write t to denote an exe-

cution trace, τ to denote input/output sequences, and L to

denote a label context that maps events to security labels.
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The secrets in our system are sequences of user inputs. Let us

write τ ≈L
L τ ′ to denote that two traces are observationally

equivalent at the level L given the label context L. The

≈L
L relation is standard: τ ≈L

L τ ′ if removing all secret

events (those which are not observable from L) from τ
and τ ′ results in the same trace. L is formally defined in

Section IV-C.

An attacker’s knowledge, written K(τ, σ0,L), is the set of

possible input sequences that could produce an output trace

that is observationally equivalent at L to τ from the initial

configuration σ0 given the context L.

We define in(t) and out(t) to be the input and output

actions in t, respectively. We denote runs(σ0) as the set of

execution traces starting from the initial state σ0.

K(τ, σ0,L) = {τi | ∃t ∈ runs(σ0), out(t) ≈L
L τ

∧τi = in(t)}
The security property that we are interested in enforcing says

that interacting with the system does not reveal anything

about the user’s secret inputs to the attacker. It is defined as

follows:

Definition 1 (Security). We say a configuration σ0 is secure
against attackers at level L, if for all traces τ , action α, s.t.
τ · α ∈ runs(σ0), K(τ, σ0,L) ⊆� K(τ · α, σ0,L).

Here, S1 ⊆� S2 means that every element in S1 is a prefix

of an element in S2. This is a gradual release property [3]. It

is weaker than the standard noninterference property, which

requires that a low observer know nothing about the high

inputs and that the knowledge set includes all possible secret

user inputs. However, this is too restrictive, as our program

is not input-total: events have to be associated with existing

elements, which reduces the number of possible inputs.

Let’s revisit the example in Section III-A. Let’s assume

the attacker knows the program and that the secret value is

between 1 and 8. The attacker now knows that id.ev(9) is

not a possible input. We allow the attacker to know this type

of information, even though it refines their knowledge. After

the first input and before seeing id2.click(v), the knowledge

of the argument of the first input event could be any integer

begin 1 and 8:

K([id .ev(2)], σ0,L) = {[id .ev(1)], · · · , [id .ev(8)]}
After observing id2.click(v), every possible input except 2
is eliminated.

K([id .ev(2), id2.onClick(...)], σ0,L)
= {[id .ev(2), id2.onClick(...)]}

Here, not all knowledge of the shorter trace is a prefix of

the knowledge of the longer trace:

{[id .ev(1)], · · · , [id .ev(8)]}
	⊆� {[id .ev(2), id2.onClick(...)]}

The program is not secure using our definition.

We will present the formal definitions in Section V.

IV. DYNAMIC REACTIVE PROGRAMS

To design an IFC enforcement mechanism which prevents

leaks due to dynamic features, we need to design a language

model that includes those features. We first present the

syntax and semantics of our dynamic reactive programs.

We then introduce security relevant constructs. Finally, we

explain stateful declassification and extend both the language

and security definitions to accommodate declassification.

A. Syntax

The syntax of our language is shown below. We write

ev to denote events such as click and mouseover. Event

handlers, denoted eh , always have names of the form onEv ,

where Ev is the name of the event. One difference between

our model and prior work [13] is that we make explicit

the object that events are associated with. For instance,

b1 .click(v) corresponds to the user clicking on a button with

the identifier b1 . The body of an event handler is a command

c. We allow event handlers to trigger other events, generate

new objects, and register event handlers. It is common for

scripts to generate new DOM elements and simulate events.

Event: ev ::= ...
Event handler: eh ::= onEv(x){c}
Command: c ::= skip | c1; c2 |x := e

| if e then c1 else c2
| while e do c
| output ch e
| trigger id .ev(e)
| new(id , t, e)
| addEh(id , eh)

ev handler map M ::= · |M, ev 
→ {eh1, · · · , ehk}
state σ ::= · |σ, x 
→ v | id 
→ (v,M)

Command c includes the following actions: output ch e
evaluates e and sends the result to URL ch , trigger id .ev(e)
allows the script to simulate an event ev with parameter

e associated with an object identified by id , new(id , t, e)
generates a new object identified as id of type t (e.g., button,

form) with attributes e, and addEh(id , eh) registers a new

event handler eh to the object id . We also allow multiple

event handlers to be registered for one event. We write M to

denote a mapping from an event to the set of registered event

handlers for this event. We define the system state, denoted

σ, to be a mapping from variables to values and named

objects to tuples, which model the attributes and event maps

associated with the objects. For instance a button b1 can be

associated with a number of mouse events, each of which

could have multiple registered event handlers. Because new

objects and event handlers can be added at run time, we do

not have a fixed program. Instead, given a state σ, we can

view all the event handlers in σ as the program of σ.
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B. Operational Semantics

To define the operational semantics for our language, we

first introduce a few runtime constructs. We write E to

denote the set of events generated by the event handlers. As

we discussed in Section III, these events cannot be mixed

with user input events. Therefore, we collect them in a

separate context and process them once they are generated.

We write a to denote input and output actions, • to denote

silent actions, and α to denote all actions. An action trace,

denoted τ is a sequence of actions. To model single-

threaded execution, the runtime semantics keeps track of the

execution state: producer, denoted P , consumer, denoted C,

and local consumer, denoted LC . The system is in producer

state when an event handler is executing. The system is in

consumer state when it is ready to process user inputs (i.e.,

no event handler is executing and no script generated events

are left to be processed). The system is in local consumer

state when it is ready to process script generated events (i.e.,

no event handler is executing and some script generated

events still need to be processed).

events E ::= · |E, id .ev(v)
non-silent actions a ::= id .ev(v) | ch(v)
actions α ::= a | •
execution state s ::= P |C |LC
configurations κ ::= σ, c, s, E
action traces τ ::= · | τ α
execution traces t ::= κ |κ α−→ t

We define two sets of small-step operational semantics:

one for commands from event handlers for a single event

and the other for managing the event loop of consumer and

producer state. We write σ, c
α−→ σ′, c′, E to denote the

execution rules of a command c under the store σ, which

returns an updated store σ′, a new command c′, and a

list of events E generated while evaluating c. The outer-

level rules manage the event loop and are of the form:

σ, c, s, E
α−→ σ′, c′, s′, E′, where σ, c, and E have the

same meaning as before and s is the state of the event loop

(consumer, producer, or local consumer).

Most of the rules in Figure 2 are straightforward. Ex-

pression semantics are standard, so we omit those rules. We

summarize the ones responsible for the dynamic features we

aim to model. Rule OUTPUT evaluates e under the store σ
and sends the result to the URL ch. Rule EVENT-TRIGGER

evaluates e under the store σ, and passes the result as

a parameter to the event ev associated with the object

identified by id. This event is added to the event queue. Rule

NEW adds a new object to the store of type t and identified

by id. The attributes are determined by evaluating e under

the store σ. No event handlers are associated with an object

when it is created. Rule ADD-EH looks up an object id in the

store σ and adds the event handler eh to its set of registered

event handlers.

σ, c
α−→ σ′, c′, E

σ, skip; c
•−→ σ, c, ·

SKIP

σ, c1
α−→ σ′, c′1, E

σ, c1; c2
α−→ σ′, c′1; c2, E

SEQ

�e�σ = v

σ, x := e
•−→ σ[x 
→ v], skip, ·

ASSIGN

�e�σ = true

σ, if e then c1 else c2
•−→ σ, c1, ·

IF-TRUE

�e�σ = false

σ, if e then c1 else c2
•−→ σ, c2, ·

IF-FALSE

�e�σ = true

σ,while e do c
•−→ σ, c;while e do c , ·

WHILE-TRUE

�e�σ = false

σ,while e do c
•−→ σ, skip, ·

WHILE-FALSE

�e�σ = v

σ, output ch e
ch(v)−→ σ, skip, ·

OUTPUT

�e�σ = v

σ, trigger id .ev(e)
•−→ σ, skip, id .ev(v)

EVENT-TRIGGER

�e�σ = v

σ, new(id, t, e)
•−→ σ[id 
→ (v, ·)], skip, ·

NEW

ε = ε′, ev 
→ EH
σ = σ′, id 
→ (v, ε) eh = onEv(x){c}
σ1 = σ′, id 
→ (v, (ε′, ev 
→ EH ∪ eh))

σ, addEh(id, eh)
•−→ σ1, skip, ·

ADD-EH

Figure 2. Operational Semantics of Commands

We summarize the operational semantic rules for event

loops in Figure 3. Rule PTOC says that if there are no more

commands to execute or events to process and the execution

is in producer state, then it is ready to process user inputs

and switches to consumer state. Note that this is the only rule

for switching to consumer state, ensuring that no user input

is processed until all events are processed. Rule PTOLC

says that if there are no commands left to execute, but there

are events to process, and the execution is in the producer

state, then it is ready to process script generated events and
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κ
α−→ κ′

σ, skip, P, · •−→ σ, skip, C, ·
PTOC

E 	= ·
σ, skip, P, E

•−→ σ, skip,LC , E
PTOLC

σ(id .ev(v)) = c

σ, skip, C, · id.ev(v)−→ σ, c, P, ·
CTOP-USR-INPUT

CTOP-SCRIPT-INPUT

σ(id .ev(v)) = c

σ, skip,LC , (id .ev(v), E)
•−→ σ, c, P,E

σ, c
α−→ σ′, c′, E′

σ, c, P,E
α−→ σ′, c′, P, (E,E′)

P

Figure 3. Operational Semantics for Event Loop

switches to local consumer state. Rule CTOP-USR-INPUT

receives a user-initiated event ev associated with object id
and parameters v. The execution switches to producer state,

the body of the event handler c is looked up in the store

σ and is executed next. Rule CTOP-SCRIPT-INPUT begins

with the execution in local consumer state, indicating that

there are script-generated events to process. The execution

switches to producer state and the body of the event on the

front of the queue, c, is looked up in the store, σ, to be

executed next. Finally, rule P is responsible for executing

individual commands. It takes one step in the command

operational semantics and updates the store, command, and

event queue, remaining in the producer state.

C. Security Labels

Before introducing declassification policies, we define

our security lattice. Figure 4 summarizes all the constructs

needed for defining security policies.

We assume a simple security lattice that has two labels

H and L and a partial order L � H . As shown in our

motivating examples, events associated with dynamically

generated objects should not influence declassification. To

enforce this, we augment our security labels with another

label: HΔ for events that are associated with such objects.

These events should not be observable by low-observers, nor

should they be subject to declassification. In the security

lattice, we treat HΔ the same as label H . Since we do not

allow dynamically generated objects to have any affect on

low outputs, it is possible that we will change the behavior

of otherwise benign programs. This affects how we reason

about the precision of our enforcement mechanism, which

says that the semantics of good programs should not be

Security label � ::= H |HΔ |L
Init. IDs Γ ::= · |Γ, id
Lab. map ml : (eventName+ chName)

→ arg → Lab
Policy context L ::= (Γ,ml)
Command c ::= · · · |x := declassify(ι, e)
Declassification Func. D : (state× event)

→ (state
× release option
× event option)

Release R ::= (ρ,D)
Released value r ::= none | some(ι, v)
Release Channel d ::= · | d, (ι, v)

Figure 4. Constructs for Defining Security Policies

altered. See Section V-C for information about our precision

theorem and Section VI for further discussion.

We use a label context L to map events and network

outputs to their security labels. The label context needs

to map events associated with dynamically added objects

correctly, therefore, we split the label mapping into two

parts: Γ which records all the object IDs that are in the

initial configuration (IDs of elements that the attacker knows

for sure exist by reading the program), and ml which is

a function that takes an event name and the argument of

the event as input and returns the corresponding security

label. In other words, ml decides the label of events and

network outputs. For events, ml uses the event type and

event argument alone, not the ID of the object that the event

is associated with. For network outputs, ml takes as input

the channel name and the value to be sent to that channel as

arguments. We can decide the security label of a non-silent

action given a label context L. The judgment L 
 a : �
means that a non-silent action a has security label � with

regard to the label context L. It is defined as follows:

id /∈ Γ

(Γ,ml) 
 id .ev(v) : HΔ

id ∈ Γ ml(ev , v) = �

(Γ,ml) 
 id .ev(v) : �

ml(ch, v) = �

(Γ,ml) 
 ch(v) : �

To decide the label of an event id .ev(v), we first check

whether id is in Γ. If it is not, the label for this event is

HΔ. Otherwise, we apply ml : ml(ev , v). Instead of using

the judgment, we write L(a) to denote the security label of a
given L. For instance, a label context L with Γ = {button0},

ml(click, ) = H means that initially there is only button0

on the page, and all click events are H . Then, if we use this

label context L in the example in Section III-A, we have

L(button0.click(v)) = H and L(id1.click(v)) = HΔ.
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D. Declassification

Many useful scripts, such as Google Analytics, are not

secure using the strict definition of noninterference, as they

are designed to collect some private information about user

actions. Therefore, we need to extend our model to include

declassification.

We add a declassification command, where ι is the

identifier of the declassification. We assume that each de-

classification command in a program has a unique location

ι. Intuitively, declassification commands are used to wrap

expressions that compute aggregates of secrets (e.g. max,

min, average, total number of events, etc.). For instance, to

track how much content a user reads on a page, a script may

want to know how many times the space key is pressed.

Each time the space key is pressed, the event handler for

the key press event increments a global variable numPress .

When the user navigates away from the page, the unload
event handler will be triggered, which contains the following

command to access the number of times that the user pressed

the space bar: x := declassify(ι,numPress).

Generalizing ideas from [31], we define operational de-

classification policies. We write R to denote such policies.

R is a pair of a state ρ and a function D. D takes as input

an event and the state ρ and returns a tuple containing the

value to be released (r), an event to be released, and the new

state. The value to be released can either be none, indicating

nothing is to be released, or some(ι, v), indicating value v
is to be released to declassification location ι.

We call R an operational policy because it specifies

how declassification should work but does not provide a

declarative specification as to precisely what is released.

One could imagine defining a specification similar to a flow

spec, specified in [6], where a formula over two traces

is used to specify the declassification policy. Then, static

analysis is needed to check that the operational policies

satisfy the declarative specification. We leave declarative

policy specification to future work.

The run-time state is augmented by a channel d for

communicating declassified values. d contains mappings

of a declassification location to a value. We define the

update(d, r) and read(d, ι) operations to update the value

in d and read the released value from d, respectively. When

r is none, the update operation just returns d unchanged.

We augment the operational semantics to handle declassi-

fication. We add the release channel d to the left of the arrow

for all the local execution rules in Figure 2. We also add the

following DECLASSIFY rule to the local execution rules. It

reads from the declassification channel d the value that ι is

mapped to and assigns it to x. Here, e is not evaluated, as

the release policy module is supposed to evaluate e on the

scripts’ behalf, which we explain further towards the end of

this section.

d, σ, c
α−→ σ′, c′, E

read(d, ι) = v

d, σ, x := declassify(ι, e)
•−→

σ[x 
→ v], skip, ·
DECLASSIFY

We also add the release channel d to the left of the rules

governing local script input and output; that include all the

rules in Figure 3, except the CTOP-USER-INPUT rule. The

resulting set of rules may be found in Section V, Figure 6

(they will be re-used for defining SME rules in that section).

The remaining rules, summarized below, use a new judg-

ment L 
 R, d, κ
α−→ R′, d′, κ′. These rules are the new

outer-most level input/output rules.

L 
 R, d, κ
α−→ R′, d′, κ′

σ(id .ev(v)) = c L(id .ev(v)) ∈ {L,HΔ}
L 
 R, d, σ, skip, C, · id.ev(v)−→ R, d, σ, c, P, ·

IN-L

σ(id .ev(v)) = c
L(id .ev(v)) = H R = (ρ,D)

D(id .ev(v)) = (r, , ρ′) d′ = update(d, r)

L 
 R, d, σ, skip, C, · id.ev(v)−→ (ρ′,D), d′, σ, c, P, ·
IN-H

d, κ
α−→ κ′

L 
 R, d, κ
α−→ R, d, κ′ OUT

Our release function is only applied to events that are

labeled H . Therefore, the runtime state includes the label

context L. The purpose of the additional rules is to compute

aggregates of secret inputs using the release module, which

produces the release value. Rule IN-L applies when the input

event is not declassified because it is either a low input

(labeled L) or is not supposed to be declassified because

it may leak information (labeled HΔ). If the input event is

labeled H , rule IN-H applies. The declassification function

D is applied to the current state of the release module and

the input event, and returns a new state and a release value r.

The declassification channel d is updated to the new release

value. Note that update will not change d if r is none.

Finally, rule OUT applies when the system is in producer or

local consumer state. It makes use of the rules in Figure 3.

For our example policy which releases the total number

of space key presses, the state ρ can be the number of

space key presses so far and the declassification function

increments ρ by 1 if the input event is a space bar key press

event. The analytical script’s event handler for key press

computes its own version in the global variable numPress .

In Section V-C, we formally define a compatibility condition

to make sure that the release policy is true to the declassified

expressions (i.e., it computes what e evaluates to). In this

example, d should be the same as the value of numPress
when the number of key presses is released. This way, the
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high execution does not need the declassify primitive and

the low execution relies on the release module to compute

declassified values.

V. SECURE MULTI-EXECUTION

In this section, we explain how to extend secure multi-

execution rules to constrain dynamic features so they cannot

be leveraged by attackers to leak information. The key

idea here is that all inputs related to dynamically generated

elements should be separated from the release module.

We define security for our dynamic reactive programs as

a conditional gradual release property and prove that our

rules are sound. Finally, we prove the precision and robust

declassification theorems for our system.

A. SME with Declassification

We write Σ to denote the secure multi-execution configu-

ration. Σ is composed of the release policy R, the declassi-

fication channel d, and two execution configurations κL and

κH executing at security levels L and H , respectively.

SME Configuration Σ ::= R, d;κL;κH

SME Exec. Traces T ::= Σ |Σ α
=⇒ T

We write L 
 Σ
α

=⇒ Σ′ to denote the small step operational

semantics for SME, which consists of rules that coordinate

between the high and low executions. We write T to de-

note the execution traces of SME, which is a sequence of

transitions.

Summaries of the SME rules are shown in Figure 7 and 8

and handle user inputs and outputs, respectively. If the input

event’s label is H , it is subject to declassification. We need

to apply the release policy to the event to update the state

of the release module, update the declassification channel,

and compute the projected event that the low execution

is allowed to see. Rule SMEI-NR1 states that if the low

execution is not allowed to see the input event (the projected

event is emp), then low execution stays in the consumer

state, and event handlers associated with this input event are

scheduled to run in only the high execution. Rule SMEI-R

applies when the H input event is projected to eL. In this

case, both the high and low execution move to producer

state and start executing the event handlers for the events

that they see.

Rule SMEI-NR2 applies when the input event’s label is

HΔ, indicating that this input potentially interferes with the

release policies. Therefore, the release module remains the

same and the low execution stays in consumer state.

The last input rule SMEI-L states that when the input

event is labeled L, both executions see the same input and

execute event handlers matching that event. A depiction of

the relationship between H and HΔ labels and declassifica-

tion may be found in Figure 5.

Figure 5. The high execution receives all inputs, unchanged. The low
execution receives L inputs and released H inputs through the release
module. Note that the release module throws out the HΔ inputs so that
they don’t interfere with the declassification policy.

The output rules make use of consumer and producer

states, which are defined as follows.

producer(κ) iff ∃σ, c, E s.t. κ = (σ, c, P,E)
consumer(κ) iff ∃σ s.t. κ = (σ, skip, C, ·)

The output rules make sure that (1) the execution that is not

in consumer state runs using single execution rules (shown

in Figure 6), (2) the low execution runs first, (3) outputs

produced by an execution with the same label are allowed

and (4) outputs produced by an execution with a different

label are suppressed.

Notice that we use HΔ to label all events that are related

to elements that are not in the initial configuration so that

these events will not be mistakenly passed to the release

module for declassification. Going back to our examples

in Section III-A, this means that the click event of newly

generated buttons will not be released to the low execution,

even though the declassification function maps all click

events to L. Thus, we effectively protect the integrity of the

declassification policy, since the events that are fed to R are

not influenced by the attacker. Moreover, the simulated click

d, κ
α−→ κ′

E 	= ·
d, σ, skip, P, E

•−→ σ, skip,LC , E
PTOLC

d, σ, skip, P, · •−→ σ, skip,C , ·
PTOC

σ(id .ev(v)) = c

d, σ, skip,LC , (id .ev(v), E)
•−→ σ, c, P,E

LCTOP

d, σ, c
α−→ σ′, c′, E′

d, σ, c, P,E
α−→ σ′, c′, P, (E,E′)

P

Figure 6. Operational Semantic Rules for Single Execution
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L 
 Σ
α

=⇒ Σ′

L(id .ev(v)) = H
D(ρ, id .ev(v)) = (r, emp, ρ′)

d′ = update(d, r) σH(id .ev(v)) = cH

L 

(ρ,D), d;σL, skip, C, ·;σH , skip, C, ·
id.ev(v)
=⇒ (ρ′,D), d′;σL, skip, C, ·;

σH , cH , P, ·

SMEI-NR1

L(id .ev(v)) = HΔ σH(id .ev(v)) = cH

L 

R, d;σL, skip, C, ·;σH , skip, C, ·
id.ev(v)
=⇒ R, d;σL, skip, C, ·;

σH , cH , P, ·

SMEI-NR2

L(id .ev(v)) = H
D(ρ, id .ev(v)) = (r, eL, ρ

′)
d′ = update(d, r)

σL(eL) = cL σH(id .ev(v)) = cH

L 

(ρ,D), d;σL, skip, C, ·;σH , skip, C, ·
id.ev(v)
=⇒ (ρ′,D), d′;σL, cL, P, ·;

σH , cH , P, ·

SMEI-R

L(id .ev(v)) = L
σL(id .ev(v)) = cL σH(id .ev(v)) = cH

L 

R, d;σL, skip, C, ·;σH , skip, C, ·
id.ev(v)
=⇒ R, d;σL, cL, P, ·;

σH , cH , P, ·

SMEI-L

Figure 7. SME Input Rules

on the “agree to share GPS location” button will also not be

given to the release module. This event will be placed in the

local event queue, E, and will not affect the declassification

state, so the GPS location will not be leaked.

B. Soundness

In Section III-B, we informally discussed knowledge

and security based on an initial configuration σ0. Here,

we define these terms based on execution traces, T , for

SME. First, we define iruns(σ0,L,R) to be the set of

SME execution traces starting from the initial state Σ0 =
(d0,R; (σ0, skip, C, ·); (σ−

0 , skip, C, ·)), where σ−
0 denotes

the same store as σ0 with all the declassification commands

removed and d0 as the default declassification channel that

maps all possible declassification location ι to a default

value. We call Σ0 an initial SME configuration from σ0.

The knowledge of an attacker, K(T, σ0,L,R) is the set of

possible input traces that could produce an execution trace

that is observationally equivalent to T .

K(T, σ0,L,R) = {τi | ∃T ′ ∈ iruns(σ0,L,R),
T ≈L

L T ′ ∧ τi = in(T ′)}

L 
 Σ
α

=⇒ Σ′

¬consumer(κL)

producer(κH) d, κL
α−→ κ′

L L(α) = L

L 
 R, d;κL;κH
α

=⇒ R, d;κ′
L;κH

SMEO-LL

¬consumer(κL) producer(κH)

d, κL
α−→ κ′

L L(α) = H or α = •
L 
 R, d;κL;κH

•
=⇒ R, d;κ′

L;κH

SMEO-LH

¬consumer(κH) consumer(κL)

d, κH
α−→ κ′

H L(α) = H

L 
 R, d;κL;κH
α

=⇒ R, d;κL;κ
′
H

SMEO-HH

¬consumer(κH) consumer(κL)

d, κH
α−→ κ′

H L(α) = L or α = •
L 
 R, d;κL;κH

•
=⇒ R, d;κL;κ

′
H

SMEO-HL

Figure 8. SME Output Rules

To determine when two execution traces are observation-

ally equivalent, we must first determine when two con-

figurations are observationally equivalent and define the

observation of a trace.

We consider two SME configurations, Σ1 =
R1, d1;κL1;κH1 and Σ2 = R2, d2;κL2;κH2,

observationally equivalent whenever their low executions

are in the same state and they are affected by declassification

equivalently (R1 = R2, d1 = d2, and κL1 = κL2). It

follows that the observation at the level L of a trace, T ,

under the label context L, denoted T ⇓L
L, is the sequence

of inputs and outputs that results in some change in the low

execution or declassification policy. Examining our SME

rules reveals that this observation is the declassified high

T ⇓L
L= τ

(·) ⇓L
L= ·

T ′ ∈ runs(Σ′,R′,L) Σ 	≈L Σ′ α ∈ in(T )

(L 
 Σ
α

=⇒ T ′) ⇓L
L= RL(α) :: T ′ ⇓L

L

T ′ ∈ runs(Σ′,R′,L) Σ 	≈L Σ′ α 	∈ in(T )

(L 
 Σ
α

=⇒ T ′) ⇓L
L= α :: T ′ ⇓L

L

T ′ ∈ runs(Σ′,R′,L) Σ ≈L Σ′

(L 
 Σ
α

=⇒ T ′) ⇓L
L= T ′ ⇓L

L

Figure 9. Projection of Traces
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inputs, the low inputs, and the low outputs. Formally, T ⇓L
L

is defined in Figure 9. Here :: denotes concatenation, and

runs(Σ,R,L) is the set of execution traces beginning from

Σ with release policy R and label context L.

We define our security property for SME, which states

that the attacker cannot gain more knowledge about secret

user inputs as the system runs, except for what has been

released. Formally:

Definition 2 (Security). A configuration σ0 is secure w.r.t.
the label context L and release policy R against attackers
at level L, if for all traces T , actions α, and configu-
rations Σ s.t. (T α

=⇒ Σ) ∈ iruns(σ0,L,R), K(T
α

=⇒
Σ, σ0,L,R) ⊇� K(T, σ0,L,R)

Definition 2 is progress sensitive. For instance, if a

confidential value determines whether or not the execution

reaches a consumer state, then it is not secure under this

definition. The attacker can refine her knowledge about the

confidential value based on whether the system is making

progress to process inputs. Our SME rules are not secure by

Definition 2. To prove this statement for our rules, we want

to show that all of the shorter traces in K(T, σ0,L,R) are

prefixes of longer traces in K(T
α

=⇒ Σ, σ0,L,R). Consider

the situation where α is an input event. If the shorter trace is

currently processing an event handler containing an infinite

loop, it will never return to a consumer state to accept input.

Therefore, this trace is not a prefix of a longer trace in

K(T
α

=⇒ Σ, σ0,L,R).
Instead, we consider a progress-insensitive definition of

security. We define a trace which can make progress as

follows:

prog(T,L) iff T = L 
 Σ0 =⇒∗ Σ and

∃T ′ s.t. T ′ = L 
 Σ =⇒∗ ΣC

and consumer(ΣC)

And we limit our set of knowledge to the traces that make

progress:

Kt(T, σ0,L,R) =
{τi | ∃T ′ ∈ iruns(σ0,L,R), T ≈L

L T ′∧
τi = in(T ′) ∧ prog(T ′,L)}

Then, we can update our definition of security to be

progress-insensitive by limiting the shorter trace to those

capable of making progress.

Definition 3 (Progress Insensitive Security). A configuration
σ0 is secure w.r.t. the label context L and release policy R
against an attacker at level L, if for all traces T , actions
α, and configurations Σ s.t. (T α

=⇒ Σ) ∈ iruns(σ0,L,R),
K(T

α
=⇒ Σ, σ0,L,R) ⊇� Kt(T, σ0,L,R)

We prove that our SME rules are sound, formally:

Theorem 4 (Soundness). ∀L,R, σ0, s.t. σ0 is secure w.r.t.
the label context L and release policy R against an attacker
at level L.

As stated previously, to prove this statement, we want to

show that all of the shorter traces in K(T, σ0,L,R) are a

prefix of a longer trace in K(T
α

=⇒ Σ, σ0,L,R). This is

to say, any shorter trace can be expanded to an execution

which is observationally equivalent to L 
 T
α

=⇒ Σ. If α is

not observable (e.g. high output), the shorter trace is already

observationally equivalent to L 
 T
α

=⇒ Σ. Otherwise, we

need to show that the shorter trace can take an equivalent

step. This is the intuition behind the following lemma:

Lemma 5 (Strong One-step). If T1 = L 
 Σ1
α

=⇒ Σ′
1 with

Σ1 	≈L Σ′
1, Σ1 ≈L Σ2, and prog(Σ2,L) then ∃Σ′

2, τ s.t.
T2 = L 
 Σ2 =⇒∗ Σ′

2 with T1 ≈L
L T2 and Σ′

1 ≈L Σ′
2

In addition to α being observable, this lemma requires

that the two traces be in equivalent states before the step.

This follows from an additional lemma:

Lemma 6 (Eq trace Eq state). If T1 = L 
 Σ1 =⇒∗ Σ′
1

and T2 = L 
 Σ2 =⇒∗ Σ′
2 with Σ1 ≈L Σ2 and T1 ≈L

L T2,
then Σ′

1 ≈L Σ′
2.

Lemma 5 is proven by examining each case of E :: L 

Σ1

α
=⇒ Σ′

1, where α is observable, and showing that the

second trace can take an equivalent step. Lemma 6 is proven

by induction over the length of the trace T1. A detailed proof

of Theorem 4, as well as supporting lemmas may be found

in our companion technical report [25].

C. Precision

One desirable property of SME is precision, which states

that the semantics of good programs should not be altered.

Good programs are those that are compatible with the de-

classification policies and do not leak information outside of

what is released by declassification. The formal definitions

of compatibility and no leak outside declassification are very

similar to those in prior work [31].

Definition 7 (Compatibility). We say that a state σ is
compatible with a release policy R and label context L,

when for all τ L 
 d0,R;κ
τ

−→∗ d′,R′;κ′ iff κ
τ

−→∗ κ′

where d0 is the initial release channel, κ = (σ, skip, C, ·).
We use the judgement κ −→∗ κ′ to denote program

execution without SME. Definition 7 confirms that the

release function computes the same declassified values as

the script would if it ran without SME. We say that a script

does not leak outside of declassification if release policies

that affect the inputs the same way always produce the same

outputs. If the outputs differed, it must be the case that the

secret inputs influenced the outputs, outside of what was

declassified. We write τ |L� to denote the projection of an

action sequence to label � under the label context L, and

R∗
L(τ) to denote repeatedly applying R to each input event

in τ with label context L.
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Definition 8 (No leak outside declassification). We say that
a state σ is has no leak outside declassification, if for all
label context L, release policies R, R′, R1, R′

1 and traces
τi1, τi2, s.t. R∗

L(τi1) = R′∗
L (τi2), for all τ1 and τ2 L 


t1 = d0,R;κ −→∗ d′,R1;κ
′ and L 
 t2 = d0,R′;κ −→∗

d′,R′
1;κ

′, and in(t1) = τi1, in(t2) = τi2, it is the case that
out(t1)|LL = out(t2)|LL.

We say that an execution trace is a complete run if it starts

and finishes in consumer state.

T is a complete run iff L 
 T = Σ =⇒∗ Σ′

and consumer(Σ)
and consumer(Σ′)

We prove the following precision theorem. Similar to prior

work on SME, our precision theorem concerns observations

at each security level.

Theorem 9 (Precision). For all L, R, σ and κ1, κ1 =
(σ, skip, C, ·), σ is compatible with L and R, and does not
leak outside declassification, then for all complete runs T
and t s.t. L 
 T = Σ1 =⇒∗ Σ2, t = κ1 −→∗ κ2, and Σ1 =
d,R;κ1;κ1, and in(T ) = in(t) imply out(T )|LH = out(t)|LH
and out(T )|LL = out(t)|LL.

Proof details may be found in the full version of our pa-

per [25], and uses similar techniques as prior work [31]. One

interesting observation here is that this precision theorem is

fairly weak as it requires both the SME and single execution

traces exist. In Section VI, we show that programs are not

precise using a stronger definition due to dynamic features.

D. Robust Declassification

Robust declassification requires that active attackers can-

not learn more than passive attackers. We say that σ2

contains more active components than σ1 (σ1 <A σ2) if it

contains more script-generated event handlers and objects,

but is otherwise the same. The formal definition may be

found in our companion technical report [25].

For our robustness theorem, we consider an interleaving

of inputs to σ1 with additional inputs (corresponding to the

additional components, denoted τΔ) as the input to σ2. We

formally define an interleaving of two traces as follows:

τ1 
� · = τ1

τ1 = τ ′1 :: τ ′′1 τ2 = α :: τ ′2
τ1 
� τ2 = τ ′1 :: α :: (τ ′′1 
� τ ′2)

We also define the following relation for A and B, sets

of traces:

A ⊆� B iff ∀τ ∈ A, ∃τ ′, τΔ with τ ′ ∈ B, and
τ 
� τΔ = τ ′

Because the additional inputs to σ2 are from script-

generated components, all of these inputs have the label HΔ.

We denote this formally as dom(τΔ)∩Γ = ∅, meaning that

the objects assosciated with inputs from dom were added to

the system. We define the domain of a set of inputs:

τ = τ ′ :: α
dom(τ) = dom(α) ∪ dom(τ ′)

α = id.ev(v)

dom(α) = {id}

α = ch(v)

dom(α) = { }
One caveat is that we need to account for non-progress

behavior (divergent in non-consumer state) introduced by the

additional event handlers in σ2. We consider an execution

trace divergent if it never reaches a consumer state.

Theorem 10 (Robust Declassification). ∀σ1, σ2,L,R s.t.
σ1 <A σ2, and ∀T1 ∈ iruns(σ1,L,R) s.t. T1 is a complete
run, ∀T2 ∈ iruns(σ2,L,R) s.t. T2 is a complete run, with
τi = in(T1), in(T2) = τi 
� τΔ, dom(τΔ) ∩ Γ = ∅,
K(T1, σ1,L,R) ⊆� K(T2, σ2,L,R) or σ2 diverges.

We prove this by defining a simulation relation between

the configurations in T1 and T2. As mentioned earlier, the

additional input to T2 will not affect the state of the release

module, and can only be processed by the high execution.

Therefore, after processing these inputs, the configurations

in T2 still relate to the same configurations in T1. Details

about this proof as well as supporting lemmas may be found

in our companion technical report [25].

Allowing active attackers to cause the system to enter a

state where it cannot receive inputs is consistent with our

progress-insensitive definition of the attacker’s knowledge,

which allows the system to leak information through whether

or not it makes progress.

Going back to our example in Section III-A, we can in-

stantiate σ2 as the configuration including the event handler

with the problematic branching statement, and σ1 as this

configuration minus this event handler. The additional events

will be id2.click(v). If id2.click(v) were given to the low

execution, then the knowledge of the active attacker refines

that of the passive one, as it knows the previous input must

be 2. However, because the button with ID id2 was added to

the system, the event is not given to the low execution, so the

active attacker learns no more than the passive one. Robust

declassification ensures that this is always the case. The

attacker that generates objects and registers event handlers

learns no more than the attacker who merely watches the

system run.

VI. DISCUSSION

Precision Our precision theorem is weak in the sense that

we require the program leak no information outside of

what is released by declassification. Consider a program

that generates new elements and event handlers (denoted

Δσ), which output to low channels when triggered. If all

the events associated with these new items are otherwise low

events, then this is a benign program since there is no secret
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involved. However, it does not satisfy the no leak outside
of declassification condition. The reason is that the events

associated with Δσ are given the HΔ label by our system,

and are expected to have no effects on low outputs, which

is not the case here. Our SME rules will suppress legitimate

low outputs from this program, as a result. However, SME

cannot do much better because the run-time has no way of

knowing whether Δσ depends on secrets or not.

Integrity and Endorsement Dual to confidentiality is in-

tegrity, whose non-interference property states that untrusted

(low integrity) data cannot affect trusted (high integrity)

data. Considering integrity in our system would provide an

opportunity for more fine-grained declassification policies.

For instance, instead of preventing any script-generated

input from affecting declassification, the trustworthiness (i.e.

integrity) of the source could be taken into account. User

inputs (high integrity) should be allowed to influence declas-

sification policies whereas scripts (low-integrity) should not.

This connection between robust declassification and integrity

has been studied [15], [26], [33]. We face two challenges

when incorporating integrity in our system. SME provides a

clean and intuitive mechanism for enforcing confidentiality

which may be expanded to include integrity, but it is not

clear how to do this without sacrificing performance since

every additional label requires another execution. Indeed,

previous work which implements SME does not consider

integrity. Similarly, our knowledge-based security property

is a natural way to reason about confidentiality, as it is

precisely the attacker’s knowledge we wish to restrict but,

a knowledge-based interpretation of integrity has not been

studied. We intend to consider integrity in future work.

VII. RELATED WORK

Enforcing IFC in JavaScript Much work has been done

on information flow control enforcement in JavaScript [4],

[16], [19]–[24]. Because of the dynamic nature of JavaScript,

all of the above mentioned projects use runtime enforcement

mechanisms to enforce information flow control. Austin and

Flanagan [4] present a system which simulates different

executions for different security levels using faceted values
to keep track of the high and low versions of data. SME and

faceted execution are similar in principle. Their similarities

and differences are well studied [11]. Our system allows

user access to the elements present in the high execution,

which is what scripts in the high execution see. Scripts in

the low execution see an alternative set of elements. This

is reminiscent of multi-faceted value, except that the entire

DOM, not individual elements, is faceted.

Enforcing IFC on web scripts Several projects have de-

veloped tools for enforcing information flow control on web

scripts by modifying browser components [7]–[9], [17], [30],

[31]. Methods used by these projects include taint tracking,

compartmentalization, and secure multi-execution, which

was introduced by Devriese and Piessens [18]. SME has

since been extended to be more precise [32] and to deal with

declassification [14], [27], [31]. Our paper builds on Vanhoef

et al.’s work on SME with stateful declassification [31].

Two forms of declassification are considered in this paper:

event projection (which returns any information relating to

the event which is public, or declassified) and information

release (which contains aggregate information, made public

periodically). We also introduce dynamic script features and

prove a robust declassification theorem.

DOM event handling logic is quite complex and can be

used to leak information [28]. Interactions between SME

and DOM event scheduling logic is an interesting problem

that has not been investigated. Some of those problems can

be mitigated in our system because script-generated events

are handled by the execution at the same security level.

However, the interactions between event bubbling order and

pre-emptive event scheduling and declassification policies

can be very tricky.

Knowledge-Based Information Flow Security Balliu de-

fined abstract knowledge-based security for distributed pro-

grams [5] and studied the relationship between knowledge-

based definitions and various trace-equivalence-based def-

initions. Our knowledge-based security definition is based

on the concept of gradual release, which was introduced

by Askarov and Sabelfeld [3]. The gradual release property

enforces that knowledge stays constant outside of intentional

releases (declassification). Our definition of security is a

gradual release property, except that in most cases, gradual

release has been applied to knowledge of possible initial

configurations, while ours reasons about possible input se-

quences. The gradual release property has been applied to

systems that allow flexible declassification. For instance,

Banerjee et al. proposed expressive declassification policies

defined by agreements of initial state written as flowspecs,

which specify precisely how much information may be

revealed about confidential variables [6]. They also present a

type system for enforcing knowledge-based security, which

is defined as a conditional gradual release property. Askarov

and Chong [2] also present a definition of knowledge which

reasons about initial configurations. Like us, they refine it to

progress knowledge which restricts the set of configurations

to those that can produce another observable event. The con-

cept of robust declassification was introduced by Zdancewic

et al. to ensure low integrity attackers cannot manipulate

declassification operations [33]. Later work develops a type

system for enforcing robust declassification and qualified
robustness [26]. We do not have an explicit integrity label

for attackers. Instead, we assume scripts have low integrity

and therefore actions performed by scripts are considered to

have low integrity.
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VIII. CONCLUSION

In this paper, we investigated how dynamic features of

JavaScript can be used to leak information by abusing

declassification policies. We designed new SME rules to

enforce strict separation between dynamically generated

components and the declassification module. To state secu-

rity properties in the presence of declassification policies,

we use a knowledge-based progress-insensitive definition

of security and prove that our enforcement mechanism is

sound. We also prove precision and robust declassification

properties of our SME rules. As future work, we plan to

implement our SME rules in a research prototype browser

developed on FireFox.
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