
ILC: A Foundation for Automated Reasoning

About Pointer Programs

Limin Jia and David Walker

Princeton University, Princeton, NJ 08544, USA
{ljia,dpw}@cs.princeton.edu

Abstract. This paper shows how to use Girard’s intuitionistic linear
logic extended with a classical sublogic to reason about pointer pro-
grams. More specifically, first, the paper defines the proof theory for ILC
(Intuitionistic Linear logic with Constraints) and shows it is well-defined
via a proof of cut elimination. Second, inspired by prior work of O’Hearn,
Reynolds, and Yang, the paper explains how to interpret linear logical
formulas as descriptions of a program store. Third, this paper defines a
simple imperative programming language with mutable references and
arrays and gives verification condition generation rules that produce as-
sertions in ILC. Finally, we identify a fragment of ILC, ILC−, that is
both decidable and closed under generation of verification conditions.
Since verification condition generation is syntax-directed, we obtain a
decidable procedure for checking properties of pointer programs.

1 Introduction

In the eighties and early nineties, formal program specification and verification
was left for dead: it was too difficult, too costly, too time-consuming, and com-
pletely unscalable. Amazingly, in 2005, Microsoft is using verification technology
in many of their internal projects and is currently planning to include a logical
specification and checking language in their next version of Visual C [1]. This re-
markable turnaround was made possible in part by moving away from complete
program verification to verification of a smaller selection of simple but useful pro-
gram properties, and in part by great improvements in abstract interpretation
and theorem proving technologies.

Some of the most successful recent verification projects include the Microsoft
assertion language mentioned above, Leino et al.’s extended static checking
project and its successors [2–4], and Necula and Lee’s proof-carrying code [5].
These tools have used conventional classical logic to specify and check program
properties. These conventional logics work exceptionally well for specifying arith-
metic conditions and verifying that array accesses are in bounds. One place
where there remains room for improvement is in specification and verification
of programs that manipulate pointers and manage resources. To better support
verification of pointer programs, O’Hearn, Reynolds, and Yang [6, 7] have advo-
cated using separation logic, which is the classical logic of bunched implications

extended with a collection of domain-specific axioms about storage. The cru-
cial insight in this research is that the multiplicative connectives of the logic of
bunched implications encapsulate “separation” invariants commonly used when
reasoning about storage.

Inspired by the work of O’Hearn et al., we have begun to develop a new pro-
gram logic in which the proof theory used to reason about state and resources
is based on Girard’s linear logic as opposed to the logic of bunched implication.
There are several reasons why we decided to focus on linear logic as opposed
to bunched implications as a foundation for verifying programs. First, from a
practical standpoint, there are a number of tools available for our use including
logic programming engines Lolli [8] and Lollimon [9], theorem provers [10] and
logical frameworks such as Forum [11], LLF [12], and CLF [13]. Second, since
linear logic is older than BI, more is known about it. In particular, we have been
able to use known results on the complexity of various fragments of linear logic
to devise a useful decidable fragment of our logic. Third, we have recently looked
at generating proof-carrying code for programs with rich memory management
invariants [14, 15], and while we found encoding “single-pointer” invariants in
separation logic highly effective, we were unable to find a simple encoding for
general-purpose (typed) shared mutable references. Consequently, we fell back
on older ideas from the work on alias types [16], which implicitly, and in newer
work [17], explicitly, use linear logic’s unrestricted modality as part of the en-
coding. Though we do not focus on this issue in this paper, it is clear that ILC
can easily accommodate these encodings.

In addition, this paper is a starting point from which we can begin to study
the relative strengths and weaknesses of using the proof theory of intuitionistic
linear logic, which is based on sequents with a flat context for assumptions, as
opposed to the proof theory of BI, which is based on sequents with “bunched”
or tree-like contexts, as the foundation for verification of pointer programs.

To summarize, there are four central contributions of this paper. First (Sec-
tion 2), we propose ILC as opposed to bunched logic as a foundation for checking
safety properties of pointer programs. We outline the proof theory for ILC as
a sequent calculus and prove a cut-elimination theorem to show that it is well
defined. The proof theory is sound with respect to the storage model, but not
complete. As any automated program analysis will run up against incomplete-
ness somewhere, this lack of completeness is not an immediate practical concern
for us. However, an important element of future work will be understanding
the sources of the incompleteness. Logic of bunched implications does have cer-
tain completeness properties and therefore has an advantage over linear logic in
this respect. Our second contribution (Section 3) is to define a simple imperative
language with references and to give syntax-directed verification condition gener-
ation rules that use ILC as the assertion language. We prove that our verification
condition generation is sound with respect to our memory model. The third main
contribution (Section 2.6) is in the definition of a useful, and decidable fragment
of the logic, ILC−. The key property of ILC− is that it is closed under verifi-
cation condition generation: if loop invariants and pre- and post-conditions fall

into ILC− then the generated verification conditions also fall into ILC−. The
decidable logic plus the syntax-directed verification condition generation give
rise to a terminating algorithm for verification of pointer programs. Fourth, we
have implemented a prototype verifier for our language. Our prototype generates
verification conditions in ILC. We then prove the validity of linear logic formulas
in MetaPRL [18], a manual process at this point, and discharge the constraints
using the CVC Lite [19] theorem prover. The examples in this paper have been
verified using our implementation. Due to space considerations, we have omitted
many technical details. Please see our technical report [20] for complete formal
rules and additional metatheory.

2 Intuitionistic Linear Logic with Constraints

In this section we introduce ILC, Intuitionistic Linear logic with Constraints.
After introducing the syntax, semantics, proof theory, and properties of ILC, we
will present a decidable fragment, ILC−.

2.1 Syntax

ILC formulas F include all of the first-order formulas present in multiplicative
and additive intuitionistic linear logic. In addition, a modality #A encapsulates
a language of classical constraints as a sublogic within ILC. For the purposes of
this paper, the constraint language involves arrays and Presburger arithmetic.

The basic predicates for reasoning about program state include (E1 ⇒ E2) ,
which describes a heap containing only one location, E1, and its contents E2; and
Array(E1, E2, α), which describes an array that has a starting address E1, number
of elements E2, and list of elements α. The classical constraints use E to range
over integer terms and α to range over array terms. The empty array is denoted
by Nil, sel(α, E) accesses the Eth element of α, and upd(α, E1, E2) generates a new
array with the element indexed by E1 replaced by E2.

Integer Terms E : : = n | x | E1 + E2 | −E | sel(α, E)
Array Terms α : : = Nil | x | upd(α, E1, E2)
Arithmetic Predicates Pa : : = E1 = E2 | E1 < E2

Classical Formulas A : : = true | false | Pa | A1 ∧ A2 | ¬A | A1 ∨ A2

State Predicates Ps : : = (E1 ⇒ E2) | Array(E1, E2, α)
Intuitionistic Formulas F : : = Ps | 1 | F1 ⊗ F2 | F1 (F2 | > | F1 & F2 | 0

| F1 ⊕ F2 | ! F | ∃b.F | ∀b.F | #A

2.2 Basic Concepts

We informally discuss the semantics of the connectives and highlight the key
ideas for reasoning about program states. All the examples in this section refer
to Figure 1, which shows a heap h containing two disjoint parts: h1 and h2. The
first part h1 contains location x, which contains integer 3; the second part h2

contains location y, which contains integer 4.

Emptiness. The connective 1 describes an empty heap. The counterpart in sep-
aration logic is usually written emp.

4

y

3

x

h1 h2h

Fig. 1. A sample heap

Separation. Multiplicative conjunction ⊗ separates a
linear state into two disjoint parts. For example, the
heap h can be described by formula (x ⇒ 3) ⊗ (y ⇒
4) . Multiplicative conjunction does not allow weaken-
ing or contraction. Therefore, we can uniquely identify
each part in the heap and track its state changes. The
multiplicative conjunction (∗) in separation logic has
the same properties.

Update. Multiplicative implication (is similar to the
multiplicative implication −∗ in separation logic. Formula F1 (F2 describes a
heap h waiting for another piece; if given another heap h′ that is described by
F1, and if h′ is disjoint from h, then the union of h and h′ can be described by
F2. For example, h2 can be described by (x ⇒ 3) (((x ⇒ 3) ⊗ (y ⇒ 4)).
A more interesting example is that h satisfies formula F = (x ⇒ 3) ⊗ ((x ⇒
5) (((x ⇒ 5) ⊗ (y ⇒ 4))). This example brings out the idea of describing
store updates using multiplicative conjunction and implication.

No information. The unit of additive conjunction > describes any linear state,
so it does not contain any specific information about the linear state it describes.
The counterpart of > in separation logic is usually written true.

Sharing. Formula F1 & F2 represents a state that can be described by (shared
between) both F1 and F2. For example, h is described by ((x ⇒ 3) ⊗ >)& ((y ⇒

4) ⊗ >). The additive conjunction in separation logic is written ∧. The basic
sharing properties of these two connectives are the same. But the behavior of
∧ is closely connected to the additive implication → and the bunched contexts,
which our logic does not have.

Heap Free Conditions. The unrestricted modality ! F describes an empty heap
and asserts F is true. For instance, ! ((x ⇒ 3) (∃y. (x ⇒ y)) says that given
no initial resources, if we add a heap in which location x holds 3 then we end
up with a heap in which location x holds some y. On the other hand, ! (x ⇒ 3)

cannot be satisfied. Note that ! F is semantically equivalent to F&1. However, as
we will see in the next section, the two formulas have different proof-theoretic
properties. Formula ! F satisfies weakening and contraction and therefore can be
used multiple times; F&1 does not satisfy these properties. Hence ! is used as a
simple syntactic marker that informs the theorem prover of the structural prop-
erties to apply to the underlying formula. The equivalent idea in separation logic
is that of a “pure formula.” Rather than using a connective to mark the purity
attribute, a theorem prover analyzes the syntax of the formula to determine its
status. Pure formulas are specially axiomatized in separation logic.

Classical Reasoning. In separation logic, the law of excluded middle holds in
the classical semantics. For instance, formula (x ⇒ 3) ∨ ¬ (x ⇒ 3) is valid.
However, negations of “heapful” conditions, such as ¬ (x ⇒ 3) , appear very

– M; h � (E1 ⇒ E2) iff dom(h) = {[[E1]]}, h([[E1]]) = [[E2]].
– M; h � Array(E1, E2, Y) iff {[[E1]]} = dom(h) and h([[E1]]) = [[Y]]

n
, where n = [[E2]].

– M; h � 1 iff dom(h) = ∅
– M; h � F1 ⊗ F2 iff h = h1] h2, and M; h1 � F1, and M; h2 � F2.
– M; h � F1 (F2 iff for all stores h′, M; h′

� F1 implies M; h] h′
� F2.

– M; h � > is true for all stores.
– M; h � F1 & F2 iff M; h � F1, and M; h � F2.
– M; h � 0 is false for all stores.
– M; h � F1 ⊕ F2 iff M; h � F1, or M; h � F2.
– M; h � ! F iff dom(h) = ∅, and M; h � F .
– M; h � ∃x.F iff there exists some value a such that M; h � F [a/x].
– M; h � ∀x.F iff for all values a, M; h � F [a/x].
– M; h � #A iff dom(h) = ∅, and M � A.

Fig. 2. The semantics of formulas

rarely, but classical reasoning about constraints is ubiquitous. Consequently, we
add a classical sublogic to what we have already presented. The classical formulas
describe constraints and are confined under the modality #. For example, heap
h satisfies ∃e1.∃e2. (x ⇒ e1) ⊗ (y ⇒ e2) ⊗ ! (#(¬(e1 = e2))). In separation logic
we would write ∃e1.∃e2.((x ⇒ e1) ∗ (y ⇒ e2)) ∧ (¬(e1 = e2)). The modality #

separates the classical reasoning about arithmetic or other constraints from the
intuitionistic linear reasoning making it possible to use an off-the-shelf theorem
prover or decision procedure for the constraints.

2.3 Semantics

Our logical formulas describe program stores that map locations to values. All
values are integers or integer tuples; some integers (an infinite collection of them)
are considered heap locations. We use metavariable n when referring to integers,
` when referring to locations, and v when referring to values.

We use dom(h) to denote the domain of store h, h(`) to denote the value
stored at location `, h [` := v] to denote a store h′ in which ` maps to v but
is otherwise the same as h. We write h1] h2 to denote the union of disjoint
stores. The] operation is undefined if the stores are not disjoint. We use |v| to
denote the number of elements in tuple v, v|i to denote the ith elements of v if
0 ≤ i < |v|, and v[i 7→ v′] to denote the result of updating the ith element of v

with v′, if 0 ≤ i < |v|.
There are three semantic judgments:

M � A Classical formula A is valid in model M
M; h � F Store h together with model M satisfies formula F

h � F Store h satisfies formula F (exists a model M such that M; h � F)

M is a model for the first-order theories we consider. We write [[E]] for the
integer value that the closed expression E denotes. The denotation of an array
term [[α]]n is an integer tuple of length n. The semantics of classical formulas
is standard, and we omit it in this paper. The formal definition of M; h � F is
given in Figure 2.

2.4 Proof Theory

Our logical judgments make use of an unrestricted context Γ for classical con-
straints, an unrestricted context Θ for intuitionistic formulas, and a linear con-
text ∆, also for intuitionistic formulas. The first two contexts have contraction,
weakening, and exchange properties, while the last has only exchange. The con-
text Ω contains the set of variables free in the rest of the sequent.

Our logic has two sequent judgments.

Ω | Γ # Γ ′ classical sequent rules
Ω | Γ ; Θ ; ∆ =⇒ F intuitionistic sequent rules

The sequent rules for classical logic follow the LK formalization [21]. An intuitive
reading of the intuitionistic sequent is that if a state is described by unrestricted
assumptions in Θ, linear assumptions ∆, and satisfies all the classical constraints
in Γ , then this state can also be described by F .

Our logic has the same sequent rules as those in intuitionistic linear logic
except that the classical context Γ is carried around. The interesting rules are
the left and right rule for the new modality # and the absurdity rule listed below.
These rules illustrate the interaction between the classical and the intuitionistic
part of the logic. The right rule for # says that if Γ contradicts the assertion
“A false” (which means A is true) then we can derive #A without using any
linear resources. If we read the left rule for # bottom up, it says that whenever
we have #A, we can put A together with other classical assumptions in Γ . The
absurdity rule is a peculiar one. The justification for this rule is that since Γ

is not consistent, no state can meet the constraints imposed by Γ ; therefore,
any statement based on the assumption that a state satisfies those constraints
is simply true.

Ω | Γ # A

Ω | Γ ; Θ ; · =⇒ #A
#R

Ω | Γ, A ; Θ ; ∆ =⇒ F

Ω | Γ ; Θ ; ∆, #A =⇒ F
#L

Ω | Γ # ·

Ω | Γ ; Θ ; ∆ =⇒ F
Absurdity

Interesting Theorems The following axioms, all of which are provable in our
sequent calculus, illustrate some of the interactions between the classical and
intuitionistic connectives.

#true ⇐⇒ 1 #A ⊗ #B ⇐⇒ #(A ∧ B) #(A ∧ B) =⇒ #A & # B
#false ⇐⇒ 0 #A ⊕ #B =⇒ #(A ∨ B)

It is also interesting to consider the proof theory for heap-free formulas,
which we represent using Girard’s unrestricted modality. The critical axioms here
are the structural properties of contraction and weakening: ! F =⇒ 1, ! F =⇒

! F⊗ ! F . In separation logic, Reynolds [22] adds specialized axioms for relating
the additive conjunction of pure facts to the multiplicative conjunction of them:

P ∧ Q =⇒ P ∗ Q when P or Q is pure P ∗ Q =⇒ P ∧ Q when P and Q is pure

In our logic, we can prove ! P⊗ ! Q =⇒ ! P & ! Q but not the reverse. We forgo
these additional axioms for practical reasons: we wish to reuse a theorem prover
for first-order intuitionistic linear logic rather than building a new prover from

scratch. One consequence of this choice is that programmers must write invari-
ants consistently in the form ! P⊗ ! Q instead of ! P&! Q. So far, we have seen no
practical consequences of omitting this axiom.

2.5 Properties of ILC

We have proven a cut elimination theorem of our logic (Thm 1). We also proved
that the proof theory of our logic is sound with regard to its semantics (Thm 2).

We use the notion of semantics for logical contexts (written h � Γ ; Θ; ∆) in
Theorem 2. It means that store h satisfies all the constraints in Γ and h contains
all the unrestricted resources in Θ and all the linear resources in ∆.

Theorem 1 (Cut Elimination).

1. If Ω | Γ # A and Ω | Γ, A ; Θ ; ∆ =⇒ F then Ω | Γ ; Θ ; ∆ =⇒ F .

2. If Ω | Γ ; Θ ; · =⇒ F and Ω | Γ ; Θ, F ; ∆ =⇒ F ′ then Ω | Γ ; Θ ; ∆ =⇒ F ′.

3. If Ω | Γ ; Θ ; ∆ =⇒ F and Ω | Γ ; Θ ; ∆′, F =⇒ F ′ then Ω | Γ ; Θ ; ∆, ∆′ =⇒ F ′.

Theorem 2 (Soundness of Logic Deduction).
If Ω | Γ ; Θ; ∆ =⇒ F and σ is a grounding substitution for all the variables Ω,

and h � Γ [σ]; ∆[σ]; ∆[σ], then h � F [σ].

2.6 A Decidable Fragment: ILC−

We have identified a fragment of our logic, ILC−, which is decidable and sufficient
to encode many pre- and post-conditions for programs. One important property
of ILC− is that it is closed under the verification condition generation, which we
will present in the next section. In other words, if all the programmer supplied
program annotations fall into this fragment, then the whole process of program
verification is decidable.

The factors that contribute to the undecidability of ILC are that 1) it contains
Intuitionistic Linear Logic as a sub-logic which is undecidable, and 2) the validity
of arbitrarily quantified first-order classical formulas of equality and array theory
is undecidable. In order to obtain a decidable fragment of ILC, first we replace

the copy rule with the U-Init and ! #L rules (we use
−

=⇒ for sequents in ILC−):

Ω | Γ ; Θ, F ; ∆, F =⇒ F ′

Ω | Γ ; Θ, F ; ∆ =⇒ F ′
Copy

Ω | Γ ; Θ, P ; ·
−

=⇒ P
U-Init

Ω | Γ, A ; Θ ; ∆
−

=⇒ F

Ω | Γ ; Θ ; ∆, ! # A
−

=⇒ F
! # L

Second, we syntactically restrict the logical formulas so that we don’t need
to decompose connectives in the unrestricted context. Now the two new rules
have the same power as the old copy rule. Furthermore, we only consider Pres-
burger Arithmetic to guarantee the decidability in classical reasoning part (any
decidable system of constraints will do). Each syntactic class in this decidable
fragment is defined as follows:

Forms in Intuit. Unrestricted Ctx Du : : = Ps
Forms in Intuit. Linear Ctx Dl : : = Ps | ! Ps | ! # A | 1 | Dl ⊗ D′

l
| > | Dl & D′

l

| 0 | Dl ⊕ D′

l
| ∃x.Dl | ∀x.Dl

Goal Forms G : : = Ps | 1 | G1 ⊗ G2 | Dl (G | > | G1 & G2

| 0 | G1 ⊕ G2 | ! G | ∃b.G | ∀b.G | #A

We have proven that in the above fragment the sequent rules with U-Init and !#L

are sound and complete with regard to the original sequent rules in Section 2.4.

Theorem 3 (Soundness & Completeness of
−

=⇒). Ω | Γ ; Θ ; ∆
−

=⇒ G iff

Ω | Γ ; Θ ; ∆ =⇒ G, provided that all the formulas in Γ are in A, all the formulas in

Θ are in Du, and all the formulas in ∆ are in Dl.

The proof of the decidability of ILC− can be found in the technical report [20].
Informally, any proof search in ILC− can be reduced to two procedures: first,
a proof search in the sequent calculus of intuitionistic linear logic without the
copy rule, and second, the validity checking of Presburger Arithmetic formulas
with equality. The first part is decidable since every premise of each sequent
rule is strictly smaller than its consequent (by smaller we mean that the number
of connectives in the sequent decreases [23]). The second part is also decidable.
Therefore, the whole process is decidable.

Theorem 4 (Decidability). ILC− is decidable.

Discussion Notice that we only consider the decidable Presburger Arithmetic
constraints in ILC−. More generally, the intuitionistic linear logic part of ILC−

is always decidable, and the decidability is sustained when we extend ILC− with
any decidable constraint domain.

3 Verifying Pointer Programs

In this section, we show how to verify an imperative language with pointer op-
erations using our logic. We present syntax-directed verification condition gen-
eration rules and give examples to show how they are used to verify programs.

3.1 Syntax and Operational Semantics

Now we introduce the syntax and operational semantics of an imperative lan-
guage that includes control flow, mutable references, and arrays.

Syntax The syntactic constructs of our language are listed below. We use E to
range over integer expressions and B to range over boolean expressions. The
language has commands for allocation, deallocation, variable binding, derefer-
ence, assignment, array operations, sequencing, while loop, if branching, and
skip. The while loop expression while[I] R do C is annotated with loop invari-
ant I . The condition expression R computes a boolean that determines while

termination. These condition expressions have special structure and scoping
rules to both simplify pre-condition generation and to provide ample expres-
sive power. The variables in the loop body of the while loop are bound by
the let expression in the condition R. For example, in the following command
while[>] let x =!y in x > 0 end do y := x − 1, variable x in the loop body is
bound by the let expression. In order to generate verification conditions properly
from expressions, we require them to be in A-Normal form. Naturally, an im-
plementation would allow programmers to write ordinary expressions and then
unwind them to A-Normal form for verification.

Int Exps E : : = n | x | E + E | −E
Boolean Exps B : : = true | false | E1 = E2 | E1 < E2 | B1 ∧ B2 | ¬B | B1 ∨ B2

Condition Exps R : : = B | let x = !E in R end
Command C : : = let x = new(E) in C end | free(E)

| let x = E in C end | let x = !E in C end | E1 := E2

| let x = newArray(E) in C end | let x = E1[E2] in C end

| E1[E2] := E3 | let x = Len(E) in C end | C1 ; C2

| while[I] R do C | if B then C1 else C2 | skip

Operational Semantics A program state consists of a control stack S, a store
(or a heap) h, and an instruction ι being evaluated. An instruction ι can be a
command, a loop guard R followed by a command C, or the special instruction •,
which indicates the termination of certain commands. In our language, variables
are bound, and there is no imperative assignment to variables. We therefore
do not need a stack to map variables to values. We use (S, h, ι) 7−→ (S ′, h′, ι′)

to denote the small step operational semantics. The control stack S is a list of
evaluation contexts and is not crucial for the understanding of this paper, so we
omit its definition.

3.2 Verification Condition Generation

The program to be verified is annotated with pre- and post-condition and loop
invariants by the programmer. The verification condition generation scans the
program bottom-up and generates a formula (from the postcondition) such that
if the initial program states satisfy this formula then the program will execute
safely, and if it terminates then the ending state will satisfy the specified post-
condition. The computed verification condition will be satisfied by the initial
state if it is logically entailed by the programmer provided precondition, which
we assume will hold before the execution of the program. We have not tackled the
question of whether or not our verification conditions are weakest preconditions.

There are two judgments involved in verification condition generation.

∆ ` (∃x1 . . . ∃xn, F, A, ρ)R There exist values for variables x1 · · · xn such that the
precondition of executing R is F , the core boolean
expression in R is A, and ρ is the substitution of logical
terms for the variables in R bound by let.

∆ ` { P } C { Q } The precondition of C is P , and the postcondition is Q.

∆ ` { P } C { Q }

∆, x ` { P } C { Q } x /∈ FV (Q)

∆ ` { ∀y. (y ⇒ E) (P [y/x]} let x = new(E) in C end { Q }
New

∆ ` {∃y. (E ⇒ y) ⊗ Q} free(E) {Q}
Free

∆, x ` { P } C { Q } x /∈ FV (Q)

∆ ` { ∃y.((E ⇒ y) ⊗ >)& P [y/x] } let x = !E in C end { Q }
Deref

∆ ` { ∃x. (E1 ⇒ x) ⊗ ((E1 ⇒ E2) (Q) } E1 := E2 { Q }
Assignment

∆, x ` { P } C { Q } x /∈ FV (Q)

∆ `
{ !# (¬(E < 0)) ⊗ ∀y.(Array(y, E, Nil) (P [y/x]) }
let x = newArray(E) in C end { Q }

New Array

∆, x ` { P } C { Q } x /∈ FV (Q)

∆ `
{ ∃size.∃α.(Array(E1, size, α)⊗!# (¬(E2 < 0))⊗!# (E2 < size) ⊗ >)

&P [sel(α, E2)/x] }
let x = E1[E2] in C end { Q }

Subscript

∆ `
{ ∃size.∃α.Array(E1, size, α)⊗!# (¬(E2 < 0))⊗!# (E2 < size)
⊗(Array(E1, size, upd(α, E2, E3)) (Q) }
E1[E2] := E3 { Q }

Array Upd

∆ ` { P1 } C1 { Q } ∆ ` { P2 } C2 { Q }

∆ ` { (! # B (P1) & (! # ¬B (P2) } if B then C1 else C2 { Q }
If

∆ ` { P } C { I } ∆ ` (∃x1 . . . ∃xn, F, B, ρ) R

∆ ` {
(∃x1 . . . ∃xn.F&(!# (¬B) (Q)&(!# (B) (P [ρ]))
⊗ ! (I ((∃x1 . . . ∃xn.F&(!# (B) (P [ρ])

&(!# (¬B) (Q))
} while[I] R do C { Q }

While

Fig. 3. Selected Rules for Verification Condition Generation

Commands The verification condition generation rules are backward-reasoning
rules, and are syntax directed. Most of the rules are identical to O’Hearn’s weak-
est precondition generation [6] except that ∗ is replaced by ⊗, −∗ by (and ∧ by
&. We explain a few key rules here. The set of selected rules is shown in Figure 3.

The assignment command updates the cell at address E1 with the value of
E2. The precondition of this command asserts that the heap comprises two parts:
one that contains cell E1, and another that waits for the update.

The precondition of the array allocation command first asserts that the size
of the array is legal; the second part describes a heap that is waiting for the new
piece described by Array(y, E, Nil). After merging with the newly allocated array,
the heap satisfies the precondition of C with x substituted with the address of
the new array. The precondition of the array update command first checks that
E1 indeed points to an array on the heap (Array(E1, size, α)). Then it checks that
the index is in bounds (!# (¬(E2 < 0))⊗!# (E2 < size)). The last part in the
precondition describes a heap that requires the updated array to satisfy Q.

The if instruction branches on boolean expression B. The precondition for if

says that if B is true then the precondition of the true branch holds; otherwise
the precondition of the false branch holds. The additive conjunction is used to

give two possible descriptions to the same heap. Note that the precondition of
the branch that is not taken will be proven using the absurdity rule. We will
give a concrete example in Section 3.3.

While loops are annotated with loop invariants. A while loop either exe-
cutes the loop body or exits the loop depending on the condition expression
R. There are two parts to the precondition of a while loop. The first part
(∃x1 . . . ∃xn.F&(!# (¬B) (Q)&(!# (B) (P [ρ])) asserts that when we execute
the loop for the first time, the precondition F for evaluating the condition ex-
pression must hold; if the condition is not true then the postcondition Q must
hold, otherwise the precondition P for the loop body C must hold. The second
part (! (I ((∃x1 . . . ∃xn.F&(!# (B) (P [ρ])&(!# (¬B) (Q))) asserts that each
time we re-enter the loop, the condition for entering the loop holds. Notice that
the second formula is wrapped by an unrestricted connective (!). This implies
that this invariant cannot depend upon the current heap state. This is a critical
criterion as the heap state may be different each time around the loop.

3.3 Examples

In this section, we give two examples to demonstrate how we verify programs
using the verification condition generation rules defined in the previous section.
We prove the validity of ILC formulas in MetaPRL [18] and discharge the con-
straints using the CVC Lite [19] theorem prover. We do not have an automated
theorem prover for ILC yet, but it is technically feasible to develop one and
we are working with Frank Pfenning and Kaustuv Chaudhuri to develop the
theorem prover we need.

0

a x

0 3

0000

a x

1 y 3

y

F = (a ⇒ 0) ⊗ (((x ⇒ 0) ⊗ (x + 1 ⇒ 3))

⊕((x ⇒ 1) ⊗∃y. (x+1 ⇒ y) ⊗ (y ⇒ 3)))

Fig. 4. Example

If Branching In this example, the
store is shown in Figure 4. Location a

contains 0. Depending on the contents
of location x, there are two possibili-
ties for the remainder of the store. If
x contains 0, then the location next to
x contains 3; if x contains an integer
other than 0, then the location next
to x contains another location y, and
y contains 3. The first case is illus-
trated in the figure above the dashed
line, and the second case is illustrated
below the dashed line. Formula F describes the store h. We use additive disjunc-
tion to describe the two cases.

The following piece of code branches on the contents of x. The true branch
looks up the value stored in location x + 1 and stores it into a; the false branch
looks up the value stored in location y and stores the value into a. At the merge
point of the branch, a should contain 3.

{F = (a ⇒ 0) ⊗ (((x ⇒ 0) ⊗ (x + 1 ⇒ 3)) ⊕ ((x ⇒ 1) ⊗ ∃y. (x + 1 ⇒ y) ⊗ (y ⇒ 3)))}
let t = !x in
if (t = 0)
then let s = !(x + 1) in a := s end
else let s = !(x + 1) in

let r = !s in

a := r end end end
{ (a ⇒ 3) ⊗ >}

To show this program is memory safe and will store 3 into a in the end
((a ⇒ 3) ⊗ >), we first generate a verification condition. Next we prove that
the precondition describing the initial state entails the verification condition we
generated (Pre): x, a | ·; ·; F =⇒ Pre. According to our sequent rules, one of the
subgoals we need to prove is:

x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ (! # ¬(0 = 0)) (P2

where P2 = ∃u.((x + 1 ⇒ u) ⊗ >)&∃v.((u ⇒ v) ⊗ >)

&∃w. (a ⇒ w) ⊗ ((a ⇒ v) (((a ⇒ 3) ⊗ >))

After applying ! # L rule, we have

x, a | ¬(0 = 0); ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ P2

Obviously, the resources in the linear context are not sufficient to prove P2, which
requires x + 1 to contain another location. However, we have a contradiction in
the classical context (¬(0 = 0)), so we prove P2 using the absurdity rule. This is
the situation where we cannot establish the precondition required by the branch
that is not taken. Instead, we prove it by contradiction.

Array Copying In this example, we prove the correctness of an array copying
program. The code is shown below. At the beginning of this program, there is an
array x with at least 2 elements. We will allocate a new array y that has exactly
one fewer element than x and copy the elements from x to y using while loop.
The postcondition specifies that at the end of the program we have two arrays,
that one is one element shorter than the other, and that their elements are the
same up to the length of the shorter array. The loop invariant says that the
loop induction variable is always between 0 and the length of the longer array,
and that from the first element up to the element indexed by the loop induction
variable the two arrays have the same elements.

{∃aArray(x, n, a)⊗!# (¬(n < 2))}
let len = arrayLen x in
let y = newArray[len -1] in

let i = newPtr(0) in
while let j = !i in j< len-1 end

[∃v.∃n2.∃a.∃b.Array(x, n, a) ⊗ Array(y, n2, b)
⊗!# (n = n2 + 1) ⊗ (i ⇒ v) ⊗!# (¬(v < 0))⊗!# (v < n)
⊗∀j.!# ((¬(j < 0) ∧ (j < v)) ⊃ (sel(a, j) = sel(b, j)))]

do
let z = x[j] in

y[j] := z;
i:= j + 1

end ;
free(i) end end end
{∃m1.∃m2.∃c.∃d.∃lx∃ly.Array(lx, m1, c) ⊗ Array(ly, m2, d)

⊗!# (m1 = m2 + 1) ⊗ ∀i.!# ((¬(i < 0) ∧ (i < m2)) ⊃ (sel(c, i) = sel(d, i)))}

We remark that the proof obligations generated from this program involve
existentially quantified formulas of the array theory and are not in the obviously
decidable quantifier free fragment. However, CVC Lite handles them fine.

3.4 Soundness of Verification Generation

Finally, we proved that the rules for verification generation are sound with regard
to the semantics of the language.

Theorem 5 (Soundenss of VC Gen). If ∆ ` { P } C { Q }, and σ is a grounding

substitution for all the variables in ∆, and h � P [σ], then

– either for all n ≥ 0, there exist S′, h′, and ι such that (·, h, C[σ]) 7−→n (S′, h′, ι).

– or there exists k ≥ 0 such that (·, h, C[σ]) 7−→k (·, h′, •), and h′
� Q[σ].

4 Related Work

The most closely related work to our own is O’Hearn, Reynolds, and Yang’s
separation logic [6, 7]. Their key insight was the fact that a substructural logic,
when used as the assertion language in a program logic, facilitates local reasoning
about state. Recently, Berdine, Calcagno, and O’Hearn [24, 25] have investigated
a decidable fragment of separation logic with equality, separating conjunction,
and lists. An important advantage of their proof theory is that it is complete
with respect to their model whereas our proof theory is incomplete. For us, this
means that programmers must reason syntactically using linear logic proof rules
as opposed to semantically. On the other hand, we consider a more extensive
logic that, unlike Berdine et al., includes additives (&, >), first-order quantifiers,
and an arbitrary classical sublogic, which we have instantiated with a theory
of arrays and arithmetic. If the sublogic used in loop invariants is decidable
then the verification conditions we generate and the overall program verification
procedure is also decidable.

As researchers have been investigating new program logics, the designers of
advanced type systems have been using similar techniques to check programs for
safety [16, 26–28, 17]. For instance, DeLine and Fähndrich’s Vault programming
language [26] uses a variation of alias types [16] to reason about memory manage-
ment and software protocols for device drivers. Alias types very much resemble
the fragment of separation logic containing the empty formula, the points-to
predicate, and separating conjunction. In addition, alias types have a second
points-to predicate that can be used to represent shared parts of the heap, an
idea that is not directly present in separation logic. We believe it is straightfor-
ward to add this second form of points-to predicate to ILC and include it under
Girard’s modality. The main difference between the program logics and the type
systems is that type systems, particularly Vault, support better inferences while
the logics include a wider variety of connectives and more sophisticated con-
straint systems, and therefore, are much more expressive.

More recently, Zhu and Xi [29] have shown how to blend the idea of alias
types with Xi’s previous work on Dependent ML [30] to produce a type system
with “stateful views.” The common link between this work and our own is that
they both allow a mixture of linear and unrestricted reasoning. There are also
many differences. Zhu and Xi define a type system to check for safety whereas
we define a program logic with verification condition generation. Zhu and Xi’s
type checking algorithm appears to require quite a number of annotations —
in general, when a programmer gets or sets a reference, they must bind a new
proof variable, though in some cases these annotations can be inferred. On the
other hand, Zhu and Xi define facilities for handling recursive data structures,
something we do not attempt in this paper.

5 Conclusions

We have developed a sequent calculus for ILC, linear logic with constraints, and
proved a cut elimination theorem. We have also defined a collection of sound,
syntax-directed verification condition generation rules for a simple imperative
language that produce assertions in ILC. Lastly, we have identified a fragment
of ILC, ILC−, that is both decidable and closed under generation of verification
conditions. If loop invariants and pre-/post-conditions are specified in ILC−,
then the resulting verification conditions are also in ILC−. Since verification
condition generation is syntax-directed, we obtain a decidable procedure for
checking properties of pointer programs.

Acknowledgements We would like to thank Kaustuv Chaudhuri, Manuel
Fähndrich, Peter O’Hearn, and Frank Pfenning for fruitful discussions about
this research. We are grateful to Jason Hickey and Aleksey Nogin for helping us
with MetaPrl, the proof assistant we used to check our linear logical proofs.

References

1. Yang, Z.: Putting program analysis to work at Microsoft (2005) Princeton Com-
puter Science Department Colloquium.

2. Detlefs, D.L.: An overview of the extended static checking system. In: The First
Workshop on Formal Methods in Software Practice. (1996)

3. Flanagan, C., Leino, R., Lillibridge, M., Nelson, G., Saxes, J., Stata, R.: Extended
static checking for java. In: ACM Conference on Programming Language Design
and Implementation. (2002)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: CASSIS 2004. Number 3362 in LNCS (2004) 49–69

5. Necula, G.: Proof-carrying code. In: Twenty-Fourth ACM Symposium on Princi-
ples of Programming Languages, Paris (1997) 106–119

6. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: 28th ACM Symposium on Principles of Programming Languages. (2001)

7. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Computer Science Logic. Number 2142 in LNCS (2001)

8. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear
logic. Information and Computation 110 (1994)

9. Lopez, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic
programming. In: PPDP. (2005)

10. Chaudhuri, K., Pfenning, F.: A focusing inverse method prover for first-order linear
logic. In: CADE-20. (2005)

11. Miller, D.: A multiple-conclusion meta-logic. In: Ninth Annual Symposium on
Logic in Computer Science, IEEE Computer Society Press (1994) 272–281

12. Cervesato, I., Pfenning, F.: A linear logical framework. In: Information and Com-
putation. (2000)

13. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: The propositional fragment. In: Types for Proofs and Programs. (2004)

14. Ahmed, A., Jia, L., Walker, D.: Reasoning about hierarchical storage. In: IEEE
Symposium on Logic in Computer Science. (2003)

15. Jia, L., Spalding, F., Walker, D., Glew, N.: Certifying compilation for a language
with stack allocation. In: IEEE Symposium on Logic in Computer Science. (2005)

16. Smith, F., Walker, D., Morrisett, G.: Alias types. In: European Symposium on
Programming, Berlin (2000) 366–381

17. Morrisett, G., Ahmed, A., Fluet, M.: L3: A linear language with locations. In: 7th
International Conference on Typed Lambda Calculi and Applications. (2005)

18. Hickey, Nogin, Constable, Aydemir, Barzilay, Bryukhov, Eaton, Granicz, Kopy-
lov, Kreitz, Krupski, Lorigo, Schmitt, Witty, Yu: MetaPRL – A modular logical
environment. In: IWHOLTP, LNCS (2003)

19. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating
validity checker. In: Proceedings of the 16th International Conference on Computer
Aided Verification (CAV ’04). (2004)

20. Jia, L., Walker, D.: ILC: A foundation for automated reasoning about pointer
programs. Technical Report TR-738-05, Princeton University (2005)

21. Gentzen, G.: The Collected Papers of Gerhard Gentzen. North Holland (1969)
Edited by M. E. Szabo.

22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. (2002)

23. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Annals of Pure and Applied Logic 56 (1992) 239–311

24. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation
logic. In: FST TCS 2004. Number 3328 in LNCS (2004)

25. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Asian Symposium on Programming Languages and Systems. Number
3780 in LNCS (2005) 52–68

26. Deline, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In:
ACM Conference on Programming Language Design and Implementation. (2001)

27. Foster, J., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: ACM Con-
ference on Programming Language Design and Implementation. (2002)

28. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements.
In: International conference on functional programming. (2003)

29. Zhu, D., Xi, H.: Safe Programming with Pointers through Stateful Views. In: Pro-
ceedings of the 7th International Symposium on Practical Aspects of Declarative
Languages, Springer-Verlag LNCS vol. 3350 (2005)

30. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: ACM Conference on Programming Language Design and Implementation, Mon-
treal (1998) 249–257

