
Android Taint Flow Analysis for App Sets

William Klieber Lori Flynn
CERT / SEI, Carnegie Mellon University

{weklieber, lflynn}@cert.org

Amar Bhosale Limin Jia Lujo Bauer
Carnegie Mellon University

{amarb, liminjia, lbauer}@cmu.edu

Abstract
One approach to defending against malicious Android applications
has been to analyze them to detect potential information leaks. This
paper describes a new static taint analysis for Android that com-
bines and augments the FlowDroid and Epicc analyses to precisely
track both inter-component and intra-component data flow in a set
of Android applications. The analysis takes place in two phases:
given a set of applications, we first determine the data flows en-
abled individually by each application, and the conditions under
which these are possible; we then build on these results to enu-
merate the potentially dangerous data flows enabled by the set of
applications as a whole. This paper describes our analysis method,
implementation, and experimental results.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.4.6 [Security and
Protection]: Information flow controls

1. Introduction
Mobile devices such as smartphones and tablets are ubiquitous.
The application environments on these devices implement a mar-
ketplace model, in which application developers publish apps
which users can conveniently download and install from app stores.
These apps can potentially access a variety of sensitive information,
such as a user’s location, contacts, and the unique identifier of the
phone (IMEI). Applications such as social networking and banking
apps can additionally collect and store a large amount of sensitive
data. A significant concern in this setting is exfiltration of sensi-
tive data, which may violate users’ privacy and allow undesired
tracking of users’ behavior. Indeed, it has been shown that popular
Android apps leak sensitive information, including location, IMEI
number, phone number, and the SIM card ICC-ID [3].

Most mobile computing platforms, such as Android and iOS,
use a permission system to attempt to limit the privileges of apps,
including their ability to access and exfiltrate sensitive data. How-
ever, existing permission systems are not sufficient to prevent sensi-
tive data from being leaked [3]. Additional analysis of data flows is
thus necessary to determine whether sensitive data remains within
expected boundaries, and to ensure that untrusted data does not
contaminate a trusted data repository. Such analysis is often called
taint analysis, and aims to determine whether data can flow from

c© 2014 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
SOAP ’14, June 12, 2014, Edinburgh, Scotland, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2919-4/14/06. . . $15.00.
http://dx.doi.org/10.1145/2614628.2614633

a sensitive data source to an undesired data sink. For instance, for
a smartphone, data sources that contain sensitive data include the
phone’s unique identifier, SMS messages, etc., and apps that pro-
vide services such as banking. Undesired sinks for such data in-
clude network API or untrusted applications. We define a source as
an external (to an app) resource from which data is read and a sink
as an external resource to which data is written.

Taint analysis can be either static or dynamic. For instance,
TaintDroid performs real-time taint tracking to dynamically detect
data leaks [3]. In contrast, FlowDroid performs a highly precise
taint flow static analysis for each component in an Android appli-
cation [8, 9], and Epicc [14] analyzes properties of messages sent
between components of apps. (Every Android app is composed
of one or more components, as described in Section 2.) Advan-
tages of static analyses include the absence of run-time overhead
and the ability to detect harmful applications before they are even
installed on a mobile device. However, there has been little work
on statically analyzing dataflows of a system composed of several
applications. This is important because data from a source might
reach a sink only after passing through one or more components.

This paper describes our static taint analysis for Android, which
can report undesired information flows that occur when several ap-
plications interact with each other. Our tool analyzes both inter-
component and intra-component dataflow. It combines and aug-
ments the FlowDroid [9] and Epicc [14] analyses to precisely de-
termine tainted flows both within and across applications. Our ap-
proach requires analysis of the source or bytecode of each app only
once, and leverages the results to detect potentially dangerous flows
enabled by all subsets of analyzed apps.

2. Background
Android Architecture. In Android, there are four types of app
components: activities, which define a user interface; services,
which perform background processing; content providers, which
store and share data using a relational database; and broadcast re-
ceivers, which can receive broadcast messages from other appli-
cations. The primary method for inter-component communication,
both within and between applications, is via intents. In this pa-
per, we focus on communication between activity components. The
startActivity family of methods is used to send an intent to an
activity component. The app’s manifest file specifies filters that are
used by the system to determine if the app is eligible to receive a
particular intent, using Android rules for matching filters to con-
tent of various intent fields. A component may also send an intent
to itself, addressing itself either explicitly, or implicitly by setting
its intent filter so that it can receive the intent it sent.
Static Analysis Tools. Our analysis is built upon the FlowDroid
and Epicc analyses and the Soot analysis framework. The Flow-
Droid static analysis is context-, flow-, object-, and field-sensitive
and Android app lifecycle-aware [9]. FlowDroid performs a highly
precise taint flow static analysis for Android, but its analysis is lim-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2614628.2614633&domain=pdf&date_stamp=2014-06-12

Source

FlowDroid

Component 1

FlowDroid

Epicc

TaintFlowsFlowDroid

Component 2

FlowDroid

Epicc

Sink

FlowDroid

Sink

Source

FlowDroid

Figure 1. Analysis by data flow type: FlowDroid identifies sources
(including intents received), flow of the data within the component,
and sinks (including intents sent). Epicc identifies characteristics
of intents sent by a component. TaintFlows, the Phase-2 analyzer,
matches sent intents to components which could receive the intent,
using app manifest data and matching intent IDs from Epicc and
FlowDroid. From beginning to end, a given data flow can be
internal to one component or traverse multiple components that can
be in a single app or multiple apps.

ited to single components. FlowDroid’s analysis uses a static list of
Android API methods that correspond to sources and sinks. This
list is produced by SuSi [15], a tool that uses machine learning to
classify the methods exposed by the Android API.

The Epicc tool precisely and efficiently identifies properties
(such as action, category, and data MIME type) of intents that
can be sent and received by components [14]. For example, Epicc
might identify that a particular app can only send intents with action
android.intent.action.VIEW and MIME type image/jpg.

Soot [16] is a Java optimization and analysis framework. We
use the Soot framework in several parts of our analyzer described
in Section 4.

3. Analysis Method
The overview of our analysis method is shown in Figure 1. The
goal of our analysis is to produce a set of all possible source-to-
sink flows within a set of Android apps. Our taint flow analysis
takes place in two phases. In Phase 1, each application is analyzed
individually. Received intents are considered sources, and sent
intents are considered sinks. The output of our Phase-1 analysis,
for each app, consists of (1) flows within each component, found
by FlowDroid; (2) identification of the properties of sent intents, as
found by Epicc; and (3) intent filters of each component, extracted
from the manifest file.

An intent ID is assigned to every source code location that
sends an intent (i.e., a source code location that consists of a
call to a method in the startActivity family), as described in
Section 4.1.1. Sent intents with distinct IDs are considered distinct
sinks, while intents with the same ID are combined together.

Phase 2 of the analysis is carried out on a particular set of apps,
using the output of Phase 1. The output of Phase 2 consists of all
the source-to-sink flows found in the set of apps.

3.1 Example Scenario
We next introduce an example of information flows between several
components (Figure 2) that cannot be precisely analyzed by exist-
ing tools. Suppose that Component C1 sends data to Component
C2 and receives data from it in return. Component C3 interacts
with C2 in a similar fashion. We do not specify whether these three
components belong to different apps or to a single app; the analy-
sis is the same in either case. As depicted in Figures 2 and 3, for
i ∈ {1, 3}:

1. Component Ci calls startActivityForResult to send data
from source srci to component C2 via intent Ii.

src1

sink 1

I1

C2

C1

C3
R(I3)

R(I1)

I3

src3

sink 3

Figure 2. Running example described in Section 3.1. R(Ii) de-
notes the response to intent Ii (set using setResult).

setResult()

getIntent()

Component 1
Source

Sink

Component 2

startActivityForResult()

onActivityResult()

Figure 3. Interaction between C1 and C2 in the running example

2. Component C2 reads data from intent Ii and sends that data
back to component Ci by calling setResult.

3. Component Ci, in method onActivityResult, reads data
from the result and writes it to sink sink i.

To be precise, our analysis should determine that (1) information
flows from src1 to sink1 (but not sink3), and (2) information flows
from src3 to sink3 (but not sink1). Note that FlowDroid by itself
cannot produce this precise of a result, even in the case where the
three components are part of a single app.

3.2 Phase 1
In this phase, we analyze each app individually. We identify an
intent by a tuple of (sending component, receiving component,
intent ID). An intent sent from C1 to C2 with ID id will be denoted
by I(C1, C2, id).

In Phase 1, when a component calls a method in the
startActivity family, we do not know which components can
potentially receive the the intent (because each app is analyzed in
isolation in Phase 1, but potential recipients can be components of
other apps), so we use null for the recipient field. Likewise, in the
onCreate method (which the Android OS calls when the activity
component receives an intent), we do not know the sender of the
intent, so we use null for the sender field. If a component receives
an intent I1 and returns information via the setResult method,
we denote the returned information by R(I1).

We write source C−→ sink to denote that information flows from
source to sink in component C. For this purpose, we treat intents
as both sources (in the component that creates and sends the intent)
and sinks (in the component that receives the intent). Using this
notation, we represent the flows depicted in Figure 2 and described
in Section 3.1 as follows:

src1
C1−−→ I(C1, null, id1)

R(I(C1, null, null))
C1−−→ sink1

I(null, C2, null)
C2−−→ R(I(null, C2, null))

src3
C3−−→ I(C3, null, id3)

R(I(C3, null, null))
C3−−→ sink3

The above flows constitute the desired output of the FlowDroid
analysis. Although all the flows in the running example involve
intents, in general our analysis will also find flows from non-intent
sources to non-intent sinks.

We focus, in both description and in implementation, on intents
sent and received by Activity components; other types of com-
ponents (services, content providers, broadcast receivers) can be
handled similarly.

3.3 Phase 2
After all apps in the given set have been analyzed, we enter Phase 2.
Our goal is to find out how tainted information can flow between
components. For each sent intent, we find all possible recipients,
and we instantiate the Phase-1 flow equations (which have missing
sender/receiver information) for all possible sender/receiver pairs,
as we describe in detail in Section 3.3.1. For the running example,
the Phase-2 flow equations are as follows:

src1
C1−−→ I(C1, C2, id1)

R(I(C1, C2, id1))
C1−−→ sink1

I(C1, C2, id1)
C2−−→ R(I(C1, C2, id1))

I(C3, C2, id3)
C2−−→ R(I(C3, C2, id3))

src3
C3−−→ I(C3, C2, id3)

R(I(C3, C2, id3))
C3−−→ sink3

Let T (s) denote the taint of s, that is, the set of sensitive sources
from which s potentially has information. The goal of the analysis
is to determine the taint of all sinks. Each phase-2 flow equation
s1 → s2 relates the taint of s1 to the taint of s2. If data flows from
s1 to s2, then s2 must be at least as tainted as s1. Accordingly,
we generate a taint equation T (s1) ⊆ T (s2). For the running
examples, the taint equations we generate are:

T (src1) ⊆ T (I(C1, C2, id1))

T (R(I(C1, C2, id1))) ⊆ T (sink1)

T (I(C1, C2, id1)) ⊆ T (R(I(C1, C2, id1)))

T (I(C3, C2, id1)) ⊆ T (R(I(C3, C2, id3)))

T (src3) ⊆ T (I(C3, C2, id3))

T (R(I(C3, C2, id3))) ⊆ T (sink3)

Each non-intent source s is tainted with itself, i.e., T (s) = {s}.
We then find the least fixed-point of the set of taint equations. The
end result of Phase 2 is the set of possible source to sink flows.

3.3.1 Details of Generating Phase 2 Flow Equations
Let S be the set of sources and sinks (including intents and intent
results) in the Phase 1 flow equations. Consider a transmitted intent
ITX and a received intent IRX from Phase 1. In all cases, ITX

will have the form I(CTX , null, id), and IRX will have the form
I(null, CRX , null).

In Section 3.3, we said that we instantiate the Phase-1 flow
equations for all possible intent sender/receiver pairs. We now give
the details of how we do this. For each Phase-1 flow src → sink ,
we generate the set of all flows of the form src′ → sink ′ that
satisfy the following conditions:

1. If src is a regular (non-intent) source, then src′ = src.

2. If sink is a regular (non-intent) sink, then sink ′ = sink .

3. If src has the form I(null, CRX , null) (for example, the result of
a call to android.app.Activity.getIntent()), then src′

must have the form I(CTX , CRX , id) where there exists an

src1

sink 1

src3

sink 3

I1
C1

C3
R(I3)

R(I1)

I3
C2a C2b

I2

R(I2)

Figure 4. Example of inter-app communication flow wherein, for
i ∈ {1, 3}: C2a receives tainted data from Ci, sends it to C2b,
receives a result with the same taint, and finally sends it back to Ci.

intent I(CTX , null, id) ∈ S that matches the intent filter of
component CRX .

4. If sink has the form I(CTX , null, id) (for example, an intent
object passed to startActivity), then sink ′ must have the
form I(CTX , CRX , id) where component CRX has an intent
filter that matches the intent sink .

5. If src has the form R(I(CTX , null, null)) (for example, a pa-
rameter of the callback method onActivityResult), then src′

must have the form R(I(CTX , CRX , id)) where

(a) there exists an intent I(CTX , null, id) ∈ S that matches the
intent filter of component CRX , and

(b) R(I(null, CRX , null)) ∈ S.

6. If sink has the form R(I(null, CRX , null)) (for example, a
value passed to setResult), then sink ′ must have the form
R(I(CTX , CRX , id)) where

(a) there exists an intent I(CTX , null, id) ∈ S that matches the
intent filter of CRX , and

(b) R(I(CTX , null, null)) ∈ S.

7. If src has the form I(null, CRX , null) and sink has the form
R(I(null, CRX , null)), then sink ′ must be R(src′).

Condition 7 allows us to precisely handle a situation in which
a component (such as C2 in the running example) processes data
from various callers without intermingling the taintedness of the
data. Condition 7 is sound as long as multiple instances of the
component can communicate only via flows included in the Phase-
1 equations. Our current implementation catches most such flows
but misses inter-instance communication via static fields.

For example, in Figure 2, if all components are part of the same
app, then the two launched instances of C2 can store information
from I1 and I3 in a static field (which is shared between the two
instances of C2). The value in the static field (tainted with both
src1 and src3) can then be read and copied into R(I1) and R(I3).
This flow would be missed by our current analysis.

For future work, we plan to address static fields in a sound
manner. In particular, if an app A has a class C with a static
field sf , we would modify FlowDroid to introduce a dummy entity
sfA,C that can act both as a source and as a sink. Reading from
static field sf would be treated as reading from sfA,C , and writing
to sf would be treated as writing to sfA,C . The resulting Phase-
1 flow equations would enable our Phase-2 analysis to soundly
handle inter-instances communication via static fields.

Our analysis cannot precisely handle the situation in Figure 4,
wherein tainted data travels through a chain of apps. In this sit-
uation, our analysis would mark all intent results as being tainted
with data from both I1 and I3 instead of being able to keep them
separate.

TransformAPK
Epicc

FlowDroid (Modified)

Dare

Original APK

Figure 5. Phase 1

3.3.2 Rules for Matching Intents
In Section 3.3.1, we used the term “match” in relation to a sent
intent and an intent filter. We now more fully define what we mean
by “match”. The Android documention1 describes how a sent intent
is matched to potential recipients. If the intent explicitly designates
a recipient, then the intent is matched with exactly that recipient.
Otherwise, the intent is matched with a filter if it passes three tests:
an action test, a category test, and a data test.

Epicc provides information about outgoing intents in its app
analysis, and we use that. It provides no information about the
URI fields of intents, so we ignore the URI fields when matching
intents with intent filters.

Sometimes, Epicc will return <any string> for the action
string or Found top element for the intent as a whole. For
this case, the analyzer has two modes (which can be selected by
a command-line option): (1) a sound mode, which assumes that
an unknown action string potentially matches any action string
in any filter, thereby typically generating many false positives,
and (2) a precise mode, which assumes that the unknown action
string doesn’t match any filter, thereby potentially generating false
negatives. Likewise, in the sound mode, a top-element intent
matches every filter, and in the precise mode, it matches nothing.

4. Implementation Details
We have implemented our approach in an analyzer that we call
“DidFail” (Droid Intent Data Flow Analysis for Information Leak-
age). Our analyzer (source code and binaries), along with 3 apps
which demonstrate the running example in §3.1, is available at:
http://www.cert.org/secure-coding/tools/didfail.cfm

4.1 Phase 1 Analysis
Figure 5 show the components of our analyzer, the processing
sequences, and dataflow paths. The analyzer incorporates use of
the previously existing and unchanged tools Epicc, Dare, and Soot;
a modified version of FlowDroid; and new tools TransformAPK
and TaintFlows. TaintFlows performs the Phase 2 analysis.

4.1.1 APK Transformer
The APK Transformer must be used in the first step of the analysis,
in order to be able to integrate results of the different analytical
tools used afterwards. This step was critical in order to achieve our
ultimate goal of outputting detected paths from sources to sinks,
including paths which contain dataflows via intents. Android apps
are packaged in files with the extension .apk. In Figure 5, “Original
APK” is the original Android app. With the APK Transformer, our
analyzer modifies that app to enable matching intents mentioned in
both the Epicc and FlowDroid outputs. To do this, we transformed
each original .apk file into a modified .apk file, using Soot. We

1 http://developer.android.com/guide/components/intents-
filters.html#Resolution

wrote a program that first uses Soot to transform the .dex Android
bytecode into an intermediate representation called jimple. The
program uses the Soot framework to locate method calls that send
intents, and immediately before that, we insert new jimple code,
which calls an Android method that inserts a unique ID into the
intent. Then, our program uses Soot to compile the modified jimple
code into a new .apk file. When Epicc processes this modified file,
it prints the unique intent IDs. As described in Section 4.1.2, we
modified the source code of FlowDroid so that its output identifies
sent intents by their intent ID, enabling us to match intent analysis
from the two tools. We could not modify the source code of Epicc,
because it is currently published only as a .jar file. According to
the Epicc website, the authors plan to publish the source code in
the future. After the source code is available, we might be able to
combine FlowDroid and Epicc in a more efficient manner.

4.1.2 FlowDroid (Modified)
We modified FlowDroid in several ways. For our Phase-1 analy-
sis, we consider the points where intent information flows in and
out of the component as sources and sinks respectively. There-
fore, we added the method onActivityResult() as a source and
setResult() as a sink in FlowDroid. The methods getIntent()
and startActivityForResult() were already present as a
source and sink respectively. Although the FlowDroid tool comes
with a smaller SourcesAndSinks.txt file, one can substitute
the much larger SourcesAndSinks.txt file from the SuSi ana-
lyzer [15]2. We also added code to look for the putExtra call we
added to insert the unique intent ID, which was added by the APK
Transformer. In flows where an intent is the sink, the output of
FlowDroid identifies the intent by its unique ID.

In a flow src
C−→ I(C, null, id), how do we identify C? When

an intent is sent via base.startActivity (including the case
where base is an implicit this), we assume that that the class of
base must be the sending component.3

The output of FlowDroid was originally non-deterministic in the
order in which flows were listed. To produce deterministic output
for regression testing, we simply sorted the flows before printing.

4.1.3 Epicc and Dare
The Dare [13] tool takes the transformed .apk file as input, retargets
the application, and outputs Java class files. The Epicc analysis
takes two inputs: the transformed .apk file and the output of Dare.

4.2 Phase 2 Analysis
Each app in the app set undergoes its own separate Phase-1 anal-
ysis, with each Phase-1 analysis output providing three separate
output files (manifest file, Epicc output and FlowDroid output) that
are input to the Phase-2 analysis. If there are n apps in the app set,
then the Phase-1 analysis is performed n times, outputting 3n files,
all of which are input to the (single) Phase-2 analysis. The Phase-2
analysis output provides information about dataflows from a source
to a sink, including intents if they are part of the data flow.

5. Experimental Results
We tested our prototype analyzer on two app sets. App Set 1
contains 3 apps that we created, which match the running example
in Figure 2. App Set 2 contains 3 apps from the DroidBench
benchmark suite [2] that use intents for inter-app communication.

2 https://github.com/secure-software-engineering/SuSi (2013-11-25)
3 We have not yet been able to confirm or refute whether this is a sound
assumption. To preserve soundness at the expense of precision, we consid-
ered an intent as potentially matching the intent filter of all components of
an app if it matches the intent filter of any component of the app.

http://www.cert.org/secure-coding/tools/didfail.cfm
http://developer.android.com/guide/components/intents-filters.html#Resolution
http://developer.android.com/guide/components/intents-filters.html#Resolution

Src15

Int3

Res8Int4

Int6 Snk13

Snk11

Figure 6. Tainted data flow in DroidBench apps. Graph
created by running Graphviz on output of our analyzer.
Src15=getDeviceId, Int3=I(IntentSink2,IntentSource1,3),
Int4=I(IntentSource1,IntentSink1,4), Res8=R(Int4), Snk13=Log.i

Our analyzer successfully traced all inter-app and intra-app flows
in both app sets. As described in the previous section, we first ran
the Phase 1 analysis on all apps individually, and then we ran the
Phase 2 analysis for each set of apps.

App Set 1

• SendSMS.apk: This app leaks the user’s DeviceId through an
SMS. It reads the user’s DeviceId, then adds it to an intent
using the putExtra method. It then sends this intent out by
calling startActivityForResult. Another app receives this
intent and responds with a result. When the intent result is
received, the onActivityResult callback method is called.
Data received in the result is then leaked through an SMS.

• Echoer.apk: This app receives intents from other apps. It reads
the incoming intents using the getIntent method, and writes
the received data using Log. Also, it sends this data back to the
transmitter using the setResult call.

• WriteFile.apk: This app is similar to SendSMS except that it
reads the user’s location and leaks it to the FileSystem.

Result: Our analysis detected the following interesting flows:

getDeviceId
SendSMS−−−−−−→ startActivityForResult

getIntent
Echoer−−−−→ setResult

onActivityResult
SendSMS−−−−−−→ sendTextMessage

getLastKnownLocation
WriteFile−−−−−→ startActivityForResult

getIntent
Echoer−−−−→ setResult

onActivityResult
WriteFile−−−−−−→ write

App Set 2: Droidbench Benchmark Suite DroidBench is a set of
open source apps for testing static analysis tools.

• IntentSource1.apk: This app reads the incoming intent
using getIntent, and sends the intent out by calling
startActivityForResult. When another app receives this
intent and responds with a result, this app logs the result (Sink).

• InterAppCommunication IntentSink1.apk: This app read the
user’s DeviceId (Source), adds it to the received intent, and then
sends the intent out by calling getIntent method.

• InterAppCommunication IntentSink2.apk: This app also reads
the user’s DeviceId (Source), adds it to a new Intent object, and
sends the intent out by calling startActivty.

Result: Our analysis detected the following interesting data
flows as shown in the Figure 6.

Src15
IntentSource1−−−−−−−−→ Int3

IntentSource1−−−−−−−−→ Snk13

Src15
IntentSource1−−−−−−−−→ Res8

IntentSource1−−−−−−−−→ Snk13

Note: The apps InterAppCommunication IntentSink1 and In-
terAppCommunication IntentSink2 use the same package name
‘de.ecspride’. Since Android does not allow two packages
with the same name, we changed the package names to
‘de.ecspride.IntentSink1’ and ‘de.ecspride.IntentSink2’.

6. Sources of Unsoundness and Imprecision
Among its sources of unsoundness and imprecision, our analysis
inherits those from its building blocks, Epicc and FlowDroid.

Unsoundness Sources of unsoundness cause the analysis to fail
to identify a tainted flow. Sources of unsoundness in our analy-
sis include reflection and native code, which are not addressed by
Epicc. FlowDroid also does not consider reflective calls. How-
ever, FlowDroid does analyze calls that invoke native code, using
a heuristic called Taint Wrapping. It defines explicit taint propaga-
tion rules for commonly called native methods. For all other native
methods, FlowDroid uses the following heuristic: if the input array
was tainted before the call, then FlowDroid determines that all call
arguments and any return value are tainted. FlowDroid’s handling
of native calls is not sound; it does not analyze the native code in the
callee. For example, native code can read from sources and write
to sinks, which will not be detected by FlowDroid. FlowDroid also
is unsound because it does not trace some leaks caused by multi-
threading and some implicit flows. If the component’s life cycle is
not modeled completely by Epicc and/or FlowDroid, that would be
another source of unsoundness, as discussed in FlowDroid [9] and
Epicc [14] papers.

The analysis that we have presented does not consider implicit
flows that involve the mere receipt of intents without reading any
information from the received intents. For example, suppose an
app AT wants to communicate a bit vector 〈bn, ..., b0〉 to an app
AR without being detected by our analysis. App AR can have two
components, CR0 and CR1, which have mutually exclusive intent
filters. Then AT can send a sequence of intents 〈In, ..., I0〉 where
• intent Ii matches CR0 iff bi = 0, and
• intent Ii matches CR1 iff bi = 1.

To ensure that intents arrive in proper order, App AT can use
startActivityForResult to send the intent and then wait until
CR0 or CR1 calls setResult to acknowledges receipt.

Data can flow between components of different apps via file or
database accesses such as writes to and reads from shared external
storage, internal storage, and shared public directories on the de-
vice. These same file and databases can be accessed to allow (and
sometimes to restrict) data flow between components of a single
app. FlowDroid considers a read from a file to be a source and
a write to a file to be a sink. Within one component, the Flow-
Droid analysis finds a tainted flow if there is a read from a file and
a call to a sink, or a call to a source and a write to a file. Although
our analyzer finds some tainted flows, including file access, which
FlowDroid does not, it does not soundly analyze taint flows involv-
ing files accesses. Our analysis finds a multi-component tainted
dataflow that ends with a write to a file sink. However, it does
not trace a multicomponent tainted dataflow that starts with a read
from a file source. Also, our analyzer is unsound because it does
not trace a multi-component tainted dataflow with a read from a file
in one component after a write to it by another.

Additional sources of unsoundness in the analyzer include
shared static fields. FlowDroid traces tainted data within a com-
ponent (or within an entire app, depending on command line ar-
guments) that is written to and/or read from a shared static field.
Unsoundness due to inter-instance static field communication is
discussed in Section 3.3.1.

Imprecision Imprecision in the analysis would result in the anal-
ysis reporting a possible tainted flow where such flow is not actually
possible. For instance, the Epicc analyzer over-approximates inter-
component communication (ICC) because it does not handle URIs,
which are used by Android to match intents to receiving compo-
nents. As described above, FlowDroid’s analysis of native calls
is not precise and sometimes over-approximates returned tainted
fields. Our analyzer does not use permissions to restrict possible
matching of intent senders and receivers. This over-approximated
matching is a source of analysis imprecision.

In our Phase-1 FlowDroid analysis, all the received intents for
a component are conflated together as a single source. As future
work, to be more precise, we plan to modify FlowDroid so that,
when a callback function such as onCreate is analyzed, it can
report the data flows as a function of the properties of the received
intent. For example, we might report that a component C has a
flow camera

C−→ R(I) iff I.hasExtra(“cam”) = true. Similarly,
we can make analysis of onActivityResult be sensitive to the
value of the requestCode parameter.

7. Related Work
The Epicc tool performs the most precise static analysis of Android
intents of any Android analyzer known to us, finding vulnerabili-
ties with far fewer false positives than the next best tools. The
authors showed that the intent ICC problem can be reduced to an
inter-procedural Distributive Environment (IDE) problem, so the
existing algorithms for efficient IDE solutions could be used. Epicc
builds on a pre-existing IDE framework within the Soot library.

Daniel Hausknecht’s 2013 thesis [10] describes VarDroid, in-
tended to integrate intra-component and inter-component static
analyses, similar in some ways to our method. His concept is mod-
ular where different analyses could be switched out for the intra-
component and inter-component dataflow tracing. Where we use a
modified FlowDroid, his concept could use Chex [12], FlowDroid,
or another analyzer. His thesis says he did not complete integrating
FlowDroid in his system. Instead, he simulated dataflow analysis
through probabilistically generated information simulating results
of the intra-component and inter-component analyses.

The Kirin tool [4] provides a formalized model for stating data
policy and compares stated policies to information extracted from
app manifest files, processing this information on the phone, to
determine whether an app should be installed. The SORBET
[7] system modified a standard Android system to enable formal
definition of desired security properties, which were proven to hold
on SORBET but not on Android. Livshitz et al. [11] did static
analyses on Java code to detect policy violations with security
implications, including taint analysis. TaintDroid [3] does realtime
taint tracking to dynamically detect data leaks.

Felt et al. [5] found that about one-third of Android apps (of the
940 they tested) asked for more privileges than actually used. They
found evidence that a cause of over-privilege is developer confu-
sion in part due to insufficient Android API documentation. Fur-
thermore, malicious apps can use permission re-delegation attack
methods [6], which when successful take advantage of a higher-
privilege app performing a privileged task for an application with-
out permissions. The ComDroid [1] tool analyzes inter-app com-
munication in Android, looking at intents sent and the manifest files
for potential vulnerabilities due to app communication. Although
it examines vulnerabilities due to intents, the ComDroid analysis
does not trace and identify data paths between sources and sinks.

8. Conclusions and Future Work
This paper introduced a new analysis that integrates and enhances
existing Android app static analyses in a two-phase method. We

demonstrated feasibility by implementing our approach and testing
apps with it. Future work planned includes enhancing the inter-
component part of the taint flow analysis to include additional data
channels such as static fields, SQLite databases, and SharedPref-
erences. We also plan to test a large number of publicly available
Android apps. We envision that a two-phase analysis such as ours
can be used as follows. An app store can run the Phase-1 analysis
on each of the apps in the app store. When a user wants to install
a new app, the app store would conduct the Phase-2 analysis and
tell the user about the new flows that would be made possible if the
new app is installed.

Acknowledgments We thank Dr. Bodden for encouraging us to
work on this analysis that incorporates Epicc and FlowDroid analy-
ses. We thank Robert Seacord for useful discussions and the anony-
mous reviewers for their comments. This work was funded4 by
the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon (for the operation of the SEI, an FFRDC), by
ONR grant N000141310156, and by NSF grant CNS-1320470.

References
[1] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-

application communication in Android. In Proc. MobiSys, 2011.
[2] ECSPRIDE. DroidBench Benchmarks. Accessed 03-26-2014.
[3] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. Sheth. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proc. OSDI, 2010.

[4] W. Enck, M. Ongtang, and P. D. McDaniel. Understanding Android
Security. IEEE Security & Privacy, 7(1):50–57, 2009.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proc. CCS, 2011.

[6] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Per-
mission Re-Delegation: Attacks and Defenses. In USENIX Security,
2011.

[7] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. Modeling and enhancing
Android’s permission system. In Proc. ESORICS. 2012.

[8] C. Fritz. FlowDroid: A Precise and Scalable Data Flow Analysis for
Android. Master’s thesis, TU Darmstadt, July 2013.

[9] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise Con-
text, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps. In Proc. PLDI, 2014. To appear.

[10] D. Hausknecht. Variability-aware Data-flow Analysis for Smartphone
Applications. Master’s thesis, TU Darmstadt, Sept. 2013.

[11] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java
applications with static analysis. In Proc. USENIX Security, 2005.

[12] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically vetting
Android apps for component hijacking vulnerabilities. In CCS, 2012.

[13] D. Octeau, S. Jha, and P. McDaniel. Retargeting Android applications
to Java bytecode. In Proc. FSE, 2012.

[14] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon. Effective inter-component communication mapping
in Android with Epicc: An essential step towards holistic security
analysis. In Proc. USENIX Security, 2013.

[15] S. Rasthofer, S. Arzt, and E. Bodden. A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks. In Proc.
NDSS, 2014.

[16] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan. Soot - A Java bytecode optimization framework. In Proc.
CASCON, 1999.

4 Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the United States Department of Defense or other sponsors. This
material has been approved for public release and unlimited distribution.

