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ABSTRACT

Organizations collect personal information from individuals
to carry out their business functions. Federal privacy regula-
tions, such as the Health Insurance Portability and Account-
ability Act (HIPAA), mandate how this collected informa-
tion can be shared by the organizations. It is thus incum-
bent upon the organizations to have means to check compli-
ance with the applicable regulations. Prior work by Barth et
al. introduces two notions of compliance, weak compliance
(WC ) and strong compliance (SC ). WC ensures that present
requirements of the policy can be met whereas SC also en-
sures obligations can be met. An action is compliant with
a privacy policy if it is both weakly and strongly compliant.
However, their definitions of compliance are restricted to
only propositional linear temporal logic (pLTL), which can-
not feasibly specify HIPAA. To this end, we present a policy
specification language based on a restricted subset of first
order temporal logic (FOTL) which can capture the privacy
requirements of HIPAA. We then formally specify WC and
SC for policies of our form. We prove that checking WC
is feasible whereas checking SC is undecidable. We then
formally specify the property WC entails SC, denoted by
∆, which requires that each weakly compliant action is also
strongly compliant. To check whether an action is compli-
ant with such a policy, it is sufficient to only check whether
the action is weakly compliant with that policy. We also
prove that when a policy ℘ has the ∆-property, the present
requirements of the policy reduce to the safety requirements
imposed by ℘. We then develop a sound, semi-automated
technique for checking whether practical policies have the ∆-
property. We finally use HIPAA as a case study to demon-
strate the efficacy of our policy analysis technique.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—
Privacy, Regulation; F.4.1 [Mathematical Logic and For-
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1. INTRODUCTION
Our society is becoming increasingly dependent on com-

puter information systems for the proper management of
personal data. Medical records, financial data, and personal
information collected from users are just a few examples. Or-
ganizations are required to store and share such information
in a manner that conforms to specific privacy policies, which
are mandated by custom, sound business practice, contract,
and, often, by law. Examples of privacy policies that carry
the force of law include the Health Insurance Portability and
Accountability Act (HIPAA) [33], the Gramm-Leach-Bliley
Act (GLBA) [3], Sarbanes-Oxley Act (SOX) [51]. Viola-
tions of these federal regulations can bring down heavy fi-
nancial penalties on the organizations. For instance, Cignet
Health Center was fined $1.3 million for violating §164.524
of HIPAA [10] which obligates the covered entity (hospital)
to give patients access to their medical records when the
patients request for it. It is thus important for the organi-
zations to check compliance with applicable regulations.

Several frameworks have been proposed for specifying and
analyzing privacy policies [4, 11, 13, 12, 45, 41, 21, 28, 19, 15,
22, 38]. Specifically, Barth et al. [11], present a framework,
Contextual Integrity (CI ), for specifying privacy regulations
like HIPAA. They also introduce two notions of compliance,
weak compliance (WC ) and strong compliance (SC ). WC
ensures that all actions are compliant with the present re-
quirements of the policy whereas SC ensures that obligatory
(future) requirements incurred due to performing an action,
will be consistent with the present conditions of the pol-
icy [20]. Consider the privacy rule from §164.502(e)(1)(i)
of HIPAA which states that a covered entity (hospital) can
disclose a patient’s protected health information (PHI ) to
the covered entity’s business associate if the covered entity
has received a satisfactory assurance from the business as-
sociate ensuring that the business associate will protect the
patient’s PHI . According to this rule, covered entity receiv-
ing the satisfactory assurance from its business associate is
a present condition imposed by the policy rule. An exam-
ple of an obligatory requirement can be found in §164.524
of HIPAA discussed above. Requiring the covered entity to
give access to the PHI to the patient is an example of an
obligatory requirement. We prove that checking WC is fea-
sible whereas checking SC is undecidable. Current work in
this area [13, 28, 41, 4, 19, 22], while checking compliance,
only considers WC without taking SC into account.

In the current work, we aim to verify the ∆-property of
privacy policies. If a policy ℘ can be shown to have the ∆-
property, to check whether an action is in compliance with
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℘, it suffices to only check whether that action is weakly
compliant with ℘. For this, we introduce a specification
language expressive enough to encode the HIPAA Privacy
Policy. We formally specify WC and SC for our language.
Barth et al.’s definitions of compliance (WC and SC) are
not sufficient as they are restricted to only propositional lin-
ear temporal logic (pLTL) which cannot be feasibly used for
specifying privacy regulations like HIPAA. We then present
a sound, semi-automated technique to verify whether a pri-
vacy policy written in our specification language satisfies
the ∆-property. To show the efficacy of our policy analysis
technique, we formally verify that our encoding of HIPAA
satisfies the ∆-property. This implies that whether an ac-
tion is in compliance with the HIPAA Privacy Policy can be
checked efficiently by checking WC only. Note that although
the ∆-property has been introduced before [11], we are the
first to present feasible techniques to decide whether a pol-
icy has the ∆-property and apply it to a practical privacy
policy like HIPAA.
We now detail our technical contributions. We present a

privacy policy specification language based on a restricted
subset of first order temporal logic (FOTL). We demonstrate
the expressive power of our language by encoding all 84
disclosure-related clauses of HIPAA [1]. We then formally
specify what it means for an action to be weakly compliant
and strongly compliant with FOTL policies of our form. We
also prove that WC can be checked in PSPACE in the policy
size provided the policy satisfies a constraint (mode restric-
tion [28, 29]) whereas checking SC is undecidable. While
the complexity of checking WC is in PSPACE, research [28,
13] has shown that it can be checked efficiently in practice.
To mitigate the undecidability of SC, we formally specify

the property WC entails SC (denoted by ∆) [11] of a pri-
vacy policy. Prior work presents a semantic definition and
a decision procedure for checking the ∆-property restricted
to only pLTL policies. A policy has the ∆-property if ev-
ery weakly compliant action is also strongly compliant. The
∆-property can be checked once statically before the pol-
icy is deployed. Given a FOTL policy ℘, we syntactically
generate a first order CTL∗ with linear past (denoted by
FO-CTL*lp) [39] formula δ(℘) from ℘. We prove that δ(℘)
is satisfied in the most permissive model M℘ if and only if
℘ has the ∆-property. The most permissive model with re-
spect to a policy ℘ (denoted by M℘) is the model in which at
each step one action from all the possible actions referred to
by ℘, is non-deterministically chosen to be performed. How-
ever, model checking a FO-CTL*lp formula with respect to
M℘ is undecidable.
While checking the ∆-property for a FOTL policy is in

general undecidable, this result is not discouraging as we
can develop a sound, semi-automated technique with which
we can check the ∆-property for practical privacy policies
like HIPAA efficiently. We prove that there are exactly two
cases in which the ∆-property can be violated (Theorem 8).
In the first case, taking an action might cause the system to
transition to a bad state from which there is no weakly com-
pliant infinite extensions of the current finite trace. In the
second case, the policy allows to incur an obligation which is
not consistent with the present requirements imposed by the
policy [20]. We prove that for policies written in our speci-
fication language, the former violation case cannot happen.
Thus, it is sufficient to consider the second violation case
only (Corollary 11). We then present a sound and com-

plete privacy policy slicing algorithm which decomposes the
original policy analysis problem into multiple smaller policy
analysis problems by slicing the policy with respect to one
obligation at a time assuming obligations do not interact
with each other.

Finally, we use HIPAA as a case study to show the efficacy
of our analysis techniques. We first show that the HIPAA
policy ℘H is trivially satisfiable. HIPAA does not restrict
transmission of any message that does not contain PHI of an
individual. One can thus satisfy the HIPAA Privacy Policy
by only sending messages not containing any PHI . Thus,
from Corollary 11, it follows that ℘H can violate the ∆-
property only through allowing a weakly compliant action
to incur unsatisfiable obligations. We then slice ℘H with
respect to two different obligations from HIPAA. The size
of the sliced policies in both cases is only 5% of ℘H , which
is a significant reduction of the policy size to be considered.
We then develop a small model theorem [25] for ℘H which
reduces the problem of checking the ∆-property with infinite
carrier sets to checking the ∆-property for finite carrier sets.
A small model theorem for the complete language remains
an open question. We then formally verify that the two
sliced HIPAA policies have the ∆-property. While there is
currently no tool support for model checking CTL*lp, which
we leave as future work, we utilize the approach of Barth et
al. [11] which is applicable in this case.
Organization. Section 2 briefly overviews FOTL. We in-
troduce our privacy policy specification language in sec-
tion 3. In section 4, we formalize what it means for an action
to be compliant with a privacy policy. Our main technical
contribution is in section 5 where we present a sound, semi-
automated technique by which we can verify the ∆-property
of a privacy policy. In section 6, we demonstrate how to use
our techniques for HIPAA. Related work is discussed in sec-
tion 7. Section 8 discusses open problems, future work, and
concludes the paper.

2. BACKGROUND ON FOTL
Linear temporal logic (LTL) [48] characterizes the behav-

ior of reactive systems in terms of traces (σ), infinite se-
quences of states and/or events. LTL abstracts the explicit
notion of time and only reasons about a relative temporal
ordering of events. Our privacy policy language is a many-
sorted, first-order linear temporal logic (FOTL) [24]. We
briefly summarize FOTL here.

FOTL generalizes pLTL in the same way that first-order
logic generalizes propositional logic. Along with boolean
connectives (e.g., ∧,∨, etc.), predicates, function symbols,
and quantifiers, FOTL formulas can additionally contain
unary and binary temporal operators where the operand(s)
are FOTL sub-formula(s). Temporal operators can be clas-
sified as future and past. Future Operators. Henceforth: φ
says that φ holds in all future states. Eventually: φ says
that φ holds in some future state. Tomorrow: φ holds
when the formula φ is true in the next step. Until: φ1 Uφ2

is true in the current state if φ2 holds true in some future
state (including the current one) and the formula φ1 holds
in all the states from the current state to the state before
φ2 holds. Past Operators. Historically: φ says that φ held
in all previous states. Once: φ says that φ held in some
previous state. Yesterday: φ holds true when the formula
φ held true in the previous state. Since: φ1 S φ2 says that
φ2 held at some point in the past, and since then φ1 has
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℘ ::= 
(

∀p1, p2, q : P.∀m :M.∀t : T.∀u : U.

send(p1, p2,m) ∧ contains(m, q, t) ∧ for-purpose(m,u)

→
(

∨

i φ
+
i

)

∧
(

∧

j φ
−
j

))

Figure 1: Forms of our privacy policy (℘)

held in every state. Note that the S operator can be used
to represent the  and  operator.
A logical environment η maps each variable to a value in

the carrier set according to the variable’s sort. A formula φ
is satisfied by a trace σ at an index i under η, denoted by
σ, i, η |= φ, can be defined inductively on the structure of
φ. One says that σ satisfies φ, written σ |= φ, if and only
if for any η, we have σ, 0, η |= φ. We use σ1 · σ2 to denote
the concatenation of two traces in which σ1 is a finite trace
whereas σ2 is an infinite trace.

3. POLICY SPECIFICATION LANGUAGE
In this section, we introduce our privacy policy specifi-

cation language. Our policy specification language is a re-
stricted subset of first-order linear temporal logic (FOTL).
It is inspired by the specification language, Contextual In-
tegrity (CI), proposed by Barth et al. [11]. The specific
differences between our language and CI are discussed in
Section 7. We demonstrate the adequacy of our specifica-
tion language by expressing all disclosure-related clauses of
the HIPAA Privacy Rule [33] in it [1]. Note that we can-
not express obligation deadlines in our language. Although
enhancing our specification language to express obligation
deadlines [37, 9] is plausible, we do not take obligation dead-
lines into account in our policy analysis. This is further
discussed in section 8.
Top-level Policy. The form of our privacy policies is shown
in Figure 1. We use ℘ to denote such policies. The sorts are
P, T,M,R, and U (denoting agents, attributes, messages,
roles, and purposes) with associated carriers P, T , M, R,
and U , respectively. The variables p1, p2, and q are of sort
P , t is of sort T , m is of sort M , and u is of sort U .
The privacy policies we consider (e.g., HIPAA) mandate

transmission of messages between different parties. A com-
munication action is denoted by send(p1, p2,m), in which
p1 is the sender, p2 is the receiver, and m is the message
being sent. Each message contains a set of agent, attribute
pairs, content(m) ⊆ P × T . The predicate contains(m, q, t)
holds if message m contains attribute t of subject q. A
knowledge state κ is a subset of P × P × T . If (p, q, t) ∈ κ,
this means p knows the value of attribute t of agent q. For
example, Alice knows Bob’s height. A transition between
knowledge states occurs when a message is transmitted, as
the attributes contained in the message become known to
the recipient. We use inrole(p, r̂) to specify that the prin-
cipal p is in role r̂, in which r̂ is a constant of sort R. For
instance, inrole(p, psychiatrist) holds when the principal p
is in the role psychiatrist. We also allow role hierarchies
and consider them as input to the system. For instance, the
role psychiatrist is a specialization of the role doctor. The
predicate for-purpose(m,u) holds true when the message m
is sent for the purpose u (e.g., payment). We use the predi-
cate in(t, t̂) to specify that the attribute t can be calculated
from the attribute t̂, in which t̂ is a constant (e.g., proce-
dure) of sort T . For instance, the zip code can be calculated
from a postal address. Finally, the predicate purpose(u, û)
holds when the purpose u has the value û, in which û is a
constant (e.g., payment) of sort U .

Our policies consist of two kinds of norms of transmission,
positive norms and negative norms. Positive norms can be
thought of allowing policy rules whereas negative norms can
be thought of denying policy rules. A positive norm (φ+

i )
allows a message transmission if the condition associated
with it holds. On the contrary, a negative norm (φ−

j ) allows
a message transmission only if the condition associated with
it is satisfied. An action is thus allowed by the policy if it
satisfies at least one of the positive norms and all the nega-
tive norms. Finally, the policy of Figure 1 has the following
intuitive meaning. For all senders p1, for all receivers p2, for
all subjects of the information q, for all messages m, for all
message attributes t, for all purposes u, p1 can send a mes-
sage to p2 about q’s attribute t for purpose u if it satisfies at
least one of the positive norms and all the negative norms.
Syntax of Norms. The form of the policy norms are
shown in Figure 2. The formula meta-variables in the norms
(i.e., ψ, β, and χ) correspond to syntactic categories in-
troduced below in Figure 3. Exception formulas ψexception

have the same form as ψ. In the norms (see Figure 2),
the non-temporal formulas Csender, Creceiver, and Csubject im-
pose constraints on the role of the sender, receiver, and sub-
ject, respectively. Formulas Csender, Creceiver, and Csubject

are boolean combinations of atomic formulas of the form
inrole(p, r̂). In the same vein, the non-temporal formu-
las Cattribute and Cpurpose intuitively impose restrictions on
the message attributes and the purposes of the message
transmission. Formulas Cattribute and Cpurpose are boolean
combinations of atomic formulas of the form in(t, t̂) and
purpose(u, û), respectively. The formula C = Csender∧Creceiver

∧ Csubject ∧ Cattribute ∧ Cpurpose can be viewed as specifying
the target send event to which this norm applies to.

Positive Norm, φ+i : (C ∧ ψ ∧ β) ∨ ψexception

Negative Norm, φ−j : C ∧ ψ → (χ ∨ ψexception)

where C = Csender ∧ Creceiver ∧ Csubject ∧ Cattribute ∧ Cpurpose

Figure 2: Norms of transmission

(Atomic Formulas) γ ::= R(~x) | true
(Non-temporal Formulas) µ ::= γ | µ ∧ µ | µ ∨ µ | ∃~x :τ. µ |

∀~x :τ. (µ1(~x) → µ2(~x))
(Pure Past Formulas) ψ ::= µ | ψ ∧ ψ | ¬ψ | ψ S ψ | ∃~x :τ. ψ

| ∀~x :τ. (µ1(~x) → µ2(~x))
(Obligation Formulas) β ::= µ | β ∧ β

(Mixed Formulas) χ ::= β | ψ | ψ ∧ β | ψ → β

Figure 3: Meta-variables of the privacy policy.

We have already discussed some pre-defined predicates of
our language (e.g., inrole, etc.). We allow additional predi-
cates denoted by R(~x) (see Figure 3) in which ~x denotes its
arguments. Each element of ~x is a constant or a variable.
We envision these predicates to be regulation-specific.
Restrictions. We now discuss the different constraints we
impose in our specification language and their implications.
Note, in particular, the limited way in which future tempo-
ral operators are used. Aside from the  at the outer-most
level, the only future sub-formulas are of the form given by
β and  can be applied only to positive, non-temporal for-
mulas. This is the key to our ability to syntactically extract
the past and future requirements from the policy formula.
It also enables us to define weak compliance (WC ) grace-
fully in section 4. More precisely, we do not allow formulas
expressing general liveness properties (q). Instead we al-
low formulas expressing response properties [43]. Response
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properties have the general form (p → q), in which p is
a pure-past formula and q is a non-temporal formula. The
formula (p → q) intuitively requires every p to be fol-
lowed by a q. Among the past temporal operators, we do
not allow the  operator. As we shall show in section 5,
a policy containing the  operator can fail to satisfy the
∆-property. We also do not allow function symbols in our
specification language.
Example norms from HIPAA. A positive norm (shown
below) can be found in §164.502(d)(1) of HIPAA. It states
that a covered entity can send an individual’s protected
health information (PHI ) to its business associate for creat-
ing de-identified (or, anonymized) information.
(

inrole(p1, covered-entity) ∧ inrole(p2, business-associate)
∧inrole(q, individual)

)

∧

in(t,PHI )∧
purpose(u, creating-deidentified-info)∧
businessAssociateOf(p2, p1)

A negative norm (shown below) can be found in §164.508(a)(2)
of HIPAA. It specifies that a covered entity must obtain an
authorization before disclosing an individual’s psychother-
apy notes.

inrole(p1, covered-entity) ∧ inrole(q, individual)∧
in(t, psych-notes) −→
∃m2 :M.(send(q, p1,m2))∧

satisfiesAllValidAuthReqs(m2, p1, p2, q, t, u)∧
¬violatesValidAuthReqs(m2, p1, p2, q, t, u))

4. PRIVACY POLICY COMPLIANCE
We now formally specify what it means for an action to

be compliant with a privacy policy. Privacy policies ℘ can
impose present requirements (which includes past require-
ments) and also obligatory (future) requirements. Recall the
clause §164.502(e)(1)(i) of HIPAA discussed in Section 1.
Obtaining the satisfactory assurance from the business as-
sociate is a present requirement of that clause. An obliga-
tory requirement can be found in §160.310 of HIPAA, which
requires the covered entity to provide PHI of an individual
to the secretary for compliance investigation, if she has re-
quested for the information. The covered entity’s action of
providing access to the individual’s PHI to the secretary for
compliance investigation is an obligatory requirement.
To this end, for checking compliance with policies ℘ it is

helpful to separate the concerns of checking compliance with
present and obligatory requirements. The syntactic restric-
tions in our policy language allow us to extract a formula
that expresses the present requirements imposed by the pol-
icy. We can determine whether a contemplated action is
in compliance with the present requirements of a policy by
looking only at the current history. We call a contemplated
action weakly compliant with respect to a policy when it
is consistent with the present requirements of that policy.
However, the present requirements do not give any assur-
ance about whether the obligatory requirements can be met
and can restrict an entity from performing its pending obli-
gations. To this end, we use strong compliance [11], which
formalizes the notion that a contemplated action will neither
prevent pending obligatory requirements to be met nor incur
any unsatisfiable obligatory requirements. An action is com-
pliant with a privacy policy if it is both weakly compliant
and strongly compliant. We will show that for our privacy
policy language, checking whether an action is weakly com-
pliant with a policy is feasible whereas checking whether that
action is strong compliant with the policy is undecidable.

4.1 Weak Compliance (WC)
For formally specifying what it means for an action to be

weakly compliant with ℘, we use the formula weak(℘).
weak(℘): weak(℘) denotes the formula derived from ℘ by re-

placing future sub-formulas (sub-formulas of the form µ)
with logical true and removing the outermost . Due to the
syntactic manipulation, the formula obtained only contains
past temporal operators and expresses the present require-
ments of ℘.

Definition 1 (Weak Compliance (WC)). Given a
policy ℘, a finite trace σ, and a contemplated action a, a
is weakly compliant with respect to σ and ℘ if for all en-
vironments η, we have σ · s, |σ|, η |= weak(℘) where state
s |= a.

Although we have formally defined |= only in terms of
infinite traces (see Section 2), the usage of |= for finite σ
here is well defined because weak(℘) is a pure-past formula:
σ · s, |σ|, η |= weak(℘) depends only on the states in σ and
the state s.

Consider the HIPAA privacy rule in §164.508(a)(2) which
states that a covered entity can disclose an individual’s psy-
chotherapy notes if he received the authorization from the
individual. Now, if the covered entity discloses an individ-
ual’s psych-notes without the authorization from the indi-
vidual, then the action will not be weakly compliant with
respect to the policy rule in §164.508(a)(2) as it violates the
present requirement of obtaining an authorization.
Complexity of WC. For checking WC with respect to a
policy ℘, we have to check whether a finite trace (includ-
ing the current contemplated action) satisfies the formula
weak(℘) in every point in that trace. Note that weak(℘) is
a pure-past FOTL formula with quantifiers. Garg et al. [28,
29] present mode restriction, which ensures that quantifiers
can be expressed as finite conjunctions or disjunctions. This
enables an algorithm with PSPACE complexity that can
check whether a finite trace satisfies a first-order logic pol-
icy. The authors [28] also show that mode restriction is still
practical as the HIPAA privacy rules satisfy it. Note that
their language is a proper superset of our language fragment
used to express weak(℘). We can thus translate weak(℘) into
their language, and if it passes mode checking, use their al-
gorithm to check WC for ℘. Basin et al. [13] also present an
algorithm for checking WC for a language similar to ours.

Theorem 2. Given a policy ℘, WC can be checked in
PSPACE in the size of ℘ if weak(℘) satisfies the mode re-
striction.

For brevity, we do not present proofs for our theorems.
Proofs of all theorems appear in the technical report [2].

4.2 Strong Compliance (SC)
When we check weak compliance, we ensure that the pres-

ent requirements of the policy are met. However, there can
be a situation where the obligatory requirements are not
consistent with the present requirements of the policy [20].
Strong compliance (SC) [11] ensures that this is not the case.

A contemplated action is strongly compliant with a pol-
icy ℘ if the current history (including the current action)
can be extended to an infinite trace such that the concate-
nation of the finite trace and the infinite extension satisfies
℘. Intuitively, a strongly compliant action neither incurs
an obligation that cannot be met nor prevents any pend-
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ing obligations to be met. We can formally define strong
compliance in the following way.

Definition 3 (Strong Compliance (SC)). Given a
finite history σ′

f and a contemplated action a where state
s |= a and σf = σ′

f · s, the action a is strongly compliant
with the privacy policy ℘ if there is an infinite extension σi

of the current history σf such that σf · σi |= ℘.

Complexity of SC. Checking SC requires deciding whether
the incurred future requirements (non-monadic FOTL for-
mula) of an action are satisfiable. However, checking the sat-
isfiability of non-monadic FOTL formulas is undecidable [34].
As a result, we have the following theorem.

Theorem 4. Given a policy ℘, a finite history σ, and a
contemplated action a, to check whether action a is strongly
compliant with respect to the policy ℘ is undecidable.

5. PRIVACY POLICY ANALYSIS
We now formally specify the property weak compliance en-

tails strong compliance (denoted by ∆) [11]. A policy has the
∆-property if every weakly compliant action is also strongly
compliant. To check whether an action is compliant with
such a policy, it suffices to just check whether the action is
weakly compliant with that policy. We believe well-written
policies should have this property. We also show that when
a policy ℘ has the ∆-property, the present conditions of ℘,
denoted by weak(℘), express the safety property (see Ap-
pendix A) imposed by ℘.
For a given privacy policy ℘, we syntactically construct a

first order CTL* with linear past (denoted by FO-CTL*lp)
[39] formula δ(℘) from ℘. We prove that the most permissible
model (denoted byM℘) of a policy ℘ satisfies δ(℘) if and only
if ℘ has the ∆-property (section 5.1). The most permissive
model M℘ of a policy ℘ is the model in which at each step
one action from all the possible actions referred by ℘, is non-
deterministically chosen to be performed. Considering M℘

of a policy ℘ is reasonable because, if ℘ does not have the ∆-
property in theM℘ then ℘ is not well-formed. When a policy
can incur obligations that cannot be met even in the most
permissive model then it is unlikely that those obligations
can be met in other models. Model checking a FO-CTL*lp
specification with respect to a given model is undecidable.
Thus, in section 5.2, we develop a sound, semi-automated
technique that can feasibly decide in many practical cases
whether a policy has the ∆-property.

5.1 TheWCEntails SC Property (∆-property)
As the ∆-property is a statically analyzable property of

the policy, it enables offloading all complexity of checking
this property to before the policy is actually deployed. We
can then use more expensive decision methods that would
not be feasible if we were to check it at runtime.
A policy satisfies the ∆-property if for any weakly compli-

ant finite trace (history), there exists an infinite extension of
the finite trace such that the concatenation of the finite trace
and the infinite extension satisfies the policy. We call a finite
trace weakly compliant finite trace if each of the actions of
that finite trace is weakly compliant with the policy. For-
mally, for a given environment η, a finite trace (σf ) is weakly
compliant with respect to the policy ℘ if the following holds:
σf , |σf | − 1, η |= weak(℘). We now formally specify what
it means for a privacy policy ℘ to have the ∆-property.

Definition 5 (∆-property). A policy ℘ has the ∆-
property if and only if for any environment η and for any
history (finite trace) σf that satisfies σf , |σf |−1, η |= weak(℘),
there exists an infinite trace (extension) σi such that σf ·σi |=
℘.

We now construct from a policy ℘ a formula δ(℘) in the
logic FO-CTL*lp [39] that is satisfied by the most permis-
sible model (M℘) of the policy (denoted by M℘ |= δ(℘)) if
and only if ℘ has the ∆-property. The formula δ(℘) is de-
fined in Figure 4. The formula states that, given a finite
weakly compliant history, it is possible to extend the finite
history to an infinite one in which all the pending obliga-
tions are discharged while maintaining WC. To the best of
our knowledge, we are the first to give a specification of the
∆-property within a formal logic. This formalization is an
important first step toward being able to identify policies
which have the ∆-property.

δ(℘) ::= A





(weak(℘)) −→

E

(∧

〈λ,γ〉∈α(℘) ∀p1, p2, q :P.∀m :M.∀t :T.∀u :U.
(

(¬γ S λ) →γ
)

∧weak(℘)

)





Figure 4: FO-CTL*lp formulation of the ∆-property

The function α in the formula δ(℘) takes as input a pri-
vacy policy ℘ and returns all possible 〈λ, γ〉 pairs in ℘. In
a 〈λ, γ〉 pair, λ characterizes a condition, which, when true,
incurs the obligation γ according to the policy ℘. The func-
tion α works on the norm level of the policy ℘ and syntac-
tically extracts all the 〈λ, γ〉 pairs. The complete definition
of function α is shown in appendix C.

The following theorem states that a policy ℘ has the ∆-
property if and only if M℘ |= δ(℘).

Theorem 6. Given a policy ℘, ℘ has the ∆-property if
and only if M℘ |= δ(℘).

Sufficient and Necessary Condition for ∆-property.
There are two cases in which an action that is weakly com-
pliant with a policy ℘ is not strongly compliant with ℘. The
first case occurs when taking a weakly compliant action can
lead to a state from which it is not possible to take an un-
bounded number of weakly-compliant valid transitions (no
infinite weakly complaint extension). We call a policy which
does not allow this case, an incrementally satisfiable policy.

Definition 7 (Incrementally Satisfiable). A pure
past FOTL formula φ is incrementally satisfiable if for any
given finite trace σ and for any logical environment η, σ, |σ|−
1, η |= φ implies that there exists an infinite trace σ̂ such
that σ · σ̂ |= φ.

The second case in which a weakly compliant action for ℘
is not strongly compliant for ℘ is when that action incurs
a future obligation which cannot be met. Theorem 8 states
that these two cases are necessary and sufficient.

Theorem 8. A policy ℘ has the ∆-property if and only if
weak(℘) is incrementally satisfiable and no weakly compliant
action of ℘ incurs any unsatisfiable future obligations.

We will now give an example for each violation case. First,
consider the simple example policy in Figure 5, denoted by
℘1. For brevity, we consider a pLTL policy in which A,
B, and H are actions. We also assume at each step only
one action can happen. An action is allowed by ℘1 if it
satisfies one of the positive norms and all the negative norms.
Consider the finite trace BAH. Here, B is allowed as it
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satisfies the second positive norm and also satisfies all the
negative norms. The same is true for A as it satisfies the first
positive norm requiring that there is a B before an A and
additionally it satisfies all the negative norms. The same
goes for action H. However, after H no more actions are
allowed to take place. A cannot take place as it would violate
the first negative norm requiringH has not happened before.
The same goes for B as it violates the second negative norm.
Finally, H cannot happen as an H has happened already,
which would in turn violate the third negative norm. The
action H leads to a bad state from which it is not possible to
take an unbounded number of weakly compliant transitions.
Thus, ℘1 is not incrementally satisfiable. The action that
leads to a bad state is H, which although weakly compliant
for ℘1, is not strongly compliant with respect to ℘1.
We use the policy in Figure 6 (denoted by ℘2) to demon-

strate the second violation case. We assume that at each
step only one action can happen. Let us consider the finite
trace DCBA. Each of the actions of the trace is weakly
compliant with respect to ℘2. The action A, however, in-
curs the obligation F . Note that the last positive norm al-
lows F under the condition that action C has not happened
before. However, for the above finite trace this is not the
case. As a result, the obligation of taking action F cannot
be discharged in a compliant fashion. Thus, the action A,
although weakly compliant for ℘2, is not strongly compliant
with respect to ℘2.

Negative Norms :

A→ ¬(H)

B → ¬(H)

H → (¬(H))

Positive Norms :

A ∧B

B

H

Figure 5: Violation (1)

Positive Norms :

A ∧B ∧C

B ∧C ∧D

C ∧D

D

F ∧ (¬(C))

Negative Norms :

A→F

Figure 6: Violation (2)

We now prove that the violation case 1 cannot happen for
our forms of policies ℘ when they are satisfiable. A satis-
fiable policy ℘ that does not have the  operator is incre-
mentally verifiable. This is stated in the following theorem.

Theorem 9. A closed, pure-past, and satisfiable policy ℘
without the  temporal operator, is incrementally satisfiable.

Privacy policies of our form (℘) do not allow the temporal
operator, which yields the following two corollaries.

Corollary 10. For a given privacy policy ℘, weak(℘) is
incrementally satisfiable if weak(℘) is satisfiable.

This follows by Theorem 9, as weak(℘) is closed, has no fu-
ture operators, and does not allow the  temporal operator.

Corollary 11. A satisfiable privacy policy ℘ satisfies
∆-property if and only if no weakly compliant action of ℘
incurs any unsatisfiable future obligations.

Corollary 11 follows from Theorem 8 and Corollary 10.
Given a policy ℘, weak(℘) denotes the present condi-

tions imposed by ℘. Note that when ℘ has the ∆-property,
weak(℘) denotes the safety property (see Appendix A) im-
posed by ℘.

Theorem 12. For a given privacy policy ℘ with the ∆-
property, weak(℘) expresses the strongest safety property that
contains the property expressed by ℘.

We have proved that a privacy policy ℘ has the ∆-property
if and only if M℘ |= δ(℘). However, model checking a spec-
ification written in FO-CTL*lp with respect to a model is
undecidable. The complexity of model checking a propo-
sitional CTL*lp formula with respect to a model is in EX-
PSPACE [39] in the formula length. Thus, for a pLTL policy
we can check whether the policy has the ∆-property in ex-
ponential space in the policy size. As our privacy policy is
in FOTL, we cannot directly use this technique to check the
∆-property.

5.2 Analysis Technique for Checking the ∆-
property

We now present our sound, semi-automated analysis tech-
nique to check whether a policy ℘ has the ∆-property. Our
analysis technique consists of the following three steps.

1. Privacy policy slicing.

2. Developing a small model theorem [25].

3. pLTL policy analysis.

By Corollary 11, a policy ℘ can violate the ∆-property only
if ℘ allows a weakly compliant action to incur an unsat-
isfiable obligation. When obligations do not interact with
each other, we can analyze permissibility of each of the obli-
gations independently. To this end, we introduce privacy
policy slicing which decomposes the policy to a sub-policy
which only contains the norms that can potentially influ-
ence the permissibility of the obligation in question (step
1). In practice, the sliced policy is significantly smaller but
deciding whether it has the ∆-property is still undecidable.

The next step (step 2) of our analysis addresses the un-
decidability of the sub-policies obtained from the previous
step. Step 2 requires developing a small model theorem [25].
It proves that finite elements of the carriers of the policy
are sufficient to simulate all possible behaviors necessary to
prove the ∆-property of the policy. Then we can rewrite
the universal and the existential quantifiers as finite con-
junctions and disjunctions, obtaining a pLTL policy which
can be analyzed. We show a template of the small model
theorem which must be instantiated for specific policy anal-
ysis problem instance and whose proof is necessary to check
whether a policy has the ∆-property. We want to emphasize
that step 2 will be specific for each policy analysis instance.

Finally, we analyze the pLTL policy ℘ (step 3). We ob-
tain a CTL*lp formula from ℘ (see Figure 4). We then model
check M℘ with respect to the CTL*lp specification. If M℘

satisfies the CTL*lp specification then we can say that ℘ has
the ∆-property. Note that while there are known algorithms
for CTL*lp model checking, e.g., Kupferman et al. [39], there
exists no tool support for this. Currently, we rely on the
approach proposed by Barth et al. [11]. Their algorithm
begins by building a tableau [44] (with Büchi accepting con-
dition [16]) from the pLTL formula representing the privacy
policy. Then it checks to see whether all the reachable states
from the initial states can reach a strongly connected com-
ponent containing at least an accepting state. If this is the
case, then the privacy policy specified in pLTL has the ∆-
property. Note that the size of the tableau is exponential in
the pLTL policy formula length. Thus, their algorithm has
the complexity of EXPSPACE in the policy formula length.

5.2.1 Privacy Policy Slicing

For our policy analysis, the privacy policy size is a bot-
tleneck. As it turns out, our policy specification language
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allows us to use a divide-and-conquer approach for verifica-
tion. Without loss of generality, we assume that one send
event occurs in a single state. The benefit of decomposi-
tion is that for a single obligation, potentially not all norms
of the policy are necessary for analysis, reducing the policy
size to be analyzed. Based on this, we introduce privacy
policy slicing analogous to program slicing [54]. Slicing de-
composes the privacy policy with respect to an obligation.
The requirements of privacy policy slicing, which make it in-
teresting for our analysis, are the following: (A) The slicing
preserves the ∆-property of the original policy with respect
to the slicing criterion. (B) The analysis results on the sliced
policies can be composed to verify that the ∆-property holds
for the original policy.
Slicing a privacy policy with respect to a slicing criterion

collects all the norms of a policy which the said criterion
depends on. The slicing criterion (P ) is a non-temporal for-
mula and it represents a set of send events. P has the follow-
ing form: send(p1, p2,m)∧contains(m, q, t)∧for-purpose(m,u)
∧Csender∧Creceiver∧Csubject∧Cattribute∧Cpurpose. Note that
one or more conjuncts can be missing in P when they are
trivially true. Before precisely defining privacy policy slic-
ing, we introduce some key notions first.
Types of send Events. We distinguish between three types
of send actions: regulatory, conditional, and obligatory. We
base our distinction on where they appear in the policy.
A send event, which has the form of a slicing criterion P ,

is called conditional with respect to a norm if it appears as
a sub-formula in one of the following places: (1) In ψ or
ψexception portion of the positive norms. (2) In ψ portion
of the negative norms’ antecedent. (3) In ψ portion of χ
in the negative norms’ consequent. (4) In ψexception portion
of χ in the negative norms’ consequent. A send event is
called obligatory with respect to a norm if it appears as a
sub-formula in one of the following places: (1) In β portion
of the positive norms. (2) In β portion of χ in the negative
norm’s consequent. A send event is called regulatory with
respect to a norm if it is the target send event that the norms
refers to (or, applies to). An example of the regulatory send
event is given in appendix B.
Consistency. We say a send event Q1 is consistent with
another send event Q2 if all constraints (e.g., Csender, etc.)
in Q1 are consistent with the constraints in Q2. Q1 and Q2

have the same form as P and can contain free variables. One
way to differentiate between the different send events are
the constraints (i.e., constraints on the sender role, etc.) on
their free variables. Consistency is necessary for two reasons:
first, Q1 and Q2 can contain free variables, which might not
match the naming convention of each other, and second,
it is admissible that one constraint subsumes another. For
addressing the first issue, we rename the constraints to follow
the same naming convention. We then formalize consistency
(denoted by !) in the following way.

• inrole(p, r̂) ! inrole(p, r̄) if and only if r̂ = r̄, r̂ is a
specialization of r̄, or r̄ is a specialization of r̂. For
instance, inrole(p, doctor) ! inrole(p, psychiatrist).

• in(t, t̂) ! in(t, t̄) if and only if t̂ = t̄ or there exists an
attribute t1 such that t1 can be calculated from both
t̂ and t̄. For instance, in(t,PHI ) ! in(t, psych-notes)
as the attribute “diagnosis” can be calculated from
both PHI (protected health information) and psych-notes.

• purpose(u, û) ! purpose(u, ū) when û = ū.

• C
x
i ! C

y
i if and only if there exists an atomic formula

ax of Cx
i that is consistent with an atomic formula ay

of C
y
i , where i ∈ {sender, receiver, subject, attribute,

purpose}. For instance, (inrole(p1, doctor)∧ inrole(p1,
resident)) is consistent with (inrole(p1, psychiatrist) ∨
inrole(p1, secretary)) as inrole(p1, doctor) ! inrole(p1,
psychiatrist).

We assume that an empty constraint is consistent with any
constraint. We can now inductively check whether two send
events are consistent.
Dependency. The next notion we need for defining privacy
policy slicing is called the norm dependencies.

A norm φ1 positively depends on norm φ2, if one of the
conditional sends of φ1 is consistent with the regulatory send
of φ2. Intuitively, this represents that φ2 can influence one
of the conditional sends of φ1. A norm φ1 negatively depends
on norm φ2, if one of the obligatory sends of φ1 is consistent
with the regulatory send of φ2. Roughly, this represents that
φ2 can influence one of the obligatory sends of φ1. A norm
φ1 has an anti-dependency on norm φ2, if the regulating
send of φ1 is consistent with the regulatory send of φ2. This
signifies that both norms φ1 and φ2 allow the same send
event based on possibly different conditions.

We say norm φ1 depends on norm φ2 if φ1 has either a
positive-, negative-, or anti-dependency on φ2.

We can now precisely define privacy policy slicing.

Definition 13 (Slice of a Privacy Policy). Given
a privacy policy ℘ with the norm set φ, a slicing criterion
P , ℘s(P ) with the norm set φs(P ) is a slice of ℘ with respect
to P if it satisfies the following.

1. φs(P ) ⊆ φ.

2. φP ⊆ φs(P ) where φP represents the set of all norms
where P appears as an obligatory send.

3. φ∗ ⊆ φs(P ) where φ∗ is the transitive closure of the
dependence relation on φP .

These definitions of slicing, dependency, and consistency
were carefully chosen so that the privacy policy slicing sat-
isfies the requirements (A) and (B) mentioned above. To
show that the slicing procedure satisfies both the require-
ments (A) and (B), we have the following theorems. The
first (Theorem 14) formalizes the requirement that the slic-
ing procedure preserves the ∆-property of the original policy
with respect to the slicing criterion.

Theorem 14. For a policy ℘ and a slicing criterion P ,
the resulting sliced policy ℘s(P ) satisfies the following. For
any possible finite trace σf , any state s, and environment η
where σf , |σf |−1, η |= weak(℘), σf , |σf |−1, η |= weak(℘s),
and s, η |= P , there exists an infinite extension σi such that
σf · s · σi |= ℘s(P ), if and only if there exists an infinite
extension σj such that σf · s · σj |= ℘.

The next theorem (Theorem 15) precisely formalizes the re-
quirement that the results of the decomposed policies can
be composed together to get the result of the original pol-
icy. Recall that we use obligations as our slicing criterion.

Theorem 15. For a policy ℘, if for all obligations P in ℘,
M℘s(P )

|= δ(℘s(P )) where ℘s(P ) is the slice of ℘ with respect

to P , then M℘ |= δ(℘).

The slicing procedure generates the transitive closure by
computing dependency in a lazy, by-need fashion. This algo-
rithm is trivially correct, since it follows our theoretical de-
velopment above. The algorithm is presented in appendix D.
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5.2.2 Small Model Theorem (SMT)

Our policies are specified in a restricted subset of FOTL
which is not a decidable fragment of full FOTL [34]. The
fragment we consider can have more than one free variable
for subformulas of form ψ1 S ψ2 (non-monadic) [34]. On the
contrary, pLTL is decidable. A small model theorem (or, a
finite model theorem) [25] will establish that any behavior of
interest of a policy in our specification language with infinite
carriers can be captured with a small, finite amount of ele-
ments from each carrier. The behavior of interest in our case
is the behavior necessary to prove the ∆-property of a policy.
For example, the full infinite carrier P of principals might
be able to be simulated with a finite amount of representa-
tives, e.g., just one person for each role. In that case, we
can rewrite the FOTL policy to a pLTL policy by replacing
universal quantifiers with finite conjunctions and existen-
tial quantifiers with finite disjunctions, where the quantified
variables are instantiated with all carrier elements. By the
theorem, the resulting propositional policy will capture all
the behaviors, necessary to prove the property we are inter-
ested in, as the original FOTL policy. That means checking
the pLTL policy will suffice.
It is not clear whether there exists a small model theorem

for all privacy policies specified in our language. This is what
results in the incompleteness in our technique. This means
that small model theorems must be derived for specific pol-
icy instances and specific properties of it (e.g., consistency,
∆-property, etc.). Moreover, developing such a small model
theorem requires domain specific knowledge, invariants, and
abstractions. For instance in HIPAA, whether a covered en-
tity (hospital) can share a patient’s (pa) PHI is not depen-
dent on covered entity’s interactions with another patient
(pb) where pa 6= pb. As we will show in section 6, it is pos-
sible to develop small model theorems for the sliced HIPAA
policies we are interested in. The small model theorem nec-
essary for proving the ∆-property of a policy ℘ written in our
specification language will have the following general form.
The Theorem 16 in section 6 is a concrete example of the
following small model theorem template.

Template of Small Model Theorem. A given policy ℘

has the ∆-property for every carrier set
−→
C = 〈C1,C2, . . .〉

if and only if there exists a small, finite carrier set
−→
CS =

〈Cs1,Cs2, . . .〉 for which ℘ has the ∆-property.

6. HIPAA: A CASE STUDY
In this section, we demonstrate the adequacy of our policy

analysis techniques by using HIPAA as a case study.
Specification of HIPAA. We have specified all 84 disclo-
sure related clauses in our language [1]. We considered the
HIPAA privacy rule in Subpart E of CFR §164. We have
66 positive norms and 8 negative norms. We cannot fully
express access related rules found in §164.524 which ensure
that an individual gets access to its own PHI . However, this
clause is not related to disclosure of individually identifiable
information (PHI ). We consider the following sections of
HIPAA: §164.502, §164.506, §164.508, §164.510, §164.512,
§164.514, and simplified versions of §164.524 and §160.310.
Satisfiability of HIPAA. Any message that does not con-
tain any individually identifiable information or is initiated
by the patient or the environment (except business asso-
ciates of the covered entity), is not regulated by the HIPAA
privacy policy (denoted by ℘H). Thus, messages not con-
taining any PHI are trivially allowed by ℘H . This kind of

send events would falsify the contains predicate in the an-
tecedent of ℘H making the implication trivially true. We can
thus create an infinite trace, in each step of which, a mes-
sage of the above kind is transmitted. Such a trace would
trivially satisfy ℘H .
Incremental satisfiability of HIPAA. In our policy lan-
guage, we do not allow the  operator. Moreover, ℘H is
trivially satisfiable as discussed just above. By Corollary 10,
it follows that weak(℘H) is incrementally satisfiable.
Policy slicing algorithm implementation. Note that
obligations do not interact with each other in HIPAA and
also HIPAA is trivially satisfiable. Thus, the only way ℘H

can violate the ∆-property is through a weakly compliant
action incurring unsatisfiable obligations. We have imple-
mented our slicing algorithm using C++. The complexity
of the algorithm is linear in the size of the policy norms and
the number of send events that appear in the norms. We
have sliced ℘H with respect to real obligations from HIPAA
(§160.310, §164.524). The sliced policy contains 68 norms
out of total 74 norms. The algorithm runs in 480 milli-
seconds in the worst case on an Intel Core i7 1.73 GHz ma-
chine with 4GB of RAM running Ubuntu 12.04.
Making the slicing procedure more precise. To pre-
serve soundness, the dependence relations we define over-
approximate the most-precise dependence relations. This is
due to the fact that our dependence relation does not take
into account the condition of the norms (when the condition
is not a send event). However, it is not apparent how to
incorporate conditions while defining our dependence rela-
tion. One way to get around it is human intervention while
checking whether a norm is consistent to a send event. We
have implemented our policy slicing algorithm with human
intervention support and sliced ℘H with the obligations in
§160.310 and §164.524 of HIPAA. The policy rule in §164.524
states: when an individual requests for access to her own
PHI , the covered entity is obligated to give access to the
individual. Our sliced policy in both cases has 4 norms (1
positive and 3 negative norm) out of total 74 norms (see
Figure 7). This is a significant reduction in the size of the
norms. We also sliced ℘H with respect to a synthetic obliga-
tion (Synthetic-1 ). To this end, we add an additional nega-
tive norm to ℘H that obligates a covered entity to provide
access to an individual’s parents to the individual’s PHI
when the parents request for it. The sliced policy has 1
positive norm and 6 negative norms out of total 75 norms.
Small Model Theorem. In the previous section, we have
shown the general template of the small model theorem nec-
essary for verifying whether a policy has the ∆-property. We
now show a concrete small model theorem. To this end, we
first impose some restrictions which enable us to develop a
concrete small model theorem of a sliced HIPAA policy.

The first restriction we impose is to disallow the 6= oper-
ator or any predicate simulating it. Thus, the policy can-
not distinguish between two elements of the carrier. Con-
sequently, we cannot specify in the policy that two indi-
viduals are different. The sliced HIPAA policies we con-
sider satisfy this restriction. Moreover, we remove the mes-
sage sort (M) and also remove the predicates contains

and for-purpose. We enhance the send predicate to have
the signature P × P × P × T × U . Now, the predicate
send(p1, p2,m, q, t, u) holds when p1 sends a message to p2
about q’s attribute t for purpose u. Removing the mes-
sage sort prevents us from specifying that a message con-
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(§160.310) : inrole(p1, secretary) ∧ inrole(p2, covered-entity) ∧ inrole(q, individual) ∧ purpose(u, compliance-investigation)∧

request(p1, p2, q,PHI ) −→(∃m1 :M.(send(p2, p1,m1) ∧ contains(m1, q,PHI ) ∧ for-purpose(m1, compliance-investigation)))

(§164.502(a)(2)(ii)) : inrole(p1, covered-entity) ∧ inrole(p2, secretary)∧

inrole(q, individual) ∧ in(t,PHI ) ∧ purpose(u, compliance-investigation)

(§164.502(b)) : inrole(p1, covered-entity) ∧ inrole(q, individual) ∧ in(t,PHI ) −→ believesMinimumNecessaryForPurpose(p1, p2, q, t, u)

∨ (inrole(p1, covered-entity) ∧ inrole(p2, secretary) ∧ inrole(q, individual) ∧ in(t,PHI ) ∧ purpose(u, compliance-investigation))

(§164.508(a)(2)) : inrole(p1, covered-entity) ∧ inrole(q, individual) ∧ in(t, psych-notes) → obtainedAuthorization(p1, p2, q, t, u)

Figure 7: Sliced HIPAA policy (℘HP
) norms with respect to the obligation in §160.310 of HIPAA.

tains multiple attributes of multiple individuals or is sent
for multiple purposes. This is not as restricting as it sounds,
at least for the slices of HIPAA we consider. Assume a set
of send events, each for a message with a single attribute
and for a single purpose. If all events are allowed, then the
send of a single message that combines all the other mes-
sages’ contents is allowed by the sliced policies. Now, we
provide intuitions behind developing a small model theorem
for the HIPAA policy sliced with respect to the obligation
in §160.310 (Figure 7), denoted by ℘HP

.
The number of attributes in the ℘HP

is finite and they are
PHI and psych-notes (in short, PSN). Each of PHI and
PSN can be viewed as a set of attributes where PHI , PSN ⊆
T , PSN ⊂ PHI and T is the carrier of attributes. Thus,
if we consider any attribute t ∈ T , one of the following
would hold: t ∈ T \ (PHI ∪ PSN), t ∈ (PHI \ PSN), or
t ∈ (PHI ∩ PSN). Thus, we consider three attributes, t1,
t2, and t3 such that t1 ∈ (PHI ∩ PSN), t2 ∈ (PHI \ PSN),
and t3 ∈ T \ (PHI ∪PSN). These three attributes can sim-
ulate all possible attributes referred to by ℘HP

. The only
purpose present in the ℘HP

is compliance-investigation. We
thus consider two purposes in the system u1 and u2 where
u1 is the purpose compliance-investigation and u2 refers
to a purpose which is something other than compliance-
investigation. These two purposes capture all the possible
purposes referred by ℘HP

. For the principal sort, we con-
sider one principal for each role in ℘HP

and one additional
principal not having any roles. The roles in ℘HP

are: covered
entity, secretary, and individual. Considering one individual
from each role is sound as ℘HP

cannot differentiate between
two principals. We actually could have considered only two
principals, one acting in all the roles and another not in
any role. For clarity, we consider principals of different roles
are different. Having multiple principals in each role does
not change the result of the ∆-property holding, as these 4
principals can simulate all possible behaviors. We have the
following small model theorem for ℘HP

.

Theorem 16. The policy ℘HP
has the ∆-property for in-

finite carriers of sorts P, T , and U if and only if ℘HP
has the

∆-property for finite carriers P̂, T̂ , and Û in which |P̂| = 4,

|T̂ | = 3, and |Û | = 2.

Obligation Norms
in the
slice

Automata
generation
time (s)

Graph
analysis
time (ms)

Analysis
results

§160.310 4 3 2 Passed
Synthetic-1 6 98 16 Passed
Synthetic-2 6 324 31 Failed
§164.524 4 22 5 Passed

Table 1: Policy analysis result (HIPAA)

Policy Analysis Results. We slice ℘H with respect to 2
obligations in HIPAA (§160.310, §164.524) and 1 synthetic

obligation (Synthetic-1). Once we have the small model the-
orem, we convert the FOTL sliced policy to a pLTL policy.
Once we have the pLTL policy, we follow the approach pro-
posed by Barth et al. [11], as discussed before. We convert
each of the sliced pLTL policies to a tableau (with Büchi
accepting condition) using the GOAL automata generation
tool [53], then check whether all the reachable states can
reach a strongly connected component with an accepting
state in it. The experimental results are presented in Ta-
ble 1. We verify that for the two obligations in HIPAA, the
∆-property holds for the sliced policies.
Observation. While verifying the sliced policy with respect
to the synthetic obligation, we observed something interest-
ing. Investigating the regulations manually led us to believe
that the policy sliced with respect to the synthetic obligation
(Synthetic-1) should not satisfy the ∆-property. However,
our experimental result seems to differ. Upon close inspec-
tion, we figured out that the result is due to how HIPAA is
specified. Specifically, rule §164.502(g)(3)(ii)(b) states that
a covered entity cannot share an individual’s PHI if it is
forbidden by some law. In our specification of HIPAA, we
keep the room that even though an action is now forbidden
by some law, the law might change, and allow the forbidden
action later. When we changed our specification in such a
way that laws cannot change (Synthetic-2 ), then we got the
desired result of the ∆-property not holding.
Discussion. There are two more occurrences of obliga-
tions in HIPAA (§164.512(c)(2) and §164.502(b)) which re-
quire sending privacy notices to the patient. We consider
that privacy notices do not contain any PHI of the patient.
Thus, those obligations are trivially allowed. However, in
the case that notices contain PHI of the patient, then the
corresponding slice of the policy is similar to the slice of
§164.524.
Counter Example. When a policy violates the ∆-property,
we can traverse the tableau to find a path to the violating
node. This path corresponds to a finite trace showing the vi-
olation of the ∆-property. This counter example (expressed
as a finite trace) can help the policy author to rewrite the
policy to satisfy the ∆-property.

7. RELATEDWORK
May et al. [45], based on the extension of the HRU model

[30], present a formalism, called Privacy APIs, to encode
HIPAA. They only consider §164.506 of the 2000 and 2003
version of HIPAA. They convert their formalism into the
specification language of the SPIN model checker [35] and
check whether it satisfies some desired invariants.

Ni et al. [46] present a family of models named P-RBAC
(Privacy-aware Role Based Access Control) that extends the
traditional RBAC [26] to support specification of practical
but complex privacy policies. Their model can specify con-
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ditions, purposes, obligations, etc., which are necessary for
privacy policy specification. However, it is not apparent
whether HIPAA can be encoded in their language due to
absence of examples of such encodings.
Lam et al. [41] propose a privacy policy specification lan-

guage called pLogic based on Datalog. They can only en-
code §164.502, §164.506, and §164.508 of HIPAA in pLogic.
pLogic cannot specify any kinds of temporal conditions. Our
specification language is richer than pLogic. Lam et al. [40]
later developed a small model theorem for pLogic.
Recall that our specification language is inspired by CI [11].

We now discuss the distinctions between our language and
CI. We allow future operators only in specific places. How-
ever, this is not the case for CI. It allows arbitrary nesting
of future and past temporal operators. In such a case, sepa-
rating past and future requirements from a FOTL formula is
not trivial [27]. Additionally, in CI, one cannot express the
purpose of the transmission and other conditions in HIPAA
as they only have a fixed set of pre-defined predicates. In
light of CI [11, 12], DeYoung et al. [21] propose an expres-
sive policy specification language, PrivacyLFP. We adopted
some of their improvements over CI (e.g., purpose, subjected
belief, etc.) but left out others that were not relevant for
HIPAA (fixed point operators). The goal of their work is
developing a specification language of HIPAA whereas our
work focuses on static policy analysis of privacy policies like
HIPAA. Garg et al. [28] propose an expressive, first-order
logic-based privacy policy specification language. HIPAA
can be completely encoded in their specification language.
They present an auditing algorithm that incrementally in-
spects the system log against a policy and detects violations.
Their approach only considers WC. Our work on the con-
trary presents a sound, semi-automated technique for ver-
ifying the ∆-property of a policy. Once verified, one can
use their auditing algorithm to check WC. In the same vein,
Basin et al. [13, 14] present a monitoring algorithm for poli-
cies written in metric first-order temporal logic. Their mon-
itoring algorithm can be also used to check WC for a policy.
Chowdhury et al. [17] propose extensions of XACML [55] for
specifying HIPAA. In their work, they assume all the oblig-
atory actions are authorized. Moreover, their approach can
only check WC. Havelund and Roşu [31, 32, 50] propose a
dynamic programming approach for monitoring pLTL for-
mula which can be used for checking WC of pLTL policies.
Krukow et al. [38] provide an algorithm which can be used
to check WC of very restrictive FOTL policies.
Several work[36, 49, 18] have addressed permissibility of

user obligations in context of access control policies. They
introduce a property “accountability” of the access control
policy and authorization state which ensures that all the in-
curred obligations be authorized. The accountability prop-
erty has to be maintained as an invariant of the system
whereas the ∆-property is a statically checkable property
of the privacy policy which one needs to check once for a
policy. Dougherty et al. [23] present an expressive obliga-
tion model and present analysis technique to approximate
obligations for monitoring. The goal of our work is to pro-
vide static guarantee of a privacy policy’s well-formedness
and is thus complementary to [23].

8. CONCLUSION
In this paper, we propose a privacy policy specification

language which is expressive enough to capture HIPAA. We

then formally specify two different notions of privacy policy
compliance (WC and SC). We show that although deciding
WC is feasible, checking SC is undecidable. We then for-
mally specify the ∆-property. To check compliance of an
action with a privacy policy satisfying the ∆-property, it
suffices to only check whether the action is weakly compli-
ant with the policy. The ∆-property can be checked stati-
cally before the policy is deployed. While checking the ∆-
property for a policy is undecidable, we have developed a
sound, semi-automated technique, which we show is ade-
quate for checking the ∆-property for our formalization of
the HIPAA Privacy Policy.
Open Problems & Future Work. Our final policy anal-
ysis step requires model checking the propositional CTL*lp
formula with respect to M℘. There are currently no such
tools which can model check a propositional CTL*lp spec-
ification against a given model. In an on-going work, we
are developing a model checker following [39]. For prelimi-
nary results and to show feasibility we currently rely on the
approach of Barth et al. [11].

LTL abstracts away the explicit notion of time and only
reasons about relative orderings of different events. Al-
though the obligations in HIPAA have explicit deadlines,
our specification language cannot express explicit deadlines.
An extension covering deadlines is plausible (see [13]). How-
ever, extending the policy analysis is not trivial, due to the
fact that propositional branching time logic with explicit
time is undecidable [8]. In HIPAA, deadlines appear only in
the context of obligations. Our analysis of a policy without
obligation deadlines is extendable to policies, which only
have deadlines on obligations. Consider a policy with the
following two rules. (1) When a patient’s parents request to
access the patient’s PHI , then the doctor is obligated to give
the patient’s parents access to the PHI . (2) The doctor can
disclose a patient’s PHI to anybody if the patient gave an
authorization to do so. Now according to our analysis this
policy has the ∆-property as the incurred obligation of the
doctor (from rule 1) can be fulfilled if the doctor received a
patient’s authorization (rule 2). Now let us add a deadline
of 10 days for the doctor’s obligation. Even with the dead-
line, it is possible for the doctor to discharge the obligation
in 10 days if the patient sends the authorization in 10 days.

Currently we verify the ∆-property for a simplified version
of the obligation in §164.524 of HIPAA. We plan to verify
it for the general obligation in §164.524. We also want to
explore techniques to check whether specific models of the
system satisfy the ∆-property. We also would like to ap-
ply our policy analysis techniques to other regulations like
GLBA [3], SOX [51], etc.
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APPENDIX

A. SAFETYANDLIVENESS PROPERTIES.
A temporal property is a set of traces. We can divide tem-

poral properties into mainly two categories, safety [42, 5] and
liveness [6]. Such a classification of properties can enable
choosing the right proof methodology for proving correct-
ness. For instance, methods based on global invariants can
be used to prove safety properties whereas methods based
on proof lattices or well-founded induction [47] can be used
to prove liveness properties.
A safety property asserts that something bad never hap-

pens. For instance, a doctor cannot share a patient’s infor-
mation without receiving an authorization from the patient.
Liveness properties on the contrary asserts that something
good eventually happens. For instance, if a patient requests
for accessing her own information, the doctor should provide
her access eventually. LTL formulas can express both safety
and liveness properties. Furthermore, Alpern and Schnei-
der [7] have shown that any LTL formula can be written as
conjunctions of safety and liveness properties. A past only
LTL formula can express only safety properties whereas fu-
ture only LTL formula can express both safety and liveness
properties [52]. We now formally define what it means for a
property to be safety property or a liveness property.

Definition 17 (Safety Property). A property P is
a safety property if the following holds: ∀σ : σ ∈ Sω : (σ |=
P ⇐⇒ (∀i : i ≥ 0 : (∃β : β ∈ Sω : σ[. . . i] · β |= P ))). Here,
Sω represents the set of infinite sequences, each element of
which, is an element of the state set S. Moreover, σ[. . . i]
represents the finite prefix of length i+ 1 of σ.

Definition 18 (Liveness Property [7]). A property
P is a liveness property if the following holds: ∀α : α ∈ S∗ :
(∃β : β ∈ Sω : α · β |= P ). Here, S∗ represents the set of
finite sequences, each element of which, is an element of the
state set S.

B. EXAMPLE OF REGULATORY SEND
Consider the following negative norm:
inrole(p1, covered-entity)∧inrole(q, individual)∧in(t,PHI )

→ believesMinimumNecessaryForPurpose(p1, p2, q, t, u)
The regulated send of the above negative norm is:
send(p1, p2,m) ∧ contains(m, q, t) ∧ for-purpose(m,u) ∧

inrole(p1, covered-entity) ∧ inrole(q, individual) ∧ in(t,PHI )

C. DEFINITION OF THE α FUNCTION
Our positive norms have the form: (C∧ψ∧β)∨ψexception.

For such a positive norm where β is not trivially true, α
function would return the following 〈λ, γ〉 pair: 〈(C ∧ ψ ∧

¬(ψexception) ∧
∧

j φ̂
−
j , β〉 in which

∧
j φ̂

−
j is the conjunction

of all the modified negative norms. The modified negative
norms are same as the original negative norms except that
they do not have any future temporal operators in them
(modified ones).
The form of our negative norms are as follows: C ∧ ψ →

χ ∨ ψexception. In the negative norms, χ can have one of
the following forms: (1) β, (2) ψ1, (3) ψ1 ∧ β, and (4)
ψ1 → β. When χ has form (2) then there are no obli-
gations in that norms. For rest of them, let us consider
β is not trivially true. For a negative norm φ−

j whose χ
is of form case (1), α function would return the following

〈λ, γ〉 pair: 〈C ∧ ψ ∧ ¬(ψexception) ∧
∧

k 6=j φ̂
−
k ∧

∨
i φ̂

+
i , β〉 in

Algorithm 1 Slice(Φ, P )

Input: A privacy policy represented as a set of norms Φ and a
slicing criterion P .

Output: returns a sub-policy of the input policy represented as
a set of norms Φr.

1: /* We assume the following variables to be global */
2: Φr = empty
3: Queue UnderprocessingSends = empty
4: Map ProcessedSends = ProcessedNorms =empty
5: Initialize(P )
6: while UnderprocessingSends6=empty do
7: Send Q = UnderprocessingSends.dequeue() ;
8: for all φ ∈ Φ do
9: if φ /∈ProcessedNorms then
10: if φ is of form (R ∧ ψ ∧ β) ∨ ψexception and R ! Q

then
11: Φr = Φr ∪ φ /* add φ to the result */
12: Insert φ to the map processedNorms
13: for all Send x ∈ ψ ∨ x ∈ ψexception ∨ x ∈ β do
14: AddSend(x)
15: if φ is of form R ∧ ψ → χ ∨ ψexception and R ! Q

then
16: Φr = Φr ∪ φ /* add φ to the result */
17: Insert φ to the map processedNorms
18: for all Send x ∈ ψ ∨ x ∈ ψexception ∨ x ∈ χ do
19: AddSend(x)

which φ̂−
k and φ̂+

i respectively, represents modified nega-
tive and positive norms. When the χ has the form (3) or
(4), the function α would return the following 〈λ, γ〉 pair:

〈C ∧ ψ ∧ ¬(ψexception) ∧ ψ1 ∧
∧

k 6=j φ̂
−
k ∧

∨
i φ̂

+
i , β〉.

D. SLICING ALGORITHM
In this section, we present the algorithm for calculating

the slice of a privacy policy ℘ based on a slicing criterion
P . It additionally takes as input the role hierarchy and
the attribute computation rules necessary for determining
consistency. The slicing procedure calculates the transitive
closure of the dependence relation in a lazy, by-need fashion.

Algorithm 1 is the main procedure. It takes as input a pri-
vacy policy (represented by the set of norms) and an oblig-
atory send event which is used as the slicing criterion, the
role hierarchy, the attribute computation rules and returns
another sub-policy which influences the obligatory send P .
Algorithm 2 is a utility procedure used by algorithm 1. The
procedure AddSend takes as input a send event of form P

and checks to see whether the send event has been processed
before. If the send has not been processed before, the proce-
dure adds it to the queue UnderprocessingSends and also to
the map ProcessedSends so that it is not processed again.

Algorithm 2 Initialize(Q)

Input: A send event Q (non-temporal formula)
1: for all φ ∈ Φ do
2: if φ /∈ProcessedNorms then
3: if φ is of form (R∧ψ ∧ β)∨ψexception and Q appears as

an obligatory send in β then
4: Φr = Φr ∪ φ, Insert φ to the map processedNorms
5: AddSend(R)
6: for all Send x ∈ ψ ∨ x ∈ ψexception ∨ x ∈ β do
7: AddSend(x)
8: if φ is of form R ∧ψ → χ∨ψexception and Q appears as

an obligatory send in χ then
9: Φr = Φr ∪ φ, Insert φ to the map processedNorms
10: AddSend(R)
11: for all Send x ∈ ψ ∨ x ∈ ψexception ∨ x ∈ χ do
12: AddSend(x)
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