
On the Generation of Disassembly Ground Truth and the
Evaluation of Disassemblers

Kaiyuan Li
squid@cmu.edu

Carnegie Mellon University, CyLab

Maverick Woo
pooh@cmu.edu

Carnegie Mellon University, CyLab

Limin Jia
liminjia@cmu.edu

Carnegie Mellon University, CyLab

ABSTRACT
When a software transformation or software security task needs to
analyze a given program binary, the first step is often disassembly.
Since many modern disassemblers have become highly accurate
on many binaries, we believe reliable disassembler benchmarking
requires standardizing the set of binaries used and the disassem-
bly ground truth about these binaries. This paper presents (i) a
first version of our work-in-progress disassembly benchmark suite,
which comprises 879 binaries from diverse projects compiled with
multiple compilers and optimization settings, and (ii) a novel dis-
assembly ground truth generator leveraging the notion of “listing
files”, which has broad support by clang, gcc, icc, and msvc. In ad-
ditional, it presents our evaluation of four prominent open-source
disassemblers using this benchmark suite and a custom evaluation
system. Our entire system and all generated data are maintained
openly on GitHub to encourage community adoption.

CCS CONCEPTS
• Security andprivacy→ Software reverse engineering; • Soft-
ware and its engineering → Assembly languages.
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1 INTRODUCTION
Many scenarios in software transformation and software security
require us to analyze or operate on a given program binary. The
most common example is when we do not have access to the source
code of the binary. But even when we do, we may not have access
to the toolchain or the environment needed to compile the trans-
formed source, or we may be interested in analyses that depend
on the actual machine code such as the amount of padding around
functions or buffers. In these applications, the first step of the anal-
ysis is usually to disassemble the binary, which refers to the process
of translating its machine code into assembly code.
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The study of disassembly and the corresponding tool disassem-
blers dates back to at least 1980 [9]. In recent years, the accuracy
of many disassemblers is approaching or even exceeding 99% on
many real-world binaries—see, e.g., [1] and [8]. Unfortunately, due
to well-known problems in binary analysis such as indirect jump
resolution and function start identification, the proverbial “last 1%”
remains a challenge in disassembly. In response, our community
has continued to invent innovative disassembly algorithms, with
new work and improvements appearing frequently—see, e.g., [8],
[13], and new releases of various existing disassemblers.

Comparing highly-accurate disassemblers is difficult for two
reasons. First, since different disassemblers may have different
weaknesses, a small change to the set of binaries used to evaluate
disassemblers may change their accuracy ranking significantly.
Unfortunately, the disassembly literature has so far used different
target sets, e.g., [1] vs. [8]. Second, since current disassemblers are
exceeding 99% accuracy onmany binaries, we need essentially 100%-
accurate ground truth to rank the disassemblers reliably. However,
as this paper will present, while previous research tended not to
discuss their ground truth generation methods at any length, our
own experience suggests that this task, if required to be perfectly
accurate, has much complexity and is thus not easy to reproduce.

Due to the above reasons, we therefore believe it is high time
for our community to start standardizing on a set of community-
accepted binaries for benchmarking disassemblers on their accuracy
and, out of practicality, their running time and memory usage. To
help jumpstart this process, this paper presents a first version of our
work-in-progress disassembly benchmark suite. We will discuss
our suite from two aspects: (a) the set of binaries included, and (b)
our method to generate accurate disassembly ground truth on the
instructions in these binaries.

For aspect (a), we believe a good disassembly benchmark suite
should have these properties: (i) The included binaries should be
diverse in size, type (e.g., editor vs. web server), compilers used,
and optimization settings used. Achieving these would allow the
binaries to better capture the complexities in real-world binaries.
(ii) The number of included binaries should be moderate, i.e., large
enough but not too large. This would ensure the practicality of
evaluating disassemblers over every included binary, whose number
grows multiplicatively in the number of compilers and optimization
settings in each supported ISA-OS pair. At present, our benchmark
suite is organized by a notion of “project names”, which is an open-
source project and a specific version (e.g., openssh-7.1p2). For
each project name, we specify a specific target binary inside (e.g.,
sshd) and the set of supported ISA-OS pair(s) (e.g., {x86-Linux,
x64-Linux}). In addition, for each ISA-OS pair, we specify a list of
compiler-version pairs and a list of optimization settings, which
will be detailed in §4.2. To encourage adoption, we maintain our
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benchmark suite openly on GitHub (https://github.com/pangine/
disasm-benchmark), with the hope that it will evolve over time in
ways similar to the SPEC CPU benchmark [6] due to community
inputs and future investigations.

For aspect (b), while one may believe the generation of disas-
sembly ground truth is simply a matter of having the compiler save
the assembly code generated (e.g., gcc -S), we find this to be an
over-simplification in practice. First, even assuming we have all the
generated assembly files, in truth the assembly statements (instruc-
tions/directives) in these files do not form a complete description
of the machine code in the binary because some statements admit
multiple machine code encodings. Second, when developing our
current benchmark suite, we have discovered many corner cases
to handle when collecting the generated assembly files, extracting
information from them, and representing such information. In §3,
we will discuss some of these challenges and our solutions to them.

Finally, using our work-in-progress benchmark suite and our
(alreadymature) ground truth generator and disassembler evaluator,
we will present in §4 our findings on four prominent open-source
disassemblers: BAP [2], Ghidra [15], Radare2 [18], and ROSE [19].
Our findings largely agree with [1]: (i) function start identification
remains a major issue that inhibits accurate disassembly, and (ii)
linear-sweep disassembly [21] can be incidentally highly accurate,
even though it also has no hope of guaranteeing perfect accuracy
and thus cannot be relied upon as a long-term solution.

In summary, our contributions in this work are: (1) We propose
to start standardizing on a set of binaries from diverse projects
compiled with multiple compilers and optimization settings for
disassembler evaluation and present our work-in-progress suite
as a starting point for community discussion. (2) We developed
a new system based on a broadly-supported compiler toolchain
feature known as “listing files” to generate accurate disassembly
ground truth. We also developed support programs to evaluate four
prominent open-source disassemblers against our ground truth and
we present our findings. (3) We open-source all our code and data
to enable future studies and to encourage community adoption of
and contribution to our system and our benchmark suite.

2 BACKGROUND AND RELATEDWORK
Disassembly. The problem of disassembly has a long history that

dates back to at least 1980 [9]. Nowadays, the most common dis-
assembly algorithms are usually based on either linear sweep or
recursive traversal as presented in [21], often with substantial en-
hancements. For more information of disassembly in general, we
refer the reader to more recent works [3, 8, 11, 13] and the refer-
ences therein. In this paper, we will be evaluating four prominent
open-source disassemblers: BAP, Ghidra, Radare2, and ROSE. We
note that ROSE comes with multiple disassemblers and we used its
recursive traversal implementation. To the best of our knowledge
based on reading their source code and official documentation, we
believe these disassemblers are all based on recursive traversal.

Prior Work on Disassembly Ground Truth. The topic of disassem-
bly ground truth generation has received surprisingly little space in
the literature. With the exception of the work by Andriesse et al. [1],
most publications are relatively succinct on their description in this
aspect. Here we present a few examples to show three common

approaches. (1) Debug info: Miller et al. [13] derived their ground
truth from symbol information for ELF ([13, §5]) and PDB for COFF
([13, §5.3]). (2) IDA Pro: Wartell et al. [25, §3] obtained their ground
truth using IDA Pro, but they also specifically mentioned they
needed manual effort to compare the disassembly results because
they noted inaccuracies in the IDA Pro output. (3) Objdump: Khadra
et al. [11, §5.2] developed a custom disassembler for ground truth
generation and they mentioned validating its result with objdump.

In contrast to the brief descriptions inside the above examples,
Andriesse et al. [1, §2.5] dedicated almost an entire column to
disassembly ground truth generation. In their paper, they studied
981 real-world x86 and x64 binaries from C/C++ projects compiled
using gcc v5.1, clang v3.7, and Visual Studio 2015 with various
optimization settings. For each Linux binary, they used a custom
LLVM pass to collect source-level information such as source lines
belonging to functions and switch statements. Then they used
DWARF to link this information to binary offsets and to extract
function starts and signatures. Finally, they used a conservative
linear-sweep to obtain the ground truth on over 98% of the code
bytes. As for the Windows binaries, they briefly mentioned that
their ground truth extraction relied on PDB.

Our investigation of their released data and documentation re-
veals a few limitations. (1) Not extendable by others: Although
Andriesse et al. have generously released their build information
and ground truth data in full, they did not release their tools and
thus their benchmark suite is currently not extendable by others.
Our work aims to overcome this. (2) Not fully-automated: Since
their ground truth generator did not completely cover the last 2%
of the code bytes in their Linux binaries, Andriesse et al. relied on
manual analysis to obtain ground truth on those remaining bytes.
Since we anticipate our benchmark suite will change over time, we
seek a fully automatic approach to increase efficiency and relia-
bility. (3) LLVM requirement: Since their ground truth generator
used an LLVM pass to read source-level informations, this restricts
the benchmark suite to binaries written in languages that have
compiler frontends capable of using LLVM as a backend. Although
our current suite contains C projects only, a dependency on LLVM
would prohibit future extension to include binaries that do not fit
the above criteria (current examples include Go and OCaml).

3 GROUND TRUTH GENERATION
In this section, we present our disassembly ground truth gener-
ation method, which is based on the parsing and manipulation
of compiler-generated assembly files, object files, listing files, de-
bug information, and the actual binaries. Our description here is
Linux-centric even though it covers msvc on Windows. This is
made possible because, as part of this project, we have matured the
technology of using wine to run cl and related Windows tools in
Linux to a degree that is sufficient for our Windows tasks.

Scope. The instructions in a binary can be classified into four
types: (i) instructions emitted due to the source code of the binary,
(ii) instructions from statically-linked libraries, (iii) nop instruc-
tions inserted for alignment, (iv) other instructions inserted by the
compiler toolchain, e.g., _start. Our system (and thus our ground
truth data) currently targets instructions of types (i) and (iii) only.
In addition, our current investigation does not consider malware.
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3.1 Our Approach
Our system assumes the targeted compiler toolchains are benign
(not malicious) but can have bugs. The latter and the possibility of
bugs in our own code motivate the need for the automatic checks
in §3.3. Figure 1 shows the entire pipeline and the tools used for
x86/x64 Linux C programs with clang/gcc/icc. The process is similar
on x86/x64 Windows for msvc, except for the file formats and tools.

At a high level, our system starts by using the targeted compiler
to generate the assembly files and the symbol table along with the
targeted binary. In Linux, these assembly files are further converted
into listing files by GNU as; in Windows, msvc generates both the
assembly and the listing files. The two listing file formats differ, but
they both specify a size and an offset for every instruction in every
function. We have developed a extractor for each format, and from
this point on we will call both types of listing files “LSTs”.

From the symbol table, our system retrieves the absolute offset
of each function in the binary. By combining this information with
the offsets from LSTs, our system generates the absolute offset of
every instruction in the binary by adding the absolute offset of its
containing function and the relative offset of the instruction within
the function, i.e., 𝐴𝑏𝑠_𝐼𝑛𝑠𝑛 = 𝐴𝑏𝑠_𝐹𝑢𝑛𝑐 + (𝑅𝑙𝑡_𝐼𝑛𝑠𝑛 − 𝑅𝑙𝑡_𝐹𝑢𝑛𝑐).

Our reliance on LSTs have both pros and cons. Since LST gener-
ation happens to be an existing feature in all our selected compiler
toolchains, our approach has the benefit of (i) a symmetry on Linux
and Windows, (ii) the potential to support other languages with
compiler toolchains that can generate assembly and listing files
(of which there are plenty in Linux, though admittedly fewer in
Windows), and (iii) the avoidance to depend on compiler instru-
mentation, which may be impossible for closed-source toolchains.
In regards to (iii), we remark that the ability to instrument does
not guarantee perfect ground truth. Specifically, in [1], Andriesse
et al. marked all ground truth for their Windows (msvc) binaries
as fully certain, but they did not do so for the Linux binaries. On
the other hand, our LST-based approach has a shortcoming when
compared to instrumentation. Specifically, since LSTs are generated
before linking, our approach does not support binaries compiled
with link-time optimizations (LTO). Although in principle we can
instrument the linker, this would not be possible for closed-source
toolchains. We remark that [1] did not explain how/if their method
differs for their included LTO binaries.

3.2 Implementation Details
In this section, we briefly sketch several selected challenges we
met and solved when implementing our ground truth generator.
Full detail about them and other challenges can be found in our
accompanying tech report on arXiv.

3.2.1 Multiple Encoding Problem. Some x86/x64 assembly instruc-
tions, e.g, jmp, can be encoded into different machine code. With
respect to our system, multiple encodings occur due to two major
reasons. First, both clang and icc use their own internal assemblers.
However, since LST generation is supported by only with GNU as,
we often encounter binaries from clang/icc that disagree with the
LSTs generated by GNU as due to multiple encodings. Second, our
current system design uses (i) a Docker image per OS-compiler pair
for the generation of the target binary and its associated intermedi-
ate files and (ii) a unified Docker image to process the above data

Source 
code

Binary

Assembly 
code

CC -save-temps -g Symbol 
table

LST 
file

GNU nm

GNU as

Abs_Func[]

Rlt_Func[]::Rlt_Insn[]

Abs_Insn[]

Figure 1: Our disassembly ground truth generation pipeline
depicted for Linux clang/gcc/icc. In theWindows equivalent,
cl directly generates listing files and dumpbin replaces nm.

to generate the ground truth data. Thus, it is possible for a Linux
binary in our suite to be compiled with one version of gcc with its
corresponding GNU as and yet its LSTs are generated with another
version of GNU as whose algorithm differs. Our solution is to iter-
atively modify the assembly files by replacing the first mismatched
assembly instruction in each function with the encoding obtained
from the actual binary and represent it using .byte directives. Then
we regenerate the LSTs with the modified assembly files and re-
extract offsets from the new LSTs. This will either result in full
agreement or let us identify other multiple-encoded instructions.

3.2.2 Alignment Directive Translation Problem. With GNU as, an
assembly file can use alignment directives such as .p2align to speci-
fied a desired alignment. Since an alignment directive can be im-
plemented using any combination of nop instructions of different
lengths, the alignment instruction(s) inserted into LSTs can dif-
fer from those in the binary. Our solution is to introduce to the
ground truth representation the concept of “nop regions”, which
has only an offset and a size but no content. Then, we modify our
disassembly accuracy evaluator to act on these regions accordingly.

3.2.3 As-Data Instructions Problem. Although assembly has dif-
ferent syntaxes for instruction and data, compilers may choose
to represent an instruction using the data syntax. For example,
we have observed icc emitting the instruction nopl (%rax) using
.byte directives. Since these “as-data instructions” are not declared
to be instructions in the assembly files and thus the LSTs, without
special treatment our ground truth generator would miss them.
This would in turn lead to “false false-positives” during disassembly
accuracy evaluation. Our solution is to introduce the concept of
“optional instructions” in our ground truth representation and use
an involved algorithm explained in the tech report to detect and
save such instructions into the ground truth after the first pass of
ground truth generation. Unfortunately, our current algorithm has
a known weakness and we will discuss this in §4.2.

3.3 Correctness Check on Our Ground Truth
To detect potential bugs in both our ground truth generator and the
targeted compiler toolchains, we have also built an automatic cor-
rectness checker. Recall from §3.2.1, our system iteratively modifies
an assembly file (and thus its LST) to determine the byte-length
of instructions that have multiple encodings. Our checker verifies
that, at the end of the ground truth generation, there is a 1-1 corre-
spondence between every instruction in the final set of LSTs and
in the ground truth data. Not counting bugs in our own system,
this process has helped us uncover two bugs in GNU as. We have
reported them and one of them has already been fixed upstream.1

1https://sourceware.org/bugzilla/show_bug.cgi?id=X, X ∈ {25125, 25621}
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Table 1: Projects and Binaries in Our Benchmark Suite

Project Version Binary Linux Windows
7zip [10] 19.00 7zDec Y Y
capstone [5] 4.0.2 cstool Y Y
exim [24] 4.86 exim Y
lighttpd [12] 1.4.39 lighttpd Y
mit-bzip2 [14] (2006-01-11) bzip2 Y Y
mit-gcc [14] (2006-01-11) gcc Y
mit-gzip [14] (2006-01-11) gzip Y
mit-oggenc [14] (2006-01-11) oggenc Y
nginx [7] 1.8.0 nginx Y
openssh [16] 7.1p2 sshd Y
pcre2 [17] 10.35 pcre2grep Y Y
putty [22] 0.73 putty Y
sqlite [23] 3.30.1 sqlite3 Y Y
vim [4] 8.2.0821 vim Y Y
vsftpd [20] 3.0.3 vsftpd Y

4 EVALUATION
In this section, we will first present our benchmark suite (§4.1) and
then our evaluation to the following questions:
RQ1: Can our ground truth generator work with various compilers

and optimization settings and generate ground truth data on
our current benchmark suite? Are there surprises? (§4.2)

RQ2: What are the characteristics of the ground truth data gener-
ated using our current benchmark suite? (§4.3)

RQ3: What is the accuracy of the four selected open-source disas-
semblers according to our ground truth? (§4.4)

4.1 Our Benchmark Suite
Projects. Our current benchmark suite comprises 15 open-source

projects and so far we have considered x86 and x64 only. Table 1
shows detailed information of the projects, the selected target bi-
nary in a project, and whether a project is included in our Linux /
Windows sub-suite. Admittedly our current suite is biased towards
Linux due to its history. Its initial composition includes the five
Linux programs used in [1] and we added four MIT-produced amal-
gamations of common Unix programs, one of which happens to be
compilable on Windows. On top of these, we added five commonly-
recognizable projects that support both Linux and Windows (7zip,
capstone, pcre2, sqlite, vim) and one that supports Windows-only
(putty). We must caution that we anticipate the membership of our
suite will change over time due to community inputs or future in-
vestigations. In particular, we believe it would be a very interesting
scientific study on how to put together a “best” benchmark suite
in view of the competing goals to control the number of included
binaries and to increase the complexity exhibited by these binaries.

Toolchains & Settings. On Linux, we support gcc v5.4.0 and v7.5.0,
clang v3.8.0 and v6.0.0, and icc v19.1.1.219. For these compilers,
we support six settings: -O0, -O1, -O2, -O3, -Ofast, and -Os. On
Windows, we support msvc v19.26.28806 with three settings: /Od,
/O1, and /O2. The versions of gcc and clang used are the ones
distributed in Ubuntu 16.04 LTS and 18.04 LTS and the versions
of icc and cl are both the latest as of 2020-07-01. The gcc and
clang versions we used are slightly newer than the ones used in [1]
because currently we can afford to support only LTS. We leave it as
future work to use our ground truth generator on the older compiler
versions used in [1] and measure the accuracy of its ground truth.

Table 2: Characteristics of Benchmark Binaries and Ground
Truth Data per ISA-OS pair

ISA & OS x64 Linux x86 Linux x64 Windows x86 Windows
GT Total Size (MB) 2,290 2,280 109 105

Total Binary Size (MB) 980 955 46 46
Max Binary Size (KB) 40,920 19,276 7,463 7,394
Min Binary Size (KB) 58 62 152 152

# Functions 595,917 574,454 37,850 38,449
# Instructions 85,839,363 83,623,983 3,542,001 3,947,966

# Indirect Jumps 319,657 225,273 26,671 25,544
# Distinct Mnemonics 404 389 255 210
Code-Data Interleave N N Y Y

4.2 Evaluating Our Ground Truth Generator
We have run our ground truth generator over our benchmark suite
to ensure compatibility and robustness. Our generator is bundled as
a set of programs and Docker images and is written with scripting
in mind. Specifically, for each project, our system expects a project
directory with specific subdirectory names and specific build scripts
at hard-coded locations. Given such a directory, a program of ours
will produce a Docker image (for full reproducibility) and run the
image to obtain an archive containing the build artifacts in our
special git-based format. Finally, we launch another Docker image
to process the collected data and produce the ground truth files.

With our current suite, all compilations succeeded with 3 excep-
tions: icc failed to compile mit-gcc with -O2, -O3, and -Ofast into
x86 ELF. The error message is “internal error: 04010022_1238” and
we have already reported this bug to Intel.2 In total, we obtained
(i) 420 x64 Linux ELF, (ii) 417 x86 Linux ELF, (iii) 21 x64 Windows
COFF, and (iv) 21 x86 Windows COFF. All generated ground truth
passed the check described in §3.3.

Unfortunately, our current algorithm to gather “optional instruc-
tions” (§3.2.3) can miss an instruction targeted by an indirect jump
if the target instruction is encoded as data. When we performed the
disassembler evaluation (§4.4), we observed this happening with
icc at -O2, -O3, and -Ofast, which accounted for under 1500 and
3000 “false false-positives” in x86 and x64 respectively. So far, this
is the only source of error that we are aware of in our ground truth
data and we are investigating how to fix this.

4.3 Characteristics of Our Benchmark Suite
Table 2 presents the characteristics of the binaries and their associ-
ated ground truth data files in each of the ISA-OS pairs we currently
support. The first two rows show the total download sizes for users
who trust us and do not want to regenerate the benchmark binaries
and the ground truth data from scratch.

Statistics. The binaries in our benchmark suite has a wide range
in size—from 58 KB to 40,920 KB. To give a sense of scale/complexity
from the perspective of a disassembler, we also counted the num-
ber of functions/instructions/indirect jumps and, using llvm-mc
8.0.0, the number distinct mnemonics in these binaries. We stress
that the number of indirect jumps is only a proxy to estimate the
actual complexity faced by a disassembler because the resolution
complexity of an indirect jump can vary greatly.

2https://community.intel.com/t5/Intel-C-Compiler/Failed-to-compile-the-MIT-
amalgamated-gcc-c-into-a-x86-ELF/m-p/1196443
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Code-Data Interleave. The last row of Table 2 was generated by
checking whether a linear-sweep disassembler achieves 100% recall
and precision against our ground truth. We performed this experi-
ment to repeat part of the study by Andriesse et al. [1] and we arrive
at the same conclusion: modern Linux compilers rarely create inter-
leaving code and data. In the machine code due to functions present
in the source code of our Linux sub-suite, we did not discover
any code-data interleave and therefore a linear-sweep disassembler
achieves perfect disassembly when comparedwith our ground truth.
However, we note that code-data interleaves actually exist in some
highly-optimized (-O2, -O3, -Ofast) icc-generated x64 binaries in
our suite. The reason they do not result in disassembly errors here
is because they are due to functions from statically-linked libraries
(e.g., __intel_mic_avx512f_memcpy) and our ground truth data
and our evaluator do not account for instructions in this category.
On the other hand, we observed that msvc in both x86 and x64
can generate code-date interleaves where data is present at the
end of some functions, including those appearing in the source
code. Since linear sweep does not know where a function ends, it
outputted many false positives (disassembling data as code) and
false negatives (at mismatched instruction boundaries). Finally, we
remark that code-data interleaves happen even in modern Linux
binaries; see, e.g., [13, Figure 1]. Also, we are aware that code-data
interleaves can be common in other ISAs such as ARM. Therefore,
we believe continued research in advanced disassembly algorithms
(as opposed to settling on linear sweep) is warranted.

4.4 Evaluating Selected Disassemblers
We have used our benchmark suite and our own custom scripts
to evaluate four prominent open-source disassemblers: (i) BAP
v2.1.0 (2020-05-29), (ii) Ghidra v9.1.2 (2020-02-12), (iii) Radare2
v4.4.0 (2020-04-13), and (iv) ROSE v0.10.4.3 (2020-05-05). While we
specifically excluded commercial disassemblers such as IDA Pro
and Binary Ninja due to licensing and their limit to API access in
their free versions, we believe these vendors can publish their own
numbers using our benchmark suite to enable comparisons.

Unstripped Binaries. As strange as it may sound, for this paper
we tested all included disassemblers with the unstripped version of
the binaries from our suite to simulate an experiment where we
use stripped binaries but provide each disassembler with perfect
function starts. Even though disassembly is arguably more often
conducted on stripped binaries and our simulation is not without
caveats, there are two reasons behind this decision: (i) After an
initial testing with various stripped binaries, we discovered that we
do not want to test function start identification (FSI), which as iden-
tified in [1] is a much less well-solved challenge in disassembly. For
example, the instruction recall of Ghidra on the unstriped x86 vim
ELF binary compiled with icc -O2 is 99.059%, and stripping drops
this to 81.429%. (ii) Our current workstation has 128GB of memory
and it proves to be insufficient for the stripped experiment without
heavily relying on swapping. For example, when running ROSE
on the x86 mit-gcc binary compiled by clang 3.8.0 with -Ofast,
ROSE consumed over 125GB of memory and was soon killed by
the OOM-killer when the stack-delta analysis stage was at 88%. We
believe an interesting future work would be to provide FSI hints to
each disassembler and then also test them with stripped binaries.

Invocations. For fairness, we followed the documentation of each
disassembler on how to run it. Even though we recognize that ex-
pert users may run a disassembler with various non-default flags
and/or third-party plugins, we feel our method better mimics the
experience of a typical user. With ${BIN} denoting an input binary
and ${RST} denoting the output file, our method to run the disas-
semblers were: (i) BAP: bap ${BIN} -d asm >${RST}; (ii) Ghidra:
we run analyzeHeadless with a Java program we bundled to out-
put all instruction offsets using currentProgram.getListing().
getInstructions(true) without changing any other configura-
tion; (iii) Radare2: r2 -Aqc 'pdr @@f >${RST}' ${BIN}; (iv) ROSE:
rose-recursive-disassemble ${BIN} >${RST}.

Crashes. We observed a number of crashes in our experiment.
In particular, Radare2 seg-faulted on 11 binaries, which we noticed
were all large-size binaries including cstool, gcc, nginx, and vim
compiled by various compilers. In these cases, we decided to con-
sider the Radare2 output as empty in our accuracy evaluation and
we have already filed a bug with the Radare2 developers.3

Accuracy. Using our bundled wrappers for the included disas-
semblers, we collected their outputs on each binary and computed
their true positive, false positive, and false negative counts against
our ground truth. These are then summarized into the common
Receiver Operating Characteristic metrics of precision, recall, and
F1 scores. In this paper, we divide the binaries into groups according
to the compiler and optimization settings used and by the ISA-OS
pair. Since we have 5 compilers and 6 optimization settings in Linux,
there are 30 groups in each ISA-Linux pair. The corresponding num-
ber is 1 × 3 = 3 for each ISA-Windows pair. (For example, each of
the 30 x64-Linux groups has 14 binaries; see Table 1.)

To summarize the accuracy of a disassembler in a group, let 𝑁
be the number of binaries in the group and define the following
weights for each binary in the group to adjust for the different
number of instructions in each binary:

𝑊 𝑅𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖

=
𝑇𝑃𝑖 + 𝐹𝑁𝑖∑𝑁
𝑗=1𝑇𝑃 𝑗 + 𝐹𝑁 𝑗

𝑊 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖

=
𝑇𝑃𝑖 + 𝐹𝑃𝑖∑𝑁
𝑗=1𝑇𝑃 𝑗 + 𝐹𝑃 𝑗

With these weights, we compute the weighted precision, recall,
and F1 score for each disassembler over each group in each ISA-OS
pair. This in turn allows us to count the number of times when
a disassembler has the highest precision/recall/F1 score in each
ISA-OS pair, i.e., the number of “wins” in each ISA-OS pair for
each metric. These numbers are presented in the left sub-column
under each disassembler in Table 3. In addition, to provide a sum-
mary of the per-group weighted precision/recall/F1 score, we also
compute the harmonic means of the per-group metrics for each
disassembler for each ISA-OS pair. These numbers are presented in
the corresponding right sub-column.

Adopting F1 scores as our metric for accuracy, ROSE and Ghidra
are the most accurate disassemblers for respectively the Linux and
Windows binaries in our suite. Overall, every evaluated disassem-
bler achieved a high precision that exceeds 97% in our suite, but the
recall is comparably lower. This reflects the common design choice
in disassemblers where soundness (every outputted instruction is
true) is valued over completeness (every instruction is outputted).

3https://github.com/radareorg/radare2/issues/17388
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Table 3: #Wins & Harmonic Means of Each ROC Metric of
Each Disassembler (Highest F1 in Each ISA-OS Shaded)

Disassemblers BAP Ghidra Radare2 ROSE

x6
4

Li
nu

x Recall 0 0.80288 2 0.92657 1 0.83889 27 0.97905
Prec 4 0.99998 18 0.99965 0 0.99988 8 0.99999
F1 0 0.89066 2 0.96173 1 0.91234 27 0.98941

x8
6

Li
nu

x Recall 6 0.82989 6 0.75014 0 0.85280 18 0.97241
Prec 20 0.99997 5 0.99813 1 0.99994 4 0.99998
F1 6 0.90703 6 0.85655 0 0.92053 18 0.98601

x6
4

W
in
-

do
w
s Recall 0 0.71179 3 0.92938 0 0.77705 0 0.75949

Prec 0 0.99998 3 1.00000 0 0.99999 0 0.99964
F1 0 0.83163 3 0.96340 0 0.87454 0 0.86317

x8
6

W
in
-

do
w
s Recall 0 0.66079 2 0.95017 0 0.83991 1 0.91219

Prec 1 0.99965 1 0.99981 1 0.99971 0 0.99905
F1 0 0.79565 3 0.97436 0 0.91287 0 0.95365

Table 4: Time & Memory Consumption of Each Disassem-
bler Over All 66 sqlite3 Binaries ({x86, x64} × {ELF, COFF})

Disassemblers BAP Ghidra Radare2 ROSE
Total User Time (min) 166.65 214.43 47.59 274.96
Total Sys Time (min) 1.41 4.45 0.19 4.97
Total Real Time (min) 168.21 101.03 47.79 65.03

Max Resident Mem (KB) 9,221,200 2,035,936 477,228 4,592,024
Use Multi-core N Y N Y

Resource Consumption. To compare their performance character-
istics, each disassembler invocation was run with /usr/bin/time
-v. Ideally we would present the measurements with a breakdown
by each binary, similar to how SPEC CPU results are typically pre-
sented. However, due to space, in this paper we have selected to
present with sqlite only. Our suite supports sqlite on all four OS-ISA
pairs and there are 66 binaries in total (60 Linux + 6 Windows). We
ran each disassembler sequentially on each binary on an otherwise-
idle Intel i9-9900K machine with 128GB memory. Table 4 shows
the time and memory consumption over the entire sequence. For
sqlite, BAP occupied the most amount of memory and ROSE used
the most CPU (User+Sys) time. However, Ghidra and ROSE both
use multi-core and BAP was in fact slower in wall-clock (Real) time.

5 CONCLUDING REMARKS
In this paper, we proposed to start standardizing the set of bina-
ries used for future disassembler evaluations and presented our
work-in-progress benchmark suite. We presented our ground truth
generator and evaluated four prominent open-source disassemblers
using our ground truth data. Our project is in active development in
multiple directions. Aside from fixing the algorithm used in §3.2.3,
we believe the most important future work is to investigate what
binaries should be included in the benchmark suite. Even limiting
to C programs only, we would like to more formally define and
increase the complexity captured by the benchmark binaries. For ex-
ample, while our ground truth representation supports overlapping
instructions, none of the programs in our current suite contains this
feature. Other future work includes: (i) adding the ability to pro-
vide function start hints to each supported disassembler, (ii) adding
instructions from statically-linked libraries and data declarations to
the ground truth, (iii) adding icc support on Windows, (iv) adding
projects from other languages (e.g., C++), and (v) adding other ISAs
(e.g., ARM). We sincerely hope the community will provide us with

inputs or even pull requests to evolve our benchmark suite into a
community standard for future disassembler evaluations.
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