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Abstract
One of the standard correctness criteria for gradual typing is
the dynamic gradual guarantee, which ensures that loosening
type annotations in a program does not affect its behavior in
arbitrary ways. Though natural, prior work has pointed out
that the guarantee does not hold of any gradual type system
for information-flow control. Toro et al.’s GSLRef language,
for example, had to abandon it to validate noninterference.

We show that we can solve this conflict by avoiding a fea-
ture of prior proposals: type-guided classification, or the use
of type ascription to classify data. Gradual languages require
run-time secrecy labels to enforce security dynamically; if
type ascriptionmerely checks these labels withoutmodifying
them (that is, without classifying data), it cannot violate the
dynamic gradual guarantee. We demonstrate this idea with
GLIO, a gradual type system based on the LIO library that
enforces both the gradual guarantee and noninterference,
featuring higher-order functions, general references, coarse-
grained information-flow control, security subtyping and
first-class labels. We give the language a domain-theoretic
semantics, using Pitts’ framework of relational structures to
prove noninterference and the dynamic gradual guarantee.

1 Introduction
Gradual type systems allow incomplete type annotations for
combining the safety of static typing with the flexibility of
dynamic languages. In the gradual λ-calculus of Siek and
Taha [27], for example, we can declare the argument of a
function f as an integer but omit its return type. This causes
the type checker to reject an expression such as f (true)while
accepting f (0) + 1, understanding that the latter will trig-
ger a run-time error if f (0) returns a string. Many language
features have been adapted to gradual typing, including ref-
erences [29], polymorphism [2, 17, 21, 34], among others.

Unlike other approaches that mix static and dynamic typ-
ing, ascribing types in a gradual language should barely
affect a program’s behavior, a property known as the dy-
namic gradual guarantee (DGG) [28]: the program might be
rejected by the type checker or encounter more cast errors,
but its output should not change from 0 to 1. Albeit natural,
this isolation can be challenging for languages that strive
for more than basic type safety. It had to be abandoned in a
gradual variant of System F to enforce parametricity [34],1
and in the GSLRef language [33] to enforce noninterference.

1Recent work has managed to lift this restriction using ideas similar to
ours [21]; cf. Section 7.

let f x =
let b (* : Bool<S> *) = true in
let y = ref b in
let z = ref b in
if x then y := false else ();
if !y then z := false else ();
!z

f (<S>true)

Figure 1. Prototypical failure of the DGG due to NSU checks.
The program throws an error when run, but successfully
terminates if we uncomment the type annotation Bool<S>.

Sadly, the guarantee does not hold in any existing gradual
language for information-flow control (IFC) [33].

The goal of this paper is to remedy the situation for IFC lan-
guages without giving up on noninterference. The difficulty,
we argue, stems from what we call type-guided classification:
the ability to classify values through static type annotations.
This issue is illustrated in Figure 1, which shows a program
in λinfo [4], a typical language for dynamic IFC. Values in λinfo
carry a confidentiality label that is checked and propagated
during execution to prevent information leaks. Unannotated
values such as true are marked with a default label (in λinfo,
Public), which can be overridden with < >. For example, the
function f is given a Secret argument.
For now, ignore the commented type (* ... *). If we

ran this program in a typical language with no IFC checks, it
would have the effect of leaking the secret input x through
the reference z, returning true when x = true and false
when x = false. Dynamic IFC prevents this breach with
a discipline known as no-sensitive-upgrade (NSU) [4, 5, 31],
which forbids updates to public references when the control
flow is influenced by secrets. In f, the reference y is implicitly
labeled public because it is allocated in a public context and
initialized with a public variable. This causes the NSU check
to fail and terminate execution.
An extension of λinfo with gradual types could allow us

to annotate b with the type in comments, declaring it as a
secret boolean. What would this declaration mean? Current
gradual IFC languages (GSLRef [33], ML-GS [12], etc.) inter-
pret it as classification, thus setting b’s dynamic secrecy label
to S. This causes the program to terminate successfully: b’s
label is propagated to y and z, the program accepts the two
assignments (because x has the same secrecy as the refer-
ences), and returns <S>true. Unfortunately, this behavior
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violates the DGG, because dynamic errors are not allowed
to disappear when we provide type annotations.
This scenario suggests two possibilities for repairing the

DGG: dropping the NSU discipline in favor of type-guided
classification, or vice versa. The first option is problematic
because it is hard to find other ways of enforcing noninter-
ference. One possibility would be to modify the semantics
of conditionals so that they raise the secrecy of all refer-
ences that could be updated in either branch [25]. In Fig-
ure 1, this would mean raising y’s label above x’s even when
the else branch is taken. Apart from the potential perfor-
mance impact, implementing this solution in any realistic
language would require a rich analysis to compute write
sets, which would likely push us further towards a static
type system. And even if we decided that this was worth it,
keeping type-guided classification would be problematic for
another popular feature of IFC: first-class labels.

Labels are first class if they can be manipulated program-
matically; for instance, we might write labelOf b == S
to test whether b holds a secret. First-class labels are often
adopted in practically minded IFC systems [31, 36] because
they enable rich data-dependent policies. Unfortunately, they
can easily break the DGG with type-guided classification.
Consider Figure 2, for instance: if the DGG were true, the
unannotated program would behave the same way as the
two annotated ones, which is impossible because they re-
turn different results. Similar issues have been observed in
languages with dynamic type tests [9, 28]: if programs can
test anything about a value’s type, they can discern between
different static annotations.
Thus, to reconcile noninterference and gradual typing,

we are led to the second option: abandoning type-guided
classification. The effect of an annotation should be merely
to check labels, not to modify them. For Figure 1, this would
mean that b, y and z would still be dynamically labeled P
despite the static annotation Bool<S>, triggering an NSU
error without any harm to the gradual guarantee. Likewise,
the annotations in Figure 2 could lead to a cast error, but
they would not change the result of the test. Modifying labels
should still be possible, but through a term-level operation
that is not covered by the DGG.

We realize this idea with GLIO, a gradual language based
on the LIO library [32]. LIO exposes an API for securely
manipulating secret data, to which GLIO adds optional an-
notations for preventing security errors statically. Following
the tradition of gradual typing, GLIO features a notion of con-
sistent subtyping to allow annotated and unannotated code
to interoperate automatically, unlike prior work [10], where
annotations might need to be checked manually. We still
need to investigate if GLIO could be embedded in Haskell
like LIO, but a standalone implementation should pose no
challenges.
An important characteristic of gradual type systems is

how much support they provide for transitioning legacy

let b : Bool<S> = true in labelOf b == S
let b : Bool<P> = true in labelOf b == S
let b = true in labelOf b == S

Figure 2. Failure of the DGG with first-class labels and type-
guided classification. The first two programs have no reason
to fail, and with type-guided classification they terminate
successfully with different results. The DGG would force the
third program must behave the same way as the first two,
which is impossible.

programs to richer type disciplines. The literature on gradual
IFC offers different answers to this question; ML-GS [12], for
example, requires references to be given an explicit secrecy
label, and thus does not directly apply to legacy programs,
while GSLRef [33] allows omitting all such annotations. By
extending LIO, GLIO adopts a mixed stance in that regard.
On the one hand, LIO does require programs to provide term-
level annotations for certain operations, including reference
allocation. On the other hand, LIO’s coarse-grained design
obviates the need for tracking labels in most of the program;
most values are protected by the PC label, a state component
used in NSU checks.
In principle, it would be possible to allow missing label

annotations for references in GLIO by choosing a default
value for them, such as the current PC label. Unfortunately,
the benefits of this approach would be limited for gradual
typing: in the presence of first-class labels, no analog of the
DGG can hold when overriding these defaults. We do not
know if the situation fundamentally changes if first-class
labels are absent, but missing reference annotations are not
the only source of violations for the DGG: similar issues arise
in GSLRef even if all reference annotations are present, by
adapting the counterexample of Figure 1 to its syntax.
Our contributions, in sum, are as follows. We introduce

GLIO, a gradual language based on LIO with higher-order
functions and storage, flow-insensitive references, coarse-
grained IFC, security subtyping and public, first-class la-
bels. After an informal tour of the language in Section 2,
we present its syntax and type system in Section 3, and
define its semantics in Section 4. We prove that GLIO satis-
fies both termination- and error-insensitive noninterference
(Section 5) and the gradual guarantee of Siek et al. [28] (Sec-
tion 6). We discuss related work in Section 7 and conclude
in Section 8. Detailed proofs and definitions are included in
the full version of this paper [6].

2 Overview
Before diving into technical details, we give a brief tour
of GLIO. Traditionally, IFC languages have followed a fine-
grained discipline: every value carries a secrecy label, which
is implicitly checked and propagated on every operation (stat-
ically or dynamically). This category includes λinfo [4], Flow
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Caml [23] and Jif [19], among others. By contrast, systems
such as DCC [1], LIO [32] and GLIO follow a coarse-grained
discipline: only certain values carry labels, and they must
be manipulated using special primitives. The two styles are
equally expressive [24, 35], but coarse-grained systems are
easier to implement (since they track less information) and
offer a smoother migration path to legacy programs (since
most of the code does not need to worry about IFC).

Following LIO, GLIO places labeled values in a special type
called Lab, and uses a monad LIO to express computations
that handle secrets. Its most basic primitives are:

label :: Label -> a -> LIO (Lab a)
unlabel :: Lab a -> LIO a
labLabel :: Lab a -> Label
pcLabel :: LIO Label

The types shown here mimic those of the original LIO,
but we’ll soon see that they can be refined with secrecy
annotations. The label and unlabel functions are used to
wrap a value of type a with a secrecy label and to unwrap
it. To do this safely, the LIO monad encapsulates a state
component known as the PC label, as usual in dynamic IFC.
This label bounds the secrecy of all the values that have been
unlabeled during the computation. Before assignments, the
program performs an NSU check on this label to determine
whether the operation is safe. The functions labLabel and
pcLabel allow inspecting the label of a labeled value and
the current PC label.

The behavior of these primitives is illustrated in Figure 3,
which shows a loose translation of Figure 1 into GLIO. In
addition to the explicitly labeled values, the main difference
with respect to Figure 1 is the new operator, which takes a
secrecy label P as its argument. This translation is contrived
for a coarse-grained system because of the spurious wrap-
ping of the boolean b, but it is operationally closer to the
original example and gives an idea of how GLIO enforces
the DGG.
The program runs the same way as before. Unlabeling b

amounts to a no-op: since its label is public, we do not need
to update the PC label. On the contrary, x is marked as secret,
so unlabeling it has the effect of bumping the PC label to S.
This change is detected by GLIO’s NSU check, which deems
the update to y unsafe and halts the program with an error.

Instead of Lab Bool, we could have given b the more pre-
cise type Lab[S] Bool, which says that the dynamic secrecy
of the wrapped boolean is bounded by S. Since this label is
P, which is below S, the assignment can be performed safely.
Importantly, this does not modify b’s label, and updating y
leads to the same result as before: an error. Since the behav-
ior of the program did not change after refining the type, the
DGG has not been violated.
The annotation did not break the DGG, but it was also

not strong enough to catch the IFC error statically. Figure 4
demonstrates how this could be done in GLIO with a fully

f :: Lab Bool -> LIO Bool
f x = do

-- Alternative annotation: Lab[S] Bool
b :: Lab Bool <- label P True
b' <- unlabel b
y <- new P b'
z <- new P b'
x' <- unlabel x
if x' then set y False

else return ()
y' <- get y
if y' then set z False

else return ()
get z

do { x <- label S True; f x }

Figure 3. Translation of the example of Figure 1 into GLIO

annotated version of the previous program. As in HLIO [10],
the annotations on the LIO monad provide upper bounds on
the PC label at the beginning and at the end of the computa-
tion. The annotations on Ref are stricter than those for Lab:
instead of an upper bound, they give the exact secrecy of the
contents the reference. This is to ensure safety: if the static
label of a reference, S, were above its actual dynamic label,
say P, the NSU check would still throw an error at run time,
which the type checker would not be able to prevent.

To check unlabel, the type system propagates the static
label of its argument into the PC label. Since x could be a
secret, the type system rejects the assignment to y, as it could
lead to an illegal implicit flow.

Figure 5 presents a middle ground between dynamic and
static enforcement, using label introspection to test whether
the NSU check would fail. Unlike labeled values, dynamic
labels are themselves public, and can be inspected without
tainting the PC. The lub operator computes the join, or least
upper bound, of two labels, while canFlowTo checks if one
label is below another. If the test passes, the assignment is
performed without triggering any errors. Otherwise, the pro-
gram logs the unsafe condition so that more robust recovery
code can act later.

Labeling and allocation. Figure 6 further details the role
of labels in values and references. The first program, refLab,
stores the contents of a labeled value x in a fresh reference r.
In this example, the new reference is typed as Ref[S] Bool
because the annotation is constant, but in general this ar-
gument can be an arbitrarily complex expression, in which
case the reference would get the imprecise type Ref Bool.
For the allocation to succeed, the reference label must be
above the PC label, which can be statically enforced in this
case thanks to the PC annotations.
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h :: Lab[S] Bool -> LIO[P,S] Bool
h x = do

-- PC label = P
b :: Lab[P] Bool <- label P True
b' :: Bool <- unlabel b
y :: Ref[P] Bool <- new P b'
z :: Ref[P] Bool <- new P b'
x' :: Bool <- unlabel x
-- PC label = S
if x'
-- Assignment is rejected
then set y False
else return ()

y <- get y
if y then set z False
else return ()

get z

do { x <- label S True; g x }

Figure 4. A fully annotated version of Figure 3 that is re-
jected at compile time

maybeUpdate :: Ref Bool -> Lab Bool -> LIO ()
maybeUpdate r x = do

lpc <- pcLabel
let lx = labLabel x
let lr = refLabel r
if lpc `lub` lx `canFlowTo` lr then do
x' <- unlabel x
set r x'

else set errorOccurred True

Figure 5. Error prevention through label introspection

refLab :: Lab[S] Bool -> LIO[P,P] (Ref[S] Bool)
refLab x = do

r :: Ref[S] Bool <- new S true
-- toLab :: Label -> LIO a -> LIO (Lab a)
toLab S (do { x' <- unlabel x; set r x' })
return r

labRef :: Ref Bool -> LIO[P,P] (Lab Bool)
labRef r = toLab (refLabel r) (get r)

eqRef :: Ref Bool -> Ref Bool -> LIO[P,P] Bool
eqRef r1 r2 = return (r1 == r2)

Figure 6. Labeling and dynamic allocation

The function uses another primitive of GLIO, toLab, to
avoid raising the PC label too much and causing spurious
NSU errors—a problem known in the literature as label creep.

labCast :: LIO (Lab[P] Bool)
labCast = do

b :: Lab[P] Bool <- label P True
return (b :: Lab[S] Bool :: Lab Bool

:: Lab[P] Bool)

labClass :: LIO (Lab[P] Bool)
labClass = do

b :: Lab[P] Bool <- label P True
b' <- unlabel b
b'' <- label S b'
return (b' :: Lab Bool :: Lab[P] Bool)

refCast :: LIO (Ref[S] Bool)
refCast = do

r :: Ref[P] Bool <- new P True
return (r :: Ref Bool :: Ref[S] Bool)

Figure 7. Casts in GLIO

The first argument of toLab is a label l that bounds the
confidentiality of the result,2 and its second argument is a
computation f. If the final PC label after running f is below l,
toLab wraps the result in a value labeled with l and restores
the PC label to its original value; otherwise, it throws an
error. In refLab, the annotations are enough to guarantee
the absence of errors and indicate that the PC label is indeed
restored at the end of execution.
The second program, labRef, goes in the opposite direc-

tion: it uses toLab to wrap the contents of r into a labeled
value of the same secrecy as r.

Fine-grained IFC often makes a distinction between the
label of a reference, which protects its identity, and the label
of its contents. In GLIO, what is sometimes called the “label
of the reference” refers actually to the label of its contents:
the identity of the reference is always public with respect to
the PC label, and does not need to be protected with special
checks. This is illustrated in the third program, eqRef, which
tests if two references are identical. This comparison does
not take their contents into account, which is why the PC
label does not have to be tainted.

Casts and classification. GLIO includes a notion of con-
sistent subtyping to allow annotated and unannotated code
to interoperate. For example, we may pass a value r of type
Lab Bool to refLab in Figure 6, and the language inserts
the appropriate dynamic checks to ensure safety. (In this
case, the checks are guaranteed to succeed, assuming the
argument’s static label S denotes maximum secrecy.)

2You may wonder why the first argument of toLab is needed, since we
could have also used the final PC label to wrap the result. The problem is
that labels in GLIO are public, and can be used to leak secrets [16]. By fixing
the final label from the onset, we avoid the issue.
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We can also trigger casts explicitly using type ascription,
as shown in Figure 7. The first function, labCast, labels the
boolean True with P and sends it through a series of casts,
indicated with the :: operator. The type system checks each
cast to rule out obvious or potential errors, such as coercing
Bool to Unit or Lab[S] Bool to Lab[P] Bool.

Once labCast reaches the last cast to Lab[P] Bool, it suc-
cessfully returns True labeled as P, because the final label on
the boolean stays the same across the casts—in other words,
classification and type casts are decoupled. This contrasts
with previous work [12, 13], in particular with GSLRef [33],
which by design would trigger a run-time error, since it treats
the last cast as a declassification. This behavior can be repli-
cated in GLIO by replacing the first cast to Lab[S] Bool
with another call to label, as shown in the second program,
labClass. Classification succeeds, because S is more secret
than P, but the last cast fails for the same reason.

Finally, refCast demonstrates the difference between la-
bels for Ref and Lab. The annotations on reference types fix
the labels of their contents, so the final cast to Ref[S] Bool
fails during execution even though S is more secret than P.
Note that this cast has to come after a cast to the imprecise
type Ref Bool: were it omitted, the type checker would
reject the program, as such a coercion always fails.

3 Language
Having built basic intuition, we are ready for a formal defi-
nition. The development assumes a lattice of secrecy labels
l ∈ L ordered by ≼, comprising joins ⋎, meets ⋏, a bottom
element ⊥ and a top element ⊤. The higher a label, the more
confidential the values it classifies, with ⊥ denoting public
data and ⊤ denoting maximum secrecy. A simple choice for
L would be a lattice of labels {P, S} ordered by P ≼ S. A
more interesting instance is L = P(P) ordered by the subset
relation, where P = {Alice,Bob, . . .} is a set of principals
that own data, ⊥ = ∅, ⊤ = P , ⋏ = ∩ and ⋎ = ∪.
Figure 8 summarizes the syntax of terms and types. To

simplify the development, we modify the informal overview
of the previous section in two aspects. First, since our main
technical challenges pertain to impure code, we conflate pure

functions and the LIO monad into a single type T
l̄1, l̄2
−−−→ S ,

which intuitively corresponds to the type T → LIO[l̄1, l̄2] S
seen earlier. Because of cast errors, “pure” code in our lan-
guage still needs to be managed monadically, and this sim-
plification allows us to model pure and impure code with
a single monad (cf. Section 4). Second, to allow for a more
compact semantics later, we present the syntax in A-normal
form [14, 26]: most term formers only allow variables as
arguments, and the earlier snippets should be translated into
a sequence of let definitions. The first term rows contain
usual constructs for manipulating booleans, functions, and
the heap. The last rows are specific to IFC, and correspond
to the primitives of LIO [31]. Two syntactic forms, new and

toLab, take either variables or label constants as arguments
to allow for more precise typing rules, as we’ll soon see. Type
ascription is syntax sugar defined in terms of let, and label
is defined in terms of toLab. (Since we don’t use a separate
monadic type, label and toLab are actually synonyms.)
As usual in gradual languages, the missing annotations

in concrete syntax formally correspond to the gradual label
? ∈ L̄ ≜ L⊎{?}, which represents a statically unknown label.
The language does not include product, sum, and recursive
types, but we foresee no difficulties in doing so—for recursive
types in particular, GLIO already includes a higher-order
store, which forces us to handle similar technical challenges.
Figure 9 presents the type system. The label indices in

judgments Γ ⊢l̄1, l̄2 e : T correspond to the static annotations
on the LIO monad of Section 2: they constrain the PC label
at the beginning and at the end of the execution of e . The
rules reflect the behavior of the programs described earlier.
For example, the variable rule does not change the label
annotation because variables are already protected by the
current PC label, and thus require no additional tainting.
A similar reasoning applies to the introspection primitives
refLabel, labLabel and pcLabel.

The rule for let shows how the label indices are threaded
through as the computation unfolds. The consistent subtyp-
ing assumption T ′ ≼ T allows weakening security annota-
tions or even omitting them entirely. Its definition, shown
in Figure 10, resembles the subtyping discipline of Rajani
and Garg [24], but adapted to the gradual setting using the
Abstracting Gradual Typing (AGT) framework [15]. In AGT,
a gradual type T is interpreted as a set γ (T ) of fully an-
notated types, where each missing annotation is replaced
by all possible completions. For example, γ (Lab?(Bool)) is
{Labl (Bool) | l ∈ L}. (The full version contains the complete
definition [6].) This allows us to lift arbitrary predicates on
fully annotated types to gradual types: the inductive pre-
sentation of Figure 10 is equivalent to saying that T ≼ S
holds precisely when there exist T ′ ∈ γ (T ) and S ′ ∈ γ (S)
such thatT ′ ≼ S ′, for a suitable subtyping relation ≼ on fully
annotated types. The ≼ relation on L̄, which extends the one
on L, can be recast in the same way, by posing γ (?) = L and
γ (l) = {l}.

On multiple rules, the consistent ordering on gradual la-
bels is used to rule out IFC errors. For example, the side
condition on the set rule subsumes the corresponding NSU
check. Other rules, such as get and if, taint types and the PC
label using partial consistent join operations ⋎ (Figure 11).
The definition uses a consistent meet operation ⋏ and an
intersection operation ∩ on types and gradual labels. These
operations are not joins and meets in the usual sense, since
the consistent orders are not transitive, and thus not actual
orders; nevertheless, we can show

l̄1 ⋏ l̄2 ≼ l̄i ≼ l̄1 ⋎ l̄2 and T1 ⋏ T2 ≼ Ti ≼ T1 ⋎ T2
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l ∈ L

l̄ ∈ L̄ ≜ L ⊎ {?}
b ∈ {0, 1}
c ∈ L ⊎ {x ,y, z, . . .}

⊕ ∈ {⋏, ⋎}

Γ ∈ Var⇀fin Type

e :: T ≜ let(e,x : T . . . .)
label(c,x) ≜ toLab(c,x)

Term ∋ e := x | let(e1,x : T .e2) | unit | b | if(x , e1, e0) | fun(x :l̄ T .e) standard
| app(x ,y) | get(x) | set(x ,y) | new(c,y) | eqRef(x ,y)

| refLabel(x) | labLabel(x) | pcLabel() IFC specific
| l | x ⊕ y | x ≼ y | unlabel(x) | toLab(c, e)

Type ∋ T , S := Unit | Bool | Label | Ref l̄ (T ) | Labl̄ (T ) | T
l̄1, l̄2
−−−→ S

Figure 8. Syntax of terms and types

Γ(x) = T

Γ ⊢l̄, l̄ x : T
Γ ⊢l̄1, l̄2 e1 : T ′ Γ[x 7→ T ] ⊢l̄2, l̄3 e2 : S T ′ ≼ T

Γ ⊢l̄1, l̄3 let(e1,x : T .e2) : S Γ ⊢l̄, l̄ unit : Unit Γ ⊢l̄, l̄ b : Bool

Γ(x) = Bool Γ ⊢l̄1, l̄ 1
2
e1 : T1 Γ ⊢l̄1, l̄ 0

2
e0 : T0

Γ ⊢l̄1, l̄ 1
2⋎l̄

0
2
if(x , e1, e0) : T1 ⋎ T0

Γ(x) = Ref l̄ (T )

Γ ⊢l̄1, l̄1⋎l̄ get(x) : T

Γ(x) = Ref l̄ (T1) Γ(y) = T2 T2 ≼ T1 l̄1 ≼ l̄

Γ ⊢l̄1, l̄1 set(x ,y) : Unit
Γ(y) = T l̄2 ≼ l1

Γ ⊢l̄2, l̄2 new(l1,y) : Refl1 (T )
Γ(x) = Label Γ(y) = T

Γ ⊢l̄2, l̄2 new(x ,y) : Ref?(T )

Γ(x) = Ref l̄1 (T1) Γ(y) = Ref l̄2 (T2) T1 ≼ T2 T2 ≼ T1

Γ ⊢l̄, l̄ eqRef(x ,y) : Bool
Γ[x 7→ T ] ⊢l̄1, l̄2 e : S

Γ ⊢l̄, l̄ fun(x :l̄1 T .e) : T
l̄1, l̄2
−−−→ S

Γ(f ) = T1
l̄2, l̄3
−−−→ S Γ(x) = T2 T2 ≼ T1 l̄1 ≼ l̄2

Γ ⊢l̄1, l̄3 app(f ,x) : S
Γ(x) = Ref l̄ (T )

Γ ⊢l̄ ′, l̄ ′ refLabel(x) : Label
Γ(x) = Labl̄ (T )

Γ ⊢l̄ ′, l̄ ′ labLabel(x) : Label

Γ ⊢l̄, l̄ pcLabel() : Label Γ ⊢l̄, l̄ l : Label
Γ(x) = Γ(y) = Label

Γ ⊢l̄, l̄ x ≼ y : Bool
Γ(x) = Γ(y) = Label

Γ ⊢l̄, l̄ x ⊕ y : Label
Γ(x) = Labl̄ ′(T )

Γ ⊢l̄, l̄⋎l̄ ′ unlabel(x) : T

Γ ⊢l̄2, l̄3 e : T l̄3 ≼ l1 ⋎ l̄2

Γ ⊢l̄2, l̄2 toLab(l1, e) : Labl1 (T )
Γ(x) = Label Γ ⊢l̄2, l̄3 e : T
Γ ⊢l̄2, l̄2 toLab(x , e) : Lab?(T )

Figure 9. Typing rules

for i ∈ {1, 2}, whenever the result of these operations is
defined. Note that when all labels are ?, T ≼ S is equivalent
to T = S , so consistent joins become trivial and the type
system reduces to a simplified version of LIO.
The two variants of new and toLab use different typing

rules because the secrecy of their results is determined by
their label argument. When this label is statically known
(that is, in the new(l ,−) and toLab(l ,−) variants), the type
system uses it in the result type. When this label is chosen
dynamically, the result type is labeled with ?.
The rule for toLab is slightly more permissive than the

corresponding dynamic checks in LIO [32], which would

translate as l̄3 ≼ l1 instead of l̄3 ≼ l1 ⋎ l̄2. Intuitively, our
variant is sound because the result of toLab is protected
by both the ascribed label l1 and the initial PC label l̄2. In
Section 4, we will see that toLab takes the PC label into
account during execution too.

4 Semantics
Each typeT in GLIO corresponds to a set ⟦T⟧ (Figure 12). As
the heap can store arbitrary values, ⟦T⟧ contains negative
recursive occurrences, which requires some care to handle.
To solve this issue, we define ⟦T⟧ as a CPO rather than
a plain set, by solving a domain equation [30]. We briefly



Reconciling noninterference and gradual typing

l̄ ≼ ? ? ≼ l̄

l1 ≼ l2 : L
l1 ≼ l2 : L̄

T ∈ {Unit,Bool, Label}

T ≼ T

l̄1 ≼ l̄2 l̄2 ≼ l̄1 T1 ≼ T2 T2 ≼ T1

Ref l̄1 (T1) ≼ Ref l̄2 (T2)

l̄1 ≼ l̄2 T1 ≼ T2

Labl̄1 (T1) ≼ Labl̄2 (T2)

l̄ ′1 ≼ l̄1 l̄2 ≼ l̄ ′2 T ′1 ≼ T1 T2 ≼ T
′
2

T1
l̄1, l̄2
−−−→ T2 ≼ T

′
1

l̄ ′1, l̄
′
2

−−−→ T ′2

Figure 10. Consistent subtyping

l̄ ⊕ ? = ? ⊕ l̄ ≜ ?

l̄ ∩ ? = ?∩ l̄ ≜ l̄

l1 ⊕ l2 ≜ l1 ⊕ l2

l̄ ∩ l̄ ≜ l̄

Unit ⊕Unit ≜ Unit

Unit∩Unit ≜ Unit

Bool ⊕ Bool ≜ Bool

Bool∩Bool ≜ Bool

Label ⊕ Label ≜ Label

Label∩ Label ≜ Label

Ref l̄1 (T1) ⊕ Ref l̄2 (T2) ≜ Ref l̄1∩l̄2 (T1 ∩T2)

Ref l̄1 (T1) ∩ Ref l̄2 (T2) ≜ Ref l̄1∩l̄2 (T1 ∩T2)

Labl̄1 (T1) ⊕ Labl̄2 (T2) ≜ Labl̄1⊕l̄2 (T1 ⊕ T2)

Labl̄1 (T1) ∩ Labl̄2 (T2) ≜ Labl̄1∩l̄2 (T1 ∩T2)

T1
l̄1, l̄2
−−−→ T2 ⊕ T

′
1

l̄ ′1, l̄
′
2

−−−→ T ′2

≜ (T1 ⊖ T
′
1 )

l̄1⊖l̄ ′1, l̄2⊕l̄
′
2

−−−−−−−−→ (T2 ⊕ T
′
2 )(

T1
l̄1, l̄2
−−−→ T2

)
∩

(
S1

l̄ ′1, l̄
′
2

−−−→ S2

)
≜ (T1 ∩ S1)

l̄1∩l̄ ′1, l̄2∩l̄
′
2

−−−−−−−−→ (T2 ∩ S2)

Figure 11.Gradual meets, gradual joins and intersections for
labels and types. Most combinations of types yield undefined
results. Here, ⊕ stands for either ⋎ or ⋏, and ⊖ stands for
the other operation.

⟦Unit⟧ � 1 ⟦Bool⟧ � 2 ⟦Label⟧ � L

⟦Ref l̄ (T )⟧ � Ref l̄ ⟦Labl̄ (T )⟧ � Labl̄ (⟦T⟧)�
T

l̄1, l̄2
−−−→ S

�
� ⟦T⟧ cont

−−−→ LIOl̄1, l̄2 (⟦S⟧)

Ref l̄ ≜ {(rn , rstamp, rlabel) ∈ N × L × γ (l̄) | rstamp ≼ rlabel}

Labl̄ (X ) ≜ {x@l | x ∈ X , l ∈ ↓l̄}

LIOl̄1, l̄2 (X ) ≜ { f : Mem×↓l̄1
cont
−−−→ Error(Mem×X × ↓l̄2)⊥ |

∀m1, l1,x ,m2, l2. f (m1, l1) = (m2,x , l2) ⇒
l1 ≼ l2 ∧ valid(l1,m1,m2)}

↓l̄ ≜ {l ′ ∈ L | l ′ ≼ l̄} Error(X ) ≜ X + {error}

Mem ≜ (T : Type◦) × Ref? ⇀fin ⟦T⟧
Type◦ ≜ {T ∈ Type | T ◦ = T }

T ◦ ≜
T with all labels replaced by ?

valid(l1,m1,m2) ≜∀(T , r ) ∈ dom(m2).
l1 ≼ rlabel ∧ (l1 $ rstamp ⇒ (T , r ) ∈ dom(m1))

Figure 12. Interpretation of types and related constructions
on CPOs. To simplify notation, we’ll treat the isomorphisms
defining ⟦T⟧ as equations.

review basic notions needed to cover the main contributions;
interested readers can refer to the full version [6] for details.
First, by CPO we mean a partially ordered set where all

increasing chains x0 ⊑ x1 ⊑ · · · have a least upper bound⊔
i ∈N xi . The notation X

cont
−−−→Y refers to the CPO of contin-

uous functions between X and Y—that is, monotone func-
tions f : X → Y such that f (

⊔
i xi ) =

⊔
i f (xi ), ordered

pointwise. The lifted CPO X⊥ extends the CPO X with a
least element ⊥, which represents nontermination. We use
equality, or the discrete order, on CPOs such as Ref l̄ , Type,
L and its subsets. Error(X ) is ordered pointwise. The order
m1 ⊑ m2 on Mem holds when dom(m1) = dom(m2) and
∀T , r .m1(T , r ) ⊑m2(T , r ).
Let us explain these definitions before moving on to the

semantics of terms. The CPOs Labl̄ (X ) contain elements ofX
protected by a dynamic label l ; as explained in Section 2, this
label is bounded by the annotation l̄ , not necessarily equal to
it. A reference r = (rn , rstamp, rlabel) carries two labels: rstamp
corresponds to the PC label at the moment of allocation, and
rlabel corresponds to the secrecy of its contents. As noted
in Section 2, rlabel must exactly match the static annotation
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⟦Γ ⊢l̄1, l̄2 e : T⟧ : ⟦Γ⟧ cont
−−−→ LIOl̄1, l̄2 (⟦T⟧) ⟦Γ⟧ ≜

∏
x ∈dom(Γ)

⟦Γ(x)⟧

⟦x⟧(s) ≜ return(s(x)) ⟦let(e1 : T ′,x : T .e2)⟧(s) ≜ do


v ′← ⟦e1⟧(s);
v ← ⟦T ′ ≼ T⟧(v ′);
⟦e2⟧(s[x 7→ v])

⟦unit⟧(s) ≜ return(1)

⟦b⟧(s) ≜ return(b) ⟦Γ ⊢l̄1, l̄ 1
2⋎l̄

0
2
if(x , e1, e0) : T1 ⋎ T0⟧(s) ≜ do


b ≜ s(x)
v ← ⟦eb⟧(s);
⟦l̄b2 ≼ l̄1

2 ⋎ l̄
0
2⟧;

⟦Tb ≼ T1 ⋎ T0⟧(v)

⟦get(x : Ref l̄ (T ))⟧(s) ≜ do
{
v ← get_,_,T (s(x));
⟦T ◦ ≼ T⟧(v) ⟦set(x : Ref l̄ (T1),y : T2)⟧(s) ≜ do

{
v ← ⟦T2 ≼ T

◦
2 ⟧(s(y));

set_,_,T2 (s(x),v
′)

⟦new(l1,y : T )⟧(s) ≜ do
{
v ← ⟦T ≼ T ◦⟧(s(y));
newl1,_,T (l1,v)

⟦new(x ,y : T )⟧(s) ≜ do
{
v ← ⟦T ≼ T ◦⟧(s(y));
new?,_,T (s(x),v)

⟦eqRef(x ,y)⟧(s) ≜ return(s(x) = s(y)) ⟦fun(x :l̄1 T .e)⟧(s) ≜ return(λv .⟦e⟧(s[x 7→ v]))

⟦Γ ⊢l̄1, l̄3 app(f : T1
l̄2, l̄3
−−−→ S,x : T2) : S⟧ ≜ do


v ← ⟦T2 ≼ T1⟧(s(x));
⟦l̄1 ≼ l̄2⟧;
s(f )(v)

⟦refLabel(x)⟧(s) ≜ return(s(x)label)

⟦labLabel(x)⟧(s) ≜ do
{
_@l ≜ s(x);
return(l)

⟦pcLabel()⟧(s)(m, l) ≜ (∅, l , l) ⟦l⟧(s) ≜ return(l)

⟦x ≼ y⟧(s) ≜ return(s(x) ≼ s(y)) ⟦x ⊕ y⟧(s) ≜ return(s(x) ⊕ s(y)) ⟦unlabel(x)⟧(s) ≜ unlabel(s(x))

⟦toLab(l1, e)⟧(s) ≜ toLabl1,_,_,_(l1, ⟦e⟧(s)) ⟦toLab(x , e)⟧(s) ≜ toLab?,_,_,_(s(x), ⟦e⟧(s))

Figure 13. Semantics of typing derivations. The types of some variables and expressions are included for clarity, even though
they do not appear in the syntax of terms. Conversely, some of the indices of get, set, new and toLab have been left out, but
they can be inferred from the annotations in the corresponding judgments.

on the reference’s type, if one is provided. The stamp is not
important for program behavior, but it simplifies the proof
of noninterference, for reasons that will soon become clear.

We depart from Haskell by following call-by-value rather
than call-by-need: functions take forced values as their ar-
guments, rather than elements of a lifted CPO X⊥. This is
merely for organizational purposes: call-by-value allows us
to segregate divergence as an effect inside LIO, rather than
including it explicitly in the denotation of each type.

The CPO LIOl̄1, l̄2 (X ) corresponds to the computation types
of LIO [31] and HLIO [10]. Its elements are functions that
take as inputs a memory (Mem) and a PC label (↓l̄1), and
that can either run forever (⊥), produce an error, or return
memory updates (Mem), a result (X ), and a new PC label
(↓l̄2). (Returning updates instead of the final memory is un-
orthodox, but it simplifies the domain equations [6].) The
post-condition on the PC label means that it goes up to track

inspected secrets. The post-condition valid, explained next,
ensures that memory updates do not leak secrets.
A memory m ∈ Mem is a function with finite domain

that maps a type T and a reference r to a value v ∈ ⟦T⟧.
We assume that T has no label annotations, because our
semantics doesn’t track this information for stored values
(we discuss a more efficient approach below). The predi-
cate valid(l1,m1,m2) describes which memory updates are
allowed under the PC label l1: new and updated locations
must pass the NSU check for l1 (l1 ≼ rlabel), and stamps must
reflect their allocation context, which, as hinted earlier, is a
technical device to simplify the noninterference proof.

The definition of LIO does not preclude computations that
access undefined locations in memory, because its elements
take all possible memories as their input. It would be possible
to rule out these errors with a Kripke semantics in the style of
Levy [18], but the issue is orthogonal to our purposes, and we
stick to the current formulation for simplicity. Note, however,
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unlabell̄1, l̄2,X : Labl̄2 (X ) → LIOl̄1, l̄1⋎l̄2 (X )

unlabell̄1, l̄2,X (x@l2)(m, l1) ≜ (∅,x , l1 ⋎ l2)

getl̄1, l̄2,T : Ref l̄2 → LIOl̄1, l̄1⋎l̄2 (⟦T ◦⟧)

getl̄1, l̄2,T (r )(m, l1) ≜

{
(∅,v, l1 ⋎ rlabel) ifm(T ◦, r ) = v
error if (T ◦, r ) < dom(m)

setl̄1, l̄2,T : Ref l̄1 ×⟦T ◦⟧→ LIOl̄2, l̄2 (1)

setl̄1, l̄2,T (r ,v)(m, l2) ≜

{
([T ◦, r 7→ v], 1, l2) if l2 ≼ rlabel and (T ◦, r ) ∈ dom(m)
error otherwise

newl̄1, l̄2,T : γ (l̄1) × ⟦T ◦⟧→ LIOl̄2, l̄2 (Ref l̄1 )

newl̄1, l̄2,T (l1,v)(m, l2) ≜


([r 7→ v], r , l2) if l2 ≼ l1 and r = (T ◦, (n, l2, l1)), with

n ≜ min{n | (T ◦, (n, l2, l1)) < dom(m)}

error otherwise

toLabl̄1, l̄2, l̄3,X : γ (l̄1) × LIOl̄2, l̄3 (X ) → LIOl̄2, l̄2 (Labl̄1 (X ))

toLabl̄1, l̄2, l̄3,X (l1, f )(m, l2) ≜



(m′,v@l1, l2) if f (m, l2) = (m′,v, l3) and l3 ≼ l1 ⋎ l2

error if f (m, l2) = (m′,v, l3) and l3 $ l1 ⋎ l2

or f (m, l2) = error

⊥ if f (m, l2) = ⊥

Figure 14. Semantics of typing derivations (continued)

returnl̄,X : X
cont
−−−→ LIOl̄, l̄ (X )

return(x)(m, l) ≜ (∅,x , l)

bindl̄1, l̄2, l̄3,X ,Y : LIOl̄1, l̄2 (X ) ×
(
X

cont
−−−→ LIOl̄2, l̄3 (Y )

) cont
−−−→ LIOl̄1, l̄3 (Y )

bind(k, f )(m, l) ≜



(m′ ®⊎m′′,y, l ′′) if k(m, l) = (m′,x , l ′) and
f (x)(m ®⊎m′, l ′) = (m′′,y, l ′′)

error if k(m, l) = (m′,x , l ′) and
f (x)(m ®⊎m′, l ′) = error or k(m, l) = error

⊥ otherwise

(m ®⊎m′)(r ) ≜

{
m′(r ) if r ∈ dom(m′)
m(r ) otherwise

Figure 15. Monadic operations of LIO

that some memory-related errors are ruled out by the shape
of the memory. For instance, if we try to readm(Bool, r ) and
that location is defined, we know that it contains indeed a
boolean, which we can access directly.

With the interpretation of types at hand, we are ready for
the semantics of typed terms, shown in Figures 13 and 14. We
equip LIO with the structure of a parameterized monad [3]
(Figure 15), which we use to interpret the Haskell-like do

notation in the definitions. Notice how bind applies updates
to the initial memory before invoking its continuation, in
accordance with our treatment of state. Figure 16 defines the
interpretation of subtyping coercions. As explained earlier,
coercing a value into Lab or Ref types never changes its
label, only checks it, which will be important for the gradual
guarantee. Similarly, the coercions triggered by casting or
applying a function never modify the PC label.
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⟦T ≼ S⟧l̄ : ⟦T⟧ cont
−−−→ LIOl̄, l̄ (⟦S⟧) (for T ≼ S)

⟦T ≼ T⟧ ≜ return (for T ∈ {Unit,Bool, Label})

⟦Ref l̄1 (T ) ≼ Ref l̄2 (S)⟧(n, l1, l2) ≜
{
return(n, l1, l2) if l2 ∈ γ (l̄2)
λ(−). error otherwise

⟦Labl̄1 (T1) ≼ Labl̄2 (T2)⟧(v@l) ≜


do

{
v ′← ⟦T1 ≼ T2⟧(v);
return(v ′@l)

if l ∈ ↓l̄2

λ(−). error otherwise

⟦T l̄1, l̄2
−−−→ S ≼ T ′

l̄ ′1, l̄
′
2

−−−→ S ′⟧(f ) ≜ return λx ′.do


x ← ⟦T ′ ≼ T⟧(x ′);
⟦l̄ ′1 ≼ l̄1⟧;
y ← f (x);
⟦l̄2 ≼ l̄ ′2⟧;
⟦S ≼ S ′⟧(y);

⟦l̄1 ≼ l̄2⟧ : LIOl̄1, l̄2 (1) (for l̄1 ≼ l̄2)

⟦l̄1 ≼ l̄2⟧(m, l1) ≜
{
(∅, 1, l1) if l1 ∈ ↓l̄2
error otherwise

Figure 16. Label and type coercion

The behavior of basic ML operations is standard, except
for coercions and the NSU checks in set and new. To read a
reference, we cast its contents to ensure that the labels on the
type are respected; conversely, when updating it reference,
we use a cast to forget the labels. (Note thatT ≼ T ◦ andT ◦ ≼
T hold for every T .) A more efficient approach would be to
usemonotonic references [29], whose types are guaranteed to
be bounded in precision by the type of their contents during
execution. This property ensures that accesses to a reference
of fully annotated type can be performed directly, without
any casts. We believe that monotonic references could be
incorporated in GLIO without compromising our results, but
arguing about their correctness requires an intricate stateful
invariant, and we keep our scheme for simplicity. Note that
in the case of base types, the casts reduce to the identity,
because they have no labels to be checked.
The IFC operations are modeled after their analogues in

LIO [31], but toLab includes the initial PC label l2 in its side
condition, as anticipated by its typing rule. Note how unlabel
and get taint the PC label to track the secrecy of the result.

The examples of Section 2 have already exercised the most
interesting aspects of the semantics, except for one: stamps.
Consider the following program e , written in informal syntax
for clarity (recall that S stands for ⊤).

toLab S $ do
b' <- unlabel b
if b' then do { new S True; return () }

else return () }
new S True

We can produce a typing judgment [b 7→ Lab?(Bool)] ⊢⊥,⊥
e : Ref⊤(Bool), which corresponds to a function ⟦e⟧ of type
Lab?(2)

cont
−−−→ LIO⊥,⊥(Ref⊤). By running this program on two

different inputs and an empty memory, we obtain successful
executions

⟦e⟧(1@⊤)(∅,⊥) = ([r0 7→ 1, r1 7→ 1], r1,⊥)

⟦e⟧(0@⊤)(∅,⊥) = ([r1 7→ 1], r1,⊥),

where r0 = (Bool, (0,⊤,⊤)) is allocated inside the condi-
tional, and r1 = (Bool, (0,⊥,⊤)) is allocated at the end.

Although the secret b caused e to perform different alloca-
tions, the result is the same: the stamps allow us to perform
the allocations in high-secrecy contexts without impacting
references allocated in low-secrecy contexts. This technique,
due to Azevedo de Amorim et al. [5], simplifies the proof of
noninterference because we can match references in related
executions up to equality. Without stamps, noninterference
would still hold, but the values returned in each execution
would not necessarily be equal, requiring a more complex
argument to relate syntactically different references [8].

5 Noninterference
With the semantics pinned down, we are ready for our first
main result: showing that GLIO satisfies termination- and
error-insensitive noninterference. Informally, an attacker
cannot tell the difference between two successful runs of a
program that differ only on their secret inputs. To formalize
this claim, we follow Abadi et al.’s work on DCC [1] and
define a family of relations (≈l )l ∈L that characterize what
elements of ⟦T⟧ are indistinguishable to an observer bounded
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CPO Relation Definition
1, 2,L,Ref l̄ x ≈l y x = y
Labl̄ (X ) x1@l1 ∼∼∼l x2@l2 ∀i ∈ {1, 2}. li ≼ l ⇒ (x1 ≈l x2 ∧ l1 = l2)

x1@l1 ≈l x2@l2 x1@l1 ∼∼∼l x2@l2 ∧ l1 = l2

X
cont
−−−→Y f ≈l д ∀x ≈l y, f (x) ≈l д(y)

LIOl̄1, l̄2 (X ) f ≈l д ∀m1 ≈l m2, l
′,m′1,m

′
2,x1,x2, l1, l2.

f (m1, l
′) = (m′1,x1, l1) ∧ д(m2, l

′) = (m′2,x2, l2)

⇒m1 ®⊎m
′
1 ≈l m2 ®⊎m

′
2 ∧ x1@l1 ∼∼∼l x2@l2

Mem m1 ≈l m2 doml (m1) = doml (m2) ∧

∀(T , r ) ∈ dom(m1) ∩ dom(m2).m1(T , r )@rlabel ≈l m2(T , r )@rlabel
⟦Γ⟧ s1 ≈l s2 ∀x ∈ dom(Γ). s1(x) ≈l s2(x)

doml (m) ≜ {(T , r ) ∈ dom(m) | rstamp ≼ l}

Figure 17. Notions of indistinguishability on CPOs. The definitions assume that the CPOs X and Y carry such notions as well.

by l (Figure 17).3 The definition is again circular, but it can be
solved with Pitts’ framework of relational structures [7, 22],
as explained in the full version [6].
For base types and references, being indistinguishable

simply means being equal. There are two notions of indis-
tinguishability for Labl̄ (X ): weak (∼∼∼l ) and strong (≈l ). Weak
indistinguishability is only an auxiliary notion used to define
indistinguishability for computations (LIOl̄1, l̄2 (X )). We use
two notions because GLIO guarantees that the label of a
labeled value reveals nothing about the value, whereas the
PC label at the end of a computation might reveal something
about its result. An observer bounded by l can distinguish
two memories if they differ either in their sets of low-stamp
locations, doml , or in two values stored at a low location.
Our goal is to prove ⟦e⟧ ≈l ⟦e⟧ for every well-typed

program e . This implies that programs do not leak secrets;
for example, if l = ⊥ and e : Lab?(Bool)

⊥,⊥
−−−→ Bool, we find

that ⟦e⟧(1@⊤)(∅,⊥) and ⟦e⟧(0@⊤)(∅,⊥) output the same
boolean if both terminate successfully.

Theorem 5.1 (Noninterference). If Γ ⊢l̄1, l̄2 e : T , we have

⟦e⟧ ≈l ⟦e⟧ : ⟦Γ⟧ cont
−−−→ LIOl̄1, l̄2 (⟦T⟧).

Sketch. By induction on the typing derivation of e . The se-
mantics of the language is defined by using the monadic in-
terface of Figure 15 to compose the operations in Figures 14
and 16. Thus, we just have to show that indistinguishability
is preserved by these operations and under composition. □

6 Gradual guarantees
Themain novelty of GLIO is that it satisfies the dynamic grad-
ual guarantee [28]: making label annotations more precise

3It would be natural to expect indistinguishability to be decreasing with
respect to l : the more power the attacker has, the more can be distinguished.
However, this property is not required to prove noninterference, as evi-
denced by similar proofs in the literature [1, 24].

Labels
l ∈ L

l ◁ ?
l ∈ L

l ◁ l

Types
T ∈ {Unit,Bool, Label}

T ◁ T

l̄1 ◁ l̄2 T1 ◁ T2

Ref l̄1 (T1) ◁ Ref l̄2 (T2)

l̄1 ◁ l̄2 T1 ◁ T2

Labl̄1 (T1) ◁ Labl̄2 (T2)

l̄1 ◁ l̄
′
1 l̄2 ◁ l̄

′
2 T1 ◁ S1 T2 ◁ S2

T1
l̄1, l̄2
−−−→ T2 ◁ S1

l̄ ′1, l̄
′
2

−−−→ S2

Environments
dom(Γ1) = dom(Γ2) ∀x . Γ1(x) ◁ Γ2(x)

Γ1 ◁ Γ2

Terms

e ◁ e

e1 ◁ e ′1 T ◁ T ′ e2 ◁ e ′2

let(e1,x : T . e2) ◁ let(e ′1,x : T ′. e ′2)

e1 ◁ e ′1 e2 ◁ e ′2

if(x , e1, e2) ◁ if(x , e ′1, e
′
2)

l̄ ◁ l̄ ′ T ◁ T ′ e ◁ e ′

fun(x :l̄ T . e) ◁ fun(x :l̄ ′ T
′ e ′)

e ◁ e ′

toLab(l , e) ◁ toLab(l , e ′)

e ◁ e ′

toLab(x , e) ◁ toLab(x , e ′)

Figure 18. Syntactic dynamism relations
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can only introduce dynamic type errors, without otherwise
changing the behavior of the program.

Theorem 6.1 (Dynamic Gradual Guarantee, Simple). Sup-
pose that e ◁ e ′ with ⊢⊥, l̄2 e : T and ⊢⊥, l̄2 e

′ : T ′.
• If ⟦e⟧(∅)(∅,⊥) = ⊥, then ⟦e ′⟧(∅)(∅,⊥) = ⊥.
• If ⟦e⟧(∅)(∅,⊥) = (m,v, l), then there exist m′ and v ′

such that ⟦e ′⟧(∅)(∅,⊥) = (m′,v ′, l).
The premise e ◁ e ′, defined on Figure 18, says that e ′ is

obtained from e by replacing some labels on type annota-
tions with ?. The conclusion says that e and e ′ must behave
similarly, except when e throws an error, in which case e ′
can do whatever it wants. In particular, e ′ can only fail if e
does.
GLIO also satisfies the static gradual guarantee, which

says that removing label annotations from a term does not
break type checking.

Theorem 6.2 (Static Gradual Guarantee). If Γ ◁ Γ′, l̄1 ◁ l̄ ′1,
e ◁ e ′, and Γ ⊢l̄1, l̄2 e : T , there exist l̄ ′2 ▷ l̄2 and T ′ ▷ T such
that Γ′ ⊢l̄ ′1, l̄ ′2 e

′ : T ′.

The proof of this result is a straightforward induction
on the typing derivation. Theorem 6.1, on the other hand,
requires more care, as the statement is not strong enough to
be established directly by induction. We use a generalization
similar to prior formulations of the DGG [20, 21].

Theorem 6.3 (Dynamic Gradual Guarantee, General). If
Γ ⊢l̄1, l̄2 e : T , Γ′ ⊢l̄ ′1, l̄ ′2 e ′ : T ′, Γ ◁ Γ′, l̄i ◁ l̄ ′i (∀i ∈ {1, 2}),
e ◁ e ′ andT ◁ T ′, then ⟦e⟧ ◁ ⟦e ′⟧ : ⟦Γ⟧ cont

−−−→ LIOl̄1, l̄2 (⟦T⟧) ◁
⟦Γ′⟧ cont
−−−→ LIOl̄ ′1, l̄

′
2
(⟦T ′⟧).

The error approximation relations ⟦e⟧ ◁ ⟦e ′⟧ in the con-
clusion are defined on Figure 19. Like indistinguishability in
Section 5, they are constructed using Pitts’ work [7, 22]. A
technical subtlety is that the relations are heterogeneous: loos-
ening a typeT in a term to S requires relating of elements of
⟦T⟧ and ⟦S⟧. Most clauses of the definition simply lift error
approximation pointwise, except for LIO, which exhibits the
same asymmetry between e and e ′ in Theorem 6.1.

The proof of Theorem 6.3 follows the same strategy used
for noninterference: we show that the various operations in
the semantics preserve ◁, and then argue by composition.
This is where it is important to ensure that casts do not
modify labels: to prove the correctness of operations with
casts, we must ensure that ⟦T ≼ S⟧ ◁ ⟦T ′ ≼ S ′⟧ when
T ◁ T ′ and S ◁ S ′. If the choice of S or S ′ had an impact on
labels in the results, these two functions could not be related.

7 Related work
Gradual Typing and IFC. One of our main inspirations

comes from GSLRef [33], a gradual language for fine-grained
IFC. GSLRef suggests an intriguing tension between gradual

typing and noninterference. In principle, it could have vali-
dated the dynamic gradual guarantee by construction, as it is
derived from the AGT methodology [33]. However, a direct
application of AGT violated noninterference, just like the
example in Figure 1 does if we remove the NSU check from
λinfo. The solution of GSLRef , unfortunately, was to include
an analog of the NSU check that breaks the dynamic gradual
guarantee. As hinted in the Introduction, we can witness
this failure by adapting the example in Figure 1. The reasons,
however, differ slightly from what we’ve seen earlier.
Unlike most dynamic IFC systems, GSLRef does not de-

scribe run-time secrecy with single labels, but with intervals
of plausible labels. As the program runs, these intervals are
refined to rule out labels that invalidate security checks;
if they become empty, an error is signaled. This represen-
tation, inherited from AGT, allows omitting label annota-
tions entirely from terms and types—a convenient feature
for retrofitting IFC to existing programs. Because of the inter-
vals, the checks used by GSLRef to enforce noninterference
are more complex than the classic NSU; nevertheless, the
gradual guarantee still breaks in the program of Figure 1,
because the cast induced by the annotation on b ends up
modifying the intervals tracked by the program, and thus
the result of the NSU analogue.
Rather than adopting GSLRef intervals, GLIO resorts to

classic IFC labels and NSU checks. We believe that this choice
simplifies the use of first-class labels in a gradual setting, as
it is unclear what the semantics of a test labelOf b == S
should be if labelOf b returns a set of plausible labels rather
than a single label—for instance, the gradual guaranteewould
force this result to be consistent for all possible program
annotations. Moreover, we can recover some of the benefits
of label intervals because most values are unlabeled in our
coarse-grained discipline, and because we could easily use a
default label when allocating references (e.g. the PC label).

As far as we know, GSLRef was the first work to consider
the dynamic gradual guarantee for an IFC language. ML-
GS [12] is an earlier design that predates the guarantee,
which it can violate by rewriting the program of Figure 1 to
classify data through type casts. Other languages use differ-
ent interpretations of gradual typing from the one adopted
here (which goes back to the criteria of Siek et al. [28]), mak-
ing it hard to provide analogues of the gradual guarantee,
because removing annotations might require adding casts
to please the type checker. This behavior appears in the lan-
guage of Disney and Flanagan [11], which interprets missing
labels in types as maximum secrecy, and in LJGS [13].

Dependent Types and IFC. Moving further away from
gradual typing, we find designs that use dependent types
to make static IFC more flexible, deferring label checks to
execution time. This category includes the HLIO Haskell
library [10] and Jif [19, 36]. Instead of making the check-
ing of dynamic security levels automatic and guided by the
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CPOs Relation Definition
1, 2,L,Ref l̄ x ◁ y x = y
Labl̄ (X ) x1@l1 ◁ x2@l2 x1 ◁ x2 ∧ l1 = l2

X
cont
−−−→Y f ◁ д ∀x ◁ y. f (x) ◁ д(y)

LIOl̄1, l̄2 (X ) f ◁ д ∀m1 ◁m2, l . (f (m1, l) = ⊥ ⇒ д(m2, l) = ⊥) ∧
∀m′1,x ′1, l ′. f (m1, l) = (m

′
1,x1, l

′)

⇒ ∃m′2,x2. д(m2, l) = (m
′
2,x2, l

′) ∧m′1 ◁m
′
2 ∧x1 ◁ x2

Mem m1 ◁m2 dom(m1) = dom(m2) ∧ ∀r ∈ dom(m1).m1(r ) ◁m2(r )
⟦Γ⟧ s1 ◁ s2 ∀x ∈ dom(Γ), s1(x) ◁ s2(x)

Figure 19. Error approximation on CPOs. The relations are heterogeneous, and the left column should be formally understood
as describing pairs of CPOs (e.g. the second row defines a relation (◁l̄, l̄ ′,X ,X ′) ⊆ Labl̄ (X ) × Labl̄ ′(X

′) in terms of another
relation (◁X ,X ′) ⊆ X × X ′). We will write x ◁ y : X ◁ Y to indicate the CPOs involved in the relation.

structure of types, these systems require programmers to
manually check the safety of operations that involve dy-
namic labels. Thanks to first-class labels, our language al-
lows programmers to perform these tests manually, as in
the maybeUpdate function in Figure 5. However, because of
the lack of dependent types, our type system cannot use the
information learned from these tests to rule out errors stati-
cally. Bridging the gap between these two kinds of analyses
is an interesting avenue for future work.

Gradual Types and Parametricity. Until recently, the
interaction between polymorphism and gradual typing ex-
hibited problems similar to the ones we saw for IFC: there
had been several proposals of languages that combine the
two features [2, 17, 34], but none of them were able to estab-
lish both the dynamic gradual guarantee and parametricity.
Indeed, Toro et al. [34] conjectured both properties to be
fundamentally incompatible.
To solve this issue, New et al. [21] proposed PolyGν , a

polymorphic calculus based on term-level sealing. In PolyGν ,
if we instantiate a polymorphic term e : ∀νX . X → X with
Int, the result is not of type Int→ Int, but rather of typeX →
X , where X is a fresh sealed type generated during execution.
To actually use the instantiated function, the sealed type X
comes with two conversion functions sealX : Int→ X and
unsealX : X → Int; thus, instead of e [Int] 1+1, as we would
write in System F, we would have to write

unsealX (e{X � Int}(sealX 1)) + 1

for the program to be accepted. PolyGν satisfies both the
DGG and parametricity; crucially, its DGG does not apply to
programs that remove occurrences of seal and unseal, since
those live at the term level. Our abandon of type-guided
classification is similar: run-time labels are chosen at the
term level, and modifying them falls out of the scope of the
DGG. This suggests that future tensions with the DGGmight
be handled by performing at the term level decisions that in
fully static systems are usually left implicit at the type level.

8 Conclusion
We presented GLIO, a gradual IFC type system based on the
LIO library [31] that features higher-order functions, gen-
eral references, coarse-grained IFC, security subtyping and
first-class labels. In addition to noninterference, our type sys-
tem validates the dynamic gradual guarantee, an important
correctness criterion for gradual typing. To avoid pitfalls en-
countered in previous work, we decoupled type annotations
from data classification, which our language expresses with
typical operations from coarse-grained dynamic IFC.
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