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Abstract

Programmers of cryptographic applications written in C need to avoid common mistakes such as
sending private data over public channels, modifying trusted data with untrusted functions, or improperly
ordering protocol steps. These secrecy, integrity, and sequencing policies can be cumbersome to check
with existing general-purpose tools. We have developed a novel means of specifying and uncovering
violations of these policies that allows for a much lighter-weight approach than previous tools. We
embed the policy annotations in C’s type system via a source-to-source translation and leverage existing
C compilers to check for policy violations, achieving high performance and scalability. We show through
case studies of recent cryptographic libraries and applications that our work is able to express detailed
policies for large bodies of C code and can find subtle policy violations. To gain formal understanding of
our policy annotations, we show formal connections between the policy annotations and an information
flow type system and prove a noninterference guarantee.

1 Introduction

Programs often have complex data invariants and API usage policies written in their documentation or
comments. The ability to detect violations of these invariants and policies is key to the correctness and
security of programs. This is particularly important for cryptographic protocols and libraries as the security
of a large system depends on its underlying secure protocols and primitives. As a result, there has been
much interest in checking implementations of cryptographic protocols [3, 40, 14, 15, 13, 12, 27, 24]. These
verification systems, while comprehensive in their scope, require expert knowledge of both the cryptographic
protocols and the verification tool to be used effectively.

What remains missing is a lightweight and developer-friendly tool to help programmers identify program-
ming errors at compile time that violate high-level policies on cryptographic libraries and protocols written
in C. The policies that are particularly important are secrecy (e.g., sensitive data is not given to untrusted
functions), integrity (e.g., trusted data is not modified by untrusted functions), and API call sequencing (e.g.,
the ordering of cryptographic protocol steps is maintained). These policies can be viewed as information
flow policies.

In this paper, we present a framework called FlowNotation where C programmers can add lightweight
annotations to their programs to express policy specifications. These policies are then automatically checked
using a C compiler’s type checker, potentially revealing policy violations in the implementation. Our anno-
tations are in the same family as type qualifiers (e.g. CQual [57, 21, 36]), where qualifiers such as tainted
and trusted are used to identify violations of integrity properties of C programs; supplying tainted inputs
to a function that requires a trusted argument will cause a type error. Our work extends previous results
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to support more complex and refined sequencing properties. Consider the following policy: a data object
is initially tainted, then it is sanitized using a encodeURI API, then serialized using a serialize API, and
finally written to disk using a fileWrite API. Such API sequencing patterns are quite common, but cannot
be straightforwardly captured using previous type qualifier systems.

FlowNotation extends type qualifiers to include a sequence of labels for specifying policies similar to
the above example. However, rather than implement a new type system, we develop a source-to-source
transformation tool, which translates an annotated C program to another C program, through which a C
compiler’s type checker (indirectly) checks the annotated policies. The key insight is that qualified C types
can be translated to C structures whose fields are the original C types. For instance, “trusted int” and
“tainted int” can be translated to “typedef struct {int x;} int trusted” and “typedef struct {int x;}
int tainted”, respectively. Even though these two types are structurally equivalent, C’s struct types are

nominal types, and thus, attempts to use data of one type as the other will be reported as a compile-time
error by a C type checker. Consequently, we can directly use C type checkers for policy checking. The benefit
of this approach is that we can leverage performant C compilers to quickly type-check our policies over large
codebases.

To gain a formal understanding of the type of errors that we can uncover with this system, we model the
annotated types as information flow types, which augment ordinary types with security labels. We define a
core language polC and prove that its information flow type system enforces noninterference. The novelty
of polC ’s type system is that the security labels are sequences of secrecy and integrity labels, specifying
the path under which data can be relabeled. Relabeling corresponds to declassification (marking secrets as
public) and endorsement (marking data from untrusted source as trusted). The type system ensures that
relabeling functions are called in the correct order.

We also define µC, a core imperative language with nominal types but without information flow labels
in order to model a fragment of C. We then formally define our translation algorithm based on polC and
µC. We prove the correctness of our translation algorithm: If the translated program is accepted by the
type checker in µC, then the original program is well-typed in polC . The formalism not only makes explicit
assumptions made by our algorithm, but also provides a formal account of the properties being checked by
the annotations.

To demonstrate the effectiveness of FlowNotation we implement a prototype for a subset of C and
evaluate the prototype on several cryptographic libraries. Our evaluation shows that we are able to check
useful information flow policies in a modular way and uncover subtle program flaws.

This paper makes the following technical contributions:

• We propose FlowNotation, a lightweight tool for finding errors that violate information flow policies
in C programs.

• We connect annotations in FlowNotation to the information flow type system polC . We prove a
noninterference theorem for polC ’s type system, from which the property of correct API sequencing is
a corollary.

• We define a translation algorithm from polC types to nominal types (modeled by µC) and prove it
correct.

• We implement a prototype and demonstrate the effectiveness of FlowNotation by evaluating it on
several C cryptographic libraries and applications.

The rest of this paper is organized as follows: Section 2 presents a motivating example and describes the
workflow of FlowNotation. Next, we define polC (Section 3) and µC (Section 4) along with the algorithm
for our translation process. In Section 5, we explain how the algorithms are implemented in C. Our case
studies and evaluation results are presented in Section 6. Finally, we discuss related work in Section 7 and
conclude in Section 8.

2



2 Overview and Motivating Examples

We illustrate how FlowNotation concretely works on the left side of Figure 1. First, to check an application-
specific policy, a programmer writes the policy in C pragma annotations. Then our source-to-source trans-
lator takes the annotated program as input, and produces a translated C program. The resulting program
is then type-checked using an off-the-shelf C compiler. If the compiler returns a type error, then this implies
the policy is violated in the program.

Next we show example policies in the context of developing cryptographic applications.

2.1 Secrecy

Suppose a team of software developers is working on a large C project that uses customers’ financial data.
This project integrates a secure two-party computation component that allows Alice and Bob to find out
which of the two is wealthier without revealing their wealth to the other or relying on a trusted third party.
Let us assume that the program obtains Alice’s balance using the function get alice balance, then calls
function wealthierA to see whether Alice is wealthier than Bob. wealthierA’s implementation uses a library
that provides APIs for secure computation primitives.

1 int bankHandler() {
2 int balA;
3 balA = get alice balance();
4 ...
5 wealthierA(balA);
6 }

The variable balA contains Alice’s balance, and therefore
should be handled with care. In particular, the programmer
wants to check that the secrecy of balA is maintained. One
method is to use information flow types (e.g. [50]), where the
information flow type of balA is (int AlicePrivate), indicating
that it is an integer containing an AlicePrivate type of secret.

In contrast, variables that do not contain secrets can be given the type (int Public). The information flow
type system then makes sure that read and write operations involving balA are consistent with its secrecy
label. For instance, if a function postBalance(int Public), which is meant to post the balance publicly, is
called with balA as the argument, the type system will reject this program for violating the secrecy policy.

Our annotations are information flow labels, each of which has a secrecy component and an integrity
component. Programmers can provide these annotations above the declaration of balA to specify the secrecy
policy as follows:

1 #requires AlicePriv:secrecy
2 int balA;

In the annotation, #requires is a directive that allows our
tool to parse this annotation (in practice, #pragma prefaces it).
AlicePriv is a secrecy label. Finally, secrecy is a projection;

it specifies that we only care about the secrecy component of the label. balA’s integrity component is
automatically assigned bot, the lowest integrity. The information flow type of balA corresponding to this

Annotated C program

Translated C program

FlowNotation

OK

C Compiler

Type error

Annotated !C expression 

polC expression 

Translated !C expression

⟪ ⟫

⟦ ⟧

Figure 1: Overview of FlowNotation and connections to the formal model.
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annotation is int(AlicePrivate, bot). This annotation can be used to check this program for violations of
the following policy P1.

P1 : balA should never be given as input
to an untrusted function.

Here, trusted functions are those trusted by the programmer not to leak balA. Next, we discuss how a
programmer can annotate trusted functions.

Our programmer trusts a secure computation library that provides secure computation primitives. Let
us assume the API encodeA converts an integer argument into a bit representation similar to what is used
in Obliv-C [53] for use with a garbled circuit. The API yao execA takes a pointer to a function f and an
argument for f, and runs f as a circuit with Yao’s protocol [51]. Finally, at the end of the application’s
execution the API reveal is invoked to give the result of the function execution to both parties. The
programmer constructs the following code for Alice (Bob’s program is symmetric, which we omit):

1 int compare(int a, int b) { return a > b; }
2 int wealthierA(balA) {
3 balA2 = encodeA(balA);
4 int res = yao execA(&compare, balA2);
5 reveal(&res, ALICE);
6 }

This program first encodes Alice’s balance, and then calls yao execA with the comparison function and Alice’s
encoded balance balA2 as arguments, and finally calls reveal.

The code as it stands will not type-check after being translated, unless the programmer also appropriately
annotates their trust in the secure computation APIs.

1 #param AlicePriv:secrecy
2 int encodeA(int balA);
3 #param(2) AlicePriv:secrecy
4 int yao execA(void* compare, int balA);

These two annotations state that the functions must accept parameters with the label AlicePriv. In the
second annotation, #param(2) specifies that the annotation should only apply to the second parameter. A
violation of P1 will be detected, when balA is given to a function that does not have this kind of annotation;
e.g. that is not allowed (by the programmer) to accept AlicePriv-labeled data.

2.2 Integrity and Sequencing

A programmer can also use FlowNotation to check the program for violations of the following, more refined,
policy P2.

P2 : balA should be used by the encoding function
and then by the Yao protocol execution.

The annotation for balA is as follows.

1 #requires AlicePriv:secrecy then EncodedBal:integrity
2 int balA;

The keyword then allows for the sequencing of labels. Corresponding changes are made to the other anno-
tations:

1 #param AlicePriv:secrecy
2 #return EncodedBal:integrity
3 int encodeA(int balA);
4 #param(2) EncodedBal:integrity
5 int yao execA(void* compare, int balA);

4



labels ` ::= (s, ι)
policies ρ ::= ⊥ |> | ` :: ρ
1st order types b ::= int | ptr(s) |T
simple sec. types t ::= b ρ | unit
security types s ::= t | [pc](t→ t)ρ

values v ::= x |n | () | f |T{v1, · · · , vk} | loc
expressions e ::= v | e1bop e2 | v e | letx = e1 in e2

| v.i | if v1 then e2 else e3 | v := e
| new e | ∗v | reLab(`′::⊥ ← `::>) v

Figure 2: Syntax of polC

The encodeA function, as before, requires the argument to have the AlicePriv secrecy label. In addition, the
return value from encodeA will have the integrity label EncodedBal, stating that it is endorsed by the encodeA

function to be properly encoded. The yao execA function requires the argument to have the same integrity
label. If only programmer-approved encoding functions are annotated with EncodedBal at their return value,
the type system will check that an appropriate API call sequence (encodeA followed by yao execA) is applied
to the value stored in balA.

3 A Core Calculus for Staged Release

We formally define the syntax, operational semantics, and the type system of polC , which models annotated
C programs that FlowNotation takes as input. We show that polC ’s type system can enforce not only
secrecy and integrity policies, but also staged information release and data endorsement policies. We prove
that our type system enforces noninterference, from which the property of staged information release is a
corollary.

3.1 Syntax and Operational Semantics

The syntax of polC is summarized in Figure 2. We write ` to denote security labels, which consist of a secrecy
tag s and an integrity tag ι. We assume there is a security lattice (S,vS) for secrecy tags and a security
lattice (I,vI) for integrity tags. The security lattice L = (L,v) is the product of the above two lattices.
The top element of the lattice is (>S ,⊥I) (abbreviated >), denoting data that do not contain any secret
and come from the most trusted source; and the bottom element is (⊥S ,>I) (abbreviated ⊥), denoting data
that contain the most secretive information and come from the least trusted source. A policy, denoted ρ is
a sequence of labels specifying the precise sequence of relabeling (declassification and endorsement) of the
data. The example from Section 2.2 uses the following policy:

(AlicePrivate,⊥I) :: (⊥S ,EncodedBal) :: ⊥
A policy always ends with either the top element, indicating no further relabeling is allowed, or the bottom
element, indicating arbitrary relabeling is allowed. For our application domain, the labels provided by
programmers are distinct points in the lattice that are not connected by any partial order relations except
the > and ⊥ elements.

A simple (first-order) security type, denoted t, is obtained by adding policies to ordinary types. Our core
language supports integers (int), unit, pointers (ptr(s)), and record types (struct T {t1, · · · , tk} to model C
structs). Here T is the defined name for a record type. To simplify our formalism, we assume that defined
type T is always a record type named T . Unlike ordinary information types, our information flow types use
the policy ρ, rather than a single label `. The meaning of an expression of type int ρ is that this expression
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is evaluated to an integer and it induces a sequence of declassification (endorsement) operations according
to the sequence of labels specified by ρ. For instance, e : int H :: L :: ⊥ means that e initially is of int H,
then it can be given to a declassification function to be downgraded to int L, the resulting expression can
be further downgraded to bottom. e : int H :: L :: > is similar except that the last expression cannot be
declassified further; i.e.. it stays at L security level. The annotated type for balA in Section 2.2 can be
similarly interpreted.

We do not have a labeled unit type, because it is inhabited by one element () and thus does not contain
sensitive information. A function type is of the form [pc](t1 → t2)ρ, where t1 is the argument’s type, t2
is the return type, ρ is the security label of the function indicating who can receive this function, and pc,
called the program counter, is the security label representing where this function can be called. For instance
a function f of type [L::⊥](t1 → t2)H::⊥ cannot be called in an if branch that branches on secrets and the
function itself cannot be given to an attacker whose label is L::⊥.

Our expressions are reminiscent of A normal forms: all elimination forms use only values (e.g., v.i,
instead of e.i). This not only simplifies our proofs, but also the translation rules (presented in Section 4).
The fragment of C that is checked in our case studies is quite similar to this form.

Values can be variables, integers, unit, functions, records, and store locations. Since we are modeling an
imperative language, we do not have first-class functions. Instead, all functions are predefined, and stored
in the context Ψ. Expressions include function calls, if statements, let bindings, and store operations. One
special expression is the relabeling (declassification) operation, written reLab(`′::⊥ ← `::>) v. This operation
changes the label of v from `::> to `′::⊥. Such an expression should only appear in trusted declassification
functions. For our applications, we further restrict the relabeling to be between two labels; from one ending
with the top element to one ending with bottom element. We will explain this later when we explain the
typing rules.

The judgement for small step semantics for polC is denoted Ψ ` σ / e −→ σ′ / e′, where Ψ stores all the
function code, σ is the store mapping locations to values and e is the expression to be evaluated. Appendix
B contains a summary of all the operational semantic rules.

3.2 Typing Rules

The type system makes use of several typing contexts. We write D to denote the context for all the type
definitions. We only consider type definitions of record (struct) types, written T 7→ struct T {t1, · · · , tk}. The
typing context for functions is denoted F . We distinguish two types of functions: ordinary functions, and
declassification/endorsement functions whose bodies are allowed to contain relabeling operations, written
f :(d&e)[pc]t1 → t2. F does not dictate the label of a function f . Instead, the context in which f is used
decides f ’s label.

Type def. ctx D ::= · |D,T 7→ struct T {t1, · · · , tk}
Func typing ctx F ::= · |F, f :[pc]t1 → t2

| F, f :(d&e)[pc]t1 → t2
Store Typing Σ ::= · |Σ, loc : s

We write Σ to denote the typing context for pointers. It maps a pointer (heap location) to the type of its
content. Γ is the typing context for variables, and pc is the security label representing the program counter.

Our type system has two typing judgments: D;F ; Σ; Γ ` v : t for value typing, and D;F ; Σ; Γ; pc ` e : t
for expression typing. Selected typing rules are shown in Figure 3; full rules are in Appendix B.5.

We use a number of auxiliary definitions. First, we define the meaning of a policy ρ1 being less strict
than another, ρ2, written ρ1 v ρ2, as the point-wise lifting of the label operation `1 v `2. When one policy
reaches its end, we use ⊥ v ρ or ρ v >. ⊥ represents a policy that can be arbitrarily reclassified and thus is
a subtype of any policy ρ. On the other hand, > is the strictest policy that forbids any reclassification; so
any policy is less strict than >.
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D;F ; Σ; Γ ` v : s

D;F ; Σ; Γ; pc ` v : s t pc
P-T-E-Val

D;F ; Σ; Γ ` v : T ρ T 7→ struct {s1, · · · , sn} ∈ D pc v ρ
D;F ; Σ; Γ; pc ` v.i : si t ρ

P-T-E-Field

D;F ; Σ; Γ; pc ` e : s pc B ρ

D;F ; Σ; Γ; pc ` new(e) : ptr(s) ρ
P-T-E-New

D;F ; Σ; Γ ` v : ptr(s) ρ pc v ρ
D;F ; Σ; Γ; pc ` ∗v : s t ρ

P-T-E-Deref

D;F ; Σ; Γ ` v1 : ptr(s) ρ D;F ; Σ; Γ; pc ` e2 : s ρB s

D;F ; Σ; Γ; pc ` v1 := e2 : unit
P-T-E-Assign

D;F ; Σ; Γ ` v1 : int ρ D;F ; Σ; Γ; pc t ρ ` e2 : s D;F ; Σ; Γ; pc t ρ ` e3 : s

D;F ; Σ; Γ; pc ` if v1 then e2 else e3 : s
P-T-E-If

D;F ; Σ; Γ ` vf : (d&e)[pc′](b `1::> → b `2::⊥)ρf

D;F ; Σ; Γ; pc ` ea : b ρ ρ = `1::`2::ρ′ ρf t pc v pc′

D;F ; Σ; Γ; pc ` vf ea : b `2::ρ′
P-T-E-DE

D;F ; Σ; Γ ` v : b ρ pc v ρ′

D;F ; Σ; Γ; pc ` reLab(ρ′ ⇐ ρ) v : b ρ′
P-T-E-Relabel

D;F ; Σ; Γ; pc ` e : s′ s′ ≤ s
D;F ; Σ; Γ; pc ` e : s

P-T-E-Sub

Figure 3: Typing rules

The subtyping relation s1 ≤ s2 is standard: most types are covariant except function argument types,
which are contravariant, and pointer content types, which are invariant. ρBt denotes ρ guards t. It is defined
as ρ v labOf (t). Here labOf (t) is the outermost label of type t; for instance, ⊥ B int (AlicePrivate,⊥I),
(AlicePrivate,⊥I) B int (AlicePrivate,⊥I). Finally s t ρ is the type resulting from joining the policy of s
with ρ.

Most of these typing rules are standard to information flow type systems. These rules carefully arrange
the constraints on policies and the program counter so that noninterference theorem can be proven. Due to
space constraints, we only explain the rule P-T-E-DE, which types the application of a declassification/en-
dorsement function and is unique to our system. The first premise checks that vf relabels data from `1 to `2.
The second premise checks that ea’s type matches that of the argument of vf ; further, ea’s policy ρ has `1
and `2 as the first two labels, indicating that ea is currently at security level `1 and the result of processing
ea has label `2. Finally, the return type of the function application has the tail of the policy ρ. The policy of
ea does not change; instead, the policy of the result of the relabeling function inherits the tail of ea’s policy.
Therefore, our type system is not enforcing type states of variables as found in the Typestate system [47].
These declassification and endorsement functions only rewrite one label, not a sequence of labels. This allows
us to have finer-grained control over the stages of relabeling.

3.3 Noninterference

We prove a noninterference theorem for polC ’s type system by adapting the proof technique used in
FlowML [44]. We extend our language to include pairs of expressions and pairs of values to simulate two
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executions that differ in “high” values. We only explain the key definitions for the theorem.
We first define equivalences of expressions in terms of an attacker’s observation. We assume that the

attacker knows the program and can observe expressions at the security level `A. To be consistent, when
`A is not > or ⊥, the attacker’s policy is written `A::>. Intuitively, an expression of type b ρ should not be
visible to the attacker if existing declassification functions cannot relabel data with label ρ down to `A::>.
For instance, if ρ = H::L::⊥ and there is no declassification function from H to L, then an attacker at L
cannot distinguish between two different integers v1 and v2 of type int ρ. On the other hand, if there is
a function f :d&e int H::> → L::⊥, then v1 and v2 are distinguishable by the attacker. We define when a
policy ρ is in H with respect to the attacker’s label, the function context, and the relabeling operations, in
other words, when values of type b ρ are not observable to the attacker, as follows. ρ ∈ H if ρ cannot be
rewritten to be a policy that is lower or equal to the attackers’ policy.

∀ρ′, F ;R ` ρ ρ′, ρ′ 6v ρA
ρA;F ;R ` ρ ∈ H

Here F ;R ` ρ  ρ′ holds when ρ = `1:: · · · ::`i::ρ′ and there is a sequence of relabeling operations in F
and R, using which ρ can be rewritten to ρ′. For instance, when `A = ⊥

F1 = encodeA : (d&e)int (AlicePrivate,⊥I) :: >
→ int (⊥S ,EncodedBal) :: ⊥

F2 = F1, yao execA : (d&e)int (⊥S ,EncodedBal) :: > → int ⊥

`A; ·; · ` (AlicePrivate,⊥I) ∈ H

`A;F1; · ` (⊥S ,EncodedBal) ∈ H

`A;F2; · 0 (⊥S ,EncodedBal) ∈ H

Our noninterference theorem is formally defined below. The theorem states that given an expression e that
is observable by the attacker, and two equivalent substitutions δ1 and δ2 for free variables in e, and both eδ1
and eδ2 terminate, then they must evaluate to the same value. In other words, the values of sub-expressions
that are not observable by the attacker do not influence the value of observable expressions. The proof can
be found in Appendix B.

Theorem 1 (Noninterference).
If D;F ; Γ;⊥ ` e : s, e does not contain any relabeling operations, given attacker’s label `, and substitution
δ1, δ2 s.t. F ` δ1 ≈H δ2 : Γ, and `;F ; · ` labOf (s) /∈ H and Ψ ` ∅ / eδ1 −→∗ σ1 / v1 and Ψ ` ∅ / eδ2 −→∗
σ2 / v2, then v1 = v2.

It follows from Noninterference that given D;F ;x : `1:: · · · ::`n::⊥ int ` e : int `n::> where the attacker’s
label is `n::>, the attacker can only gain knowledge about the value for x if there is a sequence of declassifi-
cation/endorsement functions fis that remove label `i from the policy to reach `n::>. Further, if `i 6v `i+1,
then the fis have to be applied in the correct order, as dictated by the typing rules.

4 Embedding in A Nominal Type System

The type system of polC can encode interesting security policies and help programmers identify subtle bugs
during development. However, implementing a feature-rich language with polC ’s type system requires non-
trivial effort. Moreover, only programmers who are willing to rewrite their codebase in this new language
can benefit from it. Rather than create a new language, FlowNotation leverages C’s type system to enforce
policies specified by polC ’s types.
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The mapping between the concrete workflow of FlowNotation, polC and µC, and the algorithms defined
here is shown in Figure 1. We first define a simple imperative language µC with nominal types and an-
notations, which models the fragment of C that FlowNotation works within. We show how the annotated
types and expressions can be mapped to types and expressions in polC in Appendix C. Then in Section 4.2,
we show how to translate polC programs back to µC. These two algorithms combined describe the core
algorithm of FlowNotation. We prove our translation correct in Section 4.3.

4.1 µC and Annotated µC

Expressions in µC are the same as those in polC . The types in µC do not have information flow policies,
which are defined below. The names of the typing contexts remain the same.

Basic Types π ::= T | int | unit | ptr(τ)
Types τ ::= π |π1 → π2

Annotation a ::= π |T at ρ | int at ρ | ptr(β) at ρ
Typ. Annot. β ::= a | a1 → a2

Expressions e ::= · · · | letx : β = e1 in e2

Annot. typedef Da ::= · |Da, T 7→ struct T{a1, · · · , ak}
Annot. Func. Fa ::= · |Fa, f : a1 → a2

| Fa, f : (d&e)a1 → a2

We assume that programmers will provide policy annotations, denoted β. The annotated types β are very
similar to labeled types s. We keep them separate, as programmers do not need to write out the fully labeled
types. A programmer can annotate defined record types T at ρ, integers int at ρ, both the content and
the pointer itself ptr(β) at ρ, or the record type struct T{β1, · · · , βk}. The last case is used to annotate
type declarations in the context D. We extend expressions with annotated expressions; letx : a = e1 in e2.
We assume that let bindings, type declarations, and function types are the only places where programmers
provide annotations. A complete account of syntax and semantics can be found in Appendix A and C.

4.2 Translating Annotated Programs to µC

Instead of defining an algorithm to translate an annotated µC program ea to another µC program, we first
define an algorithm that maps ea into a program el in polC ; then an algorithm that translates el to a µC
program.

Mapping from annotated µC to polC . This mapping helps make explicit all the assumptions and
necessary declassification and endorsement operations needed to interpret those annotations as proper polC
types and programs.

We write 〈〈β〉〉 to denote the mapping of unannotated and annotated µC types to polC types. Unannotated
types are given a special label U (unlabeled, defined as (⊥,⊥)); annotated types are translated as labeled
types. All function types are given the pc label ⊥, so the function body can be typed with few restrictions.
The mapping from annotated types to polC types is summarized in Figure 4.

There are two sets of mapping rules for expressions:
Da;Fa; Γa; s ` 〈〈e〉〉 ⇒ le and Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv .
The mapping rules use the annotated typing contexts: Da, Fa, and Γa. The reading of the first judgement

is that an annotated expression e is mapped to a labeled expression le given annotated typing contexts Da,
Fa, Γa, and polC type s, which e’s type is supposed to be. The second judgment is similar, except that it
only applies to values and the type of v is not given. Here le and lv are expressions with additional type
annotations of form @s to ease the translation process from polC to µC. For instance, n@int U means that
n is an integer and it is supposed to have the type int U . This way, we can give the same integer different
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π ∈ {int, T}
〈〈π〉〉 = π U

π ∈ {int, T}
〈〈π at ρ〉〉 = π ρ

〈〈β〉〉 = s

〈〈ptr(β)〉〉 = ptr(s) U

〈〈β〉〉 = s

〈〈ptr(β) at ρ〉〉 = ptr(s) ρ

∀i ∈ [1, 2], 〈〈ai〉〉 = ti

〈〈a1 → a2〉〉 = [⊥](t1 → t2)

∀i ∈ [1, 2], 〈〈ai〉〉 = ti

〈〈(d&e)a1 → a2〉〉 = (d&e)[⊥](t1 → t2)

Figure 4: Mapping annotations to types

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = T ρ
Da(T ) = (struct T{β1, · · · , βn}) ∀i ∈ [1, n], ρ = labOf (〈〈βi〉〉)

Da;Fa; Γa; t ` 〈〈v.i〉〉 ⇒ lv .i
L-Field-U

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = T ρ
Da(T ) = (struct T{β1, · · · , βn}) ∃i ∈ [1, n], ρ 6= labOf (〈〈βi〉〉)

Da;Fa; Γa; t ` 〈〈v.i〉〉 ⇒ let y : T ⊥ = reLab(⊥ ⇐ ρ) lv in (y@T ⊥).i
L-Field

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = b ρ

Da;Fa; Γa; t ` 〈〈∗v〉〉 ⇒ let y : b ⊥ = reLab(⊥ ⇐ ρ) lv in ∗ (y@b ⊥)
L-Deref

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = ptr(s) ρ Da;Fa; Γa; s ` e⇒ le

Da;Fa; Γa; t ` 〈〈v := e〉〉 ⇒ let y : ptr(s) ⊥ = reLab(⊥ ⇐ ρ) lv in y@ptr(s) ⊥ := le
L-Assign

Da;Fa; Γa ` 〈〈v1〉〉 ⇒ lv1

tpOf (lv1) = int ρ Da;Fa; Γa; t ` 〈〈e2〉〉 ⇒ le2 Da;Fa; Γa; t ` 〈〈e3〉〉 ⇒ le3

Da;Fa; Γa; t ` 〈〈if v1 then e2 else e3〉〉
⇒ let x : int ⊥ = (reLab(⊥ ⇐ ρ) lv1) in if x@int ⊥ then le2 else le3

L-If

Figure 5: Mapping of expressions

types, depending on the context under which they are used: n@int U and n@int ρ are translated into different
terms.

A value is mapped to itself with its type annotated. For example, integers are given int U type, since
they are unlabeled.

Da;Fa; Γa ` 〈〈n〉〉 ⇒ n@int U
V-L-Int

Expression mapping rules are listed in Figure 5. The tricky part is mapping expressions whose typing
rules in polC require label comparison and join operations. Obviously, the µC type system cannot enforce
such complex rules. Instead, we add explicit relabeling to certain parts of the expression to ensure that the
types of the translated µC program enforce the same property as types in the corresponding polC program.

There are two rules for record field access: one without explicit relabeling (L-Field) and one with (L-
Field-U). Rule L-Field applies when all the elements in the record have the same label as the record itself.
Rule L-Field-U explicitly relabels the record first, so the record type changes from T ρ to T ⊥, resulting in
the field access having the same label as the element. This is because when the labels of the elements are not
the same as the record, the typing rule P-T-E-Field will join the type of the field with the label of the record.
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ρ ∈ {U ,⊥}
Jint ρKD = (int, ·)

ρ /∈ {U ,⊥} T = genName(int, ρ)

Jint ρKD = (T, T 7→ struct T {int})

ρ /∈ {U ,⊥} T ′ = genName(T, ρ)
T 7→ struct T {τ1, · · · , τn} ∈ D

JT ρKD = (T ′, T ′ 7→ struct T ′ {τ1, · · · , τn})

Figure 6: Type translation

However, this involves label operations, which µC’s type system cannot handle. L-deref and L-assign are
similar. The mapping of if statements (L-If) relabels the conditional v1 to have int ⊥ type, so the branches
are typed under the same program counter as the if expression. We write reLab(⊥ ⇐ ρ) as a short hand for
a sequence of relabeling operations reLab(` :: ⊥ ⇐ `n::>) · · · reLab(`i::⊥ ⇐ `i−1::>) · · · reLab(`2::⊥ ⇐ `1::>)
where ρ = `1:: · · · ::`n::` and ` is either > or ⊥. The implications of inserted relabeling operations are
discussed at the end of this section.

Translation from polC to µC. The translation of types is shown in Figure 6. It returns a µC type and a
set of new type definitions. We use a function genName(t, ρ) to deterministically generate a string based on
t and ρ as the identifier for a record type. It can simply be the concatenation of the string representation of
t and ρ, which is indeed what we implemented for C (Section 5).

We distinguish between a type with a label that is U or ⊥ and a meaningful label. The translation of
the type b U is simply b. This is because b U is mapped from an unannotated type b to begin with, so the
translation merely returns it to its original type. Similarly b ⊥ is generated by our relabeling operations
during the mapping process, and should be translated to its original type b. On the other hand, a type
annotated with a meaningful policy ρ is translated into a record type to take advantage of nominal typing.
The translation also returns the new type definition. This would also prevent label subtyping based on the
security lattice. However, this is acceptable given our application domain because the labels provided by
programmers are distinct points in the lattice that are not connected by any partial order relations except
the > and ⊥ elements. Record types are translated to record types and types for the fields of the labeled
record type T ρ are the same as those for T , stored in the translated context D. This works because we
assume that all labeled instances of the record type T (i.e., all T ρ) share the same definition.

Expression translation rules recursively translate the sub-expressions. We present a few interesting cases
in Figure 7. The µC type system is not asked to do complex label checking, so rule T-App-De has to insert
label conversions. The label of the argument is cast from `1 :: `2 :: ρ′ to `1 :: >, as required by f , and the
result of the function is cast from `2 :: ⊥ to `2 :: ρ′. These operations are different from the ones inserted
during the mapping process because they only exist to help µC simulate the E-App-De typing rule in polC ,
but do not really have declassification or endorsement effects.

Next, we explain the translation of relabeling operations. Rule T-Relab-N1 relabels a value whose type
has a meaningful label to one with another meaningful label. The translated expression is a reassembled
record using the fields of the original record. Rule T-Relab-N2 relabels an expression with a U and ⊥
label to a meaningful label. In this case, the translated expression is a record. Rule T-Relab-N3 translates
an expression relabeled from a meaningful label to a U or ⊥ label to a projection of the record. The next
rule, T-Relab-Same, does not change the value itself, because we are just relabeling between U and ⊥
labels. The final relabeling rule, T-Relab-Struct, deals with records. In this case, we simply return the
reassembled record because record types that only differ in labels have the same types for the fields, as shown
in the last type translation rule in Figure 6.
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tpOf (lvf ) = (d&e)[pc](t1 → t2)ρf Jlvf KD = (vf , Df )
tpOf (lva) = b ρ ρ = `1 :: `2 :: ρ′ JreLab(`1 :: > ⇐ ρ)lvaKD = (e′, D1)

JreLab(`2 :: ρ′ ⇐ `2 :: ⊥)(z@b `2 :: ⊥)KD = (e′′, D2) Jt1KD = (τ1, D3) Jt2KD = (τ2, D4)

Jlvf lvaKD = (let y : τ1 = e′ in let z : τ2 = vf y
in e′′, Df ∪D1 ∪D2 ∪D3 ∪D4)

T-App-DE

JlvKD = (v,D1) tpOf (lv) = b ρ (b is not a struct type)
ρ′ /∈ {⊥,U } ρ /∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = (let x = v.1 in (T ){x}, D1 ∪D2)
T-ReLab-N1

JlvKD = (v,D1) tpOf (lv) = b ρ (b is not a struct type)
ρ′ /∈ {⊥,U } ρ ∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = ((T ){v}, D1 ∪D2)
T-ReLab-N2

JlvKD = (v,D1) tpOf (lv) = b ρ b is not a struct type ρ /∈ {⊥,U } ρ′ ∈ {⊥,U }
JreLab(ρ′ ⇐ ρ)lvKD = (v.1D1)

T-ReLab-N3

JlvKD = (v,D1) labOf (lv) = b ρ ρ, ρ′ ∈ {U ,⊥}
JreLab(ρ′ ⇐ ρ)lvKD = (v,D1)

T-ReLab-same

ρ /∈ {⊥,U } or ρ′ /∈ {⊥,U }
tpOf (lv) = T ρ JT ρ′KD = (T ′, D1) JlvKD = (v,D2)

JreLab(ρ′ ⇐ ρ)lvKD = let x1 = v.1 in · · · let xn = v.n
in (T ′){x1, · · · , xn}, D1 ∪D2)

T-ReLab-Struct

Figure 7: Expression translation

4.3 Correctness

We prove a correctness theorem, which states that if our translated nominal type system declares an expres-
sion e well-typed, then the labeled expression el, where e is translated from, is well-typed under polC ’s type
system. Formally:

Theorem 2 (Translation Soundness (Typing)). If Da;Fa; Γa; s ` 〈〈e〉〉 = le, 〈〈Da〉〉 = Dl, 〈〈Fa〉〉 = Fl, 〈〈Γa〉〉 =
Γl, JDlK = D, JΓlKD = (Γ, D1), JFlKD = (F,D2), JleKD = (e′, D3), and D ∪ D1 ∪ D2 ∪ D3;F ; ·; Γ ` e′ : τ
implies Dl;Fl; ·; Γl ` tmOf (le) : s and JsK = (τ, )

Here, tmOf (le) denotes an expression that is the same as le, with labels (e.g., @int U ) removed. The proof
is by induction over the derivation of Da;Fa; Γa; s ` 〈〈e〉〉 ⇒ le. The proof can be found in Appendix C.3.

It not hard to see that the translated program has the same behavior as the original program, because they
have the same program structure except that the translated program has many indirect record constructions
and field accesses.
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4.4 Discussion

Relabeling Precision. It is clear from the mapping algorithm that a number of powerful relabeling
operations are added. In all cases (except the if statement) we could do better by not relabeling all the way
to bottom, but to the label of the sub-expressions. However, that would require a heavy-weight translation
algorithm that essentially does full type-checking.

Implicit Flows. The security guarantees of programs that require relabeling operations to be inserted
are weakened in the sense that in addition to the special declassification and endorsement functions, these
inserted relabeling operations allow additional observation by the attacker. This means that the resulting
program can implicitly leak information via branches, de-referencing, and record field access.

However, for our application domain we aim to check simple data usage and function call patterns which,
as seen in our case studies, manifest errors with explicit flows. These policy violations are still detected if
we don’t have recursive types. The reason being those operations only cause relabeling of a smaller type.
The API sequences keep the same basic type with changing labels. If we have recursive types, the above
argument would be invalid. See the following example.

y : struct T {struct T (⊥s,EncodedBal) :: ⊥, int}
(AlicePrivate,⊥I) :: (⊥s,EncodedBal) :: ⊥

y.1 will have the same effect as encodeA, which violates the API sequence that we try to enforce using these
types. Note that C doesn’t allow this type, but we could use pointers to construct something quite similar.
In our case studies, we do not have such interaction between policies and recursive types.

5 Implementation

We explain how the annotations and translation algorithms of FlowNotation are implemented for C.

Translation of annotations for simple types. Utilizing C’s nominal typing via the typedef mechanism
is key to realizing polC type system within the bounds of C’s type system. The declaration of the polC type
t ρ in C will be: typedef struct {t d;} ρ@t; Here ρ@t is a string representing the type t ρ and it is simply
a concatenation of the string representation of the policy ρ and the type t. Consider the annotated code
snippet.

1 #requires l1:secrecy then l2:secrecy
2 int x;

In polC , the type of x is int (l1,⊥I) :: (l2,⊥I) :: ⊥. The generated C typedef is: typedef struct {int d;}
l1S l2S int;. This definition contains the original type, which allows access to the original data stored in x
in the transformed program.

Structures and unions. We allow programmers to annotate structures in two ways: an instance of a
structure can be annotated with a particular policy, or individual fields of an instance of a structure can be
given annotations. The names of structures hold a particular significance within C since they are nominal
types, and thus, they need to be properly handled. Unions are treated in a parallel manner, so we omit the
details.

A policy on an instance of a structure is annotated and translated following the same formula as anno-
tations on simple C types. Suppose we have the following annotation and code.

1 #requires l1:secrecy then l2:secrecy
2 struct foo x;
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FlowNotation will produce the following generated type definition: typedef struct {struct foo d;}
l1S l2S foo;. This is different from the algorithm in Section 4, where structures are not nested and annota-
tions are applied to structure definitions rather than instances. This is done in the implementation because
the definition of foo might be external and therefore may not be known to the translation algorithm, so we
simply nest the entire structure inside.

The second method allows annotations on particular fields of the structure as follows below.

1 #requires {f1:int, f2:int} l1:secrecy then l2:secrecy
2 struct foo x;

The following type definition will be generated.

1 typedef struct {
2 l1S l2S int f1; l1S l2S int f2; foo d;
3 } l1S l2S foo;

Fields that have policy annotations are fields of the new struct. To allow access to other fields in the original
struct, a copy of the original struct is nested inside this new struct. This is for the same reason as the
structure nesting in the previous case.

Finally, we explain how member accesses are handled. Suppose a struct foo has members f1 and f2, and
an annotation of policy p has been placed on member f1, but no annotation has been placed on member f2.
The generated type definition for the structure is as follows: typedef struct { p int f1; foo d; } p foo;.

Assume x has type p foo. Access to f1 is still x.f1, since there is a copy of it in x. Access to f2 is
rewritten to x.d.f2. The field initialization is rewritten similarly: foo x={.f1=1,.f2=2}; is transformed to
this: foo x={.f1=1,.d={.f2=2}};

Pointers. We provide limited support for pointers. Below is an example of how annotations on pointers
are handled.

1 #requires AlicePriv:secrecy
2 int* x;

The translated code is below; a type definition of struct AlivePrivS int is generated: AlicePrivS int* x;

The following function can receive x as an argument because the annotation for its parameter matches that
of x.

1 #param AlicePriv:secrecy
2 int f(int* x) {...}

The annotation for pointers only annotates the content of the pointer. Even though polC allows policies
on the pointer themselves, we did not implement that feature. We also do not support pointer arithmetic,
which is difficult to handle for many static analysis tools, especially lightweight ones like ours. However, our
system will flag aliasing of pointers across mismatched annotated types. Our system will also flag pointer
arithmetic operations on annotated types as errors. Programmers can encapsulate those operations in trusted
functions and annotate them to avoid such errors.

Typecasts. The C type system permits typecasts, allowing one to redefine the type of a variable in unsound
ways. Casting of non-pointer annotated types will be flagged as an error by FlowNotation. This is because
our types are realized as C structures; type checkers do not allow arbitrary casting of structures. However,
our tool cannot catch typecasts made on annotated pointers; a policy on a pointer will be lost if a typecast
is performed.

Void. In this section we will discuss the handling of functions that have a void return type. We disallow the
use of the #return annotation with such functions. The reasons for doing so will be explained below. Given
that translation and the general purpose of the void type, it is clear that allowing an integrity annotation
of a function with a void return type is not valid. Consider the following example:
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1 #return trusted:integrity
2 void func() {...}

If we allowed this translation to proceed naively, the translated version of the code could look like this:

1 trustedI void func() {...}

This is invalid for two reasons. First, as mentioned before this function is not returning anything and
therefore an annotation on its return type is meaningless. Second, as this translation evidences, if we were
to allow such an annotation, we would have created an invalid type, “trustedI void”. This type is invalid
because, in order for it to be used in our annotation system, we need to generate functions that perform the
relabeling operations to and from this type. However, no such operations can be generated, as they would
effectively take nothing and endorse it to a trusted type.

Another case where void comes into play is in implicit void pointer conversion. In the case where a void
pointer is being passed to a function for an annotated parameter, this will not be flagged as an error by our
system.

Variadic Functions. We provide partial support for annotations on variadic functions. For example, with
the following function:

1 int f(int a, int b, ...) { ... }

Only the first two arguments can have annotations.

Builtin Qualifiers Qualifiers are subsumed into the “original type” that our processing algorithm extracts
from the source code. For instance, if we encounter the code:

1 #requires test:secrecy
2 volatile int x;

the qualifier volatile will be considered to be part of the base type “int”. Thus, the translation of the code
will be:

1 fln testS volatile int x;

Rather than:

1 volatile fln testS int x;

This approach generalizes to multiple qualifiers on a type.

Builtin Operators. The labels we can add through our system are sometimes applied to variables with
numeric types, e.g. int, float, double, etc. Binary and unary operations on these types are directly
supported by C. After transformation arithmetic operations do not work out of the box on our transformed
types. For instance, x+y will raise a type error if x and y are annotated because + is being applied to a struct,
not an int. Programmers would need to define a plus function for the annotated type to circumvent this
issue.

Code Generation. In addition to the above remarks on how specific C features are handled, we need to do
some additional code generation and program reconstruction in order for our system to be straightforward
for the end user to use. When processing a directory of annotated source files that includes one “root” file
(typically the file containing the main function), our system does the following:

1. Recursively find and parse included files from the root

2. Gather annotations from each file
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3. Generate header definitions for each file

4. Stitch together the original and generated files

Next, we explain two pieces of this process; header generation and program reconstruction.

Header Generation.
Header generation refers to the phase of the program transformation when all of the structure and function

definitions for the annotated types in a particular file are generated. The generated structure and function
definitions are collected into a single header file that is included where its definitions are needed during the
program reconstruction phase.

To explain how the structure and function definitions are generated, let us consider the following code:

1 #requires AlicePriv:secrecy
2 int x;

Previously, we explained that for a variable definition of the form τ x; annotated with a policy ρ we need
to generate a type τ@ρ. In our example, this generated type would be AlicePrivS int. As we explained
before, to give this type concrete meaning within the C type system, we instantiate it in the form of a
typedef struct:

1 typedef struct {int d;} AlicePrivS int;

This generated structure contains the original type as a member and interacts with the code as described in
the subsection on structures (in section 5).

In order to be able to convert between the original type int, which we call the base type, and this new
“type” AlicePrivS int, which we call the policy type, two functions need to be generated:

1 privateS int privateS int w(int x) {...};
2 int privateS int r(privateS int x) {...};

The first function, given a regular integer will relabel the integer to the type AlicePrivS int. The second
function, will relabel AlicePrivS int back to a regular integer.

Thus, we have the basis for what our header generation needs to accomplish. Each annotated type τ@ρ
can be viewed as a pair (base type, policy type). For each pair we must:

1. Generate a typedef structure that has a base type member and is named ρ τ

2. Generate a function from the base to the policy type

3. Generate a function from the policy to the base type

In order to prevent the duplication of generated structure or function definitions, we deduplicate the list so
that it consists of only unique pairs.

Program Reconstruction. During the program reconstruction phase, header files that have been generated
must be included at the right points in the program’s dependency graph. If they are not included at the right
points, then it is possible that a file containing transformed code that makes use of the generated structures
and functions will be missing the definitions of those structures or functions and thus will not be compilable.
In order to solve this issue, we recursively traverse the dependency graph starting from the root file. At each
file that we visit in the graph, we include the generated header file containing the generated structures and
definitions.

Pragmas. We have presented annotations without the pragma directive prefixing them for convenience
of presentation. When using the actual implementation of FlowNotation we write, for instance, #pragma
requires AlicePriv:secrecy. The use of the pragma directive allows C compilers to ignore our annotations,
thus allowing developers to keep annotations in their codebases without the annotations interfering with
normal compilation of the program.
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Library # Policies Sec. Int. Seq. LoA ∼ LoC Issues Runtime (s)
Obliv-C Library 2 1 1 0 11 80 0 0.04
SCDtoObliv FP Circuits 4 4 0 0 10 43,000 1 5.55
ACK Oqueue 7 7 7 2 19 700 0 0.17
Secure Mux Application 4 3 4 0 11 150 0 0.06
Pool Framework 4 2 4 0 8 500 1 0.16
Pantaloons RSA 5 2 3 0 12 300 1 0.11
MiniAES 9 4 4 1 13 2000 0 0.08
Bellare-Micali OT 5 3 2 0 12 100 2 0.05
Kerberos ASN.1 Encoder 2 2 0 1 8 300 0 0.12
Gnuk OpenPGP-do 5 0 5 1 11 250 1 0.10
Tiny SHA3 3 3 0 1 6 200 0 0.10

Figure 8: Evaluation Results. Sec, Int, and Seq are the number of secrecy, integrity, and sequencing policies.
LoA is lines of annotations, LoC is the lines of code.

6 Case Studies

We evaluate the effectiveness of FlowNotation at discovering violations of secrecy, integrity, and sequencing
API usage policies on several open-source cryptographic libraries. Our results are summarized in Figure 8.
We examine: Obliv-C, a compiler for dialect of C directed at secure computation [55, 53]; SCDtoObliv, a
set of floating point circuits synthesized into C code [56]; the Absentminded Crypto Kit, a library of Secure
Computation protocols and primitives [32, 33]; Secure Mux, a secure multiplexer application [60]; the Pool
Framework, a secure computation memory management library [59, 60]; Pantaloons RSA, the top GitHub
result for an RSA implementation in C [42]; MiniAES, an AES multiparty computation implementation
[30, 29]; Bellare-Micali OT, an implementation of the Bellare-Micali oblivious transfer protocol [6]; Kerberos
ASN.1 Encoder, the ASN.1 encoder module of Kerberos [1]; Gnuk OpenPGP-do, a portion of the OpenPGP
module from gnuk [52]; Tiny SHA3, a reference implementation of SHA3 [45]. We determine application-
specific policies and implement them with our annotations.

6.1 SCDtoObliv Floating Point Circuits

First, we show that FlowNotation can be used to discover flaws in large, automatically generated segments
of code that would be very difficult for a programmer to manually analyze.

SCDtoObliv [56] synthesizes floating point circuit in C via calls to boolean gate primitives implemented
in C. While this approach produces performant floating point circuits for secure computation applications,
the resulting circuit files are hard to interpret and debug. The smallest of these generated circuit files is
around 4000 lines of C code while the largest is over 14,000 lines. We annotate particular wires based on
the circuit function to check that particular invariants such as which bits should be used in the output and
which bits should be flipped are maintained.

FlowNotation uncovered a flaw in the subtraction circuit. The Obliv-C subtraction circuit actually uses
an addition circuit to compute A+ (−B). The function that does the sign bit flipping, obliv c flipBit, is
annotated so that it can only accept an input with the needsFlipping label as follows.

1 #param needsFlipping:secrecy
2 void obliv c flipBit(OblivBit* src)

Our tool reports an error; rather than the sign bit of the second operand being given to obliv c flipBit

the sign bit of the first operand was given to obliv c flipBit. Instead of computing A+ (−B) the circuit
computes (−A) +B; the result of evaluating the circuit is negated with respect to the correct answer.
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6.2 A Potential Flaw in the Pool API

This case study is based on Pool, a Secure Computation tool [59, 60] and demonstrates that FlowNotation
can help identify cross-module API constraints.

The Pool framework provides a set of APIs for users, some of which take function pointers as arguments.
As a result, user-provided functions are called inside Pool APIs and interact with sensitive data from the
framework. The following function pointer is used-accessible.

1 void (*Gate Copy)( , , , uint64 t indexs, )

We have left most of the parameters opaque as they are unimportant to the flaw we discovered. According
to the signature, the function pointed to by this pointer can accept any unsigned 64-bit integer as its fourth
parameter (an index to a gate used by the Pool API).

We would like to check the property that only valid gates are being used in the protocol execution and
that only trusted functions can use valid gates. We use the label valid gate as both a secrecy and an integrity
policy to prevent APIs from using invalid gates and untrusted functions from using valid gates. Here is an
example of that annotation on a function that is said to produce a valid gate:

1 #return valid gate:(secrecy, integrity)
2 uint64 t Next Gate in Buffer(Pool *dst)

An error is reported for the following code.

1 (*(P−>Gate Copy))( , , ,
2 Next Gate in Buffer(P), );

Notice that the fourth argument of the Gate Copy function is returned by the Next Gate in Buffer function.
The flaw is caused by the fact Gate Copy is not trusted to take a valid gate as input, as far as can be told
by its type and the project’s documentation [58]. This error is similar to bugs found in kernels that give
user-supplied callback functions private kernel data. To allow the translated code to compile, we would have
to explicitly add an annotation to the Gate Copy function to allow it to take a valid gate as input. By doing
so, we are knowingly endorsing potentially dangerous user-supplied callback functions.

6.3 Gnuk OpenPGP-DO

The last case study shows that FlowNotation can uncover a previously known and patched null-pointer
dereferencing bug and another potential bug in the gnuk OpenPGP-DO file, which handles OpenPGP Smart
Card Data Objects (DO). We explain the latter in the next subsection.

The function w kdf handles the reading or writing of DOs that support encryption via a Key Derivation
Function (KDF) in the OpenPGP-DO file.

1 static int rw kdf (uint16 t tag, int with tag,
2 const uint8 t *data, int len, int is write)

If the data is being read, it is copied out to a buffer via the function copy do 1:

1 static void copy do 1(uint16 t tag, const uint8 t *do data, int with tag)

One invariant is that the do data pointer must point to a valid segment of data; it must not be null. We
provide the following annotation:

1 #param(2) check−valid−ptr:integrity
2 static void copy do 1(uint16 t tag, const uint8 t *do data, int with tag)
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This annotation states that the second parameter will only be accepted if it has been endorsed by a
function that returns data annotated with the check valid ptr label. We provide such a function and rewrite
all nullity checks to use it.

1 #return check valid ptr:integrity
2 const uint8 t *check do ptr(const uint8 t *do ptr)

Returning back to the rw kdf function, when data is being read, the following call of copy do 1 occurs:

1 copy do 1(tag, do ptr[NR DO KDF], with tag);

Compilation of the transformed code results in this error:

1 error: passing argument 2 of ’copy do 1’ from incompatible pointer type [−Werror=incompatible−
pointer−types]

2 copy do 1(tag, do ptr[1], with tag);
3 ˆ˜˜˜˜˜

The issue is copy do 1 is annotated to require a null-pointer check for parameter two, but that check was not
performed.

6.4 Length Check in Gnuk OpenPGP-DO

We now demonstrate the discovery of a potential issue with the gnuk copy do 1 function.
This utility function is responsible for performing a properly sized memcpy given a data array, in the

format of a Tag-Length-Value data structure, that contains the data to by copied as well as metadata such
as the size of the data to be copied. We focus our analysis on the size metadata, which is captured by the
variable int len. We provide the following annotation:

1 #return check len:integrity
2 int len;

The purpose of this annotation is to ensure that this length variable will be checked before it is given to
memcpy to prevent a buffer overflow.

The copy do 1 function does two slightly different things depending on the value of a conditional. In the
first case, the array element do data[0] is checked to not exceed its maximum size before it is assigned to
len. In the second case, however, no check is made.

Thus, a potential faulting path exists: if the conditional is false and do data[0] was previously assigned
a negative value causing an overflow, when len is used as the size argument to memcpy, it could read past the
end of the do data array as it may not be null-terminated.

Our system alerts us to this issue:

1 evaluations/gnuk/openpgp−do snip fln.c:301:9: error: incompatible types when assigning to
type ‘ fln check lenI int {aka struct <anonymous>}‘ from type ‘uint8 t {aka int}‘

2 len = do data fln p[0];
3 ˆ

We contacted the maintainer of the library who assured us that every instantiation of the do data array
has the correct length and thus the potential issue we describe cannot come up in practice. However, we
believe that addition of a check that would fulfill the policy we have described could be useful should a
mistake be made with a do data array.
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6.5 Secure Multiplexer Application

Pool is a secure computation framework that was released by Zhu et al. [59, 60]. The authors provide an
example application, a secure multiplexer, that makes use of the framework. We evaluate this application
to check that the Pool API usage does not violate the secrecy or integrity properties of the garbler’s or
evaluator’s data. We check first that the secrecy and integrity of each party’s private data is maintained.

1 #requires AlivePriv:(secrecy, integrity)
2 bool* inputA;

At the next step of the protocol, Alice’s input is assigned her private value by way of a helper function

1 inputA = int2bitsA(0x01AA);

Given that the int2bitsA function is Alice’s way of assigning a value to her input, we accordingly annotate
that it is trusted to provide integrity for the AlicePriv label:

1 #return AlicePriv:integrity
2 bool* int2bitsA(int x) {...}

On the side of the other party, Bob, parallel annotations can be made. Since only the functions int2bitsA
and int2bitsB can provide an integrity endorsement to the AlicePriv and BobPriv respectively, our system
can check that no other code will modify Alice and Bob’s private input.

The next annotation we provide is a check on the data structure entities representing Alice and Bob.
Alice is an instance of a Garbler structure and Bob is an instance of an Evaluator. Thus we provide a label
GarblerProtected and apply both its secrecy and integrity projections to the Alice instantiation of Garbler:

1 #requires GarblerProtected:(secrecy, integrity)
2 Garbler alice;

All Pool framework functions that need to access the Garbler’s (and respectively, the Evaluator’s) data thus
need to be trusted to maintain the secrecy of the Garbler’s data. Thus, the following annotations are applied:

1 #param(1) GarblerProtected:secrecy
2 #param(2) PreparedFunction:secrecy
3 wire** execA(Garbler alice, wire** func,
4 wire** inpt) {...}

The annotation GarblerProtected makes it clear that this function is trusted to read the Garbler structure.
The annotation PreparedFunction has not been explained before. Its role is specify that the function pointer
wire** func must point to a function that fulfills the policy PreparedFunction. No policy violations were
found.

6.6 Checking Initializations in Pool

Another annotation we provide adds checks to prevent users of the Pool framework from omitting initializa-
tions. It is an integrity endorsement:

1 #return initialized pool:integrity
2 Pool* SetupPool(Pool *dst ...);

The reason for adding this annotation is that as the original framework code stands, there are no checks in
functions that use the Pool structure that it is actually properly initialized. If a function uses an uninitialized
Pool structure, the protocol evaluation could fail through an exception or could have some other undesirable
behavior that may leak information to an attacker. By adding the above annotation as well as annotations
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of the form #param(i)initialized pool:integrity to each of the functions that uses the Pool, we are able
to statically check for cases where an uninitialized Pool structure is used.

A similar annotation checks for initialization of the ServiceConfig structure.

1 #return initialized service:integrity
2 ServiceConfig* SetupService(Pool *dst ...);

We add corresponding annotations to each function that uses the ServiceConfig to only accept an initialized
configuration.

6.7 Obliv-C Library

We demonstrate checking a secrecy property. The annotation we provide is a oblivious label. This policy is
added to the OblivBit structure in the Obliv-C library [55]. The secrecy label is used to check that oblivious
data is only being handled by functions that are trusted not to leak information about the oblivious data
within the Obliv-C library. The integrity label is needed to check that only trusted APIs are allowed to
generate oblivious data and update oblivious data structures.

We add annotations the OblivBit data structure as follows:

1 #requires oblivious:secrecy
2 OblivBit* data;

Functions that are trusted to process oblivious data are given an annotation that it is allowed to accept the
oblivious data as an argument. See the example below.

1 #param oblivious:secrecy
2 void obliv c copyBit(OblivBit* dest,
3 const OblivBit* src)

The use of this secrecy label also enforces the integrity of oblivious data structures. This is because unan-
notated data is assumed to have the special label U , so it cannot be used to update structures storing data
labeled with oblivious. We did not find any policy violations in the Obliv-C library.

6.8 Kerberos ASN.1 Encoder

This case study concerns enforcing an API sequencing policy in a widely-used open-source program, Kerberos.
More concretely, we consider the Kerberos ASN.1 Encoder which makes use of two functions free atype and
free atype ptr that work in tandem to free memory allocated to Kerberos C objects. Objects must first be
freed by the free atype function before they are freed by the free atype ptr function. We provide annotations
for these functions to check for violations of this sequenced behavior.

The free atype function takes as an argument a pointer to an object along with the struct atype info

containing a description of the object. We modify the function to return this atype info struct.

1 const struct atype info* free atype(const struct atype info *a, void *val)

In the function body, the appropriate freeing routine is called based on atype info’s type member. The
freeing routine can take the form of recursive calls to free atype, calls to other specialized freeing functions,
or calls to the second freeing function free atype ptr:

1 static void free atype ptr(const struct atype info *a, void *val)

This function is constructed similarly to free atype except that it works only over pointer-type objects
and only recursively calls itself.

We add the following annotations to those functions:
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1 #param(1) freebase:secrecy
2 #return freeptr:secrecy
3 const struct atype info* free atype(const struct atype info *a, void *val)
4 . . .
5 #param(1) freeptr:secrecy
6 static void free atype ptr(const struct atype info *a, void *val)

We add the following annotation to atype info structs:

1 #requires freebase:secrecy then freeptr:secrecy
2 const struct atype info* x;

The annotations above will check that the calling sequence invariant is maintained; no violations were found.

6.9 Oblivious Queue Data Structure

FlowNotation can be used to check granular invariants of data structures. This case study emphasizes
the modularity of our approach. The case study is on an oblivious queue (oqueue) library [32]. The data
structure is hierarchical and operations on this data structure should maintain the following invariants [54]:
(1) The buffer at level i has 5 × 2i data blocks. (2) The number of non-empty blocks at buffer level i is
a multiple of 2i. (3) Each level maintains a counter storing the next available empty block. (4) When the
buffer at level i is full the last block is shifted down to level i+ 1.

Invariants (1) and (3) can be violated through incorrect modification to the counter or the oqueue, so we
should check that modifications are only done by trusted functions. Therefore, we use the labels push protect,
pop protect, and oqueue tail. To modify where the next element is placed in the oqueue, only functions that
are trusted to modify data labeled with oqueue tail can do so. Likewise, the binary counters push time and
pop time should only be modified within the context of the push and pop operations.

Each field is given an integrity label to protect its access. One example annotation on the oqueue data
structure is:

1 #requires {.push time:int} push protect:integrity
2 oqueue* this layer;

Invariants (2) and (4) are checked at run time by conditional statement in the API code. We add two
sets of annotations (symmetric for the push and pop functions) to model the checks for ensuring that data is
shifted to a lower level or raised to a higher level in the queue when the current oqueue level is full or empty.
We use the following label sequence policy: oqueue has child → oqueue push ready. Considering just the
conditional push case below, these labels form an endorsement sequence on the oqueue data structure. First,
we endorse that the oqueue has a child via the has child helper function that can check for the existence of
a child, then we endorse that the oqueue is ready to be pushed to via the is push time helper function that
is trusted to access the oqueue’s push protect-labeled variable.

1 // oqueue → oqueue has child
2 layer1 = has child(layer);
3 if (layer1) {
4 // oqueue has child → oqueue push ready
5 layer2 = is push time(layer1);
6 if (layer2) {
7 // oqueue push ready → oqueue
8 layer3 = tail is full(layer2);
9 ...

This illustrates an instance of a compositional check that our annotations are providing; not only are we
checking for the existence of a particular endorsement sequence, but we also check that along the way, the
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Figure 9: Processing Time vs Number of Annotations and Time Per Processing Stage

functions that act on our oqueue to provide those endorsements are only the functions that we trust. Finally,
if all of these conditions are met, data is allowed to be shifted down to the lower level of the oqueue.

For the case of the conditional pop, the sequence of endorsement operations is similar, but we have
another, higher-level, compositional guarantee. We add an annotation to the pop function itself labeling its
layer parameter (which is an instance of the oqueue) as oqueue check empty. Thus, we enforce that only an
oqueue that has been checked for emptiness can be used with the pop operation.

This also demonstrates the modularity of FlowNotation. We are able to provide annotations at many
“levels” of the source code; in the above example there is a general check that the oqueue is non-empty before
the oqueue pop function is entered. Then within the body of the oqueue pop function there are additional
annotations that “refine” our knowledge about the state of the oqueue. These functions could come from
the same library or across several libraries from different developers. FlowNotation allows policies to be
collectively checked across different modules.

6.10 Performance Evaluation

We evaluate the performance of FlowNotation on synthetically generated C programs and annotations. The
generation algorithm targets a specific number of lines of C code and annotations. The generated annotations
include all three types of policies, #requires, #param, and #return, in combination with different primitive
types, pointers, and structures. To elicit worse-case behavior, the generated annotations are predominantly
sequencing annotations constructed from a set of templates representative of common API patterns from
our case studies. The C programs are similarly generated from templates of our case studies. Experiments
were run on a single-core Ubuntu 18.04 VM with 1GB of RAM, on a 2.7 GHz Intel Core i7 machine.

First, we evaluate how the runtime of FlowNotation is affected by the program size and the number
of annotations. The results are summarized in Figure 9. We evaluate the runtime of four C programs,
with 500, 1000, 2000, and 4000 lines of code respectively. For each program, we increase the number of
annotations, up to 128 annotations. FlowNotation is efficient: all the the experiments finish within 4
seconds. FlowNotation is intended to be run on individual modules (libraries) that rarely exceed a couple
thousand lines of code unless they are automatically generated, like the SCDtoObliv circuit file (14,000 LoC).
Even then, FlowNotation finishes within 6 seconds.

To better understand how each component of FlowNotation contributes to the processing time, we
profile execution time for each part. The results are summarized in Figure 9, which shows a cross-section of
Figure 9 with only the samples with 128 annotations. The four stages of FlowNotation are: “Parse Files,”
where annotations are retreived; “Generate Header,” where the header file containing type and structure
definitions corresponding to the transformed types is generated; “Build AST,” where the C parsing library,
pycparser [7] builds an abstract syntax tree from the source code; “Transform,” where the implementation
of the translation algorithm of FlowNotation runs. Most of the stages take a negligible amount of time
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compared to the stages Build AST and Transform. The majority of the overhead is due to the C parsing
library we use.

We do not present the overhead added to compilation of transformed programs because developers do
not need to compile the transformed programs. Once the transformed programs have been checked they can
be discarded.

7 Related Work

Related work for FlowNotation spans four research areas: C program analysis tools, information flow types,
linear types (type states), and cryptographic protocol verification.

Tools for Analyzing C Programs. Many vulnerabilities stem from poorly written C programs. As a
result, many C program analysis tools have been built. Several C model checkers (e.g. [4, 10, 23, 37, 11])
and program analysis tools [26, 28, 20, 41] are open source and readily downloadable. Our policies can be
encoded as state machines and checked by some of the tools mentioned above, which are general purpose
and more powerful than ours but are not tuned for analyzing API usage patterns like ours. Further, our tool
is backed by a sophisticated information flow type system.

Closest to our work is CQual [35]. Both theoretical foundations and practical applications of type
qualifiers have been investigated [34, 17, 57, 21, 36]. Our annotations are type qualifiers and our work and
prior work on type qualifiers share the same goal of producing a lightweight tool to check simple secrecy and
integrity properties. We additionally support sequencing of atomic qualifiers, which is a novel contribution.
Further, we prove noninterference of our core calculus, which other systems did not. Another difference is that
CQual relies on a custom type checker, while our policies are translated and checked using C’s type system.
Finally, CQual supports qualifier inference, which can reduce the annotation burden on programmers. We
do not have general qualifier inference because to do so would be tantamount to constructing a type checker
for our system, which would defeat our goal of relying on a C compiler’s type checker.

Information Flow Type Systems. Information flow type systems is a well-studied field. Several projects
have extended existing languages to include information flow types (e.g., [44, 43]). Sabelfeld et al. provided
a comprehensive summary in their survey paper [46]. Most information flow type systems do not deal with
declassification. At most, they will include a “declassify” primitive to allow information downgrade, similar
to our relabel operations. However, we have not seen work where the sequence of labels is part of the
information flow type like ours, except for JRIF [38]. As a result, we are able to prove a noninterference
theorem that implies API sequencing. JRIF uses finite state automata to enforce sequencing policies, which
can entail a large runtime overhead.

Other projects that target enforcement of sequencing policies similar to those we have presented rely on
runtime monitoring, not types [22, 49, 9, 5, 18, 19].

Linear Types and Typestate. Our sequencing policies are tangentially related to other type systems
that aim to enforce API contracts. This line of work includes typestate and linear types [47, 2, 31]. The
idea is that by using typestate/linear types one can model and check behaviors such as files being opened
and closed in a balanced manner [2]. However, unlike in typestate the types on variables don’t change in
our system; when a part of a policy is fulfilled there is a new variable that “takes on” the rest of the policy.

Cryptographic Protocol Verification. Several projects have proposed languages to make verification of
cryptographic programs more feasible: Jasmine, Cryptol, Vale, Dafny, F*, and Idris [3, 40, 15, 39, 48, 16],
to name a few. There are also general tools for verifying cryptographic protocols [13, 12, 14, 27, 8, 24, 25].
These languages and tools are general purpose and more powerful than ours. However, none of these tools
directly support checking properties of C implementations of cryptographic libraries like we do. Bhargavan
et al.’s work uses refinement types to achieve similar goals as ours [13]. The annotated types can be viewed
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as refinement types: {x : τ | ρ}, where the policy is encoded as a predicate. Their system is more powerful,
however it only supports F# code.

8 Conclusion

We have described FlowNotation, a lightweight annotation system for C that allows programmers to specify
secrecy, integrity, and sequencing policies for their applications. FlowNotation is particularly useful in
identifying errors at compile time that violate high-level policies in cryptographic libraries and applications.
We have modeled our system formally and proved a noninterference guarantee. Finally, we have shown
through a set of detailed case studies that FlowNotation can express and check complex policies for large
bodies of C code and finds subtle implementation bugs.
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A Summary of µC: A Core Calculus with Nominal Typing

We summarize the syntax, operational semantics, and typing rules for µC in this section. µC represents the
fragment of C that FlowNotation works with.

A.1 Syntax

Basic Types π ::= T | int | unit | ptr(τ)
Types τ ::= π |π1 → π2

Values v ::= x |n | () | (T ){v1, · · · , vk} | loc | f
Expressions e ::= v | e1 bop e2 | v e | letx = e1 in e2 | v.i

| if v then e1 else e2 | new(e) | v := e | ∗ v
Type def. ctx D ::= · |D,T 7→ struct T {π1, · · · , πk}
Func typing ctx F ::= · |F, f : π1 → π2

Code ctx Ψ ::= · |Ψ, f(x) = e
Typing ctx Γ ::= · |Γ, x : τ
Store σ ::= · |σ, loc 7→ v
Store Typing Σ ::= · |Σ, loc : τ
Eval Ctx E ::= letx = [ ] in e | new([ ]) | v [ ] | v := [ ] | [ ] bop e | v bop [ ]

A.2 Operational Semantics

Ψ ` σ / e −→ σ′ / e′

Ψ ` σ / E[e] −→ σ′ / E[e′]
N-E-Context

v1 bop v2 = v

Ψ ` σ /i v1 bop v2 −→ σ /i v
N-E-Bop

Ψ ` σ / ∗loc −→ σ / σ(loc)
N-E-Deref

Ψ ` σ / loc := v −→ σ[loc 7→ v] / ()
N-E-Assign

loc fresh

Ψ ` σ / new(v) −→ σ[loc 7→ v] / loc
N-E-New

Ψ ` σ / ({v1, · · · , vn}).i −→ σ / vi
N-E-Field

Ψ = Ψ′, f(x) = e

Ψ ` σ / f v −→ σ / e[v/x]
N-E-App

Ψ ` σ / let x = v in e −→ σ / e[v/x]
N-E-Let

n > 0

Ψ ` σ / if n then e1 else e2 −→ σ / e1

N-E-If-True

Ψ ` σ / if 0 then e1 else e2 −→ σ / e2

N-E-If-False

A.3 Typing Rules

D;F ; Σ; Γ ` e : τ

D;F ; Σ; Γ ` n : int
N-T-Int

D;F ; Σ; Γ ` loc : Σ(loc)
N-T-Loc

D;F ; Σ; Γ ` x : Γ(x)
N-T-Var

D;F ; Σ; Γ ` f : F (f)
N-T-Fun

D;F ; Σ; Γ ` e1 : int D;F ; Σ; Γ ` e2 : int

D;F ; Σ; Γ ` e1 bop e2 : int
N-T-Bop
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T 7→ struct T {τ1, · · · , τn} ∈ D ∀i,D;F ; Σ; Γ ` vi : τi

D;F ; Σ; Γ ` (T ) {v1, · · · , vn} : T
N-T-Struct

D;F ; Σ; Γ ` v : T T 7→ struct T{τ1, · · · , τn} ∈ D
D;F ; Σ; Γ ` v.i : τi

N-T-Field
D;F ; Σ; Γ ` e : τ

D;F ; Σ; Γ ` new(e) : ptr(τ)
N-T-New

D;F ; Σ; Γ ` v : ptr(τ)

D;F ; Σ; Γ ` ∗v : τ
N-T-Deref

D;F ; Σ; Γ ` v : ptr(τ) D;F ; Σ; Γ ` e : τ

D;F ; Σ; Γ ` v := e : unit
N-T-Assign

D;F ; Σ; Γ ` v : π1 → π2 D;F ; Σ; Γ ` e : π1

D;F ; Σ; Γ ` v e : π2

N-T-App

D;F ; Σ; Γ ` e1 : τ1 D;F ; Σ; Γ, x : τ1 ` e2 : τ2

D;F ; Σ; Γ ` let x : τ1 = e1 in e2 : τ2
N-T-Let

D;F ; Σ; Γ ` v : int D;F ; Σ; Γ ` e1 : τ D;F ; Σ; Γ ` e2 : τ

D;F ; Σ; Γ ` if v then e1 else e2 : τ
N-T-If

B Definitions and Meta-theory for polC

B.1 polC Operational Semantics via Pairs

The operational semantic rules for polC include all the rules for µC and the following rule for relabeling.

Ψ ` σ / reLab(ρ′ ⇐ ρ)v −→ σ / v
P-E-Relab

B.2 Extension of Syntax with Pairs

To prove noninterference, we define a set of operational semantic rules that allow expression pairs, which
effectively represent two executions differing in secrets. The syntax for the extended values and expressions
are summarized below.

Ext. Values v+ ::= v | (T ){v+
1 , · · · , v

+
k } | 〈v1 | v2〉

Ext. Exprs. e+ ::= v+ | v+ e+ | letx = e+
1 in e+

2 | v+.i
| if v+

1 then e+
2 else e+

3

| new(e+) | v+
1 := e+

2 | ∗ v+ | 〈e1 | e2〉
Stored Values vs ::= v+ | 〈• | v2〉 | 〈v1 | •〉
Store σ ::= · |σ, loc 7→ vs

We write v+ to denote values that may include pairs and e+ to denote expressions that may include pairs.
The definitions disallow nested pairs. For the rest of this section, when convient and clear from the context,
we will write v and e to denote values and expressions that may contain pairs respectively.

B.3 Paired Operational Semantics

The operational semantics is summarized in Figure 10. Below are auxiliary definitions used by those rules.
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new v = v new1 v = 〈v | •〉 new2 v = 〈• | v〉
rd v = v rd1 v = bvc1 rd2 v = bvc2
upd v v′ = v′ upd1 v v

′ = 〈v′ | bvc2〉 upd2 v v
′ = 〈bvc1 | v′〉

bxci = x
bnci = n
b()ci = ()

b(T ){v1, · · · , vk}ci = (T ){bv1ci, · · · , bvkci}
blocci = loc
bfci = f

b(T ){v+
1 , · · · , v

+
k }ci = (T ){bv+

1 ci, · · · , bv
+
k ci}

b〈v1 | v2〉ci = vi
bv+ e+ci = bv+ci be+ci

bletx = e+
1 in e+

2 ci = let x = be+
1 ci in be

+
2 ci

bv+.jci = bv+ci.j
bif v+ then e+

1 else e+
2 ci = if bv+ci then be+

1 ci else be
+
2 ci

bnew(e+)ci = new(be+ci)
bv+ := e+ci = bv+ci := be+ci

b∗v+ci = ∗bv+ci
b〈e1 | e2〉ci = ei

x[x⇐ v+] = v+

y[x⇐ v+] = y
n[x⇐ v+] = n
()[x⇐ v+] = ()

((T ){v1, · · · , vn})[x⇐ v+] = (T ){v1[x⇐ v+], · · · , vn[x⇐ v+]}
loc[x⇐ v+] = loc
f [x⇐ v+] = f

((T ){v+
1 , · · · , v+

n })[x⇐ v+] = (T ){v+
1 [x⇐ v+], · · · , v+

n [x⇐ v+]}
〈v1 | v2〉[x⇐ v+] = 〈v1[x⇐ bv+c1] | v2[x⇐ bv+c2]〉
(v+ e+)[x⇐ v+

1 ] = v+[x⇐ v+
1 ] e+[x⇐ v+

1 ]
(let y = e+

1 in e+
2 )[x⇐ v+] = let y = e+

1 [x⇐ v+] in e+
2 [x⇐ v+]

(v+.i)[x⇐ v+
1 ] = (v+[x⇐ v+

1 ]).i
(if v+ then e+

1 else e+
2 )[x⇐ v+

1 ] = if v+[x⇐ v+
1 ] then e+

1 [x⇐ v+
1 ]

else e+
2 [x⇐ v+

1 ]
(new(e+))[x⇐ v+

1 ] = new(e+[x⇐ v+
1 ])

(v+ := e+)[x⇐ v+
1 ] = v+[x⇐ v+

1 ] := e+[x⇐ v+
1 ]

(∗v+)[x⇐ v+
1 ] = ∗(v+[x⇐ v+

1 ])
〈e1 | e2〉[x⇐ v+] = 〈e1[x⇐ bv+c1] | e2[x⇐ bv+c2]〉

B.4 Soundness and Completeness of the Paired Semantics

We first define projection relations.

b·ci = ·
bvsci = •

bσ, loc 7→ vsci = bσci
bvsci 6= •

bσ, loc 7→ vsci = bσci, loc 7→ bvsci

bσ / e+ci = bσci / be+ci
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Next we define a number of well-formedness invariants of the runtime configuration σ /i e.

Definition 3 (Defined Pointers). We say that loc is defined in σ for execution i if the following holds

• i = • implies ∀j ∈ {1, 2}, bσ(loc)cj = v

• i ∈ {1, 2} implies bσ(loc)ci = v

Definition 4 (In Scope Pointers). We say that loc is scope of σ /i e
+ where i ∈ {1, 2}

if loc ∈ ((
⋃

loc′∈dom(σ) fl(bσ(loc′)ci)) ∪ fl(be+ci))

Definition 5 (Closed Configurations). We say that σ /i e
+ is closed if all of the following holds

• i = • implies ∀i ∈ {1, 2}, for all loc s.t. loc is in sope of σ /i e
+, loc is defined in σ for execution i.

• i ∈ {1, 2} implies for all loc s.t. loc is in sope of σ /i e
+, loc is defined in σ for execution i.

Lemma 6 (Preservation of Well-formednness).

1. For i ∈ {1, 2, •} if σ1 /i e
+
1 is closed and Ψ ` σ1 /i e

+
1 −→ x /i y then exists σ2 and e+

2 s.t. x = σ2

and y = e+
2 and σ2 /i e

+
2 is closed.

2. For i ∈ {1, 2} if σ1 /i e1 is closed and Ψ ` σ1 /i e1 −→ x /i y then exists σ2 and e2 s.t. x = σ2 and
y = e2 and σ2 /i e2 is closed.

Proof (sketch): By induction over the structure of the operational semantic rules.

Lemma 7 (Distributivity of Projection for Expressions). be+[x⇐ v+]ci = be+ci[x⇐ bv+ci]

Proof. By induction over the structure of e+. Most cases can be proven by straightforward application of
I.H., which we omit.

Case: e+ = x

(1) bx[x⇐ v+]ci = bv+ci
(2) bxci[x⇐ bv+ci] = x[x⇐ bv+ci] = bv+ci

By (1) and (2)
(3) bx[x⇐ v+]ci = bxci[x⇐ bv+ci]

Case: e+ = 〈e1 | e2〉

(1) b〈e1 | e2〉[x⇐ v+]ci = b〈e1[x⇐ bv+c1] | e2[x⇐ bv+c2]〉ci = ei[x⇐ bv+ci]
(2) b〈e1 | e2〉ci[x⇐ bv+ci] = ei[x⇐ bv+ci]

By (1) and (2)
(3) b〈e1 | e2〉[x⇐ v+]ci = b〈e1 | e2〉ci[x⇐ bv+ci]

Lemma 8. If for all i ∈ {1, 2}, E :: Ψ ` σ1 /i e1 −→ σ2 /i e2 where σ1 /i e1 is closed
then Ψ ` bσ1ci / e1 −→ bσ2ci / e2 and bσ1cj = bσ2cj, where {i, j} = {1, 2}

Proof. Proof by induction on the structure of E . For most cases, the store will not be updated. The proof
follows directly by applying the same rule. We will present cases of memory operations.
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Ψ ` σ /i e −→ σ′ /i e
′

Ψ ` σ /i e −→ σ′ /i e
′

Ψ ` σ /i E[e] −→ σ′ /i E[e′]
P-E-Context

Ψ ` σ /i ei −→ σ′ /i e
′
i ej = e′j {i, j} = {1, 2}

Ψ ` σ / 〈e1 | e2〉 −→ σ′ / 〈e′1 | e′2〉
P-E-Pair

Ψ ` σ / 〈v1 | v2〉 v −→ σ / 〈v1 bvc1 | v2 bvc2〉
P-E-Lift-App

Ψ ` σ / ∗〈v1 | v2〉 −→ σ / 〈∗v1 | ∗ v2〉
P-E-Lift-Deref

Ψ ` σ / 〈v1 | v2〉 := v −→ σ / 〈v1 := bvc1 | v2 := bvc2〉
P-E-Lift-Assign

Ψ ` σ / 〈v1 | v2〉.j −→ σ / 〈v1.j | v2.j〉
P-E-Lift-Field

Ψ ` σ / if 〈v1 | v2〉 then vt else vf
−→ σ / 〈if v1 then bvtc1 else bvfc1 | if v2 then bvtc2 else bvfc2〉

P-E-Lift-If

Ψ ` σ / reLab(ρ′ ⇐ ρ)〈v1 | v2〉 −→ σ / 〈reLab(ρ′ ⇐ ρ)v1 | reLab(ρ′ ⇐ ρ)v2〉
P-E-Lift-Relab

v1 bop v2 = v

Ψ ` σ / v1 bop v2 −→ σ / v
P-E-Bop

Ψ ` σ /i reLab(ρ′ ⇐ ρ)v −→ σ /i v
P-E-Relab

Ψ ` σ /i ∗loc −→ σ /i rdi σ(loc)
P-E-Deref

Ψ ` σ /i loc := v −→ σ[loc 7→ updi σ(loc) v] /i ()
P-E-Assign

loc fresh

Ψ ` σ /i new(v) −→ σ[loc 7→ newi v] /i loc
P-E-New

Ψ ` σ /i ({v1, · · · , vn}).j −→ σ /i vj
P-E-Field

Ψ = Ψ′, f(x) = e

Ψ ` σ /i f v −→ σ /i e[x⇐ v][f ⇐ f(x) = e]
P-E-App

Ψ ` σ /i let x = v in e −→ σ /i e[x⇐ v]
P-E-Let

n > 0

Ψ ` σ /i if n then v1 else v2 −→ σ /i v1

P-E-If-True
Ψ ` σ /i if 0 then v1 else v2 −→ σ /i v2

P-E-If-False

Figure 10: Operational Semantics of Extended polC

Case: E ends in P-E-Deref

By assumption
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(1) Ψ ` σ /i ∗loc −→ σ /i (rdi σ(loc))
By deref

(2) Ψ ` bσci / ∗loc −→ bσci / rd bσci(loc)
By σ /i ∗loc is closed

(3) bσ(loc)ci = v, where v is a polC value
By definition of rd:

(4) rdi σ(loc) = bσ(loc)ci = v
(5) rd bσci(loc) = (bσci)(loc) = v

By (4) and (5)
(6) bσci(loc) = bσ(loc)ci = v

Case: E ends in P-E-Assign

By assumption
(1) Ψ ` σ /i loc := v −→ σ2 /i () and σ2 = σ[loc 7→ updi σ(loc) v]

By assign:
(2) Ψ ` bσci / loc := v −→ σ′ / () and σ′ = bσci[loc 7→ upd bσci(loc) v]

We show the case for when i = 1, the case for i = 2 can be proven similarly
By definition of upd

(3) σ′ = bσci[loc 7→ v]
(4) σ2 = σ[loc 7→ 〈bvc1 | bσ(loc)c2〉]

By v is a valid extended polC expression
(5) v does not contain • and v = bvc1

By the definition of projection
(6) bσ2c1 = bσc1[loc 7→ bvc1] = σ′

There are two subcases
Subcase a. loc is defined in σ for execution 2

(a) bσ2c2 = bσc2[loc 7→ bσ(loc)c2] = bσc2
Subcase b. loc is not defined in σ for execution 2

(b) bσ2c2 = bσ[loc 7→ 〈bvc1 | bσ(loc)c2〉]c2 = bσ[loc 7→ 〈bvc1 | •〉]c2 = bσc2

Case: E ends in P-E-New

By assumption
(1) Ψ ` σ /i new(v) −→ σ2 /i loc and σ2 = σ[loc 7→ newi v]

By new
(2) Ψ ` bσci / new(v) −→ σ′ / loc and σ′ = bσci[loc 7→ new v]

We show the case for when i = 1, the case for i = 2 can be proven similarly
By definition of new

(3) σ2 = σ[loc 7→ new1 v] = σ[loc 7→ 〈v | •〉]
(4) σ′ = bσc1[loc 7→ v]

By v is a valid extended polC expression and the definition of projection
(6) bσ2c1 = σ′ = bσc1[loc 7→ v]
(7) bσ2c2 = bσ[loc 7→ 〈v | •〉]c2 = bσc2

Lemma 9. bEci[beci] = bE[e]ci

Proof (sketch): Proof by induction on the structure of E.

34



Theorem 10 (Soundness). If E :: Ψ ` σ1 / e
+
1 −→ σ2 / e

+
2 where σ1 / e

+
1 is closed

then for all i ∈ {1, 2}, Ψ ` bσ1 / e
+
1 ci −→ bσ2 / e

+
2 ci; or bσ1 / e

+
1 ci = bσ2 / e

+
2 ci.

Proof. Proof by induction on the structure of E . Most cases are straightforward. We show a few key cases
below.

Case: E ends in Context

By assumption:
(1) Ψ ` σ / E[e] −→ σ′ / E[e′]
(2) E ′ :: Ψ ` σ / e −→ σ′ / e′

By I.H. on E ′
(3) Ψ ` bσ / eci −→ bσ′ / e′ci, i ∈ {1, 2}

By definition of projection
(4) Ψ ` bσci / beci −→ bσ′ci / be′ci

By (Context) and (4)
(5) Ψ ` bσci / bEci[beci] −→ bσ′ci / bEci[be′ci]

By Lemma 9, (5):
(6) Ψ ` bσci / bE[e]ci −→ bσ′ci / bE[e′]ci

Case: E ends in pair

By assumption
(1) Ψ ` σ / 〈e1 | e2〉 −→ σ′ / 〈e′1 | e′2〉
(2) E ′ :: Ψ ` σ /k ek −→ σ′ /k e

′
k, ej = e′j , {k, j} = {1, 2}

By Lemma 8 and (2)
(3) Ψ ` bσck / ek −→ bσ′ck / e′k and
(4) bσcj = bσ′cj
Subcase a. i = k
By (3), the conclusion holds
Subcase b. i = j
By (2),

(5) b〈e1 | e2〉cj = b〈e′1 | e′2〉cj
By (4) and (5), the conclusion holds

Case: E ends in deref

By assumption
(1) Ψ ` σ / ∗loc −→ σ / (rd σ(loc))

T.S. Ψ ` bσ / ∗locci −→ bσ / rd σ(loc)ci
By deref

(2) Ψ ` bσci / ∗loc −→ bσci / rd (bσci)(loc)
T.S. brd σ(loc)ci = rd (bσciloc)
By definition of rd:

(3) brd σ(loc)ci = bσ(loc)ci
(4) rd (bσci)(loc) = bσci(loc)

By σ / ∗loc is closed:
(5) bσ(loc)ci = v, where v is a polC value

By projection definitions
(6) bσci(loc) = bσ(loc)ci = v
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Case: E ends in assign

By assumption
(1) Ψ ` σ / loc := v −→ σ[loc 7→ upd σ(loc) v] / ()

T.S. Ψ ` bσ / loc := vci −→ bσ[loc 7→ upd σ(loc) v] / ()ci
By assign:

(2) Ψ ` bσci / loc := bvci 7→ bσci[loc 7→ upd bσci(loc) bvci] / ()
T. S. bσ[loc 7→ upd σ(loc) v]ci = bσci[loc 7→ upd bσci(loc) bvci]
By definition of upd

(3) σ[loc 7→ upd σ(loc) v] = σ[loc 7→ v]
(4) bσci[loc 7→ upd bσci(loc) bvci] = bσci[loc 7→ bvci]

By v is a valid extended polC expression
(5) v does not contain •

By the definition of projection
(6) bσ[loc 7→ v]ci = bσci[loc 7→ bvci]

Case: E ends in new

By assumption
(1) Ψ ` σ / new(v) −→ σ[loc 7→ new v] / loc

T.S. Ψ ` bσ / new(v)ci −→ bσ[loc 7→ new v] / locci
By new

(2) Ψ ` bσci / bnew(v)ci −→ bσci[loc 7→ new bvci] / loc
T.S. bσ[loc 7→ new v]ci = bσci[loc 7→ new bvci]
By definition of new

(3) σ[loc 7→ new v] = σ[loc 7→ v]
(4) bσci[loc 7→ new bvci] = bσci[loc 7→ bvci]

By v is a valid extended polC expression
(5) v does not contain •

By the definition of projection
(6) bσ[loc 7→ v]ci = bσci[loc 7→ bvci]

Case: E ends in Let

By assumption:
(1) Ψ ` σ / let x = v in e −→ σ / e[x⇐ v]

By Let
(2) Ψ ` bσci / let x = bvci in beci −→ bσci / beci[x⇐ bvci]

By Lemma 7,
(3) be[x⇐ v]ci = beci[x⇐ bvci]

Lemma 11 (Projected run). If E :: Ψ ` bσci / e −→ σ′ / e′ where e is a core polC constructs, i ∈ {1, 2},
then Ψ ` σ /i e −→ σ′′ /i e

′ and bσ′′ci = σ′.

Proof (sketch): By induction over the structure of E . For all the cases, we can apply the same evaluation
rule of E .

Lemma 12 (Projected execution completeness). If Ψ ` bσ / eci −→ σ′ / e′ where i ∈ {1, 2}, then exists σ1,
e1, and k ∈ {1, 2} s.t. Ψ ` σ / e −→k σ1 / e1 and bσ1 / e1ci = σ′ / e′.
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Proof. By induction over the structure of e. For most cases, we consider one of the following three cases:
the Context rule applies, a reduction applies, or a lift rule applies. We show one example case below. We
also show the special case when e is a pair.

Case: e = v e1

By assumption
(1) beci = v2 e2 and v2 = bvci, be1ci = e2

Subcase a: context applies
By assumption

(a1) Ψ ` bσci / v2 e2 −→ bσci / v2 e
′
2 and

(a2) Ψ ` bσci / e2 −→ bσci / e′2
By I.H. on e1

(a3) exists k, σ2, e′1, s.t. Ψ ` σ / e1 −→k σ2 / e
′
1 and bσ2 / e

′
1ci = bσci / e′2.

By applying context
(a4) Ψ ` σ / v e1 −→k σ2 / v e

′
1

By projection and (1), (a3)
(a5) bσ2 / v e

′
1ci = bσci / v2 e

′
2.

Subcase b: app applies
By assumption

(b1) v2 = f , e2 = v3, and exists v1, e1 = v1

(b2) Ψ ` bσci / v2 e2 −→ bσci / e3[x⇐ v3] and
(b3) Ψ = Ψ′, f(x) = e3

There are two cases: (I) v = 〈f1 | f2〉 and (II) v = f
For (II), we can apply the app rule, and use Lemma 7.
We show details of proof of (I) below.
By Lift-App rule

(b4) Ψ ` σ / 〈f1 | f2〉 v1 −→ σ / 〈f1 bv1c1 | f2 bv1c2〉
We show the case i = 1 and the other case can be proven similarly.
By (1) and (b1)

(b5) f1 = f and v1 = v3

By app
(b6) Ψ ` σ /i f v3 −→ σ /i e3[x⇐ v3]

By pair
(b7) Ψ ` σ / 〈f1 bv1c1 | f2 bv1c2〉 −→ σ / 〈e3[x⇐ v3] | f2 bv1c2〉

By (b4) and (b7)
the conclusion holds

Case: e = 〈e1 | e2〉

By assumption
(1) Ψ ` bσci / ei −→ σ′ / e′

We prove the case when i = 1, the other case is similar
By e1 is a core polC construct and Lemma 11

(2) Ψ ` σ /1 e1 −→ σ′′ /1 e
′ and σ′ = bσ′′c1

By pair and (2)
(3) Ψ ` σ / 〈e1 | e2〉 −→ σ′′ / 〈e′ | e2〉
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Theorem 13 (Completeness). If for all i ∈ {1, 2}, Ψ ` bσ / e+ci −→ni σi / vi, then exists σ′, v′, s.t.
Ψ ` σ / e −→∗ σ′ / v′ and for all i ∈ {1, 2}, bσ′ / v′ci = σi / vi.

Proof. By induction over n1 + n2.

Base case n1 + n2 = 0

By assumption
(1) be+ci = vi for i ∈ {1, 2}

By (1) and the definition of projection
(2) e+ is a value.

Inductive case n1 + n2 = k + 1

By assumption, at least one of the projections takes a step.
We show one case and the other can be proven similarly.

(1) Ψ ` bσ / e+c1 −→ σ′1 / e
′
1 −→n1−1 σ1 / v1

(2) Ψ ` bσ / e+c2 −→n2 σ2 / v2

By Lemma 12,
(3) exists k ∈ {1, 2}, σ′ and e+

1 s.t. Ψ ` σ / e+ −→k σ′ / e+
1

Subcase I: k = 1
By the evaluation of a core polC term is deterministic

(I1) σ′1 / e
′
1 = bσ′ / e+

1 c1
By Theorem 10 and (2), we have two cases

Subcase a:
(a1) Ψ ` bσ / e+c2 −→ bσ′ / e+

1 c2
By the evaluation of a core polC term is deterministic

(a2) Ψ ` bσ / e+c2 −→ σ′2 / e
′
2 −→n2−1 σ2 / v2

(a3) σ′2 / e
′
2 = bσ′ / e+

1 c2
By I.H. (1), (I1), (a2), (a3)

(a4) σ′′, v′, s.t. Ψ ` σ′ / e+
1 −→∗ σ′′ / v′

(a5) and for all i ∈ {1, 2}, bσ′′ / v′ci = σi / vi
By (a4) and (3), the conclusion holds
Subcase b:

(b1) and bσ / e+c2 = bσ′ / e+
1 c2

By I.H. (1), (I1), (2), (b1)
(b2) σ′′, v′, s.t. Ψ ` σ′ / e+

1 −→∗ σ′′ / v′
(b3) and for all i ∈ {1, 2}, bσ′′ / v′ci = σi / vi

By (b2) and (3), the conclusion holds

Subcase II: k = 2
The proof is similar to the previous case. We need to case on whether
the projection of the configuration to the right execution makes a step or
remains the same. Finally invoke I.H.
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D;F ; Σ; Γ ` v : s

D;F ; Σ; Γ ` n : int ρ
P-T-V-Int

D;F ; Σ; Γ ` loc : Σ(x) ρ
P-T-V-Loc

D;F ; Σ; Γ ` x : Γ(x)
P-T-V-Var

D;F ; Σ; Γ ` f : F (f) ρ
P-T-V-Fun

T 7→ struct T {s1, · · · , sn} ∈ D ∀i,D; Σ; Γ ` vi : si

D;F ; Σ; Γ ` (T ) {v1, · · · , vn} : T ρ
P-T-V-Struct

D;F ; Σ; Γ ` v : s′ s′ ≤ s
D;F ; Σ; Γ ` v : s

P-T-V-Sub

D;F ; Σ; Γ ` v1 : s D;F ; Σ; Γ ` v2 : s ρB s ρ ∈ H

D;F ; Σ; Γ ` 〈v1 | v2〉 : s
P-T-V-Pair

Figure 11: Typing Rules for Values in Extended polC

B.5 Summary of Typing Rules for Paired polC

First we define subtyping relations and policy operations below.

S1 vS S2 I1 vI I2
(S1, I1) v (S2, I2) ⊥ v ρ ρ v >

`1 v `2 ρ1 v ρ2

`1 :: ρ1 v `2 :: ρ2

ρ1 t ρ2 = ρ2 t ρ1 ρ t ⊥ = ρ ρ t > = >
` = `1 t `2 ρ = ρ1 t ρ2

`1 :: ρ1 t `2 :: ρ2 = ` :: ρ

b ≤ b′ t ≤ t′ s ≤ s′

b ≤ b
≤Refl

b ≤ b′ b′ ≤ b′′

b ≤ b′′
≤Trans

unit ≤ unit
≤Unit

b ≤ b′ ρ1 v ρ2

b ρ1 ≤ b′ ρ2

≤Pol
pc′ v pc t′1 ≤ t1 t2 ≤ t′2 ρ v ρ′

[pc](t1 → t2)ρ ≤ [pc′](t′1 → t′2)ρ
′ ≤Fun

ρB s

ρB unit

ρ′ v ρ
ρ′ B b ρ

ρ v ρ′

ρB [pc](t1 → t2)ρ
′

Figure 11 and 12 summarize typing rules for extended polC .

B.6 Preservation

Next we present the lemmas and proofs for the Preservation Theorem. We define Σ ≤ Σ′ as Σ′ = Σ,Σ′′.
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D;F ; Σ; Γ; pc ` e : s

D;F ; Σ; Γ ` v : s

D;F ; Σ; Γ; pc ` v : s t pc
P-T-E-Val

D;F ; Σ; Γ ` v : T ρ T 7→ struct {s1, · · · , sn} ∈ D pc v ρ
D;F ; Σ; Γ; pc ` v.i : si t ρ

P-T-E-Field

D;F ; Σ; Γ; pc ` e : s pc B ρ

D;F ; Σ; Γ; pc ` new(e) : ptr(s) ρ
P-T-E-New

D;F ; Σ; Γ ` v : ptr(s) ρ pc v ρ
D;F ; Σ; Γ; pc ` ∗v : s t ρ

P-T-E-Deref

D;F ; Σ; Γ ` v1 : ptr(s) ρ D;F ; Σ; Γ; pc ` e2 : s ρB s

D;F ; Σ; Γ; pc ` v1 := e2 : unit
P-T-E-Assign

D;F ; Σ; Γ ` vf : [pc′](t1 → t2)ρ D;F ; Σ; Γ; pc ` ea : t1 ρ t pc v pc′

D;F ; Σ; Γ; pc ` vf ea : t2
P-T-E-App

D;F ; Σ; Γ; pc ` e1 : s1 D;F ; Σ; Γ, x : s1; pc ` e2 : s2

D;F ; Σ; Γ; pc ` let x : s1 = e1 in e2 : s2

P-T-E-Let

D;F ; Σ; Γ ` v1 : int ρ D;F ; Σ; Γ; pc t ρ ` e2 : s D;F ; Σ; Γ; pc t ρ ` e3 : s

D;F ; Σ; Γ; pc ` if v1 then e2 else e3 : s
P-T-E-If

D;F ; Σ; Γ ` vf : (d&e)[pc′](b `1::> → b `2::⊥)ρf

D;F ; Σ; Γ; pc ` ea : b ρ ρ = `1::`2::ρ′ ρf t pc v pc′

D;F ; Σ; Γ; pc ` vf ea : b `2::ρ′
P-T-E-DE

D;F ; Σ; Γ ` v : b ρ pc v ρ′

D;F ; Σ; Γ; pc ` reLab(ρ′ ⇐ ρ) v : b ρ′
P-T-E-Relabel

D;F ; Σ; Γ; pc ` e : s′ s′ ≤ s
D;F ; Σ; Γ; pc ` e : s

P-T-E-Sub

D;F ; Σ; Γ; pc t ρ′ ` e1 : s D;F ; Σ; Γ; pc t ρ′ ` e2 : s ρB s ρ ∈ H ρ′ ∈ H

D;F ; Σ; Γ; pc ` 〈e1 | e2〉 : s
P-T-E-Pair

Figure 12: Typing Rules for Expressions in Extended polC

Lemma 14. If ρ′ v ρ, ρB s, s ≤ s′, then ρ′ B s′

Proof (sketch): By examining ρB s and s ≤ s′.

Lemma 15. If E :: D;F ; Σ; Γ; pc ` e : s and pc′ v pc then D;F ; Σ; Γ; pc′ ` e : s.

Proof (sketch): By induction over the structure of E . We use Lemma 14 in cases where pc is used in the
premises.

Lemma 16. 1. If E :: D;F ; Σ; Γ ` v : s and Σ ≤ Σ′ then D;F ; Σ′; Γ ` v : s.

2. If E :: D;F ; Σ; Γ; pc ` e : s and Σ ≤ Σ′ then D;F ; Σ′; Γ; pc ` e : s.
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Proof (sketch): By induction over the structure of E . We use Lemma 14 in cases where pc is used in the
premises.

Lemma 17 (Projection well-typed). If E :: D; Σ; Γ ` v : s then ∀i ∈ {1, 2}, D; Σ; Γ ` bvci : s

Proof (sketch): By induction over the structure of E .

Lemma 18 (Substitution).

1. If E :: D;F ; Σ; Γ, x:s ` v′ : s′ and D; ;F ; Σ; Γ ` v : s then D;F ; Σ; Γ ` v′[x⇐ v] : s′

2. If E :: D;F ; Σ; Γ, x:s; pc ` e : s′ and D;F ; Σ; Γ ` v : s then D;F ; Σ; Γ; pc ` e[x⇐ v] : s′

Proof (sketch): By induction over the structure of E .

Lemma 19.

1. If s ≤ T ρ then s = T ρ′

2. If s ≤ ptr(s′) ρ then s = ptr(s′) ρ′

3. If s ≤ [pcf ](t1 → t2)ρ then s = [pc′f ](t′1 → t′2)ρ
′

and pcf v pc′f , t1 ≤ t′1 and t′2 ≤ t2.

Proof (sketch): By induction over the derivation s ≤ s′.

Lemma 20 (Inversion).

1. If D;F ; · ` (T ){v1, · · · , vn} : T ρ, then D(T ) = {s1, · · · , s2} and ∀i ∈ [1, n], D;F ; · ` vi : si.

2. If D;F ; · ` loc : ptr(s) ρ, loc ∈ dom(σ), and D;F ` σ : Σ, then D;F ; ·; pc ` σ(loc) : s.

3. If D;F ; · ` f : [pcf ](t1 → t2)ρ, f(x) = e ∈ dom(Ψ) and D;F ` Ψ, then D;F ;x : t1; pcf ` e : t2.

4. If D;F ; · ` 〈v1 | v2〉 : s then ∀i ∈ [1, 2], D;F ; · ` vi : s and ∃ρ, s.t. ρB s and ρ ∈ H.

Proof (sketch): By induction over the typing derivation.

Lemma 21 (Value is typed w/o PC). If E :: D;F ; Σ; Γ; pc ` v : s then D;F ; Σ; Γ ` v : s.

Proof (sketch): By induction over the structure of E . In the cases of E-Sub and E-Pair, we directly apply
I.H. and then apply the rule with the same name in value typing. In the case of E-Val, we apply V-Sub.

Lemma 22 (Store). For all i ∈ {1, 2, •}, if D;F ; Σ; Γ ` v : s and i ∈ {1, 2} implies exists ρ ∈ H s.t. ρB s;
then D;F ; Σ; Γ ` newi v : s and and for all v′ s.t. D;F ; Σ; Γ ` v′ : s, D;F ; Σ; Γ ` updi v v

′ : s.

Proof (sketch): By examining the definitions of these operations.

Lemma 23 (Value Has Flexible Label). Given a set of high labels H, if E :: D;F ; Σ; · ` v : b ρ and ρ ∈ H
iff ρ′ ∈ H then D;F ; Σ; · ` v : b ρ′.

Proof (sketch): By induction on the structure of v. The value typing rules assign an arbitrary ρ to the type
of core polC values. In the case of pairs, the assumption that ρ ∈ H iff ρ′ ∈ H allows us to apply V-Pair
rule.
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Lemma 24. If E :: D;F ; Σ; Γ; pc ` e : s then pc B s.

Proof (sketch): By induction over the structure of E .

Lemma 25 (Preservation). If Ψ ` σ /i e −→ σ′ /i e
′, D;F ` Ψ, D;F ` σ : Σ and D;F ; Σ; ·; pc ` e : s,

and i ∈ {1, 2} implies pc ∈ H then exists Σ′ ≥ Σ s.t. D;F ` σ′ : Σ′ and D;F ; Σ′; ·; pc ` e′ : s.

Proof. By induction over the structure of E . The proofs are mostly standard and use Lemma 18 and 20. We
only show cases where information flow labels or pairs are involved.

Case: E ends in E-ReLabel

By assumption
(1) D;F ; Σ; Γ; pc ` reLab(ρ′ ⇐ ρ) v : b ρ′

(2) E ′ :: D;F ; Σ; Γ ` v : b ρ and pc v ρ′
By examining the operational semantic rules, there are two subcases
Subcase a: v is not a pair

(a3) Ψ ` σ /i reLab(ρ′ ⇐ ρ)v −→ σ /i v
By the definition of H
(a4) ρ ∈ H iff ρ′;∈ H

By Lemma 23, E ′, and (a4)
(a5) D;F ; Σ′; Γ ` v : b ρ′

Subcase b: v = 〈v1 | v2〉
(b3) Ψ ` σ / reLab(ρ′ ⇐ ρ)〈v1 | v2〉 −→ σ / 〈reLab(ρ′ ⇐ ρ)v1 | reLab(ρ′ ⇐ ρ)v2〉

By Lemma 20 and E ′
(b4) ∀i ∈ [1, 2], D;F ; · ` vi : b ρ and
(b5) ∃ρ′′, s.t. ρ′′ B b ρ and ρ′′ ∈ H

By (b4) and E-Relab
(b6) ∀i ∈ [1, 2], D;F ; ·; pc t ρ′ ` reLab(ρ′ ⇐ ρ)vi : b ρ′

By the definition of H and (b5)
(b7) ρ ∈ H and ρ′ ∈ H

By E-Pair, (b6), (b7)
(b8) D;F ; Σ; Γ; pc ` 〈reLab(ρ′ ⇐ ρ)v1 | reLab(ρ′ ⇐ ρ)v2〉 : b ρ′

Case: E ends in E-If

By assumption
(1) D;F ; Σ; Γ; pc ` if v then e2 else e3 : s
(2) E ′ :: D;F ; Σ; Γ ` v : int ρ
(3) and E2 :: D;F ; Σ; Γ; pc t ρ ` e2 : s
(4) and E3 :: D;F ; Σ; Γ; pc t ρ ` e3 : s

By examining the operational semantic rules, there are two subcases: v is not a pair
and v is a pair. We only show the case when v = 〈v1 | v2〉

(5) Ψ ` σ / if 〈v1 | v2〉 then e2 else e3 −→ σ / 〈if v1 thenb e2c1 else be3c1 | if v2 then be2c2 else be3c2〉
By Lemma 20 and E ′

(6) ∀i ∈ {1, 2}, D;F ; · ` vi : int ρ and
(7) ∃ρ′′, s.t. ρ′′ B int ρ and ρ′′ ∈ H

By (7) and the definition of H
(8) ρ ∈ H

By Lemma 24, 14 and E2
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(9) ρB s
By E-Val and (6)

(10) ∀i ∈ [1, 2], D;F ; ·; pc t ρ ` vi : int pc t ρ
By Lemma 17 and (3), (4)

(11) D;F ; Σ; Γ; pc t ρ ` bekcm : s where k ∈ {2, 3} and m ∈ {1, 2}
By E-If and (3), (4), and (11)

(12) D;F ; Σ; Γ; pc t ρ ` if vi thenb e2ci else be3ci : s where i ∈ {1, 2}
By E-Pair, (8), (9), and (12)

(13) D;F ; Σ; Γ; pc ` 〈if v1 thenb e2c1 else be3c1 | if v2 then be2c2 else be3c2〉 : s

Case: E ends in E-DE

By assumption
(1) D;F ; Σ; Γ; pc ` vf ea : b `2::ρ′

(2) E ′ :: D;F ; Σ; Γ ` vf : (d&e)[pc′](b `1::> → b `2::⊥)ρf

(3) E ′′ :: D;F ; Σ; Γ; pc ` ea : b ρ
(4) and ρ = `1::`2::ρ′, ρf t pc v pc′

By examining the operational semantic rules, there are three subcases
Subcase a: ea is not a value. This is a standard case and we omit.
Subcase b: ea = va and vf is not a pair

(b1) Ψ ` σ /i vf va −→ σ /i e[x⇐ va][vf ⇐ vf (x) = e]
By Lemma 20 and D;F ` Ψ

(b2) D;F ; Σ;x : b `1::>, vf : (d&e)[pc′](b `1::> → b `2::⊥)ρf ; pc′ ` e : b `2::⊥
By E ′′, Lemma 21 and V-Sub

(b3) E ′′ :: D;F ; Σ; Γ ` va : b `1::>
By Lemma 18 (b2) and (b3)

(b4) D;F ; Σ; ·; pc′ ` e[x⇐ va][vf ⇐ vf (x) = e] : b `2::⊥
Lemma 15 and (b4)

(b5) D;F ; Σ; ·; pc ` e[x⇐ va][vf ⇐ vf (x) = e] : b `2::⊥
By (b5) and V-Sub

(b6) D;F ; Σ; ·; pc ` e[x⇐ va][vf ⇐ vf (x) = e] : b `2::ρ′

Subcase c: ea = va and vf = 〈v1 | v2〉
(c1) Ψ ` σ / 〈v1 | v2〉 va −→ σ / 〈v1 bvac1 | v2 bvac2〉

By Lemma 20 and E ′
(c2) ∀i ∈ [1, 2], D;F ; · ` vi : (d&e)[pc′](c `1::> → b `2::⊥)ρf and
(c3) ∃ρ′′, s.t. ρ′′ v ρf and ρ′′ ∈ H

By Lemma 21, Lemma 17 and E ′′
(c4) D;F ; Σ; Γ ` bvaci : b ρ where i ∈ {1, 2}

By (4) and (c3)
(c5) ρf t pc t ρ′′ v pc′

By (c2), (c4), and (c5) and E-De
(c6) ∀i ∈ [1, 2], D;F ; ·; pc t ρ′′ ` vi bvaci : b `2::ρ′

By the definition of H and (c3)
(c7) ρf ∈ H

By E-Pair, (c6), (c7)
(c8) D;F ; Σ; Γ; pc ` 〈v1 bvac1 | v2 bvac2〉 : b `2::ρ′

Case: E ends in E-Pair
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By assumption
(1) D;F ; Σ; Γ; pc ` 〈e1 | e2〉 : s
(2) E ′ :: D;F ; Σ; Γ; pc t ρ′ ` ei : s, i ∈ {1, 2}
(3) ρB s, ρ ∈ H, and ρ′ ∈ H

By examining the operational semantic rules
(4) Ψ ` σ / 〈e1 | e2〉 −→ σ′ / 〈e′1 | e′2〉
(5) Ψ ` σ /i ei −→ σ′ /i e

′
i, ej = e′j , and {i, j} = {1, 2}

By I.H. on E ′
(6) exists Σ′ ≥ Σ s.t. D;F ` σ′ : Σ′

(7) and D;F ; Σ′; ·; pc t ρ′ ` e′i : s
By Lemma 16 (2) and (6)

(8) D;F ; Σ′; ·; pc t ρ′ ` e′j : s
By pair (3), (7), and (8)

(9) D;F ; Σ′; Γ; pc ` 〈e′1 | e′2〉 : s

Theorem 26 (Preservation). If Ψ ` σ / e −→ σ′ / e′ and ` Ψ;σ; e then ` Ψ;σ′; e′.

Proof (sketch): By the definitions of ` Ψ;σ; e and Lemma 25.

B.7 Noninterference

Finally, we present proofs for the Noninterference Theorem for polC .

F ;R ` ρ1  ρ2 F ;R ` ρ2  ρ3

F ;R ` ρ1  ρ3

ρ1 v ρ2 F ;R ` ρ2  ρ3

F ;R ` ρ1  ρ3

`2::⊥ ⇐ `1::> ∈ R
F ;R ` `1 :: `2 :: ρ `2 :: ρ

F = F ′, f : (d&e)[pc′](b `1::> → b `2::⊥)ρf

F ;R ` `1 :: `2 :: ρ `2 :: ρ

∀ρ′, F ;R ` ρ ρ′, ρ′ 6v ρA
ρA;F ;R ` ρ ∈ H

Lemma 27. If ρA;F ;R ` ρ1 ∈ H and ρ1 v ρ2 then ρA;F ;R ` ρ2 ∈ H.

Lemma 28. 1. If D;F ; Σ; · ` v : int ρ, and ρ /∈ H, then bvc1 = bvc2.

2. If D;F ; Σ; ·;⊥ ` v : int ρ, and ρ /∈ H, then bvc1 = bvc2.

Proof (sketch): By induction over the typing derivation of the value.

Definition 29 (Equivalent substitution). We define D;F ` δ1 ≈H δ2 : Γ iff for all x ∈ dom(Γ), D;F ; ·; ·;`
δi(x) : Γ(x) (i ∈ {1, 2}) and δ1(x) = δ2(x) if labOf (Γ(x)) /∈ H.

Γ ` δ1 ./ δ2 = δ

Γ ` · ./ · = ·
Γ ` δ1 ./ δ2 = δ labOf (Γ(x)) ∈ H

Γ ` δ1, x 7→ v1 ./ δ2, x 7→ v2 = δ, x 7→ 〈v1 | v2〉

Γ ` δ1 ./ δ2 = δ labOf (Γ(x)) /∈ H
Γ ` δ1, x 7→ v1 ./ δ2, x 7→ v2 = δ, x 7→ v1
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Lemma 30. If D;F ` δ1 ≈H δ2 : Γ and Γ ` δ1 ./ δ2 = δ, then ∀x ∈ dom(Γ), D;F ; ·; · ` δ(x) : Γ(x).

Proof (sketch): By induction over the structure of Γ.

Theorem 31 (Noninterference).
If D;F ; ·; Γ;⊥ ` e : int ρ, let H be the set of labels not-observable by an attacker with label ρA, given
substitution δ1, δ2 s.t. δ1 ≈H δ2 : Γ, and ρ /∈ H and Ψ ` ∅ / eδ1 −→∗ σ1 / v1 and Ψ ` ∅ / eδ2 −→∗ σ2 / v2,
then v1 = v2.

Proof.
Let δ be the substitution from Γ ` δ1 ./ δ2 = δ.
By Lemma 30

(1) ∀x ∈ dom(Γ), D;F ; ·; · ` δ(x) : Γ(x).
By Substitution Lemma (Lemma 18)

(2) D;F ; ·;⊥ ` e ◦ δ : int ρ
By Γ ` δ1 ./ δ2 = δ

(3) be ◦ δci = eδi, i ∈ {1, 2}
By Completeness (Theorem 13)

(4) Ψ ` ∅ / e ◦ δ −→∗ σ / v and for all i ∈ {1, 2}, bvci = vi
By Preservation (Theorem 26)

(5) D;F ; ·;⊥ ` v : int ρ
By Lemma 28

(6) v1 = v2 = bvc1 = bvc2

C Definitions and Proofs of Translations from annotated µC to
µC via polC

C.1 Mapping Annotated µC to polC

We first list all the rules for mapping annotated µC types to polC types.

〈〈a〉〉 = t 〈〈β〉〉 = s

〈〈unit〉〉 = unit 〈〈int〉〉 = int U

〈〈β〉〉 = s

〈〈ptr(β)〉〉 = ptr(s) U 〈〈T 〉〉 = T U 〈〈T at ρ〉〉 = T ρ

〈〈int at ρ〉〉 = int ρ

〈〈β〉〉 = s

〈〈ptr(β) at ρ〉〉 = ptr(s) ρ

∀i ∈ [1, 2], 〈〈ai〉〉 = ti

〈〈a1 → a2〉〉 = [⊥](t1 → t2)

∀i ∈ [1, 2], 〈〈ai〉〉 = ti

〈〈(d&e)a1 → a2〉〉 = (d&e)[⊥](t1 → t2)

〈〈Da〉〉 = D

〈〈·〉〉 = ·
∀i ∈ [1, k], 〈〈ai〉〉 = ti

〈〈Da, T 7→ struct T {a1, · · · , ak}〉〉 = 〈〈Da〉〉, T 7→ struct T {t1 · · · , tk}
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We write lv and le to denote labeled polC values and expressions respectively. Values and expressions
are mapped to labeled values and expressions to facilitate the translation process later.

Labeled values lv ::= x@s |x@(d&e)s |n@(b ρ) | () | (T ){lv1, · · · , lvk}@(T ρ)
| f@s | f@(d&e) s

Labeled expressions le ::= lv | (le1 bop le2) | (lv le) | (letx : s = le1 in le2) | (lv .i)
| if lv then le1 else le2 | new(le)@(ptr(s) ρ) | lv := le | ∗ lv | reLab(ρ′ ⇐ ρ)lv

Rules for mapping annotated µC values to labeled polC values are as follows.

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv

Da;Fa; Γa ` 〈〈()〉〉 ⇒ ()
V-L-Unit

Da;Fa; Γa ` 〈〈n〉〉 ⇒ n@int U
V-L-Int

Γa(x) = β

Da;Fa; Γa ` 〈〈x〉〉 ⇒ x@〈〈β〉〉
V-L-Var

Da;Fa; Γa ` 〈〈f〉〉 ⇒ f@〈〈F (f)〉〉
V-L-Fun

∀i ∈ [1, n], Da;Fa; Γa ` 〈〈vi〉〉 ⇒ lv i

Da;Fa; Γa ` 〈〈(T ) {v1, · · · , vn}〉〉 ⇒ (T ){lv1, · · · , lvn}@T U
V-L-Struct

Next, we summarize rules for mapping annotated µC expressions to labeled polC expressions below.

Da;Fa; Γa; s ` 〈〈e〉〉 ⇒ le

Da;Fa; Γa; t ` 〈〈n〉〉 ⇒ n@t
L-Int

〈〈Γa(x)〉〉 = s

Da;Fa; Γa; s ` 〈〈x〉〉 ⇒ x@s
L-Var

Da(T ) = struct T {β1, · · · , βn} ∀i ∈ [1, n], Da;Fa; Γa; 〈〈βi〉〉 ` 〈〈vi〉〉 ⇒ lv i

Da;Fa; Γa; T ρ ` 〈〈(T ){v1, · · · , vn}〉〉 ⇒ (T ){lv1, · · · , lvn}@(T ρ)
L-Struct

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv
tpOf (lv) = T ρ Da(T ) = (struct T{β1, · · · , βn}) ∀i ∈ [1, n], ρ = labOf (〈〈βi〉〉)

Da;Fa; Γa; t ` 〈〈v.i〉〉 ⇒ lv .i
L-Field-U

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv
tpOf (lv) = T ρ Da(T ) = (struct T{β1, · · · , βn}) ∃i ∈ [1, n], ρ 6= labOf (〈〈βi〉〉)

Da;Fa; Γa; t ` 〈〈v.i〉〉 ⇒ let y : T ⊥ = reLab(⊥ ⇐ ρ) lv in (y@T ⊥).i
L-Field

Da;Fa; Γa; s ` 〈〈e〉〉 ⇒ le

Da;Fa; Γa; (ptr(s) ρ) ` 〈〈new(e)〉〉 ⇒ new(le)@(ptr(s) ρ)
L-New

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = b ρ

Da;Fa; Γa; t ` 〈〈∗v〉〉 ⇒ (let y : b ⊥ = reLab(⊥ ⇐ ρ) lv in ∗ (y@b ⊥)
L-Deref
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Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = ptr(s) ρ Da;Fa; Γa; s ` e⇒ le

Da;Fa; Γa; t ` 〈〈v := e〉〉 ⇒ let y : ptr(s) ⊥ = reLab(⊥ ⇐ ρ) lv in y@ptr(s) ⊥ := le
L-Assign

Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = [⊥](t1 → t2)⊥ Da;Fa; Γa; t1 ` 〈〈e〉〉 ⇒ le

Da;Fa; Γa; t2 ` 〈〈v e〉〉 ⇒ lv le
L-App

Da;Fa; Γa ` 〈〈vf 〉〉 ⇒ lvf tpOf (lvf ) = (d&e)[⊥](t1 → t2)⊥ Da;Fa; Γa ` 〈〈va〉〉 ⇒ lva

Da;Fa; Γa; t2 ` 〈〈vf va〉〉 ⇒ lvf lva
L-App-DE

Da;Fa; Γa; 〈〈β1〉〉 ` 〈〈e1〉〉 ⇒ le1 Da;Fa; Γa, x : β1; t2 ` 〈〈e2〉〉 ⇒ le2

Da;Fa; Γa; t2 ` 〈〈let x : β1 = e1 in e2〉〉 ⇒ let x : 〈〈β1〉〉 = le1 in le2

L-Let

Da;Fa; Γa ` 〈〈v1〉〉 ⇒ lv1

tpOf (lv1) = int ρ Da;Fa; Γa; t ` 〈〈e2〉〉 ⇒ le2 Da;Fa; Γa; t ` 〈〈e3〉〉 ⇒ le3

Da;Fa; Γa; t ` 〈〈if v1 then e2 else e3〉〉
⇒ let x : int ⊥ = (reLab(⊥ ⇐ ρ) lv1) in if x@int ⊥ then le2 else le3

L-If

The mapping of a function definition is as follows. To make sure that programmers do not have to
drastically change their programs, the mapping takes care of relabeling so the parameter can be used at its
original type inside the function body. Similarly, the function body is relabeled from the original type to the
annotated type.

〈〈a1〉〉 = b1 ρ1 〈〈a2〉〉 = b2 ρ2

Da;Fa; Γa; b2 ρ2 ` 〈〈e[y/x]〉〉 ⇒ le

Da;Fa; Γa ` 〈〈f(x) : a1 → a2 = e〉〉 = f(x) = let y : t1 U = reLab(U ⇐ ρ1) x
in let z : t2 U = le in reLab(ρ2 ⇐ U ) z

C.2 Translation from polC to µC

We have two type translation functions, one that does not take a type definition context as input and the one
that does. The reason is that when translating the annotated type definition context, we need to generate
new type definitions that are unknown at the time of translation, which are mapped to ? as a result.

JtK = (τ,D∆) JsK = (τ,D∆)

ρ ∈ {U ,⊥}
JT ρK = (T, ·)

ρ /∈ {U ,⊥} T ′ = genName(T, ρ)

JT ρK = (T ′, T ′ 7→ T?)

ρ ∈ {U ,⊥}
Jint ρK = (int, ·)

ρ /∈ {U ,⊥} T = genName(int, ρ)

Jint ρK = (T, T 7→ struct T {int})
ρ ∈ {U ,⊥} JtK = (τ,D′)

Jptr(t) ρK = (ptr(τ), D′)

ρ /∈ {U ,⊥} T = genName(ptr(t), ρ) JtK = (τ,D′)

Jptr(t) ρK = (ptr(τ), (D′, T 7→ struct T {ptr(τ)}))
∀i ∈ [1, 2], JtiK = (τi, Di)

J[⊥](t1 → t2)⊥K = (τ1 → τ2, D1 ∪D2)
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JtKD = (τ,D∆) JsKD = (τ,D∆)

ρ ∈ {U ,⊥}
JT ρKD = (T, ·)

ρ /∈ {U ,⊥} T ′ = genName(T, ρ) T 7→ struct T {τ1, · · · , τn} ∈ D
JT ρKD = (T ′, T ′ 7→ struct T ′ {τ1, · · · , τn})

ρ ∈ {U ,⊥}
Jint ρKD = (int, ·)

ρ /∈ {U ,⊥} T = genName(int, ρ)

Jint ρKD = (T, T 7→ struct T {int})
ρ ∈ {U ,⊥} JtKD = (τ,D′)

Jptr(t) ρKD = (ptr(τ), D′)

ρ /∈ {U ,⊥} T = genName(ptr(t), ρ) JtKD = (τ,D′)

Jptr(t) ρKD = (ptr(τ), (D′, T 7→ struct T {ptr(τ)}))
∀i ∈ [1, 2], JtiK = (τi, Di)D

J[⊥](t1 → t2)⊥KD = (τ1 → τ2, D1 ∪D2)

Translating the annotated type definition context needs two steps. The first step generates new type
definitions, which are not filled as they themselves are being translated. In the second step, we fill these
undefined type definitions using the translated type definition context.

[D] = (D′;D∆)

[·] = (·; ·)
∀i ∈ [1, k], JtiK = (τi, Di) [D] = (D′;D∆)

[D,T 7→ struct T {t1, · · · , tk}] = (D′, T 7→ struct T {τ1 · · · , τk};∪ki=1Di ∪∆∆)

D ` fill(D1) = D2

D ` fill(·) = ·

D ` fill(D1, T 7→ struct T {π1, · · · , πn}) = D ` fill(D1), T 7→ struct T {π1, · · · , πn}

D(T ) = struct T {π1, · · · , πn}
D ` fill(D1, T

′ 7→ struct T?) = D ` fill(D1), T ′ 7→ struct T ′ {π1, · · · , πn}

[D] = (D′;D∆) D′ ` fill(D∆) = D′′

JDK = D′, D′′

C.3 Correctness of the Translation

We present definitions, lemmas, and proofs for the correctness of our translation algorithm.

noBot(unit)

ρ 6= ⊥
noBot(int ρ)

noBot(s) ρ 6= ⊥
noBot(ptr(s) ρ)

ρ 6= ⊥
noBot(T at ρ)

∀i ∈ [1, 2], noBot(ti)

noBot([⊥](t1 → t2)⊥)

∀i ∈ [1, 2], noBot(ti)

noBot((d&e)[⊥](t1 → t2)⊥)

Lemma 32 (Translation Pre-image Unique). If noBot(s) and noBot(s′) and fst(JsK) = fst(Js′K) or
fst(JsKD) = fst(Js′KD) then s = s′.

Proof (sketch): By induction over the structure of s.
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JleK = e

Jx@sKD = (x, ·)
T-Var

ρ ∈ {U ,⊥}
Jn@int ρKD = (n, ·)

T-Int
ρ /∈ {U ,⊥} Jint ρKD = (T,D′)

Jn@int ρKD = ((T ){n}, D′)
T-Int-Pol

∀i ∈ [1, n], Jlv iKD = (vi, Di) JT ρKD = (T ′, D′)

J(T ){lv1, · · · , lvn}@(T ρ)KD = ((T ′){v1, · · · , vn},∪n1Di ∪D′
T-Struct

JlvKD = (v,D′)

Jlv .iKD = (v.i,D′)
T-Field

JleKD = (e,D′) ρ ∈ {U ,⊥}
Jnew(le)@ptr(s) ρKD = (new(e), D′)

T-New

JleKD = (e,D′) ρ /∈ {U ,⊥} Jptr(s) ρKD = T

Jnew(le)@ptr(t) ρKD = ((T ){new(e)}, D′)
T-New-Pol

JlvKD = (v,D′)

J∗lvKD = (∗v,D′)
T-Deref

Jlv1KD = (v1, D1) Jle2KD = (e2, D2)

Jlv1 := le2KD = (v1 := e2, D1 ∪D2)
T-Assign

Jle1KD = (e1, D1) Jle2KD = (e2, D2) Jt1KD = (τ1, D3)

Jlet x : t1 = le1 in le2KD = (let x : τ1 = e1 in e2, D1 ∪D2 ∪D3

T-Let

Jlv1KD = (v1, D1) Jle2KD = (e2, D2) Jle3KD = (e3, D3)

Jif lv1 then le2 else le3KD = (if v1 then e2 else e3, D1 ∪D2 ∪D3)
T-If

tpOf (lv) = [pc](t1 → t2)ρf JlvKD = (v,D1) J≤KD = (e,D2)

Jlv leKD = (v e,D1 ∪D2)
T-App

tpOf (lvf ) = (d&e)[pc](t1 → t2)ρf Jlvf KD = (vf , Df )
tpOf (lva) = b ρ ρ = `1 :: `2 :: ρ′ JreLab(`1 :: > ⇐ ρ)lvaKD = (e′, D1)

JreLab(`2 :: ρ′ ⇐ `2 :: ⊥)(z@b `2 :: ⊥)KD = (e′′, D2) Jt1KD = (τ1, D3) Jt2KD = (τ2, D4)

Jlvf lvaKD = (let y : τ1 = e′ in let z : τ2 = vf y in e′′, Df ∪D1 ∪D2 ∪D3 ∪D4)
T-App-DE

Figure 13: Translation Rules

Lemma 33. If β does not include ⊥, then noBot(〈〈β〉〉).

Proof (sketch): By induction over the structure of β. The translation rules does not insert ⊥ except for
functions.

Lemma 34 (Value Translation Soundness). If E :: Da;Fa; Γa ` 〈〈v〉〉 = lv , tpOf (lv) = s, 〈〈Da〉〉 = Dl,
〈〈Fa〉〉 = Fl, 〈〈Γa〉〉 = Γl, JDlK = D, JΓlKD = (Γ, D1), JFlKD = (F,D2), JlvKD = (v′, D3), and D ∪D1 ∪D2 ∪
D3;F ; ·; Γ ` v′ : τ implies Dl;Fl; ·; Γl ` tmOf (lv) : s and JsK = (τ, ).

Proof. By induction over the structure of E .

Case: E ends in V-L-Int rule.

By assumption:
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JlvKD = (v,D1) tpOf (lv) = b
b is not a struct type ρ′ /∈ {⊥,U } ρ /∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = (let x = v.1 in (T ){x}, D1 ∪D2)
T-ReLab-N1

JlvKD = (v,D1) tpOf (lv) = b
b is not a struct type ρ′ /∈ {⊥,U } ρ ∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = ((T ){v}, D1 ∪D2)
T-ReLab-N2

JlvKD = (v,D1) tpOf (lv) = b ρ b is not a struct type ρ /∈ {⊥,U } ρ′ ∈ {⊥,U }
JreLab(ρ′ ⇐ ρ)lvKD = (v.1D1)

T-ReLab-N3

JlvKD = (v,D1) labOf (lv) = b ρ ρ, ρ′ ∈ {U ,⊥}
JreLab(ρ′ ⇐ ρ)lvKD = (v,D1)

T-ReLab-same

ρ /∈ {⊥,U } or ρ′ /∈ {⊥,U }
tpOf (lv) = T ρ JT ρ′KD = (T ′, D1) JlvKD = (v,D2)

JreLab(ρ′ ⇐ ρ)lvKD = (let x1 = v.1 in · · · let xn = v.n in (T ′){x1, · · · , xn}, D1 ∪D2)
T-ReLab-Struct-Re

Figure 14: Translation Rules

(1) Da;Fa; Γa ` 〈〈n〉〉 ⇒ n@int U
By examining the translation rules, only T-Int applies

(2) Jn@int U KD = (n, ·),
By typing rules

(3) D ∪D1 ∪D2;F ; ·; Γ ` n : int
By typing rule V-Int

(4) Dl;Fl; ·; Γl ` n : int U
By type translation

(5) Jint U KD = (int, )

Case: E ends in V-L-Var rule.

By assumption:
(1) Da;Fa; Γa ` 〈〈x〉〉 ⇒ x@〈〈β〉〉 and Γa(x) = β

By examining the translation rules, only T-Var applies
(2) Jx@〈〈β〉〉KD = (x, ·),

By typing rules
(3) D ∪D1 ∪D2;F ; ·; Γ ` x : Γ(x)

By typing rule V-Var
(4) Dl;Fl; ·; Γl ` x : Γl(x)

By assumption that 〈〈Γa〉〉 = Γl and JΓlKD = (Γ, D1)
(5) J〈〈β〉〉KD = J〈〈Γa(x)〉〉KD = JΓl(x)KD = (Γ(x), )

Case: E ends in V-L-Fun rule.
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This case can be proved similarly as the previous case.

Case: E ends in V-L-Struct rule.

By assumption:
(1) Da;Fa; Γa ` 〈〈(T ) {v1, · · · , vn}〉〉 ⇒ (T ){lv1, · · · , lvn}@T U
(2) and ∀i ∈ [1, n], Ei :: Da;Fa; Γa ` 〈〈vi〉〉 ⇒ lv i

By examining the translation rules, only T-Struct applies
(3) J(T ){lv1, · · · , lvn}@(T U )KD = ((T ′){v′1, · · · , v′n}, D3)
(4) and Jlv iKD = (v′i, D3i) and JT U K = (T ′, D3ii), and D3 = D3i ∪D3ii

By type translation rules
(5) T ′ = T and D3ii = ·

By typing rules
(6) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` (T ){v′1, · · · , v′n} : T
(7) and (D ∪D1 ∪D2 ∪D3)(T ) = struct T{τ1, · · · , τn},
(8) and D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′i : τi

By T ∈ dom(Da)
(9) T ∈ dom(D)

By I.H. on Ei
(10) Dl;Fl; ·; Γl ` tmOf (lv i) : si and JsiKD = (τi, )

By well-formedness constraints,
(11) Dl(T ) = struct T{s′1, · · · , s′n}

By JDlK = D and D(T ) = struct T{τ1, · · · , τn}
(12) Js′iK = τi

By Lemma 32, (10) and (12)
(13) si = s′i

By V-Struct and (10) and (13)
(14) Dl;Fl; ·; Γl ` tmOf ((T ){lv1, · · · , lvn}@(T U )) : T U

By type translation rules
(15) JT U KD = (T, )

Lemma 35 (Relabel translation is sound). If tpOf (lv) = b ρ, e = fst(JreLab(ρ′ ⇐ ρ)lvKD), v = fst(JlvKD),
and D′, D;F ; Γ ` v : fst(Jb ρKD) then D;F ; Γ ` e : fst(Jb ρ′KD).

Proof (sketch): By examining the translation rules for JreLab(ρ′ ⇐ ρ)lvKD.

Lemma 36. Given e = fst(JreLab(ρ′ ⇐ ρ)lvKD), then D,D′;F ; Γ ` e : τ implies exists τ ′ s.t. D,D′;F ; Γ `
fst(JlvKD) : τ ′.

Proof (sketch): By examining the translation rules for JreLab(ρ′ ⇐ ρ)lvKD.

Theorem 37 (Expression Translation Soundness). If E :: Da;Fa; Γa; s ` 〈〈e〉〉 = le, 〈〈Da〉〉 = Dl, 〈〈Fa〉〉 = Fl,
〈〈Γa〉〉 = Γl, JDlK = D, JΓlKD = (Γ, D1), JFlKD = (F,D2), JleKD = (e′, D3), and D ∪D1 ∪D2 ∪D3;F ; ·; Γ `
e′ : τ implies Dl;Fl; ·; Γl ` tmOf (le) : s and JsK = (τ, )

Proof. By induction over the structure of E .

Case: E ends in L-Int rule.
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By assumption:
(1) Da;Fa; Γa; s ` 〈〈n〉〉 = n@s

By examining the translation rules, there are two subcases
subcase i. T-Int applies

(i2) s = int U and Jn@int U KD = (n, ·),
By typing rules

(i3) D ∪D1 ∪D2;F ; ·; Γ ` n : int
By typing rule P-T-V-Int and P-T-E-Val

(i4) Dl;Fl; ·; Γl;⊥ ` n : int U
By type translation

(i5) Jint U KD = (int, )
subcase ii. T-Int-Pol applies

(ii2) s = int ρ and Jn@int ρKD = ((T ){n}, De), Jint ρKD = (T,D3)
By (ii2) and type translation rules

(ii3) D3 = T 7→ struct T{int}
By typing rules

(ii4) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` (T ){n} : T
By typing rule P-T-V-Int and P-T-E-Val

(ii5) Dl;Fl; ·; Γl;⊥ ` n : int ρ
By type translation

(ii6) Jint ρKD = (T, )

Case: E ends in L-Var rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈x〉〉 ⇒ x@s and 〈〈Γa(x)〉〉 = s

By examining the translation rules, only T-Var applies
(2) Jx@sKD = (x, ·),

By typing rules
(3) D ∪D1 ∪D2;F ; ·; Γ ` x : Γ(x)

By typing rule P-T-V-Var and P-T-E-Val
(4) Dl;Fl; ·; Γl;⊥ ` x : Γl(x)

By assumption that 〈〈Γa〉〉 = Γl and JΓlKD = (Γ, D1)
(5) JsKD = J〈〈Γa(x)〉〉KD = JΓl(x)KD = (Γ(x), )

Case: E ends in L-Struct rule.

By assumption:
(1) Da;Fa; Γa;T ρ ` 〈〈(T ) {v1, · · · , vn}〉〉 ⇒ (T ){lv1, · · · , lvn}@T ρ
(2) Da(T ) = struct T{β1, · · · , βn}
(3) and ∀i ∈ [1, n], Ei :: Da;Fa; Γa; 〈〈βi〉〉 ` 〈〈vi〉〉 ⇒ lv i

By examining the translation rules, only T-Struct applies
(4) J(T ){lv1, · · · , lvn}@(T ρ)KD = ((T ′){v′1, · · · , v′n}, D3)
(5) and Jlv iKD = (v′i, D3i) and JT ρKD = (T ′, D′)

By type translation rules
(6) T ′ = genName(T, ρ) and D′ = T ′ 7→ struct T ′{τ1, · · · , τn} and D(T ) = struct T{τ1, · · · , τn}

By typing rules
(7) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` (T ′){v′1, · · · , v′n} : T ′

(8) and (D ∪D1 ∪D2 ∪D3)(T ′) = struct T ′{τ1, · · · , τn},
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(9) and D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′i : τi
By I.H. on Ei

(10) Dl;Fl; ·; Γl;⊥ ` tmOf (lv i) : 〈〈βi〉〉 and J〈〈βi〉〉KD = (τi, )
By P-T-V-Struct and P-T-E-Val and (6) and (10)

(11) Dl;Fl; ·; Γl;⊥ ` tmOf ((T ){lv1, · · · , lvn}@(T ρ)) : T ρ
By (5)

(12) JT ρKD = (T ′, )

Case: E ends in L-Field-U rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈v.i〉〉 ⇒ lv .i
(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = T ρ
(3) and Da(T ) = (struct T{β1, · · · , βn})
(4) and ∀i ∈ [1, n], ρ = labOf (〈〈βi〉〉)

By examining the translation rules, only T-Field applies
(5) Jlv .iKD = (v′.i,D3) and JlvKD = (v′, D3)

By assumption and typing rules
(6) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′.i : τi

By inversion of (6)
(7) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′ : T ′

(8) and (D ∪D1 ∪D2 ∪D3)(T ′) = struct T ′{τ1, · · · , τn}
By Lemma 34 on E ′, (5) and (8)

(9) Dl;Fl; ·; Γl ` tmOf (lv) : T ρ and JT ρKD = (T ′, )
By (9), P-T-E-Val

(10) Dl;Fl; ·; Γl;⊥ ` tmOf (lv) : T ρ
By (3) and 〈〈Da〉〉 = Dl

(11) Dl(T ) = struct T {〈〈β1〉〉, · · · , 〈〈βn〉〉}
By (10), (11), and P-T-E-Field

(12) Dl;Fl; ·; Γl;⊥ ` tmOf (lv .i) : 〈〈βi〉〉 t ρ
By (4) and (12)

(13) Dl;Fl; ·; Γl;⊥ ` tmOf (lv .i) : 〈〈βi〉〉
By (9) and JDlK = D

(14) D(T ) = struct T{τ1, · · · , τn} and D(T ′) = struct T ′{τ1, · · · , τn}
By (11) and (14)

(15) J〈〈βi〉〉KD = (τi, )

Case: E ends in L-Field rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈v.i〉〉 ⇒ le and le = let y : T ⊥ = reLab(⊥ ⇐ ρ) lv in (y@T ⊥).i
(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = T ρ
(3) and Da(T ) = (struct T{β1, · · · , βn})

By examining the translation rules, only T-Let applies
(4) JleKD = (e′, D′3 ∪D′′3 ) and e′ = let y : T = e1 in y.i,
(5) and JreLab(⊥ ⇐ ρ) lvKD = (e1, D3)

By assumption and typing rules
(6) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τi

By inversion of (6)
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(7) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e1 : T
(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : T ` y.i : τi and
(9) Dl(T ) = struct T {〈〈β1〉〉, · · · , 〈〈βn〉〉}

By (9) P-T-E-Field
(10) Dl;Fl; ·; Γl, y : T ⊥;⊥ ` y.i : 〈〈βi〉〉

By (9) and JDlK = D
(11) D(T ) = struct T{τ1, · · · , τn}

By (9) and (11)
(12) J〈〈βi〉〉KD = (τi, )

By Lemma 36 and (7)
(13) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` fst(JlvKD) : τ ′

By Lemma 34 on E ′, (5), (7), (13)
(14) Dl;Fl; ·; Γl ` tmOf (lv) : T ρ

By (14), P-T-E-Relab
(15) Dl;Fl; ·; Γl;⊥ ` tmOf (reLab(⊥ ⇐ ρ) lv) : T ⊥
By P-T-E-Let, (15), (10),
(16) Dl;Fl; ·; Γl;⊥ ` le : 〈〈βi〉〉

Case: E ends in L-New rule.

By assumption:
(1) Da;Fa; Γa; (ptr(s) ρ) ` 〈〈new(e)〉〉 ⇒ new(le)@(ptr(s) ρ)
(2) E ′ :: Da;Fa; Γa; s ` 〈〈e〉〉 ⇒ le

By examining the translation rules, there are two subcases
Subcase i: T-New applies

(i3) ρ ∈ {U ,⊥}, Jnew(le)@(ptr(s) ρ)KD = (new(e′), D3) and JleKD = (e′, D3)
By assumption and typing rules

(i4) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` new(e′) : ptr(τ)
By inversion of (i4)

(i5) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ
By I.H. on E ′, (i5) and (i3)

(i6) Dl;Fl; ·; Γl;⊥ ` tmOf (le) : s and JsKD = (τ, )
By (i6), P-T-E-New

(i7) Dl;Fl; ·; Γl;⊥ ` tmOf (new(le)) : ptr(s) ρ
(i8) Jptr(s) ρKD = (ptr(τ), )

Subcase ii: T-New-Pol applies
(ii3) ρ /∈ {U ,⊥}, Jnew(le)@(ptr(s) ρ)KD = (T{new(e′)}, D3)
(ii4) and JleKD = (e′, D3) and Jptr(s) ρK = T

By assumption and typing rules
(ii5) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` (T ){new(e′)} : T

By inversion of (i5)
(ii6) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ
(ii7) and (D ∪D1 ∪D2 ∪D3)(T ) = struct T{ptr(τ)} and JsKD = (τ, )

By I.H. on E ′, (ii6) and (ii4)
(ii8) Dl;Fl; ·; Γl;⊥ ` tmOf (le) : s and JsKD = (τ, )

By (ii8), P-T-E-New
(ii9) Dl;Fl; ·; Γl;⊥ ` tmOf (new(le)) : ptr(s) ρ

Case: E ends in L-Deref rule.
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By assumption:
(1) Da;Fa; Γa; s ` 〈〈∗v〉〉 ⇒ le and le = let y : b ⊥ = reLab(⊥ ⇐ ρ) lv in ∗ (y@b ⊥)
(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = b ρ

By examining the translation rules, only T-Let applies
(3) JleKD = (e′, D′3 ∪D′′3 ) and e′ = let y : b = e1 in ∗ y,
(4) and JreLab(⊥ ⇐ ρ) lvKD = (e1, D3)

By assumption and typing rules
(5) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ

By inversion of (5)
(6) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e1 : τy
(7) τy = ptr(τ), and JbKD = (τy, )
(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : τy ` ∗y : τ

By (7)
(9) b = ptr(s) and JsKD = (τ, )

By P-T-E-Deref
(10) Dl;Fl; ·; Γl, y : b ⊥;⊥ ` ∗y : s

By Lemma 36, (4) and (6)
(13) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` fst(JlvKD) : τ ′

By Lemma 34 on E ′, (5), (7), and (13)
(14) Dl;Fl; ·; Γl ` tmOf (lv) : b ρ

By (14), P-T-E-Relab
(15) Dl;Fl; ·; Γl;⊥ ` tmOf (reLab(⊥ ⇐ ρ) lv) : b ⊥

By P-T-E-Let, (15),(9) (10),
(16) Dl;Fl; ·; Γl;⊥ ` le : s

Case: E ends in L-Assign rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈v := e〉〉 ⇒ le

and le = let y : ptr(s) ⊥ = reLab(⊥ ⇐ ρ) lv in y@ptr(s) ⊥ := le2

(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = ptr(s) ρ
(3) E ′′ :: Da;Fa; Γa; s ` e⇒ le2

By examining the translation rules, only T-Let applies
(4) JleKD = (e′, D′3 ∪D′′3 ) and e′ = let y : τy = e1 in y := e2,
(5) and JreLab(⊥ ⇐ ρ) lvKD = (e1, D

′
3)

(6) and Jle2KD = (e2, D
′′
3 ),

(7) and Jptr(s) ⊥KD = (τy, ),
By assumption and typing rules

(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ ′

By inversion of (7)
(9) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e1 : τy
(10) τy = ptr(τ), and τ ′ = unit,
(11) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : τy ` e2 : τ

By (7) and (10)
(12) JsKD = (τ, )
By I.H. on E ′′, (3), (6), (11)
(13) Dl;Fl; ·; Γl;⊥ ` tmOf (le2) : s
By T-Assign, (13),
(14) Dl;Fl; ·; Γl, y : τy ⊥;⊥ ` y@ptr(s) ⊥ := le2 : unit
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By Lemma 36, (5) and (9)
(15) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` fst(JlvKD) : τ ′

By Lemma 34 on E ′, (2), (15),
(16) Dl;Fl; ·; Γl ` tmOf (lv) : ptr(s) ρ

By (16), P-T-E-Relab
(17) Dl;Fl; ·; Γl;⊥ ` tmOf (reLab(⊥ ⇐ ρ) lv) : ptr(s) ⊥

By P-T-E-Let, (17) (14),
(18) Dl;Fl; ·; Γl;⊥ ` le : unit

Case: E ends in L-If rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈if v1 then e2 else e3〉〉 ⇒ le

and le = let x : int ⊥ = (reLab(⊥ ⇐ ρ) lv1) in if x@int ⊥ then le2 else le3

(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = int ρ
(3) E ′′ :: Da;Fa; Γa; s ` 〈〈e2〉〉 ⇒ le2

(4) E ′′′ :: Da;Fa; Γa; s ` 〈〈e3〉〉 ⇒ le3

By examining the translation rules, only T-Let applies
(5) JleKD = (e′, D′3 ∪D′′3 ) and e′ = let x : int = e1 in if x then e′2 else e′3,
(6) and JreLab(⊥ ⇐ ρ) lvKD = (e1, D

′
3)

(7) and Jle2KD = (e′2, D
′′
3 ), and Jle3KD = (e′3, D

′′′
3 ),

By assumption and typing rules
(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ

By inversion of (8)
(9) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e1 : int
(10) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, x : int ` e′2 : τ
(11) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, x : int ` e′3 : τ

By I.H. on E ′′, (3), (7), (10)
(12) Dl;Fl; ·; Γl;⊥ ` tmOf (le2) : s and JsKD = (τ, )

By I.H. on E ′′′, (4), (7), (11)
(13) Dl;Fl; ·; Γl;⊥ ` tmOf (le3) : s

By T-If, (12), (13)
(14) Dl;Fl; ·; Γl, x : int ⊥;⊥ ` tmOf (if x@int ⊥ then le2 else le3) : s

By (5) there are two subcases
Subcase ρ ∈ {⊥,U }
T-ReLab-Same applies

(i1) e1 = v1 and JlvKD = (v1, D3)
By Lemma 34 on E ′, (6), and (i11)

(i2) Dl;Fl; ·; Γl ` tmOf (lv) : int ρ
By (i2), P-T-E-Val

(i3) Dl;Fl; ·; Γl;⊥ ` tmOf (lv) : int ρ
(i4) Dl;Fl; ·; Γl;⊥ ` tmOf (reLab(⊥ ⇐ ρ) lv) : int ⊥

By P-T-E-Let, (i4), (15),
(i5) Dl;Fl; ·; Γl;⊥ ` le : s

Subcase ρ /∈ {⊥,U }
T-ReLab-N3 applies

(ii1) e1 = v′.1 and JlvKD = (v′, D3)
By inversion of (9)

(ii2) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′ : T ′,
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(ii3) (D ∪D1 ∪D2 ∪D3)(T ′) = struct T ′{int}
By Lemma 34 on E ′, (2), (ii3), and (ii1)

(ii4) Dl;Fl; ·; Γl ` tmOf (lv) : int ρ and Jptr(s) ρKD = (T ′, D′3)
By (ii4), P-T-E-Val

(ii5) Dl;Fl; ·; Γl;⊥ ` tmOf (lv) : int ρ
(ii6) Dl;Fl; ·; Γl;⊥ ` tmOf (reLab(⊥ ⇐ ρ) lv) : int ⊥

By P-T-E-Let, (ii6) (15),
(ii7) Dl;Fl; ·; Γl;⊥ ` le : s

Case: E ends in L-Let rule.

By assumption:
(1) Da;Fa; Γa; s ` 〈〈let x : β1 = e1 in e2〉〉 ⇒ le

and le = let x : 〈〈β1〉〉 = le1 in le2

(2) E ′ :: Da;Fa; Γa; 〈〈β1〉〉 ` 〈〈e1〉〉 ⇒ le1

(3) E ′′ :: Da;Fa; Γa, x : β1; t2 ` 〈〈e2〉〉 ⇒ le2

By examining the translation rules, only T-Let applies
(4) JleKD = (e′, D′3 ∪D′′3 ) and e′ = let x : τ = e′1 in e′2
(5) J〈〈β1〉〉KD = (τ, )
(6) and Jle1KD = (e′1, D

′
3), and Jle2KD = (e′2, D

′′
3 ),

By assumption and typing rules
(7) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ ′

By inversion of (7)
(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′1 : τ
(9) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, x : τ ` e′2 : τ ′

By I.H. on E ′, (2), (6), (8)
(10) Dl;Fl; ·; Γl;⊥ ` tmOf (le1) : 〈〈β1〉〉 and J〈〈β1〉〉KD = (τ, )

By I.H. on E ′′′, (3), (6), (9)
(11) Dl;Fl; ·; Γl, x : 〈〈β1〉〉;⊥ ` tmOf (le2) : s

By T-Let, (10), (11)
(12) Dl;Fl; ·; Γl;⊥ ` le : s

Case: E ends in L-App rule.

By assumption:
(1) Da;Fa; Γa; t2 ` 〈〈v e〉〉 ⇒ lv le
(2) E ′ :: Da;Fa; Γa ` 〈〈v〉〉 ⇒ lv and tpOf (lv) = [⊥](t1 → t2)⊥

(3) E ′′ :: Da;Fa; Γa; t1 ` e⇒ le
By examining the translation rules, only T-App applies

(4) Jlv leKD = (v′ e′, D′3 ∪D′′3 ) and
(5) and JlvKD = (v′, D′3)
(6) and JleKD = (e′, D′′3 ),

By assumption and typing rules
(7) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′ e′ : τ2

By inversion of (7)
(8) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` v′ : τ1 → τ2
(9) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ1

By I.H. on E ′′, (6), (9)
(10) Dl;Fl; ·; Γl;⊥ ` tmOf (le) : t1 and Jt1KD = (τ1, )
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By Lemma 34 on E ′, (5), (8)
(11) Dl;Fl; ·; Γl ` tmOf (lv) : [⊥](t1 → t2)ρ and J[⊥](t1 → t2)ρKD = τ1 → τ2

By (11), P-T-E-Val
(12) Dl;Fl; ·; Γl;⊥ ` tmOf (lv) : [⊥](t1 → t2)⊥

By P-T-E-App, (10), (12),
(13) Dl;Fl; ·; Γl;⊥ ` lv le : t2

By (11)
(14) Jt2KD = (τ2, )

Case: E ends in L-App-De rule.

By assumption:
(1) Da;Fa; Γa; t2 ` 〈〈vf va〉〉 ⇒ lvf lva
(2) E ′ :: Da;Fa; Γa ` 〈〈vf 〉〉 ⇒ lvf and tpOf (lvf ) = (d&e)[⊥](t1 → t2)⊥

(3) E ′′ :: Da;Fa; Γa ` va ⇒ lva
By examining the translation rules, only T-App-De applies

(4) Jlvf lvaKD = (e′, D′3 ∪D′′3 ∪D′′′3 ∪D′′′′3 ∪D′′′′′3 ) and e′ = let y : τ1 = ea in let z : τ2 = v′f y in e2

(5) tpOf (lva) = b ρ and ρ = `1 :: `2 :: ρ′

(6) JreLab(`1 :: > ⇐ ρ)lvaK = (ea, D
′
3)

(7) JreLab(`2 :: ρ′ ⇐ `2 :: ⊥)(z@b `2 :: ⊥)K = (e2, D
′′
3 )

(8) Jt1K = (τ1, D
′′′
3 ) and Jt2K = (τ2, D

′′′′
4 )

(9) and Jlvf KD = (v′f , D
′′′′′
3 )

By assumption,
(10) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` e′ : τ ′

By inversion of (10)
(11) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` ea : τ1
(12) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : τ1 ` v′f y : τ2
(13) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : τ1, z : τ2 ` e2 : τ ′

By inversion of (12)
(14) D ∪D1 ∪D2 ∪D3;F ; ·; Γ, y : τ1 ` v′f : τ1 → τ2

By Lemma 34 on E ′, and (14)
(15) Dl;Fl; ·; Γl;⊥ ` tmOf (lvf ) : (d&e)[⊥](t1 → t2)⊥

By Lemma 36, (5), and (11)
(16) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` fst(JlvaKD) : τ ′ and τ ′ = fst(Jb ρKD)

By Lemma 34
(17) Dl;Fl; ·; Γl ` tmOf (lva) : b ρ and

By Lemma 35 on (6) (11) (16)
(18) τ1 = fst(Jb `1 :: >KD)

By Lemma 32 on (8) (18)
(19) t1 = b `1 :: >

By Lemma 36 and (7)
(20) D ∪D1 ∪D2 ∪D3;F ; ·; Γ ` fst(Jz@b `2 :: ⊥KD) : τ ′′ and τ ′′ = fst(Jz@b `2 :: ⊥KD)

By Lemma 32 on and z has type τ2 (8) (20)
(21) t2 = b `2 :: ⊥

By P-T-E-App-De
(22) Dl;Fl; ·; Γl;⊥ ` tmOf (lvf lva) : b `2 :: ρ′
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