
Modal Crash Types for Intermittent Computing?

Farzaneh Derakhshan, Myra Dotzel, Milijana Surbatovich, and Limin Jia

Carnegie Mellon University, Pittsburgh PA, USA
{fderakhs, mdotzel, milijans, liminjia}@andrew.cmu.edu

Abstract. Intermittent computing is gaining traction in application do-
mains such as Energy Harvesting Devices (EHDs) that experience arbi-
trary power failures during program execution. To make progress, pro-
grams require system support to checkpoint state and re-execute after
power failure by restoring the last saved state. This re-execution should
be correct, i.e., simulated by a continuously-powered execution. We study
the logical underpinning of intermittent computing and model check-
point, crash, restore, and re-execution operations as computation on
Crash types. We draw inspiration from adjoint logic and define Crash
types by introducing two adjoint modality operators to model persistent
and transient memory values of partial (re-)executions and the transi-
tions between them caused by checkpoints and restoration. We define a
Crash type system for a core calculus. We prove the correctness of inter-
mittent systems by defining a novel logical relation for Crash types.

Keywords: intermittent computing · modal Crash type · logical relation

1 Introduction

Intermittent computing is gaining importance in application domains that re-
quire inaccessible or large-scale device deployments, such as wildlife monitor-
ing [27], tiny satellites [21, 28], or smart civil infrastructure [1]. As battery main-
tenance may be infeasible in these environments, programs can instead run on
batteryless Energy Harvesting Devices (EHDs). An EHD can run solely off en-
ergy harvested from its environment, at the cost of being powered intermit-
tently. The device harvests energy (e.g., via solar panel) into a re-chargeable
buffer. Once the energy buffer is full, the device turns on and begin to compute,
consuming the stored energy. When the buffer drains, the device turns off at
an arbitrary location until it can recharge and repeat this operational cycle. A
power failure erases volatile execution state (e.g., the program counter), while
nonvolatile state persists. For programs to make progress, they require inter-
mittent system support to save state at checkpoints and restore the saved state
after power failure, potentially causing re-execution from the last checkpoint.

? This work was generously funded in part through National Science Foundation (NSF)
Award 2007998, NSF Graduate Research Fellowship Program grants DGE1745016
and DGE2140739, and the CMU CyLab Security & Privacy Institute. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsoring organizations.

As EHDs aim to enable long-term deployments with little or no maintenance,
intermittent systems must execute programs reliably despite frequent power fail-
ures and partial executions. Initial systems [34, 42, 23] relied only on informal no-
tions of correctness that left them susceptible to memory consistency bugs caused
by reading the results of partial executions [22] or by allowing sensor reads from
past executions to remain in the nonvolatile memory [38]. More recent work [40,
39, 9, 13] provides formal frameworks and correctness criteria for reasoning about
intermittent execution. More concretely, all intermittent executions of a program
must be simulated by some continuously-powered execution [40]. In other words,
intermittent execution should be idempotent. Even if the system induces mul-
tiple partial executions of a program due to power failure, the program should
not generate a different result than it would on a single execution.

The correctness of an intermittent execution relies on checkpointing, restor-
ing, and finalizing state upon reaching the next checkpoint; mistakes in these op-
erations can lead to incorrect, non-idempotent behavior. Few works have tried to
understand the fundamental logical underpinning of these operations. This work
fills this gap by formalizing checkpointing, crash, restoration, and re-execution
as computation on Crash types. Crash types capture the core notion of inter-
mittent computing: some values and computations persist across power failures
and others do not. For instance, nonvolatile memory state persists across power
failure and reboots, while volatile memory does not. Conversely, partially com-
puted results do (or rather should) not persist across power failures, while com-
pleted/checkpointed computations do. We call the former unstable values and
computations and the latter stable values and computations. Our key insight is
that the interactions between these stable and unstable components bear close
resemblance to shifts in adjoint logic [8, 35]. Computation of a stable value can
only rely on locations that store stable values, while computation on unstable
values can rely on both stable and unstable values. Moreover, checkpoint and
restore operations can turn values of one type to the other. We define terms and
their associated types so that each of the key intermittent computing operations
must be well-typed under our Crash types.

We define a core calculus for intermittent computing and develop a type sys-
tem for Crash types by using the two adjoint modality operators. The Crash type
of an intermittent computation is: Cunit = ↓(nat ↑ Cunit)∨↓↑unit, which says
that the computation will either encounter a power failure (the left disjunct),
or succeed in producing a stable value (the right disjunct). In the former case,
the computation is suspended until energy arrives, after which it will again act
as an intermittent computation. This recursive definition captures the multi-
ple re-executions of a computation under repeated power failures. To prove the
correctness of intermittent systems, we define a novel logical relation for Crash
types, indexed by the number of power failures, which relates a continuously-
powered execution to an intermittent execution. While intermittent computing
motivates our results, the methods we develop are generally applicable to other
system failures with the same effect on persistent and transient storage.

This paper makes the following technical contributions:

– The first logical interpretation of key operations of intermittent execution.
– Novel Crash types to specify how stable and unstable portions of the system

and computation interact.
– A core calculus for Crash types with progress and preservation.
– A novel logical relation to prove the correctness of intermittent executions.

2 Background

We provide background on intermittent computing and detail how checkpoint
systems work to store and restore program state to handle power failures.

Intermittent Computing on EHDs. EHDs need intermittent system sup-
port to save necessary state before power failure and to restore it after reboot.
When and where such checkpoints occur governs the intermittent execution
model under which software executes. The two prevailing intermittent execu-
tion models are just-in-time (JIT) checkpoints [5, 4] and atomic execution [22,
23, 42, 36]. Under a JIT model, state is saved immediately prior to power failure
so that execution resumes from the same point after reboot. Under an atomic
execution model, state is saved at the beginning of an atomic region. If power
fails before the end of the region, the system will reboot to the beginning of
the region, re-executing until the region completes without power failure (akin
to software transactions [37]). State-of-the-art intermittent systems use a hybrid
“JIT + Atomics” model that defaults to JIT checkpoints except when there is
an explicit atomic region [39, 24, 18]. Our core calculus follows this hybrid model.

To ensure idempotence, an intermittent system must save the value of volatile
state and often a portion of the nonvolatile state. To illustrate why, consider an
execution of the simple program in Fig. 1. The program has four variables stored
in nonvolatile memory: x, y, and z of type int and u of type bool. It consists
of two code blocks: an atomic region declared with the Ckpt construct (lines
1-7 on the left of Fig. 1) and a regular code block executed in JIT mode (lines
8-14 on the right). A continuous execution of the atomic region with initial state
x = 2, y = 0, z = 1, u = ff ends in x = 2, y = 1, z = 1, u = tt. Now, suppose power
fails after the execution of Line 2. Once the device recharges, the program restarts
from the start of the atomic region. If the system does not restore y’s original
value, this re-run computes an incorrect result: x = 2, y = 2, z = 1, u = ff. Thus,
to ensure idempotent execution, an intermittent system must checkpoint, i.e.,
save the value of, both volatile and nonvolatile memory. We next explain correct
execution of the program in Fig. 1 for atomic and JIT modes.

Atomic Region Execution. As EHDs are highly resource constrained, the
system should save state judiciously; checkpointing all of nonvolatile memory
is expensive and unnecessary. For example, variables in an atomic region that
are read-only (i.e., never updated) do not change value and need not be check-
pointed. In our example, x and z are read-only, so checkpointing y and u is
enough to ensure correct intermittent execution. Many intermittent systems fol-
low this design of checkpointing all variables that are not read-only [36, 18, 16,
25, 43, 12]. Given such a system, Fig. 2 shows an execution of the atomic region

1 Ckpt[a1; x,z:read-only](

2 y:=y+z;

3 let w= x-y in

4 if w>0 then

5 u:=tt

6 else

7 u:=ff);

8 let w=not u in

9 if w then

10 x=x+y;

11 w=ff

12 else

13 skip;

14 skip

Fig. 1. An example program with an atomic region and a JIT region

2 0 1 ff
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 0 1 ff
ℓ! ℓ! ℓ" ℓ"

𝖭𝖵% 0 ff
ℓ! ℓ#

𝖵!
Crash

Restore

1 ff2 0 1 ff𝖭𝖵!

2 0 1 ff𝖭𝖵&
ℓ% ℓ"

2 0 1 ff𝖭𝖵" 𝖵" 0 ff
ℓ! ℓ#

InitWorld

2 0 1 ff𝖭𝖵' 1 tt 1
⋮

FinWorld

2 1 1 tt𝖭𝖵(

ℓ! ℓ! ℓ" ℓ#

Ω!,#: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ!,#: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK

L1

L2

L7
ℓ)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ#,
𝑧 ↦ ℓ$, 𝑢 ↦ ℓ%

𝛾:= ⋯ ,𝑤 ↦ ℓ)

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK

Ω$: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ": = 𝑦: ↓↑ 𝑖@RD, 𝑢: ↓↑ 𝑏@CK

Ω(: = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ(: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK, 𝑤: ↓↑ 𝑖@CK

Ω): = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

(6)

↑ 𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶*+,-

ck ck

ℓ! ℓ"ck ck

𝖵′
⋮ ⋮

ck

ck

ck

ck ck

ck

ck

ck

L1-L6

Initial state

Final state

Fig. 2. Intermittent execution of an atomic region. We write i for int and b for bool.

in Fig. 1. For now, ignore the last two columns about typing. To save and restore
state, the system follows redo-log semantics. It records updates to checkpointed
variables in a special volatile region, not main memory. This region clears if
power fails, throwing out partial updates. Upon reaching the next atomic or JIT
region, the system commits the updates by copying them back to main memory.

Row (0) shows initial nonvolatile locations, their values, and the mapping
between variables and memory locations; locations `1, `2, `3, and `4 in the non-
volatile memory correspond to variables x, y, z and u, respectively. When starting
the atomic region (Row (1)), the system takes a snapshot of `2 and `4 and stores
it in the volatile region V1. We mark the original nonvolatile locations as check-
pointed with the superscript ck. i.e., `ck2 and `ck4 .Checkpointed locations `ck2 and
`ck4 remain untouched for the remainder of the atomic region execution. Every
access to variables y and u will instead be associated with their volatile copy `2
and `4, e.g., the assignment in Line 2 is applied to the volatile logs of Row (2).

On power failure, all volatile memory clears (Row (3)), throwing out the
log. The system shuts down until more energy is harvested, at which point the
system regenerates the volatile copies `2 and `4 (Row (4)) and resumes execution
from Line 2. When the execution of the atomic region is complete (Row (5)),
the system commits the updated values of the checkpointed locations (`2 and `4)
from volatile memory to their original nonvolatile locations (Row (6)). During
execution, local variables are stored to volatile memory via a let construct, e.g.,
location `5 for variable w on Line 3, corresponding to a volatile execution stack.

On power failure, the device clears all volatile memory, but such stack allocated
locations will be recreated upon re-execution.

JIT Region Execution. The JIT execution model prevents re-execution, so the
intermittent system only saves and restores volatile state at checkpoints. Fig. 3
shows the details of executing the code on the right of Fig. 1 in JIT mode. Row
(0) shows the initial nonvolatile locations, their values, and the mapping from
variables to locations. The system starts the JIT region by creating an empty
context to be populated by volatile locations (Row (1)). The let construct in
Line 8 allocates a fresh location `5 in V2 and updates the mapping to associate
variable w to `5. On a power failure in JIT mode, the system creates a nonvolatile
copy of the volatile location `5 just before it loses the location (Row (3)). It marks
the nonvolatile copy with the superscript ck. When restoring the program, the
system restores these copies to volatile memory and dismisses the nonvolatile
backups (Row (4)). The program then continues with the if clause on lines
9-12, finally dropping the volatile location `5, as it is out of scope (Row (5)).

2 1 1 tt
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 1 1 tt𝖭𝖵%

𝖵!
Crash

Restore

2 1 1 tt𝖭𝖵!

2 1 1 tt𝖭𝖵&

2 1 1 tt𝖭𝖵" 𝖵"

2 1 1 tt𝖭𝖵'

⋮

Ω!: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CKStart

L8
(let clause)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ",
𝑧 ↦ ℓ#, 𝑢 ↦ ℓ$

𝛾:= ⋯ ,𝑤 ↦ ℓ(

Ω%: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK,

Ω#: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

↑ 𝐶()*+

𝐶()*+

𝐶()*+

𝐶()*+

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶()*+

⋮

L9-L12
(if clause)

Initial state

Final state

Σ!: = !

Ω": = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK
Σ": =𝑤: ↓↑ 𝑏

𝑤 ∶↑ 𝑏@CKck

Σ#: =𝑤: ↓↑ 𝑏
ff

ff

ff

Fig. 3. Intermittent execution of a JIT region. We write i for int and b for bool.

3 Key Ideas of Crash Types

We present the intuition behind the stable and unstable memory types (Sec. 3.1),
Crash types which internalize checkpointing, power failure/crash, restoration, re-
execution, and finalization of atomic regions (Sec. 3.2), and the independence
principle applied to intermittent computing (Sec. 3.3).

3.1 Modal Store Types

An unstable value is an intermediate result of an execution towards a stable value
and will be lost upon a power failure. However, if the result of a partial execution
is committed to a nonvolatile location, it will persist and is thus stable. To

reflect the behavior of a memory location in its type, we introduce two (adjoint)
modalities ↑su (read as “up shift from unstable to stable”) and ↓su (read as “down
shift from stable to unstable”), where ↑su τ indicates that the location stores a
stable value of type τ and ↓su τ indicates that the location stores an intermediate
result of an execution toward a value of type τ . To fully capture how intermittent
execution interacts with a memory location, we also annotate the type of a
memory location with an access qualifier, RD or CK, that represents whether the
location is read-only or checkpointed by the system, respectively.

In our example in Fig. 2, the read-only variable x is stored in nonvolatile
memory, so it has type x :↑su int@RD. The checkpointed variable y has type
yck :↑su int@CK in the nonvolatile memory, while y’s volatile copy has type
y :↓su↑su int@CK. We use the context Ω to type nonvolatile memory and the
context Σ to type volatile memory, as shown in the third columns of Figs. 2
and 3. We drop the superscript s and subscript u from the modalities for brevity.

3.2 Crash Types

To capture the effects of intermittent execution in the type of expressions and
commands, we introduce Crash types, as the notion of stable and unstable values
is insufficient. One might expect the expression x − y to have the type ↓↑int
as it is a (partial) execution towards computing a stable integer value. How-
ever, this type does not account for steps due to power failure: the crash itself,
waiting for the device to charge, restoration, and re-execution. To reflect these
runtime system steps at the type level, we assign the expression a type in the
form of a disjunction ? ∨ ↓↑int, where ? is a type for computations that
handle power failures. This type means that the expression either power fails, or
completes its execution that evaluates to int. Next, we fill in ? for commands

and expressions. ? is a recursive type since it handles re-execution.

Commands. The Crash type for commands is: Cunit = ↓(nat ↑ Cunit) ∨
↓↑unit. The right disjunct states that if no power failure occurs while executing
a command, then it computes a stable value of type unit. The left disjunct states
that on power failure, the computation continues as a function; after receiving
a (logical) energy input from the environment, it becomes a computation that
yields a stable value of a command type, i.e., Cunit. This computation will execute
after the restore, which differs for atomic and JIT modes. In an atomic region,
the system re-executes the region from the beginning, and in a JIT region, the
system continues with the same command that was interrupted by the failure.

Expressions. The definition of the Crash type for expressions depends on the
execution mode, just as the continuation of the program after a power failure
depends on the mode. In an atomic region, the system restores an interrupted
run of the expression to the original command enclosed in the region, so the type
of an atomic mode expression is CatomA = ↓(nat ↑ Cunit) ∨ ↓↑A, where the left
disjunct is the same as that of a command. On the other hand, an interrupted
run of an expression in JIT mode will be restored to the expression itself. Hence,
the type of a JIT mode expression is C

jit
A = ↓(nat ↑CjitA) ∨ ↓↑A, where the left

disjunct states that after power failure and reception of the energy input, the
computation again yields a stable value of a JIT mode expression type.

3.3 Independence Principle for Typing Intermittent Execution

We design our typing rules to follow the rules for ↓ and ↑ modalities in adjoint
logic. We introduce two judgment categories. The first category (Js) is for deriv-
ing stable types and corresponds to the judgments of the form Ω ` τs, meaning
that the rules can rely only on stable locations to evaluate computation on a
stable type. The second category (Ju) is for deriving unstable types and corre-
sponds to the judgments of form Ω;Σ ` τu, meaning that the rules can rely on
both stable and unstable locations to evaluate computation on an unstable type.

The adjoint modalities allow going back and forth between judgments Js
and Ju, mirroring checkpointing and restoration operations. The following four
sequent calculus rules in the underlying logic govern this back-and-forth behavior
in our system. The rules are derivable from the more general rules in prior
work [8, 33, 35]—in particular, the ↑L∗ rule can be derived from a cut rule and
↓L. Typical of sequent calculus style rules, we read them bottom-up and match
each execution step of a command with the reading of a corresponding rule.
Next, we illustrate this matching using the execution steps in Figs. 2 and 3.

Ω; · ` τu

Ω ` ↑τu
↑R

Ω, ↑Au;Σ, ↓↑Au ` τu

Ω, ↑Au;Σ ` τu ↑L∗ Ω ` τs
Ω;Σ ` ↓τs

↓R
Ω, ↑Au;Σ ` τu

Ω;Σ, ↓↑Au ` τu
↓L

Shifts in Atomic Mode (Fig. 2): A combination of ↑R and two ↑L∗ rules
corresponds to creating a volatile log from the nonvolatile locations when starting
the atomic region, i.e., the step from Row (0) to Row (1). The last two columns in
Row (0) correspond to the conclusion of a ↑R rule: Ω0 ` ↑ Cunit. An application
of ↑R from bottom to top drops the ↑ modality from the type of the program and
opens an empty volatile region, i.e., Ω0; · ` Cunit. Next, one application of ↑L∗,
copies the variable y of type ↑ int to the volatile memory with the type ↓ ↑ int.
Similarly, the next application of ↑L∗ copies the variable u of type ↑ bool to
the volatile memory with the type ↓ ↑ bool. The same combination corresponds
to creating a volatile log from a nonvolatile location when restarting the atomic
region, i.e., the step from Row (3) to Row (4), again copying variables y and u
to the volatile memory.

The ↓R rule corresponds to a power failure, which erases the volatile memory
Σ. From Row (2) to Row (3) in Fig. 2, the system loses the volatile locations of y
and u and closes off the volatile context. Row (2) corresponds to the conclusion
of the rule, and Row (3) corresponds to its premise. The type of the command in
Row (2) changes from Cunit to ↓(nat ↑Cunit) (by another ∨-R rule as a crash
is detected), and then to the type (nat ↑Cunit) in Row (3).

Finally, a ↓L rule combined with a standard weakening rule and a ↓R rule
corresponds to the final commit of the volatile context, i.e., stepping from Row
(5) to Row (6), the nonvolatile context drops the locations y and u of types

Command, expression, and memory
values v ::= n | tt | ff | x access qualifier q ::= CK | RD
exprs e ::= v | e� e var loc map γ ::= · | γ, x 7→ `
cmds c ::= skip | letx = e in c | c; c nonvolatile mem NV ::= · | `@ q ↪→ v,NV

| if e then c else c | x ::= e | `ck @ CK ↪→ v,NV
progs p ::= Ckpt[aID, ρ](c); p | c; p | skip volatile mem V ::= · | l@ CK ↪→ v,V

Instructions, statements, and configurations.
commands c ::= · · · c;W c crash instrs i ::= ↓ε # in(b > 0, ↑κ)
continuations κ ::= c | e | ε # in(b > 0, ↑κ) |↑ κ
statements s ::= κ | i | p open config Ko ::= (γ | Md | g | NV | V | s)
energy level g ::= · | n | (γ | Md | g | NV | s)
charge stream χ ::= n :: χ closed config Kc ::= [χB ε]⊗Ko

exec. mode Md ::= aID(c) | jit

Fig. 4. Summary of syntax

↑int and ↑bool, respectively, by a weakening rule. These two variables map to
the locations with outdated values. Next, the volatile locations of y and u in
Σ′, which contain the up-to-date values, commit their values to the nonvolatile
context by a ↓L rule. Then, a ↓R rule closes off the remaining volatile context,
which contains w of type ↓ ↑int. The type of the command in Row (2) changes
from Cunit to ↓↑unit (by a separate ∨-R rule as the system detects a successful
execution) and from that to type ↑int in Row (6).

Shifts in JIT Mode (Fig. 3): A ↑R rule corresponds to creating an empty
volatile context Σ1 when starting the JIT region, i.e., the step from Row (0)
to Row (1). A combination of the ↓L rule and ↓R rule corresponds to a power
failure, i.e., the stepping from Row (2) to Row (3). A ↓L rule copies the location
w of type ↓ ↑ bool from volatile memory Σ2 to nonvolatile memory Ωc. A ↓R rule
closes off the (empty) nonvolatile memory. As in atomic mode, a combination
of ↑R and ↑L∗ rules corresponds to creating a volatile log from a nonvolatile
location when restarting the command after the failure, i.e., the step from Row
(3) to Row (4). The ↑R rule clears a portion of volatile memory, and the ↑L∗
rule copies variable w from nonvolatile memory into volatile memory. We need
an extra weakening rule to eliminate the remaining variable w in nonvolatile
memory. The dropping of volatile memory at the end of execution (Row (5)) is
not a modal step, but rather follows from a standard rule for the let clause.

4 A Basic Calculus for Intermittent Execution

We present the syntax, semantics, and the Crash type system for a basic calculus.

4.1 Syntax

The syntactic constructs are summarized in Fig. 4. Expressions include con-
stants, variables, and binary operations while commands include assignments,

mutable let bindings, sequencing, and if branching. A program consists of se-
quenced blocks of commands and atomic regions, denoted Ckpt[aID, ρ](c) with a
unique identifier aID, read-only variables ρ, and the enclosed command c.

Nonvolatile memory (NV) and volatile memory (V) map locations ` to values.
Each location is annotated with its access mode q (RD or CK). The nonvolatile
memory location `ck is the checkpointed copy of location ` in volatile memory.
The context γ maps variable names to memory locations. Access mode qualifiers
in V and NV have constrained values (to be discussed in the semantics).

The runtime instruction c1;W c2 is used for evaluating c1 under the execu-
tion context W . To model energy harvesting from the environment, we assume a
unique external energy channel, ε, from which the system receives energy. Three
crash instructions control the system in the event of a power failure. The instruc-
tion ↓ε # in(b > 0, ↑κ) models the system that faces a power failure, where κ is
the interrupted command or expression, and b > 0 is a guard to ensure that the
bound incoming energy variable b is positive. The instruction ε # in(b > 0, ↑κ)
models the system awaiting an energy input to be bound to b. The instruction
↑κ models the system ready to restore memory and re-execute.

We write Ko to denote an open system configuration, consisting of the map-
ping γ, the mode of execution Md (i.e., atomic or JIT), energy available for this
execution g, memories, and the statement s to be executed. The energy level (·)
models the state right after power failure. We close an open configuration with
[χ B ε]; we connect it via an external energy channel ε to an infinite charging
stream χ of natural numbers, which models available energy the configuration
harvests from the environment at each power failure point for re-execution.

We call a configuration that cannot take a step a value configuration (value
for short).

An open configuration of form (· · · | g | · · · | s) is a value, i.e., Val(· · · |
g | · · · | s), if either s is a constant or skip, it has depleted all energy for this
execution (g= 0), or s is a crash instruction. The latter two cases are values
because they cannot take a step without interacting with the environment or
perform operations on the volatile and novolatile memory specific to handling
power failures. A closed configuration is a value only if the statement s is skip
with some energy left (g > 0). We list all values in Fig. 5.

4.2 Operational Semantics

Top-level Program Execution. The top-level semantic rules for setting up
and finalizing the atomic and JIT execution contexts are shown in Fig. 6. The
P-Ckpt rule applies if the next code block is an atomic region. The nonvolatile
NV0 and volatile V0 locations are initialized based on a given NV, declared read-
only variables ρ, and their mapping γ to locations. The InitWorldd function (a)
changes the qualifier of locations in NV that are declared as read-only in ρ from
CK to RD, (b) creates V0 by copying the rest of the locations of NV that still have
qualifier CK, and (c) marks the original version of the locations ` in NV that
still have qualifier CK as checkpointed (`ck). This part corresponds to the step

n > 0

Val(γ | Md | n | NV | V | skip)
(V-skip)

n > 0

Val(γ | Md | n | NV | V | n)
(V-Nat)

n > 0

Val(γ | Md | n | NV | V | tt)
(V-Bool-t)

n > 0

Val(γ | Md | n | NV | V | ff)
(V-Bool-f)

Val(γ | Md | 0 | NV | V | κ)
(V-crash)

Val(γ | Md | · | NV | V | ↓ε # in(b > 0, ↑κ))
(V-↓)

Val(γ | Md | · | NV | ε # in(b > 0, ↑κ))
(V-# in)

n > 0

Val(γ | Md | n | NV | ↑κ)
(V-↑)

n > 0

Val([χB ε]⊗ γ | n | NV | skip)
(V-p-done)

n > 0

Val([χB ε]⊗ γ | n | NV | V | skip)
(V-c-done)

Fig. 5. Values

n > 0 InitWorldd(NV; ρ; γ) = NV0, V0

[χB ε]⊗ γ | aID(c0) |n |NV0 |V0| c0 ⇒∗ [χ′ B ε]⊗ γ′ | aID(c0) |n′|NV′|V′| skip
n′ > 0 NV1 = FinWorldd(NV′; V′)

[χB ε]⊗ γ | n | NV | Ckpt[(aID; ρ)](c0); p ⇒ [χ′ B ε]⊗ γ | n′ | NV1 | p
(P-CKpt)

n > 0 n′ > 0
[χB ε]⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ B ε]⊗ γ′ | jit | n′ | NV′ | V′ | skip

[χB ε]⊗ γ | n | NV | c; p ⇒ [χ′ B ε]⊗ γ | n′ | NV′ | p
(P-seq)

Fig. 6. Closed configuration semantics for programs

from Row (0) to Row (1) in Fig. 2. The closed configuration of c0 is evaluated
until completion, using the rules in Fig. 6. This execution may undergo several
power failures and corresponds to the steps from Row (1) to Row (5) in Fig. 2.
Finally, the FinWorldd function closes off atomic regions, finalizing the volatile
and nonvolatile locations. FinWorldd (a) copies the values of volatile locations in
V′ that have a checkpointed version into NV′, (b) removes CK from the locations
in NV′, i.e., converts `ck to `, and (c) replaces the RD qualifier of the locations in
NV′ with CK. This corresponds to the step from Row (5) to Row (6) in Fig. 2.

The P-seq rule applies when the next code block is a regular command c.
The closed configuration of c with an empty initial set of volatile locations is
fully evaluated. This corresponds to the steps from Row (0) to Row (1) and Row

γ | Md | n | NV | V | c→ γ | Md | n′ | NV′ | V′ | c′

[χB ε]⊗ γ | Md | n | NV | V | c⇒ [χB ε]⊗ γ | Md | n′ | NV′ | V′ | c′
(D-step)

[χB ε]⊗ γ | Md | 0 | NV | V | c
⇒ [χB ε]⊗ γ | Md | · | NV | V |↓ ε # in(b > 0; ↑c)

(D-Crash)

[χB ε]⊗ γ | jit | · | NV | V | ↓ε # in(b > 0; ↑κ)
⇒ [χB ε]⊗ γ | jit | NV,Vck | ε # in(b > 0; ↑κ)

(D-S-Jit)

γ′ ⊆ γ range(γ′) = dom(NV)

[χB ε]⊗ γ | aID(c0) | · | NV | V | ↓ε # in(b > 0; ↑κ)
⇒ [χB ε]⊗ γ′ | aID(c0) | · | NV | ε # in(b > 0; ↑κ)

(D-S-aID)

[ε : n; l]⊗ γ | Md | · | NV | ε # in(b > 0; ↑κ)⇒ [χB ε]⊗ γ | Md | n | NV | ↑κ
(D-charge)

NV = NV′,NV′′ck

[χB ε]⊗ γ | jit | n | NV |↑ κ ⇒ [χB ε]⊗ γ | jit | b | NV′ | NV′′ | κ
(D-restore-Jit)

NV = NV′,NV′′ck

[χB ε]⊗ γ | aID(c0) | n | NV |↑ κ
⇒ [χB ε]⊗ γ | aID(c0) | n | NV | NV′′ | c0

(D-restore-aID)

Fig. 7. Closed configuration semantics for commands and crash instructions

(1) to Row (5) in Fig. 3. Then the resulting volatile locations V′ scoped in c are
dropped, corresponding to the step from Row (5) to Row (6) in Fig. 3.

Command Execution (Closed Config). We give the rules for a closed con-
figuration in Fig. 7.

Rule D-step steps the closed command configuration when the correspond-
ing open configuration steps. Next, we explain the trio of power failure, charge,
and restore rules. When the energy for this execution is depleted (i.e., g = 0), the
D-Crash rule applies, stepping the system to the crash instruction ↓ε # in(b >
0; ↑κ). Next, D-S-Jit or D-S-aID rules apply and operate on volatile memory
based on the execution mode Md. In JIT mode, D-S-Jit checkpoints and stores
all volatile memory in nonvolatile locations. In atomic mode, D-S-aID drops
all volatile memory locations. Then, D-charge applies and inputs a natural
number n > 0 from the energy channel, replenishing the configuration’s en-
ergy level for re-execution. Finally, the program is restored via D-restore-Jit
and D-restore-aID which copy checkpointed locations into volatile memory.
D-restore-Jit drops the checkpointed regions and steps to the interrupted
command κ, while D-restore-aID keeps the checkpointed regions and steps to
the original command c0 in the atomic region.

Command/Expression Execution (Open Config). The rules for executing
commands and expressions in an open configuration are standard. We present
them in Figs. 8 and 9.

The runtime construct, where W = γ | V, takes care of scoping of volatile
locations in the dynamics. The idea is to remember the original volatile memories
(V) before stepping the first command(c1) of a sequence(c1; c2) and only keep
those locations when the execution of the first command completes successfully.
The D-seq rule in Figure 8 initializes the static construct c1; c2 to its runtime
form by annotating it with the current set of volatile locations V and the current
mapping γ. D-seq-step then steps the runtime c1;V|γ c2 construct by stepping
the first command c1. Finally, when c1 completely executes to skip, the D-seq-v
steps to c2 and only keeps those volatile locations that are declared in the original
V′, and their corresponding mapping γ′.

Each step decrements the energy level by one. The rules ensure that check-
pointed location `ck in NV is not read by the program, as it could store outdated
data, and is not written to, as this would tamper with the checkpointed value.

4.3 Types, Typing Contexts, and Judgments

This section introduces the typing judgments used in our static typing.

Types and Static Context. Our types are summarized below. The two modal-
ities stratify types into the varieties stable (τs) and unstable (τu). The base store
types int and bool are considered unstable. A type variable vt denotes a type
in the set {Cunit, CatomA , CjitA}, and implements the recursive nature of Crash types.
We include the connectives ∨ and solely for the purpose of defining Crash
types; they are not used elsewhere. Defining Crash types using these connec-
tives will allow us to define the logical relation in Sec. 5 based on the intended
meaning of its index type. Some well-formed types, e.g., nat nat ↑unit,
are not accepted by our type system introduced in Sec. 4.4. These types have
no inhabitants, i.e., no well-typed configuration is of these types.

store types A := int | bool stable types τs := nat τs |↑ τu
basic types T := unit | A unstable types τu := T |↓ τs | τu ∨ τu | vt

Volatile store typing context Σ := · | x : ↓su↑suA@Ck, Σ
Nonvolatile store typing context Ω := · | x : ↑suA@Rd, Ω | xck : ↑suA@CK, Ω

| x : ↑suA@CK, Ω

A nonvolatile store typing context Ω assigns stable types to nonvolatile lo-
cation variables, i.e. all variables in Ω have a type of the form ↑suA. A volatile
store typing context Σ assigns unstable types to volatile location variables, i.e.,
variables in Σ are of the type ↓su↑suA. xck refers to a location that has been
checkpointed. In the atomic mode, xck has an active volatile log in Σ.

Typing Judgments. Table 1 summarizes all the typing judgments. These judg-
ments are parameterized over the execution mode Md of the expression or com-
mand to be typed. The judgment also tracks a variable b corresponding to the
current energy level of this execution. b ranges over natural numbers (nat) and

n > 0 γ | Md | n | NV | V | e→ γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | letx = e in c→ γ | Md | n′ | NV | V | letx = e′ in c
(D-Let-step)

Val(γ | Md | n | NV | V | e1) γ′ = γ, [x 7→ `] ` fresh n = n′ + 1

γ | Md | n | NV | V | letx = e1 in c→ γ′ | Md | n′ | NV | V, `@CK ↪→ e1 | c
(D-Let-v)

n > 0 γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | p := e → γ | Md | n′ | NV | V | p := e′
(D-Assign-step)

Val(γ | Md | n | NV | V | e)
V = V′, `@q ↪→ v′ q 6= RD γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V′, `@q ↪→ e | skip
(D-Assign-V)

Val(γ | Md | n | NV | V | e)
NV = NV′, `@q ↪→ v′ q 6= RD γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV′, `@q ↪→ e | V | skip
(D-Assign-NV)

n > 0 γ | Md | n | NV | V | e → γ | Md | n′ | NV′ | V′ | e′

γ | Md | n | NV | V | if e then c1 else c2 → γ | Md | n′ | NV′ | V′ | if e′ then c1 else c2
(D-If)

n = n′ + 1 Val(γ | Md | n | NV | V | tt)

γ | Md | n | NV | V | if tt then c1 else c2 → γ | Md | n′ | NV | V | c1
(D-If-tt)

n = n′ + 1 Val(γ | Md | n | NV | V | ff)

γ | Md | n | NV | V | if tt then c1 else c2 → γ | Md | n′ | NV | V | c2
(D-If-ff)

γ | Md | n | NV | V | c1; c2 → γ | Md | n | NV | V | c1;γ|V c2
(D-seq)

γ | Md | n | NV | V | c1 → γ′ | Md | n′ | NV′ | V′ | c′1
γ | Md | n | NV | V | c1;W c2 → γ′ | Md | n′ | NV′ | V′ | c′1;W c2

(D-seq-step)

n = n′ + 1 W = γ′ | V′ V′′ = V � dom(V′)

γ | Md | n | NV | V | skip;W c2 → γ′ | Md | n′ | NV | V′′ | c2
(D-seq-v)

Fig. 8. Commands dynamics

γ = γ′, [x 7→ `] V = `@q ↪→ v,V′ n = n′ + 1

γ | Md | n | NV | V | x→ γ | Md | n′ | NV | V | v
(D-V-Read)

γ = γ′, [x 7→ `] NV = `@q ↪→ v,NV′ n = n′ + 1

γ | Md | n | NV | V | x→ γ | Md | n′ | NV | V | v
(D-NV-Read)

n > 0 γ | Md | n | NV | V | e1 → γ | Md | n′ | NV | V | e′1
γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | e′1 � e2

(D-Binary-1)

n > 0 Val(γ | Md | n | NV | V | e1)
γ | Md | n | NV | V | e2 → γ | Md | n′ | NV′ | V′ | e′2

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV′ | V′ | e1 � e′2
(D-Binary-2)

n = n′ + 1
Val(γ | Md | n | NV | V | e1) Val(γ | Md | n | NV | V | e2) v = e1 � e2

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | v
(D-Binary-v)

Fig. 9. Expression dynamics

(Ju) Md | bR 0 : nat | Ω;Σ ` c :: Cunit c could crash
(Ju) Md | b : nat | Ω;Σ ` skip :: ↓↑unit c will not crash
(Js) Md | b : nat | Ω ` skip :: ↑unit after commit

(Ju) Md | bR 0 : nat | Ω;Σ `RD e :: CMdA e read, could crash
(Js) Md | b : nat | Ω;Σ `RD v :: ↓↑A e read no crash
(Js) Md | b : nat | Ω `RD v :: ↑A e read, commit
(Ju) Md | b : nat | Ω;Σ `WT x :: ↓↑A write on x, no crash
(Js) Md | b : nat | Ω `WT x :: ↑A write on x, commit

(Js) Md | b : nat | Ω ` p :: ↑Cunit before execution

(Ju) Md | b = 0 : nat | Ω;Σ ` κ :: CMdT about to crash
(Ju) Md | · | Ω;Σ ` ↓ε # in(b > 0, ↑κ) :: ↓(nat ↑ CMdT) crash state
(Js) Md | · | Ω ` ε # in(b > 0, ↑κ) :: nat ↑ CMdT waiting for energy
(Js) Md | b > 0 : nat | Ω ` ↑κ :: ↑CMdT before re-execution

Table 1. Typing judgment summary

is constrained by a relation R ∈ {≥, >} or is set to 0; where b ≥ 0 is uncon-
strained. The constraint on b determines whether or not a command can evaluate
a value without power failure. There are three judgments for command typing.
The first judgment is used when the command has not yet successfully finished
executing; its next step, depending on its constraint R, may or may not crash.
When the command reaches type ↓↑unit, b no longer needs to be constrained
as the execution succeeded without power failure. The second judgment invokes
the third judgment to type the configuration after the volatile log is committed:
in the typing rule for committing the volatile log, the conclusion is of the form of

jit | b ≥ 0 : nat | Ω; · `∅ c : Cunit b : nat | Ω ` p : ↑Cunit
b : nat | Ω ` c; p : ↑Cunit

(T-P-seq)

Ω0 | Σ0 = InitWorldt(Ω; ρ)
Sig = {aID(c0) | b ≥ 0 : nat | Ω0;Σ0 ` c0 : Cunit}

aID(c0) | b ≥ 0 : nat | Ω0; Σ0 `Sig c0 : Cunit b : nat | Ω ` p : ↑Cunit
b : nat | Ω ` Ckpt[aID, ρ](c0); p : ↑Cunit

(T-P-Ckpt)

Fig. 10. Program typing

the second judgment and the premise is of the form of the third. For expression
typing, we distinguish expressions on the right of an assignment (being read)
from those on the left of an assignment (being written to) via subscripts RD and
WT, respectively. The expressions that are being written to are only of the sim-
ple form x. As no execution is required to evaluate x, we consider its judgment
crash free, so no constraint is required on b. For program typing, we only have
one judgment that refers to the type of the program before the execution of its
next block starts. The rest of the judgments type states after a crash. The first
judgment uses the constraint b = 0, which corresponds to the power failure con-
dition. It invokes the second judgment, which types a state right after crash. The
third judgment types the state awaiting energy to continue re-execution, and the
final judgment types the state that is ready for restoration and re-execution.

4.4 Typing Rules

Program Typing. Fig. 10 shows the typing rules for programs. The P-seq rule
types program c; p by first typing c under jit mode, requiring b ≥ 0, and then
typing the rest of the program. The volatile memory context is empty for now,
but will be populated when the let commands allocate new volatile locations.

The P-Ckpt rule types the command c0 enclosed in an atomic region under
the mode aID(c0) and then types the rest of the program p. The first premise
sets up the initial typing contexts for nonvolatile and volatile memories, as illus-
trated in Fig. 2. The partial function InitWorldt initializes the volatile memory
by creating a log of variables in Ω that are not read-only. Ω can be uniquely
split into Ωc and Ωr, where Ωr is the set of all read-only locations in Ω, and Ωc

is the set of all locations that are not read-only. This function is defined below:
Ω0 | Σ0 = InitWorldt(Ω; ρ) iff ρ ⊆ dom(Ω), Ω0 = Ωr, Ωcck and Σ0 = ↓Ωc
where Ω = Ωc, Ωr and Ωr = Ω�ρ.

Here Ωr = Ω�ρ is a subset of Ω where locations are declared in ρ to be
read-only, and Ωc are all other locations in Ω. The context Ωcck, is defined
as Ωcck = {xck : ↑A@q | x : ↑A@q ∈ Ωc}, and the context ↓Ωc, is defined as
↓Ωc = {x : ↓↑A@q | x : ↑A@q ∈ Ωc}. If the set of read only variables, ρ, is not in
the domain of Ω, then the function InitWorldt is not defined.

In rules P-seq and P-ckpt, the command typing judgment in the premise
makes use of a signature (subscripts ∅ and Sig, respectively) to type check

the command relative to the signature. The signature is populated at different
stages of type checking the JIT and atomic regions. In an atomic region, rule
T-P-Ckpt populates the signature at the beginning of the region with the initial
judgment which includes the region’s original command c0 and static memory
context Ω0;Σ0. The region is then typed relative to the signature. In JIT mode,
the signature is populated later with the judgment just at the point of the failure
(rule T-enough?). The program remembers that it built a typing derivation for
the judgment in the signature such that when it restores from a power failure, it
refers to the signature and checks that the restored judgment matches the one
stored in the signature without needing to derive it again. This makes the typing
derivations finitary and inductive.

Command and Expression Typing. Figs. 11 and 12 show the typing rules
for commands. The T-skip rule declares the command skip as the stable type
↑unit. Rule T-∨-Succ applies when the command successfully completes its
execution and still has one unit of energy available (b > 0) to conclude the
execution. In this case, we close off the energy level variable and continue typing
the command against the type ↓↑ unit. Rule T-C-shift is invoked by T-∨-Succ
and updates the memory typing contexts by removing checkpointed locations in
Ω as now they are not needed, and making locations in Σ stable as now they
are committed. This corresponds to the last step of Fig. 2.

The rules T-let and T-assign, are mostly standard except that we consider
crashes. For example, in typing the assign command x := e, the first premise
of T-assign considers the type of expression e to be the Crash type CMd

A , but
in the second premise we require the location x to be of type ↓↑A, i.e., the
location only considers the type corresponding to the case where execution of e
can be completed successfully. The reason is that the assignment only occurs if
the execution of e is successful. The constraint on the energy levels for premises
goes back to b ≥ 0, as we use one energy unit to deconstruct these commands.

The rule T-Enough? checks two premises based on the value of b ≥ 0. The
third premise, a crash judgment, corresponds to the case where b = 0 (typing
rules for crash judgments are given later in this section) and the fourth premise
corresponds to the case where b > 0. The condition b > 0 states that there is at
least one unit of energy available to decompose one command construct, e.g., via
T-let or T-assign. This rule populates the signature for JIT commands. The
second premise states that the signature remains intact if the mode is atomic, but
is populated by Sig′ if the mode is JIT. In the JIT mode, after a power failure,
the command c is restored to itself, and Sig′ remembers that the well-typedness
of the command when the energy level is non-negative has been checked already.

Expression typing rules are very similar to those of the commands, as shown
in Fig. 12. The T-Loc-Write and T-Loc-Read rules match the location vari-
able x with an existing variable inside the context. T-Loc-Write performs an
extra check to make sure that x is not a read-only variable.

Statement typing Fig. 13 presents the typing rules for crash instructions. The
crash is detected by the depleted energy level b = 0 in the T-∨-crash rule. In
the premise, the crash instruction ↓ε # in(b > 0, ↑κ′) is typed. In JIT mode,

Md | b : nat | Ω `Sig skip : ↑unit
(T-Skip)

Σ = ↓Σ′ Ω = Ω′, Ω′′ck Md | b : nat | Ω′, Σ′ `Sig skip : ↑unit
Md | b : nat | Ω;Σ `Sig skip : ↓↑unit

(T-C-Shift)

Md | b : nat | Ω;Σ `Sig skip : ↓↑unit
Md | b > 0 : nat | Ω;Σ `Sig skip : τ ∨ ↓↑unit

(T-∨-Succ)

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdint
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑int@CK `Sig c : τ

Md | b > 0 : nat | Ω;Σ `Sig letx = e1 in c : τ
(T-Let)

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool
Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : τ Md | b ≥ 0 : nat | Ω;Σ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig if e then c1 else c2 : τ
(T-If)

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA Md | b > 0 : nat | Ω;Σ `WT x : ↓↑A
Md | b > 0 : nat | Ω;Σ `Sig x := e : CMdunit

(T-Assign)

Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit Md | b ≥ 0 : nat | Ω;Σ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig c1; c2 : τ
(T-seq)

W = γ | V Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
Σ′ = seq(Σ,V, γ) Md | b ≥ 0 : nat | Ω;Σ′ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig c1;W c2 : τ
(T-seq-d)

Sig
′ = {Md | b ≥ 0 : nat | Ω;Σ ` c : τ}

Sig
′′ = if Md = jit, then Sig

′, else Sig
Md | b = 0 : nat | Ω;Σ `Sig′′ c : τ Md | b > 0 : nat | Ω;Σ `Sig c : τ

Md | b ≥ 0 : nat | Ω;Σ `Sig c : τ
(T-enough?)

Fig. 11. Command typing

the T-Jit-stop rule brings a checkpointed version of all the volatile variables
in Σ inside Ω since they are checkpointed then. In atomic mode, T-aID-Stop
rule simply drops the volatile locations in Σ. The T-charge rule inputs a new
energy level from the energy channel ε, regardless of the mode. The first premise
shows that the energy channel is needed to provide a natural number greater
than zero. Finally, the T-Jit-Restore and T-aID-Restore rules prepare and
check rebooted system in JIT and atomic modes, respectively. In both modes,
volatile memory is restored from the checkpointed locations in Ω. In the atomic
mode, the checkpointed locations persist in Ω as we may need them for the
next power failure. Alternatively, in the JIT mode, checkpoints are dropped

Ω,Σ′ = x:↑A@q,Ω′2 q 6= RD

κ | Md | b : nat | Ω,Σ′ `Wt x : ↑A
(T-Loc-Write)

Σ =↓ Σ′ Ω = Ω′, Ω′′ck Md | b : nat | Ω′, Σ′ `Wt x : ↑A
Md | b : nat | Ω;Σ `WT x : ↓↑A

(T-w-Shift)

Ω = x : ↑A@q,Ω′

Md | b : nat | Ω `RD x : ↑A
(T-Loc-Read)

Md | b : nat | Ω `RD tt :↑ bool
(T-Bool-t)

Md | b : nat | Ω `RD ff : ↑bool
(T-Bool-f)

Md | b : nat | Ω `RD n : ↑int
(T-Int)

Σ = ↓Σ′ Ω = Ω′, Ω′′ck Md | b : nat | Ω′, Σ′ `Rd v : ↑A
Md | b : nat | Ω;Σ `Rd v : ↓↑A

(T-R-Shift)

Md | b : nat | Ω;Σ `RD x : ↓↑A
Md | b > 0 : nat | Ω;Σ `RD;Sig x : τ1 ∨ ↓↑A

(T-∨-Succ)

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdT
Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : CMdT ′ � : ↑T × ↑T ′ → ↑T ′′

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : CMdT ′′
(T-Binary)

Sig
′ = {Md | b ≥ 0 : nat | Ω;Σ `RD e : τ}

Sig
′′ = if Md = jit, then Sig

′, else Sig

Md | b = 0 : nat | Ω;Σ `Sig′′ e : τ Md | b > 0 : nat | Ω;Σ `RD;Sig e : τ

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : τ
(T-enough?)

Fig. 12. Expression typing

from Ω and execution continues with the expression or command κ, which was
running right before the crash. In the atomic mode, execution continues with
the original command c0 enclosed in the atomic region. Instead of retyping the
restored judgments, we check if there are already typing derivations by matching
them up with the saved judgment in the signature.

5 Logical Relation for Intermittent Execution

We establish a logical relation to prove idempotency, which states that every
intermittent execution of a program can be simulated by a continuous execu-
tion. The logical relation relates an intermittent execution with a continuous
one and is indexed by Crash types. A continuous run is one with an infinite en-
ergy level, ∞. Crash types are recursive, yielding possible infinite atomic region
re-executions. Thus, we use the maximum number of executions (also power fail-
ures) as a step index to stratify our logical relation to ensure its well-foundedness.

Md | · | Ω;Σ `Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat ↑ CMdT ′)

Md | b = 0 : nat | Ω;Σ `Sig κ′ : ↓(nat ↑ CMdT ′) ∨ ↓↑T
(T-∨-Crash)

Σ = ↓↑Σ′ jit | · | Ω, ↑Σ′ck `Sig ε # iņ(b > 0, ↑κ′) : (nat ↑CsT)

jit | · | Ω;Σ `Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat ↑ CsT)
(T-Jit-stop)

aID(c0) | · | Ω `Sig ε # iņ(b > 0, ↑κ′) : (nat ↑Csunit)
aID(c0) | · | Ω;Σ `Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat ↑ Csunit)

(T-aID-stop)

ε # iņ() : nat > 0 Md | b > 0 : nat | Ω `Sig↑ κ′ : ↑CsT
Md | · | Ω `Sig ε # iņ(b > 0, ↑ κ′) : (nat ↑CsT))

(T-Charge)

Ω = Ω′, Ω′′ck jit | b ≥ 0 : nat | Ω′; ↓Ω′′ ` κ′ : CT ∈ Sig

jit | b > 0 : nat | Ω `Sig ↑κ′ :↑ CT
(T-Jit-Restore)

Ω = Ω′, Ω′′ck aID(c0) | b ≥ 0 : nat | Ω; ↓Ω′′ ` c0 : Cunit ∈ Sig

aID(c0) | b > 0 : nat | Ω `Sig ↑κ′ :↑ Cunit
(T-aID-Restore)

Fig. 13. Crash, restore, and checkpoint typing

The logical relation (defined in Sec. 5.1) relies on PwOff, Restore, and Commit

functions, referred to as power failure, restore, and commit policies, respec-
tively. We establish specific policies for atomic and JIT execution modes. We
formalize semantic typing as every atomic and JIT region of the program being
logically-related to themselves. We prove that the semantically well-typed pro-
grams are idempotent across power failures in Sec. 5.2. The definitions match
the memory operations in the dynamic rules that deal with crash, restore,
and re-execution (D-S-aID/ D-S-Jit, D-R-aID/ D-R-Jit, and D-P-Ckpt/
D-P-seq) for atomic and JIT regions, We prove that our syntactically well-typed
programs are semantically well-typed. We generalize semantic typing rules, al-
lowing custom power failure, restore, and commit policies (Sec. 5.3).

5.1 Semantic Typing via a Logical Relation

The logical relation, written Md | b ≥ 0 : nat | Ω | Σ
 c1 ≤ c2 : Cunit, is defined
in Fig. 14 by a lexicographic induction on the index m and the structure of the
types. The judgment NV | V
 γ :: Ω | Σ in the definition states that γ maps the
variables in Σ and Ω to locations in V and NV resp., such that their qualifiers
and types match. Similar to prior work [2, 15, 41], our definition consists of a
term relation EJCunitKm and a value relation VJτKm.

Term Relation. A pair of open command configurations of type Cunit are in
the term relation of index m if any intermittent execution of the first one after
m power failures is indistinguishable from a continuous execution of the second
one. In particular, for index m+1, the term relation relates two configurations at

Md | b ≥ 0 : nat | Ω | Σ
 c1 ≤ c2 : Cunit
iff ∀n,m ≥ 0. ∀γ,NV,V.s.t.NV | V
 γ :: Ω | Σ.

(γ | Md | n | NV | V | c1, γ | Md | ∞ | NV | V | c2) ∈ EJCunitKm

Term Relation

EJCunitKm+1 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2) s.t.
∃.(γ′1 | Md′ | n′1 | NV′1 | V′1 | c′1) s.t.
γ1 | Md | n1 | NV1 | V1 | c1 →∗irred γ′1 | Md′ | n′1 | NV′1 | V′1 | c′1 ∧
∃.(γ′2 | Md′ | ∞ | NV′2 | V′2 | c′2) s.t .
γ2 | Md | ∞ | NV2 | V2 | c2 →∗ γ′2 | Md′ | ∞ | NV′2 | V′2 | c′2 ∧

(γ′1 | Md′ | n′1 | NV′1 | V′1 | c′1, γ′2 | Md′ | ∞ | NV′2 | V′2 | c′2)∈VJCunitKm+1}

EJCunitK0 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2)}

Value Relation

VJ↑unitKm = {(γ | Md |n1 |NV1 | skip, γ | Md |∞ |NV2 | skip) s.t.NV1 = NV2}

VJ↓↑unitKm = {(γ1 | Md |n1 |NV1 |V1 | skip, γ2 | Md |∞ |NV2 |V2 | skip) s.t.
Commit(γi | Md |NVi |Vi) = γ′i |NV′i ∧
(γ′1 | Md |n1 |NV′1 | skip, γ′2 | Md |∞ |NV′2 | skip) ∈ VJ↑unitKm}

VJ↑CunitKm = {(γ1 | Md |n |NV1 | ↑κ, γ2 | Md |∞ |NV2 |V2 | c2) s.t.
restore(γ1, Md,NV1, κ) = NV0 |V0 | c0 ∧
(γ1 | Md |n |NV0 |V0 | c0, γ2 | Md |∞ |NV2 |V2 | c2) ∈ EJCunitKm}

VJnat ↑CunitKm = {(γ1 | Md | · |NV1 | ε # in(b > 0, ↑κ), γ2 | Md |∞ |NV2|V2|c2) s.t.
∀n>0.(γ1 | Md |n |NV1| ↑κ, γ2 | Md |∞ |NV2|V2| c2)∈VJ↑ CunitKm}

VJ↓(nat ↑Cunit)Km = {(γ1 | Md | · |NV1|V1| ↓ε # in(b > 0, ↑κ), γ2 | Md |∞ |NV2|V2| c2)
s.t. PwOff(γ1, Md,NV1,V1) = γ′1 |V′ ∧
(γ′1 | Md | · |V′ck,NV1 | ε # in(b > 0, ↑κ), γ2 | Md |∞ |NV2 |V2 | c2)

∈ VJnat ↑CunitKm}

VJCunitKm+1 = {(γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)
s.t. either
n1 = 0 ∧ (γ1 | Md | · |NV1 |V1 | ↓ε # in(b > 0, ↑c1),

γ2 | Md |∞ |NV2 |V2 | c2) ∈ VJ↓(nat ↑ Cunit)Km, or
n1 > 0 ∧ (γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)

∈ VJ↓↑ unitKm}

Fig. 14. Logical relation

type Cunit if the first configuration eventually steps to a value (or “irreducible”)
configuration, i.e., it either evaluates to skip or its energy level depletes (n′1 = 0),
and the second configuration can take zero or more steps such that the pair
continue to be in the value relation of VJCunitKm+1. When the index is m = 0,
no execution is observed, so any two configurations are in the term relation. Here,
irred refers to γ′1 | Md′ |n′1 |NV′1 |V′1 | c′1 being an irreducible configuration, i.e. it
cannot take any more steps. Since our semantics for commands is derministic, for

each configuration γ1 | Md |n1 |NV1 |V1 | c1 there is exactly one such irreducible
configuration.

Value Relation. The value relation is defined based on the intended meaning
of the type, and relates two value configurations that will have the same effect
on the stores. The value relation relates two open command configurations at
type Cunit and index m+ 1 if either (a) the first configuration has faced a power
failure, and the two configurations continue to relate by VJ↓(nat ↑Cunit)Km,
or (b) the first configuration executed successfully without any power failures,
and the two configurations are related by VJ↓↑unitKm. This definition matches
the disjunctive nature of type Cunit, which is recursively defined in the signature
as ↓(nat ↑Cunit) ∨ ↓↑unit. Since we unfold the recursive definition of Cunit,
we decrease the index from m+1 to m to ensure the relation’s well-foundedness.
Note that the value relation is neither defined nor called for Cunit at index 0.

The value relations in the third, fourth, and fifth rows of Fig. 14 are defined
based on the type of the first configuration; the second configurations in these
relations continue to be of type Cunit. Only in the relations defined in the first
and second rows of Fig. 14 do the types of both configurations match the indexed
type of the relation. Hence, the value relation has varying arity: in the first and
second rows of Fig. 14, the relation is binary while in the rest, the relation
degenerates to unary, with the second configuration as its Kripke world [17].

The value relation at type ↓(nat ↑Cunit) relates two configurations if the
first one runs the crash instruction ↓ε # in(n > 0, ↑κ) and a power failure policy
creates a checkpoint of volatile locations such that the configurations continue
to be in the value relation at type (nat ↑Cunit). The power failure function
in an atomic mode is defined to checkpoint none of the volatile locations, i.e.,
PwOff(γ, aID(c0),NV1,V1) = γ′ | ∅, where γ′ is the largest restriction of γ with
range(γ′) = dom(NV1), and defined to checkpoint all volatile locations in JIT
mode, i.e., PwOff(γ, jit,NV1,V1) = γ | V1.

The value relation at type (nat ↑Cunit) is defined similarly to a function
type in a value relation and requires the configurations to be related at type
(↑Cunit) for every energy input level n provided to the first configuration.

The value relation at type ↑Cunit requires the first configuration to run the
crash instruction ↑κ. The defined restore policy restores the nonvolatile memory
NV0, volatile memory V0, and re-execution command c0 such that the config-
urations continue to be related in the term interpretation at type Cunit. In an
atomic mode, the restore function is defined as restore(γ, aID(c),NV1, κ) =
NV1 | NV′′ | c where NV1 = NV′,NV′′ck. In the JIT mode, the restore function
is defined as restore(γ, jit,NV1, κ) = NV′ | NV′′ | κ where NV1 = NV′,NV′′ck.
We write NV1 = NV′,NV′′ck to state that NV1 can be uniquely partitioned into
all locations (NV′′ck) that are checkpointed, i.e., of the form `ck, and regular lo-
cations (NV′) of the form `. NV′′ is the non-checkpointed version of NV′′ck which
could be retrieved by removing the ck subscript from every location in NV′′ck.

The value relation at type ↓↑unit requires both configurations to run skip,
and the defined commit policy creates nonvolatile memories for both runs such
that they continue to be related at type ↑unit. In an atomic mode, the commit

function is defined to replace the checkpointed locations in the nonvolatile mem-
ory with their volatile log, i.e., Commit(γ | aID(c0) | NV1 | V1) = γ′ | NV′1,V

′′,
where NV1 = NV′1,NV′′ck and V1 = V′1,V

′′ and dom(V′′) = dom(NV′′). Moreover,
γ′ ⊆ γ, with range(γ′) = dom(NV1) ∪ dom(V ′′). In the JIT mode, the commit
function simply drops all volatile memory, i.e., Commit(γ | jit | NV1 | V1) = γ′ |
NV1, γ′ ⊆ γ, with range(γ′) = dom(NV1).

The value relation at type ↑unit requires the successful executions to store
the same values in their memories, i.e., NV1 = NV2.

Semantic Typing. A program is semantically well-typed if every JIT and
atomic region of it is self-related under our logical relation.

jit | b ≥ 0 : nat | Ω; ·
 c ≤ c : Cunit b : nat | Ω
 p : ↑Cunit
b : nat | Ω
 c; p : ↑Cunit

(P-seq-semantic)

Ω0 |Σ0 = InitWorldt(Ω; ρ)
aID(c0) | b≥ 0 : nat |Ω0;Σ0
 c0≤ c0 : Cunit b : nat |Ω
 p : ↑Cunit

b : nat |Ω
 Ckpt[aID, ρ](c0); p : ↑Cunit
(P-Ckpt-semantic)

5.2 Semantic Typing for Idempotency

The fundamental theorem of our logical relation states that syntactically well-
typed programs are also semantically well-typed by proving that syntactically
well-typed JIT and atomic regions are self-related. We state and prove the theo-
rem in Sec. 6 but devote this section to explaining why being self-related implies
idempotency. We explain it separately for JIT and atomic blocks.

Stepping a JIT block. Consider a program of form [χ1Bε]⊗γ1 | n | NV1 | c1; p
that can take a step to [χk B ε] ⊗ γ | n′k | NV′k | p via the D-P-Seq rule. By
the D-P-Seq rule, we know that the command c1 is successfully executed to
completion with possibly m-many power failures along the way: [χ1 B ε] ⊗ γ1 |
jit | n | NV1 | · | c1 ⇒∗ [χk B ε] ⊗ γ′k | jit | n′k | NV′k | V′k | skip. Our goal is to
simulate this execution in a continuous setting. To model a continuous run, we
run the configuration with ∞, an energy level: [χ B ε] ⊗ γ1 | jit | ∞ | NV1 | · |
c1 ⇒∗ [χB ε]⊗ γ′j | jit | ∞ | NV′j | V′j | skip.

Fig. 15 shows the construction of the simulation. We start with the assump-
tion that the configuration with n energy level is self-related when given energy
level ∞ for every index, including m + 1 (point (1) in Fig. 15). We show that
if the first configuration takes one or more steps, the second configuration can
take zero or more steps so that the intermediate regions continue to relate.

By definition of the term interpretation, c1 in the first configuration is ex-
ecuted until the first power failure occurs. Moreover, by the relation, we can
execute c1 in the second configuration, too, such that the resulting configura-
tions remain related (point (2) in Fig. 15) by the value interpretation at type
Cunit. The first configuration takes a step from point (2) to point (3) using the
D-crash rule by the computational semantics. By the definition of the logical

relation, the two configurations continue to be related by the value interpretation
at type ↓(nat ↑ Cunit). Then the first configuration takes a step from point (3)
to point (4) by the D-S-Jit rule; in this case, we know (by the assumptions of
the rule) V′ = V′1 and γ′′1 = γ. This matches the definition of the power-off policy
for JIT blocks (see Sec. 5.1), and thus the two configurations remain related by
the value relation at type nat ↑ Cunit. Next, the first configuration takes a
step to point (5) by inputting a new energy level from the environment (n2). By
the definition of the value relations, the two configurations will remain related
by the value interpretation at type ↑ Cunit.

Finally, the configuration steps to point (6) by D-Restore-Jit that copies
all checkpointed locations inside the volatile memory and continues by running
the interrupted command κ, i.e., here NV0 = NV′1 and V0 = V′ = V′1 and c0 = κ.
This matches the restore policy defined for JIT regions; thus, the configurations
continue to be related by the term relation at type Cunit, similar to what we had
earlier at point (1) in Fig. 15, but with fewer power failures remaining.

Now, when the first configuration finally steps to point (8), by the definition
of the logical relation, we know that the second configuration steps into skip too.
Thus, we can apply the D-Ckpt rule on the second configuration. The volatile
memory V′j is dropped, and the mapping is reset to γ, i.e., it matches the commit

policy defined for JIT blocks. in the logical relation. By Fig. 15-d, we get NV′j =

NV′k, which completes deriving our goal.

Stepping an atomic region. We can build the desired simulation by tak-
ing the same steps described for a JIT region. Similarly, the key point is that
the power-off and restore policies exactly match how the rules D-S-aID and
D-restore-aID, respectively, handle nonvolatile and volatile memories, and
the commit policy corresponds to the FinWorld function in the D-ckpt rule.

We showed that our logical relation ensures idempotency for JIT and atomic
regions. In the next section, we show that our logical relation formalizes a se-
mantic typing to ensure idempotency of more general policies.

5.3 More General Policies

We utilize our semantic typing to allow custom policies for power failure, restore,
and commit. We extend the grammar of programs as p := · | Reg[aID,−→arg](c); p,
where −→arg refers to the arguments that the programmer decides to pass to
the region for initialization. To each region, we assign a unique identifier aID
that is associated with the three policies and two functions InitGeneralt and
InitGenerald to initialize the static and dynamic memories, respectively. We
add the following semantic typing rule for the general regions:

c0 |Ω0 |Σ0 = InitGeneralt(Ω; aID; c;−→org)
aID(c0) | b≥ 0 : nat |Ω0;Σ0
 c0≤ c0 : Cunit b : nat |Ω
 p : ↑Cunit

b : nat |Ω
 Reg[aID,−→arg](c); p : ↑Cunit
(P-Reg-semantic)

([χ1 ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ n ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1, [χ ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1)

([χ1 ▹ ϵ] γ′￼1 ∣ 𝙼𝚍 ∣ 0 ∣ 𝖭𝖵′￼1 ∣ 𝖵′￼1 ∣ c′￼1, [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

∈ ℰ Cunit

∈ 𝒱 Cunit

([χ′￼1 ▹ ϵ] γ0 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵0 ∣ 𝖵0 ∣ c0, [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

⟹

[χ1 ▹ ϵ] γ′￼1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′￼1 ∣ 𝖵′￼1 ∣ ↓ ϵ#in(b > 0; ↑ c′￼1)
([χ1 ▹ ϵ] γ′￼′￼1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′￼1, 𝖵′￼∣ ϵ#in(b > 0; ↑ c′￼1), [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

[χ′￼1 ▹ ϵ] γ′￼′￼1 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵′￼1, 𝖵′￼∣ ↑ c′￼1

χ1 = n0 :: χ′￼1) ∈ 𝒱 nat ⇝ ↑ Cunit

∈ ℰ Cunit

(a)

([χk ▹ ϵ] γk ∣ 𝙼𝚍 ∣ nk ∣ 𝖭𝖵k ∣ 𝖵k ∣ ck, [χ ▹ ϵ]γj ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵j ∣ 𝖵j ∣ cj)

([χk ▹ ϵ] γ′￼k ∣ 𝙼𝚍 ∣ n′￼k ∣ 𝖭𝖵′￼

k ∣ 𝖵′￼k ∣ skip, [χ ▹ ϵ] γ′￼j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼

j ∣ 𝖵′￼j ∣ skip)

∈ ℰ Cunit

∈ 𝒱 ↓ ↑ unit
(b) (γ′￼k ∣ 𝙼𝚍 ∣ n′￼k ∣ 𝖭𝖵′￼

k, 𝖵′￼′￼k ∣ skip, γ′￼j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼

j, 𝖵′￼′￼j ∣ skip) ∈ 𝒱 ↑ unit

𝖭𝖵′￼

k, 𝖵′￼′￼k = 𝖭𝖵′￼

j, 𝖵′￼′￼j(c)

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

⋯ ⋯

⟹ ⟹
0

⟹
0

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
⟹

*
⟹

⟹
*

(where

Fig. 15. Why the logical relation is enough.

For a self-related region to be idempotent, its policies Commit, PwOff, and
Restore must match the dynamics, so we add dynamic rules for custom regions
in Fig. 16. The JIT and atomic region policies and their dynamic rules are
instances of these general policies. As an example, the programmer can customize
the policies of the first block of Fig. 1 to not checkpoint variable u. The program
remains idempotent as the atomic region never reads u before writing to it. This
policy is implemented by real systems [22, 23, 40]. Our static typing rules can be
extended to reason about them as shown in the companion technical report.

6 Metatheory

This section establishes the main properties of the system, which are progress
and preservation, adequacy, and the most important result: the fundamental
theorem where we prove that statically well-typed programs are semantically
well-typed.

6.1 Definition of well-formedness

The well-formedness definitions are given in Figures 17 and 18.

γ0 | NV0 | V0 | c0 = restore(NV,V, κ, Md, γ)

[χB ε]⊗ γ | Md | n | NV |↑ κ ⇒ [χB ε]⊗ γ0 | Md | n | NV0 | V0 | c0
(D-R-Reg)

n > 0 InitGenerald(NV; aID; c; γ;−→arg) = c0,NV0,V0

[χB ε]⊗ aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′ B ε]⊗ aID(c0) | n′ | NV′ | V′ | skip
n′ > 0 NV1 = Commit(NV′; V′; aID;−→arg)

[χB ε]⊗ γ | n | NV | Reg[(aID; arg)](c); p ⇒ [χ′ B ε]⊗ γ | n′ | NV1 | p
(D-Reg)

V′ = PwOff(NV,V, Md, γ)

[χB ε]⊗ γ | Md | · | NV | V | ↓ε # in(b > 0; ↑κ) ⇒
[χB ε]⊗ γ | Md | · | NV,V′ | ε # in(b > 0; ↑κ)

(D-S-Reg)

Fig. 16. Custom dynamic rules

The progress and preservation theorems assume memory locations to be well-
formed, `Mdγ NV | V : Ω | Σ, which is defined similarly to the NV | V
 γ : Ω | Σ
used in the logical relation, but imposes extra conditions based on the execution
mode Md. It states that γ maps variables in contexts Ω and Σ to the nonvolatile
and volatile memories, NV and V, respectively, such that their qualifiers and the
type of the stored values match. Moreover, it requires specific properties on the
contexts depending on Md; in atomic mode, each checkpointed location in NV
and Ω must have copies in V and Σ. We state the theorems below.

6.2 Progress and preservation for open configurations

Lemma 1 (Progress for shifted expressions). If

Md | b:nat | Ω `Rd e : ↑A

then ∀ n : nat with n > 0 and ∀NV,V, γ with `Md
γ NV | V : Ω, either

– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |

NV | V | e′.

Proof. See Appendix.

Theorem 1 (Progress for expressions). If Md | b R m : nat | Ω;Σ `Rd;Sig
e : τ , then ∀ n : nat with nRm and ∀ NV,V, γ with `Md

γ NV | V : Ω | Σ, either

– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |

NV | V | e′.

Proof. See Appendix.

`γ · | · : · | ·
(Empty)

`Jitγ′ NV′ | V : Ω | Σ
NV = NV′, `@ q ↪→ v q = Ck γ = γ′, [x 7→ `] · ` v : ↑A

`Jitγ NV | V : Ω, (x:↑A@q) | Σ
(NV-loc-Jit)

`Md
γ′ NV | V′ : Ω | Σ V = V′, `@ q ↪→ v q = Ck γ = γ′, [x 7→ `] · ` v : ↑A

`Md
γ NV | V : Ω | Σ, (x:↓↑A@q)

(V-loc)

`aIDγ′ NV′ | V : Ω | Σ
NV = NV′, `@ q ↪→ v q 6= Ck γ = γ′, [x 7→ `] · ` v : ↑A

`Md
γ NV | V : Ω, (x:↑A@q) | Σ

(NV-loc-aID-1)

`aIDγ′ NV′ | V′ : Ω | Σ NV = NV′, `ck @ q ↪→ v
V = V′, `@ q ↪→ v′ q = Ck γ = γ′, [x 7→ `] · ` v, v′ : ↑A

`aIDγ NV | V : Ω, (xck:↑A@q) | Σ, (x:↓↑A@q)
(NV-loc-aID-2)

Fig. 17. Well-formedness of NV | V w.r.t. Ω | Σ

Lemma 2 (Well-formedness of shifted contexts). If `Md
γ NV | V : Ω | Σ

and Σ = ↓Σ′, then `Md
γ NV | V : Ω,Σ′.

Proof. The proof is by induction on the structure of `Md
γ NV | V : Ω | Σ. For

each step in the derivation, we build the corresponding step of a derivation for
`Md
γ NV | V : Ω,Σ′ according to the well-formedness definition.

Theorem 2 (Progress for commands). If Md | b R m : nat | Ω;Σ `Sig c : τ ,
then ∀ n : nat with nRm and ∀ γ,NV,V with `Mdγ NV | V : Ω | Σ, either

– V al(γ | Md | n | NV | V | c) or
– ∃(γ′ | Md′ | n′ | NV′ | V′ | c′) such that γ | Md | n | NV | V | c → γ′ | Md′ | n′ |

NV′ | V′ | c′.

Proof. See Appendix.

Axiom 1 (positive input to generation channel) ε # iņ() : nat > 0.

Lemma 3 (Well-typedness of expressions under crash in jit). jit | b =

0 : nat | Ω;Σ `RD;Sig′ e : CjitA for Sig′ = {jit | b ≥ 0 : nat | Ω;Σ `RD e : CjitA }.

Proof. See Appendix.

Lemma 4 (Well-typedness of expressions under crash in aID). If aID(c0) |
b = 0 : nat | Ω;Σ′ `RD;Sig e′ : τ then aID(c0) | b = 0 : nat | Ω;Σ `RD;Sig e : τ .

`γ · | · : ·
(-Empty)

`Jitγ′ NV′ | V : Ω NV = NV′, `@ q ↪→ v
q = Ck γ = γ′, [x 7→ `] Md | b : nat | Ω `RD;Sig v : ↑As

`Jitγ NV | V : Ω, (x:↑A@q)
(NV-loc-Jit)

`Md
γ′ NV | V′ : Ω

V = V′, `@ q ↪→ v q = Ck γ = γ′, [x 7→ `] Md | b : nat | Ω `RD;Sig v : ↑As

`Md
γ NV | V : Ω, (x:↑A@q)

(V-loc)

`aIDγ′ NV′ | V : Ω NV = NV′, `@ q ↪→ v
q 6= Ck γ = γ′, [x 7→ `] Md | b : nat | Ω `RD;Sig v : ↑As

`Md
γ NV | V : Ω, (x:↑A@q)

(NV-loc-aID-1)

`aIDγ′ NV′ | V′ : Ω
NV = NV′, `ck @ q ↪→ v V = V′, `@ q ↪→ v′ q = Ck γ = γ′, [x 7→ `]

Md | b : nat | Ω `RD;Sig v : ↑As Md | b : nat | Ω `RD;Sig v′ : ↑As

`aIDγ NV | V : Ω, (xck:↑A@q), (x:↑A@q)
(NV-loc-aID-2)

Fig. 18. Well-formedness of NV | V w.r.t. Ω

Proof. See Appendix.

Lemma 5 (Well-typedness of commands under crash in jit). jit | b =

0 : nat | Ω;Σ `Sig′ c : Cjitunit for Sig′ = {jit | b ≥ 0 : nat | Ω;Σ ` c : Cjitunit}.

Proof. See Appendix.

Lemma 6 (Well-typedness of commands under crash in aID). If aID(c0) |
b = 0 : nat | Ω;Σ′ `Sig c′ : τ then aID(c0) | b = 0 : nat | Ω;Σ `Sig c : τ .

Proof. See Appendix.

Theorem 3 (Preservation for expressions). If

(†) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : τ

and for some `Mdγ NV | V : Ω | Σ and (co-)natural number n ≥ 0, we have

γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

then

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : τ

with n′ ≥ 0.

Proof. See Appendix.

Definition 1. We write Σ′ = trim(Σ,V, γ) where x:τ@q ∈ Σ′ iff γ = [x 7→ `], γ′

and x:τ@q ∈ Σ and ` ∈ dom(V).

Lemma 7 (Equality of trimmed volatile contexts). If

(i) Σ′ = trim(Σ,V0, γ0)
(ii) `Mdγ NV | V : Ω | Σ,

(iii) `Mdγ′′ NV′ | V′ : Ω | Σ′′,
(iv) dom(V0) ⊆ dom(V) and dom(V0) ⊆ dom(V′)
(v) γ0 ⊆ γ and γ0 ⊆ γ′′

then Σ′ = trim(Σ′′,V0, γ0).

Proof. See Appendix.

Lemma 8 (Well-formedness of smaller memories). If

(i) `Mdγ NV | V : Ω | Σ,
(ii) V′′ = V � dom(V′),

(iii) Σ′ = trim(Σ,V′, γ′), and
(iv) γ′ ⊆ γ
then `Mdγ′ NV | V′′ : Ω | Σ′.

Proof. See Appendix.

Definition 2 (Well-formedness for configurations). We say that a config-
uration γ | Md | n | NV | V | c where c = c′;W ′ c′′;W ′′ c′′′ is well-formed iff

– dom(V ′′) ⊆ dom(V ′) ⊆ dom(V)
– γ′′ ⊆ γ′ ⊆ γ

where W ′ = γ′ | V ′ and W ′′ = γ′′ | V ′′.

Lemma 9 (Monotonicity of volatile memories). If γ | Md | n | NV | V |
c → γ′ | Md | n′ | NV′ | V′ | c′ where c 6= c1;W c2, then dom(V) ⊆ dom(V′) and
γ ⊆ γ′.

Proof. The proof is straightforward, proceeding in cases on the dynamic rules.

Theorem 4 (Preservation for commands). If

(†) Md | b ≥ 0 : nat | Ω;Σ ` c : τ

and γ | Md | n | NV | V | c is well-formed and `Mdγ NV | V : Ω | Σ and (co-)natural
number n ≥ 0, we have

γ | Md | n | NV | V | c → γ′ | Md | n′ | NV′ | V′ | c′

then for some Σ′

Md | b ≥ 0 : nat | Ω;Σ′ ` c′ : τ

where `Mdγ′ NV′ | V′ : Ω | Σ′ and n′ ≥ 0. Moreover γ′ | Md | n′ | NV′ | V′ | c′ is
well-formed.

Proof. See Appendix.

6.3 Fundamental theorem

Theorem 5 (Fundamental theorem). If b : nat | Ω ` p : ↑Cunit, then b :
nat | Ω
 p : ↑Cunit.

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ 0 ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1

⇒* ⇒
0

ℰ
𝒱

k+1

k+1

(1)

(2)

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ1 ∣ 𝚊𝙸𝙳(c) ∣ ⋅ ∣ 𝖭𝖵 ∣ 𝖵1 ∣(3)
𝒱 k

By progress and preservation

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ ⋅ ∣ 𝖭𝖵 ∣(4)
𝒱 k

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ ↑ c1(5)
𝒱 k

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c(6)
ℰ k

Induction

𝖭𝖵 = 𝖭𝖵′￼, 𝖵𝚌𝚔

range(γ) = dom(NV)

γ ⊆ γ1

We know: range(γ) = dom(NV)

We show:

𝖭𝖵 = 𝖭𝖵′￼, 𝖵𝚌𝚔

We know:

γ ⊆ γ1

We show:

𝙲Unit

𝙲Unit

↓ (𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit)

𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit

↑ 𝙲Unit

𝙲Unit

ϵ#in(b > 0, ↑ c1)

↓ ϵ#in(b > 0, ↑ c1)

Fig. 19. Proof of the fundamental theorem for aID - inductive case

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1

⇒*

ℰ
𝒱

k+1

k+1

(1)

(2)

γ1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ cγ1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1(3)
𝒱 k

By progress and preservation

γ′￼1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵′￼1 ∣ cγ′￼1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵′￼1 ∣ c1(4)
𝒱 k

𝖭𝖵′￼1 = 𝖭𝖵′￼1

𝙲𝚘𝚖𝚖𝚒𝚝(γ1 ∣ 𝚊𝙸𝙳(c) ∣ 𝖭𝖵 ∣ 𝖵) = γ′￼1 ∣ 𝖭𝖵′￼1We know:

We show:

𝙲𝚞𝚗𝚒𝚝

𝙲𝚞𝚗𝚒𝚝

↓ ↑ 𝚞𝚗𝚒𝚝

↑ 𝚞𝚗𝚒𝚝

⇒*

Fig. 20. Proof of the fundamental theorem for aID - base case

Proof. See Appendix.

The proof of Theorem 12 is by induction on the static typing derivation
for p and considers the last step in the derivation. Fig. 22 explains the idea
of the proof for the case where P-Ckpt is the last step of the derivation. By
inversion, p = Ckpt[aID, ρ](c); p′. Also, c is well-typed for static contexts Ω′

and Σ, where Ω′ = Ω′′, Σck. The goal is to establish point (1) in the figure:

γ ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1

γ ∣ 𝙹𝚒𝚝 ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝙹𝚒𝚝 ∣ 0 ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1

⇒*

ℰ
𝒱

k+1

k+1

(1)

(2)

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ ⋅ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣(3)
𝒱 k

By progress and preservation

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ ⋅ ∣ 𝖭𝖵′￼1 ∣(4)
𝒱 k

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ n′￼ ∣ 𝖭𝖵′￼1 ∣ ↑ c1(5)
𝒱 k

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ n′￼ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1(6)
ℰ k

Induction
We know:

𝖭𝖵′￼1 = 𝖭𝖵1, 𝖵′￼𝚌𝚔

We show:

𝙲Unit

𝙲Unit

↓ (𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit)

𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit

↑ 𝙲Unit

𝙲Unit

⇒*

ϵ#in(b > 0, ↑ c1)

↓ ϵ#in(b > 0, ↑ c1)

𝖭𝖵′￼1 = 𝖭𝖵1, 𝖵′￼𝚌𝚔

Fig. 21. Proof of the fundamental theorem for Jit - inductive case

c is related to itself in the term interpretation for arbitrary n, m, γ, NV and
V where NV | V
 γ::Ω′′, Σck | Σ. The last condition enforces that the static
contexts match the dynamic context. The condition also establishes the more
refined well-formedness condition that `Mdγ NV | V : Ω | Σ in atomic mode,
required by progress and preservation, since it enforces that each checkpointed
location in NV and Ω have copies in V and Σ. In particular, NV = NV′,Vck and
range(γ) = dom(NV). When m = 0, the proof is trivial. Consider the case where
m = k + 1. By the progress and preservation theorems, the first configuration
can take multiple steps until it becomes a value γ1 | aID(c) | n′ | NV | V1 | c1 that
continues to be well-typed. If n′ > 0, the second configuration steps similarly to
completion and establishes that the two resulting configurations are in the value
relation. This case is not shown in the figure. If n′ = 0, the second configuration
does not step and instead reaches point (2) in Fig. 22. At point (2), the proof
must show that the configurations are in the value interpretation at type Cunit.

The dashed line in the figure states that establishing point (2) implies the
relation in point (1). The cascade of implications (dashed lines) follows the def-
inition of the value relations at each type. At each step, we invert on the typing
rule of the open configuration and show that runtime memories stay well-defined
for static contexts. At point (4), we apply the power failure policy for atomic
regions, which drops the volatile memory V1 and creates a mapping using the
domain of NV. By the prior conditions established, we know the created map-
ping is the original mapping γ. At point (6), we apply the restore policy for
atomic regions, which creates a new volatile memory based on NV. Again by the
prior conditions established, we know the volatile memory created is the original

Fig. 22. Proof of the fundamental theorem for P-Ckpt

volatile V. The goal at point (6) is similar to our original goal at point (1), except
that the proof uses an inductive argument to relate the two configurations at k.

Finally the Adequacy Theorem states that semantically well-typed programs
are idempotent, defined below. The proof is illustrated below.

6.4 Adequacy

Definition 3 (Idempotency). A triple of a program p, nonvolatile memory
NV, and a mapping γ is idempotent, if every intermittent execution of the pro-
gram can be simulated by a continuous execution of it: for all n, n′, χ1, χ

′
1,NV′, p′,

if [χ1 B ε]⊗ γ | n | NV | p ⇒ [χ′1 B ε]⊗ γ | n′ | NV′ | p′, then [χ2 B ε]⊗ γ | ∞ |
NV | p⇒ [χ2 B ε]⊗ γ | ∞ | NV′ | p′.

Theorem 6 (Adequacy). Consider b : nat | Ω
 p : Cunit, a nonvolatile mem-
ory NV and a bijective map γ that matches qualifiers and types from variables
in Ω to locations in NV. The triple of p, NV, and γ is idempotent.

Proof. See Appendix.

6.5 Preservation for closed configurations

Theorem 7 (Preservation for programs). Consider b : nat | Ω ` p : ↑Cunit,
a nonvolatile memory NV and a bijective map γ that matches qualifiers and
types from variables in Ω to locations in NV. For any n:nat ≥ 0, if we have
[χBε]⊗γ | n | NV | p ⇒ [χ′Bε]⊗γ′ | n′ | NV′ | p′, then b : nat | Ω ` p′ : ↑Cunit,
with γ remaining a bijective map from Ω to NV′.

Proof. See Appendix.

([χ1 ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ n ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1, [χ ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1)

([χ1 ▹ ϵ] γ′￼1 ∣ 𝙼𝚍 ∣ 0 ∣ 𝖭𝖵′￼1 ∣ 𝖵′￼1 ∣ c′￼1, [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

∈ ℰ Cunit

∈ 𝒱 Cunit

([χ′￼1 ▹ ϵ] γ0 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵0 ∣ 𝖵0 ∣ c0, [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

⟹

[χ1 ▹ ϵ] γ′￼1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′￼1 ∣ 𝖵′￼1 ∣ ↓ ϵ#in(b > 0; ↑ c′￼1)
([χ1 ▹ ϵ] γ′￼′￼1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′￼1, 𝖵′￼∣ ϵ#in(b > 0; ↑ c′￼1), [χ ▹ ϵ] γ′￼2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼2 ∣ 𝖵′￼2 ∣ c′￼2)

[χ′￼1 ▹ ϵ] γ′￼′￼1 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵′￼1, 𝖵′￼∣ ↑ c′￼1

χ1 = n0 :: χ′￼1) ∈ 𝒱 nat ⇝ ↑ Cunit

∈ ℰ Cunit

(a)

([χk ▹ ϵ] γk ∣ 𝙼𝚍 ∣ nk ∣ 𝖭𝖵k ∣ 𝖵k ∣ ck, [χ ▹ ϵ]γj ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵j ∣ 𝖵j ∣ cj)

([χk ▹ ϵ] γ′￼k ∣ 𝙼𝚍 ∣ n′￼k ∣ 𝖭𝖵′￼

k ∣ 𝖵′￼k ∣ skip, [χ ▹ ϵ] γ′￼j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼

j ∣ 𝖵′￼j ∣ skip)

∈ ℰ Cunit

∈ 𝒱 ↓ ↑ unit
(b) (γ′￼k ∣ 𝙼𝚍 ∣ n′￼k ∣ 𝖭𝖵′￼

k, 𝖵′￼′￼k ∣ skip, γ′￼j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′￼

j, 𝖵′￼′￼j ∣ skip) ∈ 𝒱 ↑ unit

𝖭𝖵′￼

k, 𝖵′￼′￼k = 𝖭𝖵′￼

j, 𝖵′￼′￼j(c)

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

⋯ ⋯

⟹ ⟹
0

⟹
0

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
⟹

*
⟹

⟹
*

(where

Fig. 23. Why the logical relation is enough?

7 Discussion & Related Work

Intermittent Computing. Surbatovich et al. [40] provide the first formal
framework for reasoning about intermittent execution, give the correctness defi-
nition that we use, and identify precise memory invariants needed for an execu-
tion to be correct. Our Crash types capture some of these invariants; capturing
all requires reasoning about the effects of non-deterministic sensor inputs, which
we leave to future work. This work is the first to treat intermittent operations
at the type level and explore the logical interpretation of intermittent execution.
We speculate that our type-based approach using logical relations will provide
a cleaner foundation for reasoning about the correctness of more complex inter-
mittent systems, e.g., concurrent ones. Other works that investigate the formal
properties of intermittent computing either reason about the effects of intermit-
tent execution on peripheral interactions [9] or enforce timeliness constraints on
sensor readings [39], which are orthogonal to ours.

Adjoint Logic. Benton et al. [7, 8] provided the first categorical foundation for
using adjoint functors to combine linear and nonlinear logics and showed that a
well-behaved calculus requires an independence principle: linear formulae cannot
appear in the assumptions of a nonlinear sequent. Follow up works further gen-
eralized the system [19, 20, 35]. There, the relation to Pfenning and Davies’s [29]
formulation of the lax© modality was noted;© corresponds to UF, where F and
U are adjunctions between truth and validity categories. Short of a full curry-
howard correspondence for our type system and underlying logic, we designed
the rules for ↑ and ↓ based on the above calculi. Our stable and unstable contexts
correspond to the validity and truth contexts respectively. Thus, we speculate
that the combination ↑↓ in our system corresponds to the lax modality.

Several prior works used type systems with adjoint modalities to model
switching between program modes [6, 14, 33], e.g., switching a processes’ mode
between shared and unshared [6], or adding multicasting, replicable services, and
cancellation modes to a session-typed message passing system [33]. We are the
first to use these modalities to handle unforeseen shut-downs and distinguish
between stable and power-failure prone modes.

Logical Relations. Prior work [3, 41] uses step indexing to ensure the well-
foundedness of logical relations that handle heaps with cyclic references, dynamic
memory allocation, or recursive types. Our Crash types model the infinite com-
putation that an atomic region can experience under a non-deterministic number
of power failures and re-executions. This recursion necessitates an-indexed rela-
tion that limits the number of execution attempts a program can make.

Jung and Tiuryn introduced a logical relation for lambda definability that
allows varying arities [17]. The idea is to increase the arity when passing to
later worlds instead of starting with a large arity. Our logical relation can also
be viewed as a relation with different arities; the initial type of the relation is
binary, while after a crash the type of the value relation only corresponds to
the intermittent configuration. During these value steps, the relation is unary,
with the continuous configuration acting as a kripke world for the intermittent
configuration. After restoration, the relation reverts to binary.

Logical relations have been widely used to prove program equivalence, e.g., [2,
3, 10, 15]. At a high level, idempotency is similar to program equivalence, but it
handles re-execution and requires us only to prove simulation from an intermit-
tent to continuous run, not vice-versa.

Algebraic Effect Handlers. Algebraic effect handlers [26, 30–32] give a unified
theory for computational effects, e.g., exceptions and interactive input/output. A
handler accesses the continuation to transform the computation. Following effect
handler syntax, we write effectful environmental interactions of our system as
ε#in(b > 0, ↑κ), where b refers to a natural number returned by the environment
and ↑κ is the continuation. Our restore policy resembles a handler, in that it has
access to the continuation, but an atomic region may dismiss the continuation,
restarting from a saved command.

Crash Hoare Logic. Crash Hoare logic (CHL) [11] ensures the correctness of
crash and restore operations in a file system. CHL extends Hoare logic with a

crash condition and a recovery procedure. The crash condition states what hap-
pens to the state on a crash. The recovery procedure runs after the crash and
manipulates the state before resuming. The system checks that if the program
crashes, the storage system will recover to a state consistent with the specifica-
tions. Unlike us, they do not care about idempotency, requiring manual effort
to formalize the crash condition and recovery policy. Our syntactic typing fixes
the power failure, restore, and commit policies, and our formal results guarantee
that following the policies ensures idempotency, the common correctness con-
dition for intermittent execution. We also allow the programmer to formalize
bespoke semantically well-typed policies.

8 Conclusion

This work provides the first logical interpretation of intermittent execution. It
shows that adjoint logic can be applied to define Crash types, which internalize
the dualities between stable and unstable values, and complete versus partial
(re-)executions of intermittent programs. The typing constraints capture invari-
ants of power failure, restoration, and re-execution in intermittent systems. The
proofs of progress, preservation, and the fundamental theorem imply the cor-
rectness of intermittent systems, i.e. idempotency of execution.

References

1. Adkins, J., Campbell, B., Ghena, B., Jackson, N., Pannuto, P., Dutta, P.:
The signpost network: Demo abstract. In: Proceedings of the 14th ACM Con-
ference on Embedded Network Sensor Systems CD-ROM. SenSys ’16 (2016).
https://doi.org/10.1145/2994551.2996542

2. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation in-
dependence. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. p. 340–353. POPL
’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1480881.1480925

3. Ahmed, A.J.: Semantics of types for mutable state. Princeton University (2004)
4. Balsamo, D., Weddell, A., Das, A., Arreola, A., Brunelli, D., Al-Hashimi, B.,

Merrett, G., Benini, L.: Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems PP(99), 1–1 (2016).
https://doi.org/10.1109/TCAD.2016.2547919

5. Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli, D.,
Benini, L.: Hibernus: Sustaining computation during intermittent supply for
energy-harvesting systems. IEEE Embedded Systems Letters 7(1), 15–18 (2015).
https://doi.org/10.1109/LES.2014.2371494

6. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Proceedings of the 29th European Symposium on Programming. pp. 611–
639 (2019). https://doi.org/10.1007/978-3-030-17184-1 22

7. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Proceed-
ings 11th Annual IEEE Symposium on Logic in Computer Science. pp. 420–431.
IEEE (1996). https://doi.org/10.1109/LICS.1996.561458

8. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
International Workshop on Computer Science Logic. pp. 121–135. Springer (1994).
https://doi.org/10.1007/BFb0022251

9. Berthou, G., Dagand, P.E., Demange, D., Oudin, R., Risset, T.: Intermittent com-
puting with peripherals, formally verified. In: The 21st ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems. pp. 85–96.
LCTES ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372799.3394365

10. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of parametric
polymorphism, general references, and recursive types. In: International Conference
on Foundations of Software Science and Computational Structures. pp. 456–470.
FOSSACS ’09, Springer (2009). https://doi.org/10.1017/S0960129510000162

11. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the fscq file system. In: Proceedings of the
25th Symposium on Operating Systems Principles. pp. 18–37. SOSP ’15, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2815400.2815402

12. Colin, A., Lucia, B.: Chain: Tasks and channels for reliable intermittent pro-
grams. In: Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications. OOPSLA ’16 (2016).
https://doi.org/10.1145/2983990.2983995

13. Dahiya, M., Bansal, S.: Automatic verification of intermittent systems. In: Dillig,
I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract Interpretation.
VMCAI ’18 (2018). https://doi.org/10.1007/978-3-319-73721-8 8

14. Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-aware ses-
sion types for digital contracts. In: IEEE 34th Computer Security Foundations
Symposium. pp. 1–16. CSF ’21 (2021). https://doi.org/10.48550/arXiv.1902.06056

15. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming 22(4-5),
477–528 (2012). https://doi.org/10.1145/1863543.1863566

16. Hester, J., Storer, K., Sorber, J.: Timely execution on intermittently powered bat-
teryless sensors. In: Proceedings of the 15th ACM Conference on Embedded Net-
work Sensor Systems (2017). https://doi.org/10.1145/3131672.3131673

17. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Inter-
national Conference on Typed Lambda Calculi and Applications. pp. 245–257.
Springer (1993). https://doi.org/10.5555/645891.671429

18. Kortbeek, V., Yildirim, K.S., Bakar, A., Sorber, J., Hester, J., Pawe lczak,
P.: Time-sensitive intermittent computing meets legacy software. In: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. pp. 85–99. ASP-
LOS ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3373376.3378476

19. Licata, D.R., Shulman, M.: Adjoint logic with a 2-category of modes. In: Inter-
national Symposium on Logical Foundations of Computer Science. pp. 219–235.
Springer (2016). https://doi.org/10.1007/978-3-319-27683-0 16

20. Licata, D.R., Shulman, M., Riley, M.: A fibrational framework for substructural
and modal logics. In: 2nd International Conference on Formal Structures for Com-
putation and Deduction. FSCD ’17, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.25

21. Lucia, B., Denby, B., Manchester, Z., Desai, H., Ruppel, E., Colin,
A.: Computational nanosatellite constellations: Opportunities and chal-

lenges. GetMobile: Mobile Comp. and Comm. 25(1), 16–23 (Jun 2021).
https://doi.org/10.1145/3471440.3471446

22. Lucia, B., Ransford, B.: A simpler, safer programming and execution model
for intermittent systems. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’15 (2015).
https://doi.org/10.1145/2737924.2737978

23. Maeng, K., Colin, A., Lucia, B.: Alpaca: Intermittent execution without
checkpoints. Proc. ACM Program. Lang. 1(OOPSLA), 96:1–96:30 (Oct 2017).
https://doi.org/10.1145/3133920

24. Maeng, K., Lucia, B.: Supporting peripherals in intermittent systems with just-in-
time checkpoints. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. p. 1101–1116. PLDI ’19 (2019).
https://doi.org/10.1145/3314221.3314613

25. Maeng, K., Lucia, B.: Adaptive low-overhead scheduling for periodic and reac-
tive intermittent execution. In: Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 1005–1021.
PLDI ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3385412.3385998

26. Moggi, E.: Computational lambda-calculus and monads. University of Edinburgh,
Department of Computer Science, Laboratory for Foundations of Computer Science
(1988)

27. Nardello, M., Desai, H., Brunelli, D., Lucia, B.: Camaroptera: A bat-
teryless long-range remote visual sensing system. In: Proceedings of the
7th International Workshop on Energy Harvesting & Energy-Neutral Sens-
ing Systems. pp. 8–14. ENSsys’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3362053.3363491

28. NASA: What is KickSat-2? https://www.nasa.gov/ames/kicksat (2019), visited
April 15th, 2022

29. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical structures in computer science 11(4), 511–540 (2001)

30. Plotkin, G., Power, J.: Semantics for algebraic operations. Electronic Notes in
Theoretical Computer Science 45, 332–345 (2001). https://doi.org/10.1016/S1571-
0661(04)80970-8

31. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Proceedings of
the 19th European Symposium on Programming. pp. 80–94. Springer (2009).
https://doi.org/10.48550/arXiv.1312.1399

32. Pretnar, M., Plotkin, G.D.: Handling algebraic effects. Logical methods in com-
puter science 9 (2013). https://doi.org/10.48550/arXiv.1312.1399

33. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic.
Journal of Logical and Algebraic Methods in Programming 120, 100637 (2021).
https://doi.org/10.48550/arXiv.1904.01290

34. Ransford, B., Sorber, J., Fu, K.: Mementos: System support for long-running com-
putation on RFID-scale devices. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS XVI (2011). https://doi.org/10.1145/1950365.1950386

35. Reed, J.: A judgmental deconstruction of modal logic. Unpublished manuscript,
January (2009)

36. Ruppel, E., Lucia, B.: Transactional concurrency control for intermittent, energy-
harvesting computing systems. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 1085–1100. PLDI
’19 (2019). https://doi.org/10.1145/3314221.3314583

37. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing. pp.
204–213. PODC ’95 (1995). https://doi.org/10.1145/224964.224987

38. Surbatovich, M., Jia, L., Lucia, B.: I/o dependent idempotence bugs in intermit-
tent systems. Proc. ACM Program. Lang. 3(OOPSLA), 183:1–183:31 (Oct 2019).
https://doi.org/10.1145/3360609

39. Surbatovich, M., Jia, L., Lucia, B.: Automatically enforcing fresh and consistent
inputs in intermittent systems. In: Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation. p.
851–866. PLDI ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3453483.3454081

40. Surbatovich, M., Lucia, B., Jia, L.: Towards a formal foundation of inter-
mittent computing. Proc. ACM Program. Lang. 4(OOPSLA) (Nov 2020).
https://doi.org/10.1145/3428231

41. Thamsborg, J., Birkedal, L.: A kripke logical relation for effect-based program
transformations. ACM SIGPLAN Notices 46(9), 445–456 (2011)

42. Van Der Woude, J., Hicks, M.: Intermittent computation without hard-
ware support or programmer intervention. In: Proceedings of OSDI’16: 12th
USENIX Symposium on Operating Systems Design and Implementation (2016).
https://doi.org/10.5555/3026877.3026880

43. Yildirim, K.S., Majid, A.Y., Patoukas, D., Schaper, K., Pawelczak, P., Hester, J.:
Ink: Reactive kernel for tiny batteryless sensors. In: Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems. pp. 41–53. SenSys ’18, ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3274783.3274837

Appendix

Lemma 1 (Progress for shifted expressions). If

Md | b:nat | Ω `Rd e : ↑A

then ∀ n : nat with n > 0 and ∀NV,V, γ with `Md
γ NV | V : Ω, either

– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |

NV | V | e′.

Proof. The proof proceeds by structural induction over Md | b : nat | Ω `Rd e :
↑A.

Case 1 [T-Loc-Read]. Suppose the last rule in the typing derivation is
T-Loc-Read:

Ω = x : ↑A@q,Ω′

Md | b : nat | Ω `RD x : ↑A
(T-Loc-Read)

Then by inversion, we have Ω = x : ↑A@q,Ω′. By assumption, `Md
γ NV |

V : Ω. By inversion of `Md
γ NV | V : Ω according to the well-formedness

definition, one of the two subcases hold:

Subcase 1. NV = `@q ↪→ v,NV′ with γ = γ′, [x 7→ `].
Since n > 0, it follows that ∃n′ such that n = n′ + 1, and hence the
evaluation rule D-loc-Read applies:

γ = γ′, [x 7→ `]
NV = `@q ↪→ v,NV′ δ(q, RD) 6= UN n = n′ + 1

γ | Md | n | NV | V | x→ γ | Md | n′ | NV | V | v
(D-loc-Read)

This yields the desired result.
Subcase 2. V = `@q ↪→ v,V′ with γ = γ′, [x 7→ `].

Since n > 0, it follows that ∃n′ such that n = n′ + 1, and hence the
evaluation rule D-loc-Read applies:

γ = γ′, [x 7→ `]
V = `@q ↪→ v,V′ δ(q, RD) 6= UN n = n′ + 1

γ | Md | n | NV | V | x→ γ | Md | n′ | NV | V | v
(D-var-Read)

This yields exactly the desired result.

Case 2 [T-Bool-t]. Suppose that the last rule in the typing derivation is
T-Bool-t:

Md | b : nat | Ω `RD tt :↑ bool
(T-Bool-t)

By the value rule V-Bool-t and the assumption n > 0 we get

n > 0

Val(γ | Md | n | NV | V | tt)
(V-Bool-t)

Case 3 [T-Bool-f]. Suppose that the last rule in the typing derivation is
T-Bool-f:

Md | b : nat | Ω `RD ff :↑ bool
(T-Bool-f)

By the value rule V-Bool-f and the assumption n > 0 we get

n > 0

Val(γ | Md | n | NV | V | ff)
(V-Bool-f)

Case 4 [T-Int].
Suppose that the last rule in the typing derivation is T-Int:

Md | b : nat | Ω `RD n : ↑int
(T-Int)

By the value rule V-Int and the assumption n > 0 we get:

n > 0

Val(γ | Md | n | NV | V | n)
(V-Int)

Theorem 1 (Progress for expressions). If Md | b R m : nat | Ω;Σ `Rd;Sig
e : τ , then ∀ n : nat with nRm and ∀ NV,V, γ with `Md

γ NV | V : Ω | Σ, either

– V al(γ | Md | n | NV | V | e) or

– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |
NV | V | e′.

Proof. The proof is by structural induction over Md | b R m : nat | Ω;Σ `Rd;Sig
e : τ . We consider a specific (co-)natural number nRm and contexts NV,V, γ
with `Md

γ NV | V : Ω | Σ. We consider cases based on the last step in the
derivation:

Case 1 [T-Enough?].

Md | b = 0 : nat | Ω;Σ `Sig′′ e : τ
Md | b > 0 : nat | Ω;Σ `RD;Sig e : τ

Sig′ = {Md | b ≥ 0 : nat | Ω;Σ `RD e : τ}
Sig′′ = if Md = jit, then Sig′, else Sig

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : τ
(T-enough?)

By assumption, we know that n ≥ 0. We consider two subcases based on the
value of n (i.e. n = 0 or n > 0):

Subcase 1 [n = 0]. By the value rule V-e-Crash, we have

Val(γ | Md | 0 | NV | V | e),

which completes the proof of this subcase.

Subcase 2 [n > 0].

By inversion on T-Enough?, we have

(1) Md | b = 0 : nat | Ω;Σ `Sig′′ e : τ
(2) Md | b > 0 : nat | Ω;Σ `RD;Sig e : τ
(3) Sig′ = {Md | b ≥ 0 : nat | Ω;Σ `RD e : τ}
(4) Sig′′ = if Md = jit, then Sig′, else Sig

We can apply the induction hypothesis to (2) to get for n > 0, and
NV,V, γ either

– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md |
n′ | NV | V | e′.

which completes the proof of this subcase.

Case 2 [T-Binary].
Suppose the last rule in the typing derivation is T-Binary and e = e1 � e2:

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdT
Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : CMdT ′ � : ↑T × ↑T ′ → ↑T ′′

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : CMdT ′′
(T-Binary)

By assumption, we know that n > 0. By inversion, we have
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdT
(2) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : CMdT ′

(3) � : ↑T × ↑T ′ → ↑T ′′
By the inductive hypothesis applied to (1), either
– V al(γ | Md | n | NV | V | e1), or
– ∃(γ | Md | n′ | NV | V | e′1) such that γ | Md | n | NV | V | e1 → γ | Md |
n′ | NV | V | e′1.

From here, the proof proceeds in two subcases:
Subcase 1. V al(γ | Md | n | NV | V | e1)

We apply the inductive hypothesis to (2) to get two sub-subcases.
Subcase 1a. V al(γ | Md | n | NV | V | e2).

Since n > 0, we can apply the dynamic rule D-Binary-v to get

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | v,

where v = e1 � e2, and n = n′ + 1.
Subcase 1b. ∃(γ | Md | n′ | NV | V | e′2) such that γ | Md | n | NV | V |
e2 → γ | Md | n′ | NV | V | e′2. By D-Binary-2,

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | e1 � e′2
Subcase 2. Suppose that ∃(γ | Md | n′ | NV | V | e′1) such that γ | Md | n |

NV | V | e1 → γ | Md | n′ | NV | V | e′1. Then, by D-Binary-1,

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | e′1 � e2
The desired result holds in all subcases.

Case 3 [T-∨-succ].
Suppose the last rule in the typing derivation is T-∨-succ:

Md | b : nat | Ω;Σ `RD v : ↓↑A
Md | b > 0 : nat | Ω;Σ `RD;Sig v : τ ∨ ↓↑A

(T-∨-succ)

By assumption, we get n > 0. By inversion, we have:

† Md | b : nat | Ω;Σ `RD v : ↓↑A
We know that the last rule for deriving † is T-R-Shift:

Σ = ↓Σ′ Ω = Ω′, Ω′′ck Md | b : nat | Ω,Σ′ `RD v : ↑A
Md | b : nat | Ω;Σ `RD v : ↓↑A

(T-R-Shift)

By inversion, we have:

(1) Md | b : nat | Ω,Σ′ `RD v : ↑A
(2) Σ = ↓Σ′
(3) Ω = Ω′, Ω′′ck
By assumption `Md

γ NV | V : Ω | Σ and (2), it follows from Lemma 2 that

`Md
γ NV | V : Ω,Σ′. Then the desired result follows directly by application

of Lemma 10 to (1) (since n > 0).

Theorem 2 (Progress for commands). If Md | b R m : nat | Ω;Σ `Sig c : τ ,
then ∀ n : nat with nRm and ∀ γ,NV,V with `Mdγ NV | V : Ω | Σ, either

– V al(γ | Md | n | NV | V | c) or
– ∃(γ′ | Md′ | n′ | NV′ | V′ | c′) such that γ | Md | n | NV | V | c → γ′ | Md′ | n′ |

NV′ | V′ | c′.

Proof. The proof is by structural induction over Md | b R m : nat | Ω;Σ `Sig c :
τ . We consider a specific (co-)natural number nRm and contexts NV,V, γ with
`Md
γ NV | V : Ω | Σ. We consider cases based on the last step in the derivation:

Case 1 [T-Enough?].

Md | b = 0 : nat | Ω;Σ `Sig′′ c : τ
Md | b > 0 : nat | Ω;Σ `Sig c : τ

Sig′ = {Md | b ≥ 0 : nat | Ω;Σ ` c : τ}
Sig′′ = if Md = jit, then Sig′, else Sig

Md | b ≥ 0 : nat | Ω;Σ `Sig c : τ
(T-enough?)

By assumption, we know that n ≥ 0. We consider two subcases based on the
value of n:

Subcase 1 [n = 0]. By the value rule V-c-Crash, we have

Val(γ | Md | 0 | NV | V | c),

which completes the proof of this subcase.
Subcase 2 [n > 0].

By inversion on T-Enough?, and since n > 0, we have

(1) Md | b = 0 : nat | Ω;Σ `Sig′′ c : τ
(2) Md | b > 0 : nat | Ω;Σ `Sig c : τ
(3) Sig′ = {Md | b ≥ 0 : nat | Ω;Σ ` c : τ}
(4) Sig′′ = if Md = jit, then Sig′, else Sig

We can apply the induction hypothesis on this judgment to get for n > 0,
and NV,V, γ either
– V al(γ | Md | n | NV | V | c) or
– ∃(γ′ | Md′ | n′ | NV′ | V′ | c′) such that γ | Md | n | NV | V | c → γ′ |

Md′ | n′ | NV′ | V′ | c′.
which completes the proof of this subcase.

Case 2 [T-If].
Suppose the last rule in the typing derivation is T-if and c = if e then c1 else c2:

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool
Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : τ
Md | b ≥ 0 : nat | Ω;Σ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig if e then c1 else c2 : τ
(T-If)

By assumption, we know that n > 0. By inversion, we have:
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool
(2) Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : τ
(3) Md | b ≥ 0 : nat | Ω;Σ `Sig c2 : τ
By Theorem 8 applied to (1), either
– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |

NV | V | e′.
From here, the proof proceeds in two subcases:
Subcase 1. V al(γ | Md | n | NV | V | e).

Since Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool , we have by inversion on
T-Enough? followed by inversion on T-∨-succ that

Md | b : nat | Ω;Σ `RD;Sig e : ↓↑bool

Again, by inversion on T-R-Shift, we have
(1) Md | b : nat | Ω;Σ `RD;Sig e : ↑bool
(2) Ω = Ω′, Ω′′ck
(3) Σ = ↓Σ′
By inversion on the rules T-bool-t and T-bool-f, we have that either
e is tt or ff .
Subcase 1a. If e = tt, then since n > 0 the rule D-If-tt applies and

yields the desired result.

n = n′ + 1 Val(γ | Md | n | NV | V | tt)

γ | Md | n | NV | V | if tt then c1 else c2 → γ | Md | n′ | NV | V | c1
(D-If-tt)

Subcase 1b. Similarly, if e = ff , then since n > 0, the rule D-If-ff
applies and yields the desired result.

n = n′ + 1 Val(γ | Md | n | NV | V | ff)

γ | Md | n | NV | V | if ff then c1 else c2 → γ | Md | n′ | NV | V | c2
(D-If-ff)

Subcase 2. ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e →
γ | Md | n′ | NV | V | e′. Then the rule D-if applies and produces the
desired result.

γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | if e then c1 else c2 →
γ | Md | n′ | NV | V | if e′ then c1 else c2

(D-If)

Case 3 [(T-Let)].
Suppose the last rule in the typing derivation is T-Let:

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A @ Ck `Sig c : τ

Md | b > 0 : nat | Ω;Σ `Sig letx = e1 in c : τ
(T-Let)

By assumption, we know n > 0. By inversion, we have a typing derivation
for:

(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : CMdA
(2) Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A @ Ck `Sig c : τ

By Theorem 8 applied to (1), either

– V al(γ | Md | n | NV | V | e1) or
– ∃(γ | Md | n′ | NV | V | e′1) such that γ | Md | n | NV | V | e1 → γ | Md |
n′ | NV | V | e′1.

The proof proceeds in two subcases.

Subcase 1. Suppose that V al(γ | Md | n | NV | V | e1). Then since n > 0,
the rule D-Let-step-v applies and yields the desired result. Note that
here γ′ extends γ by adding a new mapping from x to `.

Val(γ | Md | n | NV | V | e1)
γ′ = γ, [x 7→ `] ` fresh n = n′ + 1

γ | Md | n | NV | V | letx = e1 in c→ γ′ | Md | n′ | NV | V, `@Ck ↪→ e1 | c
(D-Let-step-v)

Subcase 2. Suppose that ∃(γ | Md | n′ | NV | V | e′1) such that γ | Md |
n | NV | V | e1 → γ | Md | n′ | NV | V | e′1. Then since n > 0, the rule
D-Let-step applies and yields the desired result.

γ | Md | n | NV | V | e→ γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | letx = e in c→ γ | Md | n′ | NV | V | letx = e′ in c
(D-Let-step)

Case 4 [T-∨-Succ].
Suppose the last rule in the typing derivation is T-∨-Succ:

Md | b : nat | Ω;Σ `Sig skip : ↓↑unit
Md | b > 0 : nat | Ω;Σ `Sig skip : τ ∨ ↓↑unit

(T-∨-Succ)

Then since n > 0, the rule V-skip applies and yields the desired result.

n > 0

Val(γ | Md | n | NV | V | skip)
(V-skip)

Case 5 [T-Assign].
Suppose the last rule in the typing derivation is T-Assign:

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b > 0 : nat | Ω;Σ `Wt p : ↓↑A

Md | b > 0 : nat | Ω;Σ `Sig p := e : CMdunit
(T-Assign)

By assumption, we know that n > 0. By inversion on T-Assign, we have
(i) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
(ii) Md | b > 0 : nat | Ω;Σ `Wt p : ↓↑A
By Theorem 8 applied to (i), either
– V al(γ | Md | n | NV | V | e) or
– ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e → γ | Md | n′ |

NV | V | e′.
The proof proceeds in two subcases.

Subcase 1. V al(γ | Md | n | NV | V | e).
By inversion on T-w-Shift applied to (ii), we have:

Σ =↓ Σ′
Md | b > 0 : nat | Ω′, Σ′ `Wt p : ↑A Ω = Ω′, Ω′′ck

Md | b > 0 : nat | Ω;Σ `Wt p : ↓↑A
(T-w-Shift)

(1) Σ =↓ Σ′
(2) Md | b > 0 : nat | Ω,Σ′ `Wt p : ↑A
(3) Ω = Ω′, Ω′′ck
Now we proceed by inversion on T-Loc-Write applied to (2). From
this inversion, we have:

Ω,Σ′ = x:↑A@q,Ω′2 q 6= RD

κ | Md | b > 0 : nat | Ω,Σ′ `Wt x : ↑A
(T-Loc-Write)

(i) Ω,Σ′ = x:↑A@q,Ω′2 , and
(ii) q 6= RD

By assumption, we have `Md
γ NV | V : Ω | Σ. By Lemma 2, and Σ =↓ Σ′,

we have `Md
γ NV | V : Ω,Σ′. By the well-formedness definition, one of

the two subcases hold:

Subcase 1a. V = `@q ↪→ v′,V′ with γ = γ′, [x 7→ `].
Since n > 0, the D-Assign-V rule applies and yields the desired
result.

Val(γ | Md | n | NV | V | e) V = V′, `@q ↪→ v′

q 6= RD γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V′, `@q ↪→ e | skip
(D-Assign-V)

Subcase 1b. NV = `@q ↪→ v′,NV′ with γ = γ′, [x 7→ `].
Since n > 0, the D-Assign-NV rule applies and yields the desired
result.

Val(γ | Md | n | NV | V | e) NV = NV′, `@q ↪→ v′

q 6= RD γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV′, `@q ↪→ e | V | skip
(D-Assign-NV)

Subcase 2. ∃(γ | Md | n′ | NV | V | e′) such that γ | Md | n | NV | V | e →
γ | Md | n′ | NV | V | e′. The rule D-Assign-step applies and yields the
desired result.

γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | p := e → γ | Md | n′ | NV | V | p := e′
(D-Assign-step)

Case 6 [(T-seq)].
Suppose the last rule in the typing derivation is T-seq:

Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
Md | b ≥ 0 : nat | Ω;Σ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig c1; c2 : τ
(T-seq)

Then the desired result follows by D-seq:

γ | Md | n | NV | V | c1; c2 → γ | Md | n | NV | V | c1;γ|V c2
D-seq

Case 7 [(T-seq-d)]. Suppose the last rule in the typing derivation is T-seq-d:

W = γ | V Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
Σ′ = trim(Σ,V, γ) Md | b ≥ 0 : nat | Ω;Σ′ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig c1;W c2 : τ
(T-seq-d)

By inversion we have
(1) W = γ | V
(2) Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
(3) Σ′ = trim(Σ,V, γ)
(4) Md | b ≥ 0 : nat | Ω;Σ′ `Sig c2 : τ
By the inductive hypothesis applied to (1), we have that either

– V al(γ | Md | n | NV | V | c1) or
– ∃(γ | Md′ | n′ | NV′ | V′ | c′1) such that γ | Md | n | NV | V | c1 → γ | Md′ |
n′ | NV′ | V′ | c′1.

The proof proceeds in two subcases.

Subcase 1. V al(γ | Md | n | NV | V | c1).
By (2), V al(γ | Md | n | NV | V | c1), and the assumption n > 0, it follows
by inversion on T-Enough? that
(1) Sig′ = {Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit}
(2) Sig′′ = if Md = jit, then Sig′, else Sig
(3) Md | b = 0 : nat | Ω;Σ `Sig′′ c1 : Cunit
(4) Md | b > 0 : nat | Ω;Σ `Sig c1 : Cunit
By definition, Cunit = ↓(nat ↑Cunit) ∨ ↓↑unit. Additionally, observe
that V al(γ | Md | n | NV | V | c1) implies that c1 = skip. Then by
inversion of T-∨-Succ

Md | b : nat | Ω;Σ `Sig skip : ↓↑unit
Md | b > 0 : nat | Ω;Σ `Sig skip : ↓(nat ↑Cunit) ∨ ↓↑unit

(T-∨-Succ)

we learn that Md | b : nat | Ω;Σ `Sig skip : ↓↑unit.
The assumption n > 0 implies that n = n′ + 1. By this fact, (1), and
V = V � dom(V) (which is trivially satisfied because V = V), the rule
D-seq-v applies

n = n′ + 1 W = γ | V V = V � dom(V)

γ | Md | n | NV | V | skip;W c2 → γ | Md | n′ | NV | V | c2
(D-seq-v)

Observe that γ | Md | n | NV | V | skip;W c2 → γ | Md | n′ | NV | V | c2
is the desired result.

Subcase 2.∃(γ′ | Md′ | n′ | NV′ | V′ | c′1) such that γ | Md | n | NV | V |
c1 → γ′ | Md′ | n′ | NV′ | V′ | c′1.
Since n > 0, the rule D-cont applies and yields the desired result.

γ | Md | n | NV | V | c1 → γ′ | Md′ | n′ | NV′ | V′ | c′1
γ | Md | n | NV | V | c1;W c2 → γ′ | Md′ | n′ | NV′ | V′ | c′1;W c2

(D-seq-step)

Lemma 1 (Well-typedness of expressions under crash in jit). jit | b =

0 : nat | Ω;Σ `RD;Sig′ e : CjitA for Sig′ = {jit | b ≥ 0 : nat | Ω;Σ `RD e : CjitA }.

Proof. Note that C
jit
A = ↓(nat ↑ CjitA) ∨ ↓↑A. Let Ω′ = Ω,Ω′′ck where Σ = ↓Ω′′.

By axiom 1, we have ε # iņ() : nat > 0. Then the typing derivation follows by

the assumption that jit | b ≥ 0 : nat | Ω;Σ `RD e : CjitA ∈ Sig′.

jit | b ≥ 0 : nat | Ω; ↓Ω′′ `RD e : CjitA ∈ Sig
′

Ω′ = Ω,Ω′′ck

jit | b > 0 : nat | Ω′ `RD;Sig′↑ e : ↑CjitA
(T-Jit-Restore)

ε # iņ() : nat > 0

jit | · | Ω,Ω′′ck `RD;Sig′ ε # iņ(b > 0, ↑e) : (nat ↑CjitA)
(T-Charge)

Σ = ↓Ω′′

jit | · | Ω;Σ `RD;Sig′ ↓ε # iņ(b > 0, ↑e) : ↓(nat ↑ CjitA)
(T-Jit-stop)

jit | b = 0 : nat | Ω;Σ `RD;Sig′ e : ↓(nat ↑ CjitA) ∨ ↓↑A
(T-∨-Crash)

The conclusion jit | b = 0 : nat | Ω;Σ `RD;Sig′ e : ↓(nat ↑ CjitA) ∨ ↓↑A yields
the desired result.

Lemma 4 (Well-typedness of expressions under crash in aID). If aID(c0) |
b = 0 : nat | Ω;Σ′ `RD;Sig e′ : τ then aID(c0) | b = 0 : nat | Ω;Σ `RD;Sig e : τ .

Proof. Let the type τ = CaIDA and note that CaIDA = ↓(nat ↑ CaIDunit) ∨ ↓↑A. By
inversion on the assumed typing judgment

aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

Ω = Ω′, Ω′′ck

aID(c0) | b > 0 : nat | Ω `Sig↑ e′ : ↑CaIDunit

(T-aID-Restore)

ε # iņ() : nat > 0

aID(c0) | · | Ω `Sig ε # iņ(b > 0, ↑e′) : (nat ↑CaIDunit)
(T-Charge)

aID(c0) | · | Ω;Σ′ `Sig ↓ε # iņ(b > 0, ↑e′) : ↓(nat ↑ CaIDunit)
(T-aID-stop)

aID(c0) | b = 0 : nat | Ω;Σ′ `Sig e′ : ↓(nat ↑ CaIDunit) ∨ ↓↑A
(T-∨-Crash)

we learn the following:

(1) aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

(2) Ω = Ω′, Ω′′ck
(3) ε # iņ() : nat > 0

Therefore, we have the following typing derivation:

aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

Ω = Ω′, Ω′′ck

aID(c0) | b > 0 : nat | Ω `Sig↑ e : ↑CaIDunit

(T-aID-Restore)

ε # iņ() : nat > 0

aID(c0) | · | Ω `Sig ε # iņ(b > 0, ↑e) : (nat ↑CaIDunit)
(T-Charge)

aID(c0) | · | Ω;Σ `Sig ↓ε # iņ(b > 0, ↑e) : ↓(nat ↑ CaIDunit)
(T-aID-stop)

aID(c0) | b = 0 : nat | Ω;Σ `Sig e : ↓(nat ↑ CaIDunit) ∨ ↓↑A
(T-∨-Crash)

The conclusion aID(c0) | b = 0 : nat | Ω;Σ `Sig e : ↓(nat ↑ CaIDunit) ∨ ↓↑A
yields the desired result.

Lemma 5 (Well-typedness of commands under crash in jit). jit | b =

0 : nat | Ω;Σ `Sig′ c : Cjitunit for Sig′ = {jit | b ≥ 0 : nat | Ω;Σ ` c : Cjitunit}.

Proof. Note that C
jit
unit = ↓(nat ↑ Cjitunit) ∨ ↓↑unit. Let Ω′ = Ω,Ω′′ck where

↓Ω′′ = Σ. By axiom 1, we have that ε # iņ() : nat > 0. Then the typing

derivation follows by the assumptions jit | b ≥ 0 : nat | Ω;Σ ` c : Cjitunit ∈ Sig′.

jit | b ≥ 0 : nat | Ω; ↓Ω′′ ` c : Cjitunit ∈ Sig
′

Ω′ = Ω,Ω′′ck

jit | b > 0 : nat | Ω′ `Sig′↑ c : ↑Cjitunit
(T-Jit-Restore)

ε # iņ() : nat > 0

jit | · | Ω′ `Sig′ ε # iņ(b > 0, ↑c) : (nat ↑Cjitunit)
(T-Charge)

Σ = ↓Ω′′

jit | · | Ω;Σ `Sig′ ↓ε # iņ(b > 0, ↑c) : ↓(nat ↑ Cjitunit)
(T-Jit-stop)

jit | b = 0 : nat | Ω;Σ `Sig′ c : ↓(nat ↑ Cjitunit) ∨ ↓↑unit
(T-∨-Crash)

The conclusion jit | b = 0 : nat | Ω;Σ `Sig′ c : ↓(nat ↑ Cjitunit) ∨ ↓↑unit
yields the desired result.

Lemma 6 (Well-typedness of commands under crash in aID). If aID(c0) |
b = 0 : nat | Ω;Σ′ `Sig c′ : τ then aID(c0) | b = 0 : nat | Ω;Σ `Sig c : τ .

Proof. Let the type τ = CaIDunit and note that CaIDunit = ↓(nat ↑ CaIDunit) ∨ ↓↑unit.
By inversion on the assumed typing judgment

aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

Ω = Ω′, Ω′′ck

aID(c0) | b > 0 : nat | Ω `Sig↑ c′ : ↑CaIDunit

(T-aID-Restore)

ε # iņ() : nat > 0

aID(c0) | · | Ω `Sig ε # iņ(b > 0, ↑c′) : (nat ↑CaIDunit)
(T-Charge)

aID(c0) | · | Ω;Σ′ `Sig ↓ε # iņ(b > 0, ↑c′) : ↓(nat ↑ CaIDunit)
(T-aID-stop)

aID(c0) | b = 0 : nat | Ω;Σ′ `Sig c′ : ↓(nat ↑ CaIDunit) ∨ ↓↑unit
(T-∨-Crash)

we learn the following:

(1) aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

(2) Ω = Ω′, Ω′′ck
(3) ε # iņ() : nat > 0

Therefore, we have the following typing derivation:

aID(c0) | b ≥ 0 : nat | Ω; ↓ Ω′′ ` c0 : Cunit ∈ Sig

Ω = Ω′, Ω′′ck

aID(c0) | b > 0 : nat | Ω `Sig↑ c : ↑CaIDunit

(T-aID-Restore)

ε # iņ() : nat > 0

aID(c0) | · | Ω `Sig ε # iņ(b > 0, ↑c) : (nat ↑CaIDunit)
(T-Charge)

aID(c0) | · | Ω;Σ `Sig ↓ε # iņ(b > 0, ↑c) : ↓(nat ↑ CaIDunit)
(T-aID-stop)

aID(c0) | b = 0 : nat | Ω;Σ `Sig c : ↓(nat ↑ CaIDunit) ∨ ↓↑unit
(T-∨-Crash)

The conclusion aID(c0) | b = 0 : nat | Ω;Σ `Sig c : ↓(nat ↑ CaIDunit)∨↓↑unit
yields the desired result.

Theorem 3 (Preservation for expressions). If

(†) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : τ

and for some `Mdγ NV | V : Ω | Σ and (co-)natural number n ≥ 0, we have

γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

then

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : τ

with n′ ≥ 0.

Proof. The proof is by induction on the size of e. We proceed by considering
possible cases for γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′.

Case 1. [D-Binary-1].

n > 0 γ | Md | n | NV | V | e1 → γ | Md | n′ | NV | V | e′1
γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | e′1 � e2

(D-Binary-1)

By the first premise of D-Binary-1, we have that n > 0. By inversion on
the assumed typing judgment (†) via T-Enough? rule, we have

(†1) Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τ

and

(†2) Md | b = 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τ.

By inversion on (†1) via T-Binary

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τ
Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τ

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs
(T-Binary)

we learn that

(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

(2) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τs

By the inductive hypothesis applied to (1) and γ | Md | n | NV | V | e1 → γ |
Md | n′ | NV | V | e′1, it follows that

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′1 : τs,

and n′ ≥ 0. By the following application of the T-Binary rule we get

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′1 : τs

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τ

Md | b > 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τs
(T-Binary)

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τs via

lemma 11, we get Md | b = 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τs.
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 12, we get Md | b = 0 :

nat | Ω;Σ `RD;Sig e′1 � e2 : τs.
In both subcases, we have the typing judgments Md | b = 0 : nat |
Ω;Σ `RD;Sig e′1 � e2 : τs and Md | b > 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τs.
Then the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τs

Md | b > 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τ

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′1 � e2 : τ
(T-enough?)

Case 2 [D-Binary-2].

n > 0 γ | Val(Md | n | NV | V | e1)
γ | Md | n | NV | V | e2 → γ | Md | n′ | NV′ | V′ | e′2

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV′ | V′ | e1 � e′2
(D-Binary-2)

By the first premise n > 0. By inversion on (†) via T-Enough? rule, we
have

(†1) Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs

and
(†2) Md | b = 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs.

By inversion on (†1) via T-Binary

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τ

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs
(T-Binary)

we learn that

(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

(2) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τs

By the inductive hypothesis applied to Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τs

and γ | Md | n | NV | V | e2 → γ | Md | n′ | NV′ | V′ | e′2, it follows that

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′2 : τs,

and n′ ≥ 0. By the following application of the T-Binary rule we get

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′2 : τ

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τs
(T-Binary)

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τs via

lemma 11, we get Md | b = 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τs.
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 12, we get Md | b = 0 :

nat | Ω;Σ `RD;Sig e1 � e′2 : τs.
In both subcases, Then the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τs

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τ

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 � e′2 : τ
(T-enough?)

Case 3. [D-Binary-v].

n = n′ + 1 Val(γ | Md | n | NV | V | e1)
Val(γ | Md | n | NV | V | e2) v = e1 � e2

γ | Md | n | NV | V | e1 � e2 → γ | Md | n′ | NV | V | v
(D-Binary-v)

By the first premise n > 0 and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs

and
(†2) Md | b = 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs.

By inversion on (†1) via T-Binary

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τ

Md | b > 0 : nat | Ω;Σ `RD;Sig e1 � e2 : τs
(T-Binary)

we learn that
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e1 : τs

(2) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e2 : τs

From (1) and (2), we apply inversion on T-Enough?, T-∨-Succ, and T-R-Shift
to get Md | b : nat | Ω,Σ′ `RD;Sig e1 : ↑As and Md | b : nat | Ω,Σ′ `RD;Sig
e2 : ↑As for Σ =↓ Σ′. By definition of � operator, we have Md | b : nat |
Ω,Σ′ `RD;Sig v : ↑As for v = e1 � e2. By application of T-∨-Succ and
T-R-Shift we get

Md | b > 0 : nat | Ω;Σ `RD;Sig v : τs

We consider two subcases based on Md.

Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ `RD;Sig v : τs via
lemma 11, we get Md | b = 0 : nat | Ω;Σ `RD;Sig v : τs.

Subcase 2. [Md = aID(c0)]. By (†2) via lemma 12, we get Md | b = 0 :
nat | Ω;Σ `RD;Sig v : τs.

In both subcases, Then the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ `RD;Sig v : τs

Md | b > 0 : nat | Ω;Σ `RD;Sig v : τ

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig v : τ
(T-enough?)

Case 4. [D-Var-Read].

γ = γ′, [x 7→ `] V = `@q ↪→ v,V′ δ(q, RD) 6= UN n = n′ + 1

γ | Md | n | NV | V | x→ γ | Md | n′ | NV | V | v
(D-var-Read)

By the last premise n > 0 and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ `RD;Sig x : τs

and
(†2) Md | b = 0 : nat | Ω;Σ `RD;Sig x : τs.

By inversion on (†1) via T-∨-Succ

Md | b : nat | Ω;Σ `RD;Sig x : ↓↑Ai

Md | b > 0 : nat | Ω;Σ `RD;Sig x : τ1 ∨ ↓↑Ai
(T-∨-Succ)

we learn that Md | b : nat | Ω;Σ `RD;Sig x : ↓↑Ai.
By inversion on Md | b : nat | Ω;Σ `RD;Sig x : ↓↑Ai via T-R-Shift

Σ = ↓Σ′ Md | b : nat | Ω,Σ′ `RD;Sig x : ↑Ai

Md | b : nat | Ω;Σ `RD;Sig x : ↓↑Ai
(T-R-Shift)

we learn that Md | b : nat | Ω,Σ′ `RD;Sig x : ↑Ai and Σ = ↓Σ′.
By Lemma 2 applied to the assumption `Mdγ NV | V : Ω | Σ and premise

Σ = ↓Σ′, we know that `Md
γ NV | V : Ω,Σ′. By definition of well-formedness,

we know that γ = γ′, [x 7→ `] and Md | b : nat | Ω,Σ′ `RD;Sig x : ↑As
By application of T-∨-Succ and T-R-Shift we get

Md | b > 0 : nat | Ω;Σ `RD;Sig x : τs

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ `RD;Sig x : τs via

lemma 11, we get Md | b = 0 : nat | Ω;Σ `RD;Sig x : τs.
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 12, we get Md | b = 0 :

nat | Ω;Σ `RD;Sig x : τs.

In both subcases, we have Md | b = 0 : nat | Ω;Σ `RD;Sig x : τs. Then the
desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ `RD;Sig x : τs

Md | b > 0 : nat | Ω;Σ `RD;Sig x : τ

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig x : τ
(T-enough?)

Case 5. [D-Loc-Read]. The proof is similar to the previous case.

Lemma 7 (Equality of trimmed volatile contexts). If

(i) Σ′ = trim(Σ,V0, γ0)
(ii) `Mdγ NV | V : Ω | Σ,

(iii) `Mdγ′′ NV′ | V′ : Ω | Σ′′,
(iv) dom(V0) ⊆ dom(V) and dom(V0) ⊆ dom(V′)
(v) γ0 ⊆ γ and γ0 ⊆ γ′′

then Σ′ = trim(Σ′′,V0, γ0).

Proof. We need to show that Σ′ = trim(Σ′′,V0, γ0). The proof proceeds by
proving each direction separately:

Ad ⇒. Let x : ↓↑A@q ∈ Σ′. Then by (i), we have
(1) x : ↓↑A@q ∈ Σ
(2) γ0 = [x 7→ l], γ′0
(3) l ∈ dom(V0)
We need to show that x : ↓↑A@q ∈ Σ′′. From (2) and γ0 ⊆ γ′′, it follows
that ∃γ′′0 ⊇ γ′0 such that γ′′ = [x 7→ l], γ′′0 (∗). By (iv) and (3), we have that
l ∈ dom(V′). So, ∃V′0, v such that V′ = V′0, l ↪→ v (∗∗) and · ` v : ↑A (∗∗∗).
Note that inverting (iii) via V-loc yields the well-formedness judgment `Md

γ′′
0

NV′ | V′0 : Ω | Σ′′0 (†) and q = Ck (‡). Then, it follows by V-loc applied to
(∗), (∗∗), (∗∗∗), (†), (‡) that x : ↓↑A@q ∈ Σ′′.

Ad ⇐. Let
(1) x : ↓↑A@q ∈ Σ′′
(2) γ0 = [x 7→ l], γ′0
(3) l ∈ dom(V0)
We need to show that x : ↓↑A@q ∈ Σ′. To this end, it suffices to show that
x : ↓↑A@q ∈ Σ.
By (3) and dom(V0) ⊆ dom(V), we have that l ∈ dom(V). Therefore, ∃V′0, v
such that V = V′0, l@q ↪→ v (∗), · ` v : ↑A (∗∗), and q = Ck. From (2) and
γ0 ⊆ γ, we have that ∃ γ′ ⊇ γ′0 such that γ = [x 7→ l], γ′. Note that inverting
(ii) via V-loc yields the well-formedness judgment `Md

γ′ NV | V′0 : Ω |
Σ0 (∗∗∗). By V-Loc applied to (∗), (∗∗), (∗∗∗), q = Ck, and γ = [x 7→ l], γ′,
we have

x : ↓↑A@q ∈ Σ
Then it follows by definition 1 applied to (i) that

x : ↓↑A@q ∈ Σ′.

We have shown that x : ↓↑A@q ∈ Σ′ iff x : ↓↑A@q ∈ Σ′′, γ = [x 7→ l], γ′, and
l ∈ dom(V). The desired result holds by definition 1.

Lemma 8 (Well-formedness of smaller memories). If

(i) `Mdγ NV | V : Ω | Σ,
(ii) V′′ = V � dom(V′),

(iii) Σ′ = trim(Σ,V′, γ′), and
(iv) γ′ ⊆ γ

then `Mdγ′ NV | V′′ : Ω | Σ′.

Proof. By (2), observe that V ⊇ V′′. The proof proceeds by induction on the
size of V − V′′.

Base case: |V − V′′| = 0. If |V − V′′| = 0, then V = V′′ and the desired result
holds by assumption (1).

Inductive case. Let |V − V′′| = k+1 where |V0 − V′′| = k where V = V0, l@Ck ↪→
v and · ` v : ↑A. Let x:↓↑A@q ∈ Σ such that Σ = Σ0, (x:↓↑A@q). By inver-
sion on V-loc applied to the assumed judgment:

`Mdγ0 NV | V0 : Ω | Σ0 γ = [x 7→ l], γ0 V = V0, l@Ck ↪→ v · ` v : ↑A
`Mdγ NV | V : Ω | Σ0, (x:↓↑A@q)

V-loc

we learn that
(1) `Mdγ0 NV | V0 : Ω | Σ0

(2) γ = [x 7→ l], γ0
(3) V = V0, l@Ck ↪→ v
(4) · ` v:↑A
Now we need to show that V′′ = V0 � dom(V′) and Σ′ = trim(Σ0,V

′, γ′).

Ad V′′ = V0 � dom(V′). To show that V′′ = V0 � dom(V′), it suffices to
show that l /∈ dom(V′):
By assumption, it follows that l ∈ V − V′′, or equivalently, l ∈ V and
l /∈ V′′. Now suppose that l ∈ dom(V′). Then it follows by (ii) that
l ∈ V′′, a contradiction. Therefore, we have l /∈ dom(V′).
Therefore, V′′ = V0 � dom(V′) follows by l /∈ dom(V′) and (ii).

Ad Σ′ = trim(Σ0,V
′, γ′). To show Σ′ = trim(Σ0,V

′, γ′), we first need to
show that

(a) dom(V′) ⊆ dom(V0)
(b) dom(V′) ⊆ dom(V)
(c) γ ⊇ γ′
(d) γ0 ⊇ γ′
(a) follows by V′′ = V0 � dom(V′). Towards (b), note that since V ⊇ V′′

by assumption, we have dom(V) ⊇ dom(V′′). By V′′ = V0 � dom(V′),
it follows that dom(V′′) = dom(V′). Therefore, dom(V′) ⊆ dom(V) (b)
holds. (c) follows by assumption (iv). By definition, γ = [x 7→ l], γ0, so

γ0 is the smallest subset of γ not containing x 7→ l. Observe that γ′

is a subset of γ that does not contain x 7→ l. So, γ ⊇ γ0 ⊇ γ′, which
concludes the proof of (d).

Σ′ = trim(Σ0,V
′, γ′) follows by lemma 15 applied to (iii), (a), (b), (c),

and (d).

By the inductive hypothesis applied to (1), V′′ = V0 � dom(V′), and Σ′ =
trim(Σ0,V

′, γ′), we have `Mdγ′ NV | V′′ : Ω | Σ′. This is the desired result.

Theorem 4 (preservation for commands). If

(†) Md | b ≥ 0 : nat | Ω;Σ ` c : τ

and γ | Md | n | NV | V | c is well-formed and `Mdγ NV | V : Ω | Σ and (co-)natural
number n ≥ 0, we have

γ | Md | n | NV | V | c → γ′ | Md | n′ | NV′ | V′ | c′

then for some Σ′

Md | b ≥ 0 : nat | Ω;Σ′ ` c′ : τ

where `Mdγ′ NV′ | V′ : Ω | Σ′ and n′ ≥ 0. Moreover γ′ | Md | n′ | NV′ | V′ | c′ is
well-formed.

Proof. The proof is by induction on the size of c. We proceed by considering
possible cases for γ | Md | n | NV | V | c → γ′ | Md′ | n′ | NV′ | V′ | c′.

Case 1 [D-Let-step].

n > 0 γ | Md | n | NV | V | e→ γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | letx = e in c→ γ | Md | n′ | NV | V | letx = e′ in c
(D-Let-step)

By the first premise n > 0. By inversion on (†) via T-Enough? rule, we
have

(†1) Md | b > 0 : nat | Ω;Σ ` letx = e in c : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` letx = e in c : τ.

By inversion on (†1) via T-Let

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@ Ck ` c : τ

Md | b > 0 : nat | Ω;Σ ` letx = e in c : τ
(T-Let)

we learn that
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMd

(2) Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@ Ck ` c : τ
By the application of Theorem 10 on (1) and the premise γ | Md | n | NV |
V | e→ γ | Md | n′ | NV | V | e′, it follows that

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdA ,

and n′ ≥ 0. By the following application of the T-Let rule we get

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@ Ck ` c : τ

Md | b > 0 : nat | Ω;Σ ` letx = e′ in c : τ
(T-Let)

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ ` letx = e′ in c : τs

via lemma 13, we get Md | b = 0 : nat | Ω;Σ ` letx = e′ in c : τs.
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :

nat | Ω;Σ ` letx = e′ in c : τ .
In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ ` letx = e′ in c : τ
Md | b > 0 : nat | Ω;Σ ` letx = e′ in c : τ

Md | b ≥ 0 : nat | Ω;Σ ` letx = e′ in c : τ
(T-enough?)

Observe that the well-formedness of γ | Md | n′ | NV | V | letx = e′ in c
follows by definition 2, vacuously.

Case 2. [D-Let-v].

Val(γ | Md | n | NV | V | e) γ′ = γ, [x 7→ `] ` fresh n = n′ + 1

γ | Md | n | NV | V | letx = e in c→ γ′ | Md | n′ | NV | V, `@Ck ↪→ e | c
(D-Let-v)

By the last premise n > 0, and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ ` letx = e in c : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` letx = e in c : τ.

By inversion on (†1) via T-Let

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@ Ck ` c : τ

Md | b > 0 : nat | Ω;Σ ` letx = e in c : τ
(T-Let)

we learn that
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA

(2) Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@ Ck ` c : τ
The typing judgment (2) completes the proof, if we can show that `Mdγ′ NV |
V, `@Ck ↪→ e : Ω | Σ, x:↓↑A.
By Val(γ | Md | n | NV | V | e), we can apply inversion on Md | b ≥ 0 : nat |
Ω;Σ `RD;Sig e : CMdA via T-Enough?, T-∨-Succ, and T-R-Shift to get

Md | b : nat | Ω,Σ′ `RD;Sig e : ↑A,

where Σ = ↓Σ′.
This is enough to prove `Mdγ′ NV | V, `@Ck ↪→ e : Ω | Σ, x:↓↑A.
Observe that the well-formedness of γ′ | Md | n′ | NV | V, `@Ck ↪→ e | c
follows by definition 2, vacuously because c is not of the form c′;W c′′.

Case 3 [D-Assign-step].

n > 0 γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V | x := e′
(D-Assign-step)

By the first premise n > 0. By inversion on (†) via T-Enough? rule, we
have

(†1) Md | b > 0 : nat | Ω;Σ ` x := e : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` x := e : τ.

By inversion on (†1) via T-Assign we have Md | b ≥ 0 : nat | Ω;Σ `RD;Sig
e : CMdA and Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A.

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A
Md | b > 0 : nat | Ω;Σ ` x := e : CMdunit

(T-Assign)

By the application of Theorem 10 on Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
and the premise γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′, it follows
that

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdA ,

and n′ ≥ 0. By the following application of the T-Assign rule we get

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdA
Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A

Md | b > 0 : nat | Ω;Σ ` x := e′ : CMdunit
(T-Assign)

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ ` x := e : τ via lemma

13, we get Md | b = 0 : nat | Ω;Σ ` x := e′ : τ .
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :

nat | Ω;Σ ` x := e′ : τ .

In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ ` x := e′ : τ
Md | b > 0 : nat | Ω;Σ ` x := e′ : τ

Md | b ≥ 0 : nat | Ω;Σ ` x := e′ : τ
(T-enough?)

Observe that the well-formedness of γ | Md | n′ | NV | V | x := e′ follows by
definition 2, vacuously.

Case 4 [D-Assign-V].

Val(γ | Md | n | NV | V | e) V = V′, `@q ↪→ v′

q′ = δ(q, wt) 6= UN γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V′, `@q′ ↪→ e | skip
(D-Assign-V)

By the last premise n > 0, and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ ` x := e : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` x := e : τ.

By inversion on (†1) via T-Assign

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A
Md | b > 0 : nat | Ω;Σ ` x := e : CMdunit

(T-Assign)

we have
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
(2) Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A
By the premise Val(γ | Md | n | NV | V | e), we can apply inversion on
Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA via T-Enough?, T-∨-Succ, and
T-R-Shift to get

Md | b : nat | Ω,Σ′ `RD;Sig e : ↑A,

where Σ = ↓Σ′.
Appying V-loc, we can show that `Mdγ NV | V′, (`@Ck ↪→ e) : Ω | Σ, (x :↓↑
A@Ck).
Moreover, by T-Skip, T-R-Shift, and T-∨-Succ we have

Md | b > 0 : nat | Ω;Σ ` skip : Cunit.

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ ` skip : Cunit via

lemma 13, we get Md | b = 0 : nat | Ω;Σ ` skip : Cunit.

Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :
nat | Ω;Σ ` skip : Cunit.

In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ ` skip : Cunit
Md | b > 0 : nat | Ω;Σ ` skip : Cunit

Md | b ≥ 0 : nat | Ω;Σ ` skip : Cunit
(T-enough?)

Observe that the well-formedness of γ | Md | n′ | NV | V′, `@q′ ↪→ e | skip
follows by definition 2, vacuously.

Case 5 [D-Assign-NV].

Val(γ | Md | n | NV | V | e) NV = NV′, `@q ↪→ v′

q′ = δ(q, wt) 6= UN γ = γ′, [x→ `] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV′, `@q′ ↪→ e | V | skip
(D-Assign-NV)

By the last premise n > 0, and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ ` x := e : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` x := e : τ.

By inversion on (†1) via T-Assign

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A
Md | b > 0 : nat | Ω;Σ ` x := e : CMdunit

(T-Assign)

we learn that
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdA
(2) Md | b > 0 : nat | Ω;Σ `Wt x : ↓↑A
By Val(γ | Md | n | NV | V | e), we can apply inversion on Md | b ≥ 0 : nat |
Ω;Σ `RD;Sig e : CMdA via T-Enough?, T-∨-Succ, and T-R-Shift to get

Md | b : nat | Ω,Σ′ `RD;Sig e : ↑A,

where Σ = ↓Σ′. This is enough to prove `Mdγ NV′, `@Ck ↪→ e | V : Ω′ | Σ.
Moreover, by T-Skip, T-R-Shift, and T-∨-Succ we have

Md | b > 0 : nat | Ω′;Σ ` skip : Cunit.

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω′;Σ ` skip : Cunit via

lemma 13, we get Md | b = 0 : nat | Ω′;Σ ` skip : Cunit.

Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :
nat | Ω′;Σ ` skip : Cunit.

In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω′;Σ ` skip : Cunit
Md | b > 0 : nat | Ω′;Σ ` skip : Cunit

Md | b ≥ 0 : nat | Ω′;Σ ` skip : Cunit
(T-enough?)

Observe that the well-formedness of γ | Md | n′ | NV′, `@q′ ↪→ e | V | skip
follows by definition 2, vacuously.

Case 6 [D-If].

γ | Md | n | NV | V | e → γ | Md | n′ | NV | V | e′

γ | Md | n | NV | V | if e then c1 else c2 → γ | Md | n′ | NV | V | if e′ then c1 else c2
(D-If)

By the first premise n > 0. By inversion on (†) via T-Enough? rule, we
have

(†1) Md | b > 0 : nat | Ω;Σ ` if e then c1 else c2 : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` if e then c1 else c2 : τ.

By inversion on (†1) via T-If

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool
Md | b ≥ 0 : nat | Ω;Σ ` c1 : τ Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Md | b > 0 : nat | Ω;Σ ` if e then c1 else c2 : τ
(T-If)

we learn that
(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e : CMdbool
(2) Md | b ≥ 0 : nat | Ω;Σ ` c1 : τ
(3) Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ .
By the application of Theorem 10 on (1), it follows that

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdbool ,

and n′ ≥ 0. By the following application of the T-If rule we get

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig e′ : CMdbool
Md | b ≥ 0 : nat | Ω;Σ ` c1 : τ Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Md | b > 0 : nat | Ω;Σ ` if e′ then c1 else c2 : τ
(T-If)

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ ` if e′ then c1 else c2 :
τ via lemma 13, we get Md | b = 0 : nat | Ω;Σ ` if e′ then c1 else c2 : τ .

Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :
nat | Ω;Σ ` if e′ then c1 else c2 : τs.

In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ ` if e′ then c1 else c2 : τ
Md | b > 0 : nat | Ω;Σ ` if e′ then c1 else c2 : τ

Md | b ≥ 0 : nat | Ω;Σ ` if e′ then c1 else c2 : τ
(T-enough?)

Observe that the well-formedness of γ | Md | n′ | NV | V | if e′ then c1 else c2
follows by definition 2, vacuously.

Case 7. [D-If-tt].

n = n′ + 1 Val(γ | Md | n | NV | V | tt)

γ | Md | n | NV | V | if tt then c1 else c2 → γ | Md | n′ | NV | V | c1
(D-If-tt)

By the first premise n > 0, and n′ ≥ 0. By inversion on (†) via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ ` if tt then c1 else c2 : τ

and
(†2) Md | b = 0 : nat | Ω;Σ ` if tt then c1 else c2 : τ.

By inversion on (†1) via T-If

Md | b ≥ 0 : nat | Ω;Σ `RD;Sig tt : CMdbool
Md | b ≥ 0 : nat | Ω;Σ ` c1 : τ Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Md | b > 0 : nat | Ω;Σ ` if tt then c1 else c2 : τ
(T-If)

we learn that

(1) Md | b ≥ 0 : nat | Ω;Σ `RD;Sig tt : CMdbool
(2) Md | b ≥ 0 : nat | Ω;Σ ` c1 : τ
(3) Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Observe that the well-formedness of γ | Md | n′ | NV | V | c1 follows by
definition 2, vacuously because c1 is not of the form c′;W c′′

The typing judgment (2) completes the proof, because `Mdγ NV | V : Ω | Σ
holds by assumption.

Case 8 [D-If-ff]. Similar to the previous case.
Case 9 [D-seq].

n > 0

γ | Md | n | NV | V | c1; c2 → γ | Md | n | NV | V | c1;γ|V c2
(D-seq)

By the premise n > 0. By inversion on (†) via T-Enough? rule, we have

(†1) Md | b > 0 : nat | Ω;Σ ` c1; c2 : τs

and
(†2) Md | b = 0 : nat | Ω;Σ ` c1; c2 : τs.

By inversion on (†1) via T-Seq

Md | b ≥ 0 : nat | Ω;Σ ` c1 : Cunit
Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Md | b > 0 : nat | Ω;Σ ` c1; c2 : τ
(T-Seq)

we learn that

(1) Md | b ≥ 0 : nat | Ω;Σ ` c1 : Cunit
(2) Md | b ≥ 0 : nat | Ω;Σ ` c2 : τs

Put W = γ | V. We now want to show that Σ = trim(Σ,V, γ). By definition
1, it is straightforward to see that trim(Σ,V, γ) ⊆ Σ. We need to show
Σ ⊆ trim(Σ,V, γ). Let x : ↓↑A@q ∈ Σ be arbitrary and write Σ = Σ′, (x :
↓↑A@q). Then by inversion on the well-formedness definition V-loc:

`Md
γ′ NV | V′ : Ω | Σ′

V = V′, `@ q ↪→ v q = Ck γ = γ′, [x 7→ `] · ` v : ↑A
`Md
γ NV | V : Ω | Σ′, (x:↓↑A@q)

(V-loc)

we know that γ = γ′, [x 7→ `] with ` ∈ dom(V). From here, definition 1
implies that x ∈ trim(Σ,V, γ). Because x ∈ Σ was arbitrary, we have shown
that Σ ⊆ trim(Σ,V, γ). Therefore, Σ = trim(Σ,V, γ).
By the following application of the T-seq-d rule

W = γ | V Md | b ≥ 0 : nat | Ω;Σ ` c1 : Cunit
Σ = trim(Σ,V, γ) Md | b ≥ 0 : nat | Ω;Σ ` c2 : τ

Md | b > 0 : nat | Ω;Σ ` c1;W c2 : τ
(T-seq-d)

we learn that Md | b > 0 : nat | Ω;Σ ` c1;W c2 : τ
We consider two subcases based on Md.
Subcase 1. [Md = Jit]. By Md | b > 0 : nat | Ω;Σ ` c1;W c2 : τs via

lemma 13, we get Md | b = 0 : nat | Ω;Σ ` c1;W c2 : τ .
Subcase 2. [Md = aID(c0)]. By (†2) via lemma 14, we get Md | b = 0 :

nat | Ω;Σ ` c1;W c2 : τs.
In both subcases, the desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ ` c1;W c2 : τs

Md | b > 0 : nat | Ω;Σ ` c1;W c2 : τs

Md | b ≥ 0 : nat | Ω;Σ ` c1;W c2 : τ
(T-enough?)

Observe that the well-formedness of γ | Md | n | NV | V | c1;γ|V c2 follows by
definition 2 since γ ⊆ γ and dom(V) ⊆ dom(V).

Case 10 [D-seq-step].

n > 0 γ | Md | n | NV | V | c1 → γ′ | Md | n′ | NV′ | V′ | c′1
γ | Md | n | NV | V | c1;W c2 → γ′ | Md | n′ | NV′ | V′ | c′1;W c2

(D-seq-step)

The premises yield

(a) n > 0
(b) γ | Md | n | NV | V | c1 → γ′ | Md | n′ | NV′ | V′ | c′1
By assumption, note that

– `Mdγ NV | V : Ω | Σ
– Md | b ≥ 0 : nat | Ω;Σ `Sig c1;W c2 : τ
– γ | Md | n | NV | V | c1;W c2 is well-formed.

Put W = γ0 | V0. Then by definition 2, we have dom(V0) ⊆ dom(V) and
γ0 ⊆ γ. Observe that γ | Md | n | NV | V | c1 is well-formed, which vacuously
follows by definition 2 because c1 does not have the form c′;W ′ c′′.
By inversion on Md | b ≥ 0 : nat | Ω;Σ `Sig c1;W c2 : τ via T-Enough?
rule, we have

(†1) Md | b > 0 : nat | Ω;Σ `Sig c1;W c2 : τ

and

(†2) Md | b = 0 : nat | Ω;Σ `Sig c1;W c2 : τ.

By inversion on (†1) via T-seq-d

W = γ0 | V0 Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
Σ′ = trim(Σ,V0, γ0) Md | b ≥ 0 : nat | Ω;Σ′ `Sig c2 : τ

Md | b > 0 : nat | Ω;Σ `Sig c1;W c2 : τ
(T-seq-d)

we learn that

(1) W = γ0 | V0

(2) Md | b ≥ 0 : nat | Ω;Σ `Sig c1 : Cunit
(3) Σ′ = trim(Σ,V0, γ0)
(4) Md | b ≥ 0 : nat | Ω;Σ′ `Sig c2 : τ

By the inductive hypothesis applied to (2), (b), the well-formedness of γ |
Md | n | NV | V | c1, `Mdγ NV | V : Ω | Σ, and n ≥ 0, we get Md | b ≥ 0 : nat |
Ω;Σ′′ ` c′1 : Cunit, where

(i) `Mdγ′ NV′ | V′ : Ω | Σ′′,
(ii) n′ ≥ 0, and

(iii) γ′ | Md | n′ | NV′ | V′ | c′1 is well-formed.

We now need to show that dom(V0) ⊆ dom(V′) and γ0 ⊆ γ′. Observe that
c1 6= c′;W c′′ because c1;W c2. By lemma 9 c1 6= c′;W c′′, it follows that
dom(V) ⊆ dom(V′) and γ ⊆ γ′. Then it follows by dom(V0) ⊆ dom(V1)
and γ0 ⊆ γ1 (as shown above), that dom(V0) ⊆ dom(V1) ⊆ dom(V′) and
γ0 ⊆ γ1 ⊆ γ′. Hence, dom(V0) ⊆ dom(V′) and γ0 ⊆ γ′.
It suffices to show Σ′ = trim(Σ′′,V0, γ0).
By lemma 15, it follows that Σ′ = trim(Σ′′,V0, γ0).
Using (1), (3), (4), and Md | b ≥ 0 : nat | Ω;Σ′′ ` c′1 : Cunit, we can apply
T-seq-d

W = γ0 | V0 Md | b ≥ 0 : nat | Ω;Σ′′ ` c′1 : Cunit
Σ′ = trim(Σ′′,V0, γ0) Md | b ≥ 0 : nat | Ω;Σ′ ` c2 : τ

Md | b > 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ
(T-seq-d)

We now need to show that Md | b = 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ . The proof
proceeds in two subcases based on Md:

Case Md = jit. By Md | b > 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ via lemma 13, we
can see that Md | b = 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ .

Case Md = aID(c0). By (†2) via lemma 14, we can see that Md | b = 0 :
nat | Ω;Σ′′ ` c′1;W c2 : τ .

In both cases, Md | b = 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ .
The desired result follows by T-Enough?:

Md | b = 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ
Md | b > 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ

Md | b ≥ 0 : nat | Ω;Σ′′ ` c′1;W c2 : τ
(T-enough?)

Observe that by definition 2 applied to dom(V0) ⊆ dom(V′) and γ0 ⊆ γ′ (as
shown above), γ′ | Md | n′ | NV′ | V′ | c′1;W c2 is well-formed. In the case
where c′1 is of the form c′;W c′′, the rule stepping c1 must be D-seq since
c1 6= c′;W c′′. Thus, observe that γ′ ⊆ γ′ and dom(V′) ⊆ dom(V′), and hence
it follows by definition 2 that γ′ | Md | n′ | NV′ | V′ | c′1;W c2 is well-formed.

Case 11 [D-seq-v].

n = n′ + 1 W = γ′ | V′ V′′ = V � dom(V′)

γ | Md | n | NV | V | skip;W c2 → γ′ | Md | n′ | NV | V′′ | c2
(D-seq-v)

Observe that n = n′ + 1 (from the premise of D-seq-v) implies n > 0, and
hence b > 0.
By assumption, we have

Md | b > 0 : nat | Ω;Σ ` skip;W c2 : τ

where `Mdγ NV | V : Ω | Σ.
By inversion on T-seq-d, we have

(1) Md | b ≥ 0 : nat | Ω;Σ ` skip : Cunit

(2) Md | b ≥ 0 : nat | Ω;Σ′ ` c2 : τ
(3) W = γ′ | V′ (from the premise of D-seq-v)
(4) Σ′ = trim(Σ,V′, γ′)
We now need to show that `Mdγ′ NV | V′′ : Ω | Σ′. Since γ | Md | n | NV |
V | skip;W c2 is well-formed (by assumption), it follows by definition 2
that γ′ ⊆ γ. Therefore, the desired result follows by lemma 16 applied to
`Mdγ′ NV | V : Ω | Σ, the premise V′′ = V � dom(V′), (4), and γ′ ⊆ γ. Observe

that (2) yields the desired result where `Mdγ′′ NV | V′′ : Ω | Σ′. Observe that
the well-formedness of γ′ | Md | n′ | NV | V′′ | c2 follows by definition 2,
vacuously because c2 is not of the form c′;W c′′.

Theorem 5 (Fundamental theorem). If b : nat | Ω ` p : ↑Cunit, then b :
nat | Ω
 p : ↑Cunit.

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ 0 ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1
⇒* ⇒

0

ℰ
𝒱

k+1

k+1

(1)

(2)

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ1 ∣ 𝚊𝙸𝙳(c) ∣ ⋅ ∣ 𝖭𝖵 ∣ 𝖵1 ∣(3)
𝒱 k

By progress and preservation

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ ⋅ ∣ 𝖭𝖵 ∣(4)
𝒱 k

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ ↑ c1(5)
𝒱 k

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ cγ ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c(6)
ℰ k

Induction

𝖭𝖵 = 𝖭𝖵′￼, 𝖵𝚌𝚔

range(γ) = dom(NV)

γ ⊆ γ1

We know: range(γ) = dom(NV)

We show:

𝖭𝖵 = 𝖭𝖵′￼, 𝖵𝚌𝚔

We know:

γ ⊆ γ1

We show:

𝙲Unit

𝙲Unit

↓ (𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit)

𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit

↑ 𝙲Unit

𝙲Unit

ϵ#in(b > 0, ↑ c1)

↓ ϵ#in(b > 0, ↑ c1)

Fig. 24. Proof of the fundamental theorem for aID - inductive case

Proof. The proof is by induction on the static typing derivation for p and con-
sidering the last step in the derivation.

Case 1. Suppose that p = Ckpt[aID, ρ](c); p′. Figures 24 and 25 explain the
proof for the case where T-P-Ckpt is the last step of the derivation.

Ω′ | Σ = InitWorldt(Ω; ρ)
Sig = {aID(c) | b ≥ 0 : nat | Ω′;Σ ` c : Cunit}

aID(c) | b ≥ 0 : nat | Ω′; Σ `Sig c : Cunit
b : nat | Ω ` p′ : ↑Cunit

b : nat | Ω ` Ckpt[aID, ρ](c); p′ : ↑Cunit
(T-P-Ckpt)

By inversion, we know that

γ ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c

γ ∣ 𝚊𝙸𝙳(c) ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1

⇒*

ℰ
𝒱

k+1

k+1

(1)

(2)

γ1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ cγ1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵 ∣ 𝖵1 ∣ c1(3)
𝒱 k

By progress and preservation

γ′￼1 ∣ 𝚊𝙸𝙳(c) ∣ ∞ ∣ 𝖭𝖵′￼1 ∣ cγ′￼1 ∣ 𝚊𝙸𝙳(c) ∣ n′￼ ∣ 𝖭𝖵′￼1 ∣ c1(4)
𝒱 k

𝖭𝖵′￼1 = 𝖭𝖵′￼1

𝙲𝚘𝚖𝚖𝚒𝚝(γ1 ∣ 𝚊𝙸𝙳(c) ∣ 𝖭𝖵 ∣ 𝖵) = γ′￼1 ∣ 𝖭𝖵′￼1We know:

We show:

𝙲𝚞𝚗𝚒𝚝

𝙲𝚞𝚗𝚒𝚝

↓ ↑ 𝚞𝚗𝚒𝚝

↑ 𝚞𝚗𝚒𝚝

⇒*

Fig. 25. Proof of the fundamental theorem for aID - base case

γ ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1

γ ∣ 𝙹𝚒𝚝 ∣ n ∣ 𝖭𝖵 ∣ 𝖵 ∣ c

γ1 ∣ 𝙹𝚒𝚝 ∣ 0 ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1

⇒*

ℰ
𝒱

k+1

k+1

(1)

(2)

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ ⋅ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣(3)
𝒱 k

By progress and preservation

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ ⋅ ∣ 𝖭𝖵′￼1 ∣(4)
𝒱 k

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ n′￼ ∣ 𝖭𝖵′￼1 ∣ ↑ c1(5)
𝒱 k

γ1 ∣ 𝙹𝚒𝚝 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1γ1 ∣ 𝙹𝚒𝚝 ∣ n′￼ ∣ 𝖭𝖵1 ∣ 𝖵′￼ ∣ c1(6)
ℰ k

Induction
We know:

𝖭𝖵′￼1 = 𝖭𝖵1, 𝖵′￼𝚌𝚔

We show:

𝙲Unit

𝙲Unit

↓ (𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit)

𝚗𝚊𝚝 ⇝ ↑ 𝙲Unit

↑ 𝙲Unit

𝙲Unit

⇒*

ϵ#in(b > 0, ↑ c1)

↓ ϵ#in(b > 0, ↑ c1)

𝖭𝖵′￼1 = 𝖭𝖵1, 𝖵′￼𝚌𝚔

Fig. 26. Proof of the fundamental theorem for Jit - inductive case

(1) Ω′ | Σ = InitWorldt(Ω; ρ)
(2) Sig = {aID(c) | b ≥ 0 : nat | Ω′;Σ ` c : Cunit}
(3) aID(c) | b ≥ 0 : nat | Ω′; Σ `Sig c : Cunit
(4) b : nat | Ω ` p′ : ↑Cunit

By (1) and the definition of InitWorldt, we have that Ω′ = Ω′′, Σck. Observe
that the inductive hypothesis asserts that b : nat |Ω ` p′ : ↑Cunit implies
b : nat |Ω
 p′ : ↑Cunit. By applying the inductive hypothesis to (4), we
learn that

b : nat |Ω
 p′ : ↑Cunit.

To complete the proof, we need to establish

aID(c) | b≥ 0 : nat |Ω′;Σ
 c≤ c : Cunit.

By definition of logical relation, this is equivalent to showing that c is related
to itself in the term interpretation for arbitrary n0, m0, γ0, NV0, and V0

where NV0 | V0
 γ0::Ω′′, Σck | Σ. In particular, this condition establishes

that `aID(c)
γ0 NV0 | V0 : Ω′ | Σ, and hence, NV0 = NV′0,V0ck and range(γ0) =

dom(NV0). By assumption, p does not contain any worlds W , so it follows
that c does not contain any worlds W . Therefore, it follows by definition 2
that γ0 | aID(c) | n0 | NV0 | V0 | c and γ0 | aID(c) | ∞ | NV0 | V0 | c are
well-formed.
We need to show that ∀n0:

(γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitKm0

The proof proceeds by induction on m0:

Base case (m0 = 0). When m0 = 0, the proof is trivial and the desired
result follows immediately by the value interpretation at type Cunit:

(γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitK0

Inductive case (m0 = k + 1 (∃k)). If m0 = k + 1, we need to show that

(γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitKk+1

such that

(i) ∃.(γ1 | aID(c) | n1 | NV1 | V1 | c1) such that γ0 | aID(c) | n0 | NV0 |
V0 | c→∗ γ1 | aID(c) | n1 | NV1 | V1 | c1 AND

(ii) ∃.(γ2 | aID(c) | ∞ | NV2 | V2 | c2) such that γ0 | aID(c) | ∞ | NV0 |
V0 | c→∗ γ2 | aID(c) | ∞ | NV2 | V2 | c2 AND

(iii) (γ1 | aID(c) | n1 | NV1 | V1 | c1, γ2 | aID(c) | ∞ | NV2 | V2 | c2) ∈
VJCunitKk+1,

By the progress and preservation for commands (theorems 9 and 11)
applied to (2) and (3), we know that the first configuration

γ0 | aID(c) | n0 | NV0 | V0 | c
can take multiple steps until it becomes a value configuration that con-
tinues to be well-typed. Observe that in the mode aID(c), nonvolatile
memory remains unchanged. We prove this by induction on n0:
Base case. If n0 = 0, then the configuration is a value.
Inductive case. Suppose that n0 = n′0 + 1 (∃n′0). Since aID(c) | b ≥

0 : nat | Ω′; Σ `Sig c : Cunit and `aID(c)
γ0 NV0 | V0 : Ω′ | Σ, it

follows by theorem 9 that either γ0 | aID(c) | n0 | NV0 | V0 | c is a
value or γ0 | aID(c) | n0 | NV0 | V0 | c is not a value, in which case
∃ γ′′1 | aID(c) | n′′1 | NV0 | V′′1 | c′′1 such that

γ0 | aID(c) | n0 | NV0 | V0 | c→ γ′′1 | aID(c) | n′′1 | NV0 | V′′1 | c′′1

where aID(c) | b ≥ 0 : nat | Ω′; Σ′ `Sig c : Cunit, `aID(c)
γ′′
1

NV0 | V′′0 :

Ω′ | Σ′, and γ′′1 | aID(c) | n′′1 | NV0 | V′′1 | c′′1 is well-formed (by
theorem 11 because γ0 | aID(c) | n0 | NV0 | V0 | c is well-formed).
By the inductive hypothesis, γ′′1 | aID(c) | n′′1 | NV0 | V′′1 | c′′1 →∗ γ′1 |
aID(c) | n′1 | NV0 | V′1 | c′1 where γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1 is
well-formed and a value, aID(c) | b ≥ 0 : nat | Ω′; Σ′′ `Sig c′1 : Cunit,

and `aID(c)
γ′
1

NV0 | V′1 : Ω′ | Σ′′. By head expansion, we establish that

γ0 | aID(c) | n0 | NV0 | V0 | c→∗ γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1
We have just shown that (i) holds.
The proof proceeds in two subcases, depending on the value of n′1:
Subcase n′1 = 0. Observe that (ii) holds vacuously because γ0 | aID(c) |
∞ | NV0 | V0 | c→∗ γ0 | aID(c) | ∞ | NV0 | V0 | c in 0 steps.
We now need to show that (iii) holds:

(γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ VJCunitKk+1

This step corresponds to (2) in the figure where we need to show
that the configurations are in the value interpretation at type Cunit.
By the value interpretation at type Cunit, and because n′1 = 0, this
is equivalent to showing

(γ′1 | aID(c) | · | NV0 | V′1 | ↓ε#in(n′1 > 0, ↑ c′1), γ0 | aID(c) | ∞ | NV0 | V0 | c)
∈ VJ↓ (nat ↑ Cunit)Kk

This step corresponds to (3) in the diagram. At this step we show
the above relation holds by its definition:

(vi) PwOff(γ′1, aID(c),NV0,V
′
1) = γ′′1 | ∅ AND

(vii) (γ′′1 | aID(c) | · | NV0 | ε#in(n′1 > 0, ↑ c′1), γ0 | aID(c) | ∞ | NV0 |
V0 | c) ∈ VJnat ↑ CunitKk

To show (vi), we need to show that range(γ′′1) = dom(NV0) where γ′′1
is the largest restriction of γ′1 such that this condition holds. Observe
that the desired result follows immediately by the assumptions γ0 ⊆
γ′1 and range(γ0) = dom(NV0), where γ′′1 = γ0. Hence, we need to
show

(γ0 | aID(c) | · | NV0 | ε#in(n′1 > 0, ↑ c′1), γ0 | aID(c) | ∞ | NV0 | V0 | c)
∈ VJnat ↑ CunitKk

This corresponds to step (4) in the diagram. By definition of the value
relation at the type nat ↑ Cunit, this is equivalent to showing the
following:

∀n′1 > 0.(γ0 | aID(c) | n′1 | NV0 |↑ c′1, γ0 | aID(c) | ∞ | NV0 | V0 | c)
∈ VJ↑ CunitKk

Fix an arbitrary n1. We need to show that

(γ0 | aID(c) | n1 | NV0 |↑ c′1, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ VJ↑ CunitKk

This corresponds to step (5) in the diagram. By the definition of
value relation at the type ↑ Cunit, this is equivalent to showing

(viii) restore(γ0 | aID(c) | NV0 | c′1) = NV0 | V′0 | c′0 (for some V′0, c
′
0)

AND
(ix) (γ0 | aID(c) | n1 | NV0 | V0 | c′0, γ0 | aID(c) | ∞ | NV0 | V′0 | c) ∈

EJCunitKk

By assumption, we have that NV0 = NV′0,V0ck. By the definition
of restore(γ0 | aID(c) | NV0 | c′1) = NV0 | V′0 | c′0 we have that
NV0 = NV′0,V

′
0ck. Therefore, V′0 = V0. Now we need to show that

(γ0 | aID(c) | n1 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitKk

which follows directly by the inductive hypothesis. Propagating up
the cascade, we learn that since n1 in step (4) was arbitrary, the
value relation holds for all n1. In summary, we have just shown that

(γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitKk+1

Subcase n′1 > 0. Since n′1 > 0 and γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1 is a
value, we step the second configuration to completion:

γ0 | aID(c) | ∞ | NV0 | V0 | c 7→∗ γ′1 | aID(c) | ∞ | NV0 | V′1 | c′1

Now we want to show that

(γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1, γ′1 | aID(c) | ∞ | NV0 | V′1 | c′1) ∈ VJ↓↑ CunitKk+1

By the value interpretation at type Cunit and n′1 > 0, we need to
show that

(γ′1 | aID(c) | n′1 | NV0 | V′1 | c′1, γ′1 | aID(c) | ∞ | NV0 | V′1 | c′1) ∈ VJ↓↑ unitKk

By definition of the value interpretation at the type ↓↑ unit, this is
equivalent to showing

(x) Commit(γ′1 | aID(c) | NV0 | V′1) = γ1 | NV′1,V
′′
1 AND

(xi) Commit(γ′1 | aID(c) | NV0 | V′1) = γ2 | NV′2,V
′′
2 AND

(xii) (γ1 | aID(c) | n′1 | NV′1,V
′′
1 | skip, γ2 | aID(c) | ∞ | NV′2,V

′′
2 | skip)

∈ VJ↑ unitKk
By (x) and (xi), we observe that γ1 = γ2 and NV′1,V

′′
1 = NV′2,V

′′
2 .

Therefore, we can use the value interpretation at type ↑ unit to
prove (xii):

(γ1 | aID(c) | n′1 | NV′1,V
′′
1 | skip, γ2 | aID(c) | ∞ | NV′2,V

′′
2 | skip) ∈ VJ↑ unitKk

which holds by definition of logical relation. This is the last piece we
needed in order to prove the desired result:

(γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) | ∞ | NV0 | V0 | c) ∈ EJCunitKk+1

In general, we have that (γ0 | aID(c) | n0 | NV0 | V0 | c, γ0 | aID(c) |
∞ | NV0 | V0 | c) ∈ EJCunitKm0 where NV0 | V0
 γ0::Ω′′, Σck | Σ. Since
n0,m0 ≥ 0, γ0, NV0, and V0 were arbitrarily chosen, this result holds for all
n,m ≥ 0, γ,NV,V. Therefore, it follows by definition of logical relation that
aID(c) | b≥ 0 : nat |Ω′;Σ
 c≤ c : Cunit. Finally, the desired result follows
by application of P-Ckpt-semantic.

Ω′ |Σ= InitWorldt(Ω; ρ)
aID(c) | b≥ 0 : nat |Ω′;Σ
 c≤ c : Cunit

b : nat |Ω
 p′ : ↑Cunit
b : nat |Ω
 Ckpt[aID, ρ](c); p′ : ↑Cunit

(P-Ckpt-semantic)

Case 2. Suppose that p = c; p′. Figure 26 explains the proof for the case where
T-P-seq is the last step of the derivation.

jit | b ≥ 0 : nat | Ω; · `∅ c : Cunit b : nat | Ω ` p′ : ↑Cunit
b : nat | Ω ` c; p′ : ↑Cunit

(T-P-seq)

By inversion, we know that

(1) jit | b ≥ 0 : nat | Ω; · `∅ c : Cunit
(2) b : nat | Ω ` p′ : ↑Cunit
From (1), we know that c is well-typed for static context Ω and Σ = ·. By ap-
plying the inductive hypothesis to (2), we learn that b : nat | Ω
 p′ : ↑Cunit.
To complete the proof, we need to show that jit | b ≥ 0 : nat | Ω; ·

c ≤ c : Cunit. By the definition of logical relation, this is equivalent to es-
tablishing that c is related to itself in the term interpretation for arbitrary
n0, m0, γ0, NV0, and V0 where NV0 | V0
 γ0::Ω | Σ. In particular, this
condition establishes the condition that `jitγ0 NV0 | V0 : Ω | Σ. By assump-
tion, the program p, and by extension the command c, does not contain any
worlds W , so it follows by definition 2 that γ0 | jit | n0 | NV0 | V0 | c and
γ0 | jit | ∞ | NV0 | V0 | c are well-formed configurations. We need to show
that ∀c. jit | b ≥ 0 : nat | Ω;Σ `∅ c : Cunit and ∀NV0,V0, γ0, n0.NV0 | V0

γ0::Ω | Σ:

(γ0 | jit | n0 | NV0 | V0 | c, γ0 | jit | ∞ | NV0 | V0 | c) ∈ EJCunitKm0

The proof proceeds by induction on m0:

Base case (m0 = 0). When m0 = 0, the proof is trivial and the desired
result follows immediately by the definition of logical relation.

Inductive case (m0 = k + 1 (∃k)) Consider the case where m0 = k + 1.
We need to show that

(γ0 | jit | n0 | NV0 | V0 | c, γ0 | jit | ∞ | NV0 | V0 | c) ∈ EJCunitKk+1

By the term interpretation at type Cunit, this is equivalent to showing
(i) ∃.γ1 | jit | n1 | NV1 | V1 | c1 such that γ0 | jit | n0 | NV0 | V0 | c →∗

γ1 | jit | n1 | NV1 | V1 | c1
(ii) ∃.γ2 | jit | ∞ | NV2 | V2 | c2 such that γ0 | jit | ∞ | NV0 | V0 | c →∗

γ2 | jit | ∞ | NV2 | V2 | c2
(iii) (γ1 | jit | n1 | NV1 | V1 | c1, γ2 | jit | ∞ | NV2 | V2 | c2) ∈ VJCunitKk+1

By the progress and preservation theorems, we know that the first con-
figuration can take multiple steps until it becomes a value configuration
that continues to be well-typed. We proceed by induction on n0:
Base case. If n0 = 0, then the configuration is a value.
Inductive case. Suppose that n0 = n′0 + 1 (∃n′0). Since `jitγ0 NV0 | V0 :

Ω | · and jit | b ≥ 0 : nat | Ω; · `∅ c : Cunit, it follows by theorem 9
that either γ0 | jit | n0 | NV0 | V0 | c is a value or γ0 | jit | n0 | NV0 |
V0 | c is not a value, in which case ∃ γ′′1 | jit | n′′1 | NV′′1 | V′′1 | c′′1 such
that

γ0 | jit | n0 | NV0 | V0 | c→ γ′′1 | jit | n′′1 | NV′′1 | V′′1 | c′′1
where γ′′1 | jit | n′′1 | NV′′1 | V′′1 | c′′1 is well-formed, `jitγ′′

1
NV′′1 | V′′1 : Ω′′ |

Σ′′ and jit | b ≥ 0 : nat | Ω′′;Σ′′ `∅ c′′1 : Cunit (by theorem 11 because
γ0 | jit | n0 | NV0 | V0 | c is well-formed and `jitγ0 NV0 | V0 : Ω | ·).
By the inductive hypothesis, γ′′1 | jit | n′′1 | NV′′1 | V′′1 | c′′1 →∗ γ′1 | jit |
n′1 | NV′1 | V′1 | c′1 where γ′1 | jit | n′1 | NV′1 | V′1 | c′1 is well-formed and

a value, `jitγ′
1

NV′1 | V′1 : Ω′′′ | Σ′′′, and jit | b ≥ 0 : nat | Ω′′′;Σ′′′ `∅
c′1 : Cunit. By head expansion, we establish that

γ0 | jit | n0 | NV0 | V0 | c→∗ γ′1 | jit | n′1 | NV′1 | V′1 | c′1
Analogously, we step the second configuration until c′1 with the exact
same steps as in the first configuration by theorems 9 and 11:

γ0 | jit | ∞ | NV0 | V0 | c→∗ γ′1 | jit | ∞ | NV′1 | V′1 | c′1
We have just shown (i) and (ii). The proof of (iii) corresponds to step
(2) in the diagram. Proving that the configurations are in the value
interpretation at type Cunit is equivalent to showing

(iv) n′1 = 0 ∧ (γ′1 | jit | · | NV′1 | V′1 |↓ ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ |
NV′1 | V′1 | c′1)
∈ VJ↓ (nat ↑ Cunit)Kk OR

(v) n′1 > 0 ∧ (γ′1 | jit | n′1 | NV′1 | V′1 | c′1, γ′1 | jit | ∞ | NV′1 | V′1 | c′1) ∈
VJ↓↑ unitKk

The proof proceeds in two subcases depending on the value of n′0:

Case n′1 = 0. If n′1 = 0, then we need to show that

(γ′1 | jit | · | NV′1 | V′1 |↓ ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ | NV′1 | V′1 | c′1)

∈ VJ↓ (nat ↑ Cunit)Kk

This proof corresponds to point (3) in the diagram. To show that the
two configurations are in the value interpretation at type ↓ (nat
↑ Cunit), we need to show:

(vi) PwOff(γ′1, jit,NV′1,V
′
1) = γ′1 | V′1 AND

(vii) (γ′1 | jit | · | V′1,NV′1 | ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ | NV′1 | V′1 |
c′1)
∈ VJnat ↑ CunitKk

To show (vii), we need to show that the configurations are in the
value interpretation of nat ↑ Cunit, which corresponds to step (4)
in the diagram:

(γ′1 | jit | · | V′1,NV′1 | ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ | NV′1 | V′1 | c′1) ∈ VJnat ↑ CunitKk

This is equivalent to proving that

∀n > 0.(γ′1 | jit | n | V′1,NV′1 | ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ | NV′1 | V′1 | c′1) ∈ VJ↑ CunitKk

This step corresponds to point (5) in the diagram. Fix an arbitrary
n′. We need to show that

(γ′1 | jit | n′ | V′1,NV′1 | ε#in(n′1 > 0, ↑ c′1), γ′1 | jit | ∞ | NV′1 | V′1 | c′1) ∈ VJ↑ CunitKk

According to the value interpretation at type ↑ Cunit, this is equiva-
lent to showing:

(viii) restore(γ′1, jit, (V′1,NV′1), c′1) = NV′ | NV′′ | c′1 where V′1,NV′1 =
NV′,NV′′ck AND

(ix) (γ′1 | jit | n′ | NV′ | NV′′ck | c′1, γ′1 | jit | ∞ | NV′1 | V′1 | c′1)
∈ EJCunitKk

From (viii), we have that V′1 = NV′′ck and NV′ = NV′1. Recalling from

above that `jitγ′
1

NV′1 | V′1 : Ω′′′ | Σ′′′ (which is equivalent to NV′1 |
V′1
 γ

′
1::Ω′′′ | Σ′′′ for jit) and jit | b ≥ 0 : nat | Ω′′′;Σ′′′ `∅ c′1 : Cunit,

we can apply the inductive hypothesis to prove (ix). Therefore, we
have established that

(γ0 | jit | n0 | NV0 | V0 | c, γ0 | jit | ∞ | NV0 | V0 | c) ∈ EJCunitKk+1

Case n′0 > 0. If n′0 > 0, then we need to show that

(γ′1 | jit | n′1 | NV′1 | V′1 | c′1, γ′1 | jit | ∞ | NV′1 | V′1 | c′1) ∈ VJ↓↑ unitKk

From the value interpretation at type ↓↑ unit, we have
(x) Commit(γ′1 | jit | NV′1 | V′1) = γ1 | NV1

(xi) Commit(γ′1 | jit | NV′1 | V′1) = γ2 | NV2

(xii) (γ1 | jit | n′1 | NV1 | skip, γ2 | jit | ∞ | NV2 | skip) ∈ VJ↓↑ unitKk
From (x) and (xi), we have that γ1 = γ2 and NV1 = NV2. Therefore,
the desired result follows by the value interpretation at type ↓↑ unit:

(γ1 | jit | n′1 | NV1 | skip, γ2 | jit | ∞ | NV2 | skip) ∈ VJ↓↑ unitKk

Therefore, we have shown that (γ0 | jit | n0 | NV0 | V0 | c, γ0 | jit | ∞ | NV0 |
V0 | c) ∈ EJCunitKm0 where NV0 | V0
 γ0::Ω′′, Σck | Σ. Since n0,m0 ≥ 0,
γ0, NV0, V0 were arbitrary, this result holds for all n,m ≥ 0, γ, NV, V.
Therefore, it follows by the definition of logical relation that jit | b ≥ 0 :
nat | Ω; ·
 c ≤ c : Cunit. Finally, the desired result follows by application of
P-seq-semantic.

jit | b ≥ 0 : nat | Ω; ·
 c ≤ c : Cunit b : nat | Ω
 p′ : ↑Cunit
b : nat | Ω
 c; p′ : ↑Cunit

(P-seq-semantic)

Theorem 6 (Adequacy). Consider b : nat | Ω
 p : Cunit, a nonvolatile mem-
ory NV and a bijective map γ that matches qualifiers and types from variables
in Ω to locations in NV. The triple of p, NV, and γ is idempotent.

Proof. The proof is by cases according to the execution mode.

Stepping a JIT block. Consider a program of form [χB ε]⊗ γ | n | NV | c; p′
that can take a step using the D-P-Seq rule to [χ′′ B ε] ⊗ γ | n′ | NV′ | p′. By
inversion on the D-P-Seq rule,

n > 0 n′ > 0
[χB ε]⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ B ε]⊗ γ′1 | jit | n′ | NV′ | V′ | skip

[χB ε]⊗ γ | n | NV | c; p′ ⇒ [χ′ B ε]⊗ γ | n′ | NV′ | p′
(D-P-seq)

Suppose that the command c is successfully executed to completion with
possibly m power failures and m+ 1 tries along the way:

– n > 0
– n′ > 0
– [χB ε]⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ B ε]⊗ γ′1 | jit | n′ | NV′ | V′ | skip

Our goal is to show that we can run the configuration with ∞, an infinite level
of energy, as:

[χB ε]⊗ γ | jit | ∞ | NV | · | c ⇒∗ [χB ε]⊗ γ′′2 | jit | ∞ | NV′ | V2 | skip.
Figure 23 shows the main idea of the proof. Here we provide more details.

We first need to establish that the configuration with n level of energy is related
to itself when provided with an infinite energy level∞ for every index, including
m+ 1 (point (1) in Figure 15).

By inversion on T-P-seq-semantic and the assumption b : nat | Ω
 c; p′ :
↑Cunit,

jit | b ≥ 0 : nat | Ω; ·
 c ≤ c : Cunit b : nat | Ω
 p′ : ↑Cunit
b : nat | Ω
 c; p′ : ↑Cunit

(P-seq-semantic)

we learn that

(i) jit | b ≥ 0 : nat | Ω; ·
 c ≤ c : Cunit
(ii) b : nat | Ω
 p′ : ↑Cunit

By the definition of logical relation applied to (i), we have that ∀n0,m0 ≥
0.∀γ0,NV0 s.t. NV0 | ·
 γ0 :: Ω | ·. (γ0 | jit | n0 | NV0 | · | c, γ0 | jit | ∞ | NV0 |
· | c) ∈ EJCunitKm0 .

Instantiating m0 to be the number of tries m+ 1 (i.e. m0 = m+ 1), we have
that

(γ | jit | n | NV | · | c, γ | jit | ∞ | NV | · | c) ∈ EJCunitKm+1

To prove the desired result, we use induction to prove the following general-
ized statement:

– [χB ε]⊗ γ1 | jit | n1 | NV1 | V1 | c1 ⇒∗ [χ′′B ε]⊗ γ′ | jit | n′ | NV′ | V′ | skip
in m crashes and

– (γ1 | jit | n1 | NV1 | V1 | c1, γ2 | jit | ∞ | NV2 | V2 | c2) ∈ EJCunitKm+1

then for any energy stream χ0, we have [χ0 B ε] ⊗ γ2 | jit | ∞ | NV2 | V2 |
c2 ⇒∗ [χ0 B ε]⊗ γ′′2 | jit | ∞ | NV′′2 | V′′2 | skip and NV′′2 = NV′.

The proof proceeds by induction on the number of crashes (m):

Base case: m = 0 (# tries = 1). It follows by the term interpretation at type
Cunit that
1. ∃(γ′′1 | jit | n′ | NV′1 | V′1 | c′1) s.t. γ1 | jit | n | NV1 | V1 | c1 →∗ γ′′1 | jit |
n′ | NV′1 | V′1 | c′1 AND

2. ∃(γ′′2 | jit | ∞ | NV′2 | V′2 | c′2) s.t. γ2 | jit | ∞ | NV2 | V2 | c2 →∗ γ′′2 | jit |
∞ | NV′2 | V′2 | c′2 AND

3. (γ′′1 | jit | n′ | NV′1 | V′1 | c′1, γ′′2 | jit | ∞ | NV′2 | V′2 | c′2) ∈ VJCunitK1
Since m = 0, there are no crashes in (1). So, n′ > 0 and the first configuration
steps to completion via D-step where NV′1 = NV′ and V′1 = V′ and γ′′1 = γ′:

[χB ε]⊗ γ1 | jit | n | NV1 | V1 | c1 ⇒∗ [χB ε]⊗ γ′′1 | jit | n′ | NV′1 | V′1 | skip

By (2) we know that:

[χ0B ε]⊗γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0B ε]⊗γ′′2 | jit | ∞ | NV′2 | V′2 | c′2

and by (3) and n′ > 0, we get that the post steps are related by the value
interpretation at type ↓↑ unit. This means that c′2 = skip and we have

[χ0Bε]⊗γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗γ′′2 | jit | ∞ | NV′2 | V′2 | skip

and

(γ′′1 | jit | n′ | NV′1 | V′1 | skip, γ′′2 | jit | ∞ | NV′2 | V′2 | skip) ∈ VJ↓↑ unitK0

It then follows by the value relation at type ↓↑ unit that
1. Commit(γ′′1 | jit | NV′1 | V′1) = γ1 | NV1 where range(γ1) = dom(NV1) and
γ1 ⊆ γ′′1

2. Commit(γ′′2 | jit | NV′2 | V′2) = γ2 | NV2 where range(γ2) = dom(NV2) and
γ2 ⊆ γ′′2

3. (γ1 | jit | n′ | NV1 | skip, γ2 | jit | ∞ | NV2 | skip) ∈ VJ↑ unitK0
By the definition of commit in the jit mode and (1) and (2), we have NV1 =
NV′1 and NV2 = NV′2. Thus, it follows by the value interpretation at type
↑ unit:

NV′ = NV′1 = NV′2

Therefore, we have

[χ0Bε]⊗γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗ γ′′2 | jit | ∞ | NV′ | V′2 | skip

which completes the proof for this subcase.

Inductive case: m = k + 1(∃ k) (# tries = k + 2). It follows by the term in-
terpretation at type Cunit that

(iii) ∃(γ′1 | jit | n′1 | NV′1 | V′1 | c′1) s.t. γ1 | jit | n | NV1 | V1 | c1 →∗ γ′1 | jit |
n′1 | NV′1 | V′1 | c′1

(iv) ∃(γ′2 | jit | ∞ | NV′2 | V′2 | c′2) s.t. γ2 | jit | ∞ | NV2 | V2 | c2 →∗ γ′2 | jit |
∞ | NV′2 | V′2 | c′2

(v) (γ′1 | jit | n′1 | NV′1 | V′1 | c′1, γ′2 | jit | ∞ | NV′2 | V′2 | c′2) ∈ VJCunitKk+2

From (iii), we step the first configuration until it becomes a value. It follows
by the rule D-step that

[χB ε]⊗ γ1 | jit | n | NV1 | V1 | c1 ⇒∗ [χB ε]⊗ γ′1 | jit | n′1 | NV′1 | V′1 | c′1

We step the second configuration via D-step applied to (iv):

[χ0 B ε]⊗ γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0 B ε]⊗ γ′2 | jit | ∞ | NV′2 | V′2 | c′2

and by (v) we have:

(γ′1 | jit | n′1 | NV′1 | V′1 | c′1, γ′2 | jit | ∞ | NV′2 | V′2 | c′2) ∈ VJCunitKk+2

Since there are m > 0 crashes, we know that n′1 = 0. By application of
D-Crash, we have

[χBε]⊗γ′1 | jit | 0 | NV′1 | V′1 | c′1 ⇒ [χBε]⊗γ′1 | jit | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1)

By the value interpretation at type Cunit, observe that the stepped configu-
ration continues to be related to the second configuration:

(γ′1 | jit | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1), γ′2 | jit | ∞ | NV′2 | V′2 | c′2)

∈ VJ↓ (nat ↑ Cunit)Kk+1

By D-S-Jit, we have

[χB ε]⊗ γ′1 | jit | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1)

⇒ [χB ε]⊗ γ′1 | jit | · | NV′1,V
′
1Ck | ε#in(b > 0; ↑ c′1)

By the value interpretation at type ↓ (nat Cunit), the post step configu-
ration remains related to the second configuration:

(γ′1 | jit | · | NV′1,V
′
1Ck | ε#in(b > 0; ↑ c′1), γ′2 | jit | ∞ | NV′2 | V′2 | c′2)

∈ VJnat ↑ CunitKk+1

as by definition of PwOff in the jit mode, we have PwOff(γ′1, jit,NV′1,V
′
1) =

γ′1 | V′1.

By D-charge, for some n′′ > 0, we have χ = n′′ :: χ′ :

[χB ε]⊗ γ′1 | jit | · | NV′1,V
′
1Ck | ε#in(b > 0; ↑ c′1)

⇒ [χ′ B ε]⊗ γ′1 | jit | n′′ | NV′1,V
′
1Ck |↑ c

′
1

It follows by the value interpretation at type nat ↑ Cunit that the stepped
configuration and the second configuration remain related for n′′ (by ∀ elim-
ination):

(γ′1 | jit | n′′ | NV′1,V
′
1Ck |↑ c

′
1, γ
′
2 | jit | ∞ | NV′2 | V′2 | c′2)

∈ VJ↑ CunitKk+1

By D-restore-Jit, we have

[χ′ B ε]⊗ γ′1 | jit | n′′ | NV′1,V
′
1Ck |↑ c

′
1

⇒ [χ′ B ε]⊗ γ′1 | jit | n′′ | NV′1 | V′1 | c′1

From above, we get [χBε]⊗γ1 | jit | n1 | NV1 | V1 | c1 ⇒∗ [χ′Bε]⊗γ′1 | jit |
n′′ | NV′1 | V′1 | c′1 and [χ0B ε]⊗γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0B ε]⊗γ′2 |
jit | ∞ | NV′2 | V′2 | c′2. By the value interpretation at type ↑ Cunit, these
configurations continue to be related:

(γ′1 | jit | n′′ | NV′1 | V′1 | c′1, γ′2 | jit | ∞ | NV′2 | V′2 | c′2)

∈ EJCunitKk+1

as restore(γ′1, jit, (NV′1,V
′
1Ck), c

′
1) = NV′1 | V′1 | c′1.

Since [χB ε]⊗ γ1 | jit | n1 | NV1 | V1 | c1 ⇒∗ [χ′′ B ε]⊗ γ′1 | jit | n′ | NV′ |
V′ | skip in k crashes we know that [χ B ε] ⊗ γ′1 | jit | n′′ | NV′1 | V′1 | c′1 ⇒∗
[χ′′ B ε]⊗ γ′1 | jit | n′ | NV′ | V′ | skip in k − 1 crashes.
By the application of the induction hypothesis we get: [χ0B ε]⊗γ′2 | jit | ∞ |
NV′2 | V′2 | c′2 ⇒∗ [χ0Bε]⊗ γ′′2 | jit | ∞ | NV | V′′2 | skip, which combined with
[χ0 B ε]⊗ γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0 B ε]⊗ γ′2 | jit | ∞ | NV′2 | V′2 | c′2
gives us the desired result of this subcase:

[χ0Bε]⊗γ2 | jit | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗ γ′′2 | jit | ∞ | NV | V′′2 | skip

With that established, we can apply the generalized statement on assump-
tions

(γ | jit | n | NV | · | c, γ | jit | ∞ | NV | · | c) ∈ EJCunitKm+1

and [χ B ε] ⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ B ε] ⊗ γ′1 | jit | n′ | NV′ | V′ | skip to
get

[χB ε]⊗ γ | jit | ∞ | NV | · | c ⇒∗ [χB ε]⊗ γ′′2 | jit | ∞ | NV′ | V2 | skip

and apply D-P-Seq rule to complete the proof of this case:

∞ > 0 ∞ > 0
[χB ε]⊗ γ | jit | ∞ | NV | · | c ⇒∗ [χB ε]⊗ γ′′2 | jit | ∞ | NV′ | V2 | skip

[χB ε]⊗ γ | ∞ | NV | c; p′ ⇒ [χB ε]⊗ γ | ∞ | NV′ | p′
(D-P-seq)

Stepping an atomic region. Consider a program of form [χ B ε]⊗γ | n | NV |
Ckpt[(aID; ρ)](c0); p′ that can take a step using the D-P-Seq rule to [χ′′ B ε]⊗γ |
n′ | NV1 | p′. By inversion on the D-P-Ckpt rule,

n > 0 InitWorldd(NV; ρ; γ) = NV0, V0
[χB ε]⊗ γ | aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′′ B ε]⊗ γ′ | aID(c0) | n′ | NV′ | V′ | skip

n′ > 0 NV1 = FinWorldd(NV′; V′)

[χB ε]⊗ γ | n | NV | Ckpt[(aID; ρ)](c0); p′ ⇒ [χ′′ B ε]⊗ γ | n′ | NV1 | p′
(D-P-CKpt)

we learn that

– n > 0
– InitWorldd(NV; ρ; γ) = NV0, V0
– [χB ε]⊗ γ | aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′′ B ε]⊗ γ′ | aID(c0) | n′ | NV′ |

V′ | skip
– n′ > 0
– NV1 = FinWorldd(NV′; V′)

Our goal is to simulate this execution in a continuous setting. In particu-
lar, we need to find a continuous execution such that [χ B ε] ⊗ γ | aID(c0) |
∞ | NV0 | V0 | c0 ⇒∗ [χ B ε] ⊗ γ′ | aID(c0) | ∞ | NV′2 | V′2 | skip, where
NV1 = FinWorldd(NV′2; V′2). To this end, we invert the assumption b : nat | Ω

Ckpt[(aID; ρ)](c0); p′ :↑ Cunit via P-Ckpt-semantic,

Ω′ |Σ= InitWorldt(Ω; ρ)
aID(c0) | b≥ 0 : nat |Ω′;Σ
 c0≤ c0 : Cunit

b : nat |Ω
 p′ : ↑Cunit
b : nat |Ω
 Ckpt[aID, ρ](c0); p′ : ↑Cunit

(P-Ckpt-semantic)

we learn that

(i) Ω′ |Σ= InitWorldt(Ω; ρ)
(ii) aID(c0) | b≥ 0 : nat |Ω′;Σ
 c0≤ c0 : Cunit
(iii) b : nat |Ω
 p′ : ↑Cunit

By definition of logical relation applied to (ii), we have that ∀n1,m1 ≥
0.∀γ1,NV1,V1 s.t. NV1 | V1
 γ1 :: Ω | Σ (γ1 | aID(c0) | n1 | NV1 | V1 |
c0, γ1 | aID(c0) | ∞ | NV1 | V1 | c0) ∈ EJCunitKm1 .

By instantiating the memories accordingly, and the index m1 with the num-
ber of tries m+ 1 (where m is the number of crashes), we have

(γ | aID(c0) | n | NV0 | V0 | c0, γ | aID(c0) | ∞ | NV0 | V0 | c0) ∈ EJCunitKm+1

To get our result, we first prove the following generalized statement: if

– [χ B ε] ⊗ γ1 | aID(c0) | n1 | NV1 | V1 | c1 ⇒∗ [χ′ B ε] ⊗ γ′ | aID(c0) | n′1 |
NV′ | V′ | skip in m crashes and

– (γ1 | aID(c0) | n1 | NV1 | V1 | c1, γ2 | aID(c0) | ∞ | NV2 | V2 | c2) ∈
EJCunitKm+1

then for all energy streams χ0, we have [χ0Bε]⊗γ2 | aID(c0) | ∞ | NV2 | V2 |
c2 ⇒∗ [χ0 B ε]⊗ γ′′2 | aID(c0) | ∞ | NV′′2 | V′′2 | skip, where FinWorldd(NV′; V′) =
FinWorldd(NV′′2 ; V′′2)

The proof proceeds by induction on the number of crashes:

Base case: m = 0 (# tries = 1). If m = 0, then it follows by the term inter-
pretation at type Cunit,

(1) ∃(γ′′1 | aID(c0) | n′ | NV′1 | V′1 | c′1) s.t. γ1 | aID(c0) | n | NV1 | V1 | c1 →∗
γ′′1 | aID(c0) | n′ | NV′1 | V′1 | c′1 AND

(2) ∃(γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) s.t. γ2 | aID(c0) | ∞ | NV2 | V2 | c2 →∗
γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2 AND

(3) (γ′′1 | aID(c0) | n′ | NV′1 | V′1 | c′1, γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) ∈
VJCunitK1

The number of crashes is 0, so n′ > 0 and the first configuration steps to
completion via D-step where NV′1 = NV′ and V′1 = V′ and γ′′1 = γ′:

[χBε]⊗γ1 | aID(c0) | n | NV1 | V1 | c1 ⇒∗ [χBε]⊗γ′′1 | aID(c0) | n′ | NV′1 | V′1 | skip

Applying D-Step to (2), we know that:

[χ0Bε]⊗γ2 | aID(c0) | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2

and by (3) and n′ > 0, we get that the post steps are related by the value
interpretation at type ↓↑ unit. This means that c′2 = skip and we have

[χ0Bε]⊗γ2 | aID(c0) | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | skip

and

(γ′′1 | aID(c0) | n′ | NV′1 | V′1 | skip, γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | skip) ∈ VJ↓↑ unitK0

It then follows that

(1) Commit(γ′′1 | aID(c0) | NV′1 | V′1) = γ′ | NV′,V′ where γ′ ⊆ γ′′1 , NV′1 =
NV′,NV′0Ck, V′1 = V′0,V

′, dom(V′) = dom(NV′0), range(γ′) = dom(NV′1)∪
dom(V′).

(2) Commit(γ′′2 | aID(c0) | NV′2 | V′2) = γ2 | NV2,V2 where γ2 ⊆ γ′′2 ,
NV′2 = NV2,NV2

0Ck, V′2 = V2
0,V

2, dom(V2) = dom(NV2
0), range(γ2) =

dom(NV′2) ∪ dom(V2).
(3) (γ′ | aID(c0) | n′ | NV′,V′ | skip, γ2 | aID(c0) | ∞ | NV2,V2 | skip) ∈ VJ↑

unitK0

It follows by the value interpretation at type ↑ unit that NV′,V′ = NV2,V2.
We observe that by definition, FinWorldd(NV′1; V′1) = NV′,V′ and FinWorldd(NV′2; V′2) =
NV2,V2.
Therefore, we have

[χ0Bε]⊗γ2 | aID(c0) | ∞ | NV2 | V2 | c2 ⇒∗ [χ0Bε]⊗γ′′2 | aID(c0) | ∞ | NV′2 | V′2 | skip

where FinWorldd(NV′1; V′1) = FinWorldd(NV′2; V′2), and the proof of this sub-
case is complete.

Inductive case: m = k + 1(∃ k) (# tries = k + 2). By the term interpreta-
tion at type Cunit, we have

(i) ∃ γ′1 | aID(c0) | n′1 | NV′1 | V′1 | c′1 s.t. γ1 | aID(c0) | n | NV1 | V1 | c1 →∗
γ′1 | aID(c0) | n′1 | NV′1 | V′1 | c′1

(ii) ∃ γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2 s.t. γ2 | aID(c0) | ∞ | NV2 | V2 | c2 →∗
γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2.

(iii) (γ′1 | aID(c0) | n′1 | NV′1 | V′1 | c′1, γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) ∈
VJCunitKk+1

From (i), we step the first configuration until it becomes a value. It follows
by the rule D-step that

[χB ε]⊗γ | aID(c0) | n | NV1 | V1 | c1 ⇒∗ [χB ε]⊗γ′1 | aID(c0) | n′1 | NV′1 | V′1 | c′1

Since there are m > 0 crashes, we know that n′1 = 0. By (ii), we step the
second configuration via D-step:

[χ0B ε]⊗γ2 | aID(c0) | ∞ | NV2 | V2 | c2 ⇒∗ [χ0B ε]⊗γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2

and by (iii), we have

(γ′1 | aID(c0) | n′1 | NV′1 | V′1 | c′1, γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) ∈ VJCunitKk+1

By application of D-Crash, we have

[χ B ε]⊗ γ′1 | aID(c0) | 0 | NV′1 | V′1 | c′1
⇒ [χ B ε]⊗ γ′1 | aID(c0) | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1)

By the value interpretation at type Cunit, observe that the stepped configu-
ration continues to be related to the second configuration:

(γ′1 | aID(c0) | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1), γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2)

∈ VJ↓ (nat ↑ Cunit)Kk

By D-S-aID, for γ1 ⊆ γ′1 such that range(γ1) = dom(NV′1), we have:

[χ B ε]⊗ γ′1 | aID(c0) | · | NV′1 | V′1 |↓ ε#in(b > 0; ↑ c′1)

⇒ [χ B ε]⊗ γ1 | aID(c0) | · | NV′1 | ε#in(b > 0; ↑ c′1)

By the value interpretation at type ↓ (nat ↑ Cunit), and the definition
of PwOff in the atomic case, we have PwOff(γ′1, aID(c0),NV′1,V

′
1) = γ1 | ∅,

and thus the stepped configuration continues to be related to the second
configuration:

(γ1 | aID(c0) | · | NV′1 | ε#in(b > 0; ↑ c′1), γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2)

∈ VJnat ↑ CunitKk

By stepping the first configuration according to D-charge, we have for some
n′′ > 0 such that χ = n′′ :: χ′:

[χ B ε]⊗ γ1 | aID(c0) | · | NV′1 | ε#in(b > 0; ↑ c′1)

⇒ [χ′ B ε]⊗ γ1 | aID(c0) | n′′ | NV′1 |↑ c′1

By the value interpretation at type nat ↑ Cunit, observe that the stepped
configuration remains related to the second configuration for n′′ > 0:

(γ1 | aID(c0) | n′′ | NV′1 |↑ c′1, γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) ∈ VJ↑ CunitKk

Stepping the first configuration via D-restore-aID, we have

[χB ε]⊗γ1 | aID(c0) | n′′ | NV′1 |↑ c′1 ⇒ [χB ε]⊗γ1 | aID(c0) | n′′ | NV′1 | · | c0

By the value interpretation at type ↑ Cunit, the first and second configura-
tions remain related:

(γ1 | aID(c0) | n′′ | NV′1 | · | c0, γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2) ∈ EJCunitKk

since restore(γ1, aID(c0),NV′1, c
′
1) = NV′1 | · | c0.

By assumption, [χ B ε] ⊗ γ1 | aID(c0) | n′′ | NV′1 | · | c0 ⇒∗ [χ′′ B ε] ⊗ γ′ |
aID(c0) | n′ | NV′ | V′ | skip in k − 1 crashes.
By induction hypothesis, we get [χ0Bε]⊗γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2 ⇒∗
[χ0 B ε]⊗ γ′′2 | aID(c0) | n′ | NV′′2 | V′′2 | skip such that FinWorldd(NV′; V′) =
FinWorldd(NV′′2 ; V′′2). This combined with [χ0 B ε]⊗ γ2 | aID(c0) | ∞ | NV2 |
V2 | c2 ⇒∗ [χ0 B ε]⊗ γ′2 | aID(c0) | ∞ | NV′2 | V′2 | c′2 gives us [χ0 B ε]⊗ γ2 |
aID(c0) | ∞ | NV2 | V2 | c2 ⇒∗ [χ0 B ε]⊗ γ′′2 | aID(c0) | n′ | NV′′2 | V′′2 | skip,
and completes the proof of this subcase.

With that established, we can apply the generalized statement on assump-
tions

(γ | aID(c0) | n | NV0 | V0 | c0, γ | aID(c0) | ∞ | NV0 | V0 | c0) ∈ EJCunitKm+1

and [χB ε]⊗ γ | aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′ B ε]⊗ γ′ | aID(c0) | n′ | NV′ |
V′ | skip to get [χBε]⊗γ | aID(c0) | ∞ | NV0 | V0 | c0 ⇒∗ [χ B ε]⊗γ′′ | aID(c0) |
∞ | NV′′ | V′′ | skip, where FinWorldd(NV′; V′) = FinWorldd(NV′′; V′′). and apply
D-P-Ckpt rule to complete the proof of this case.

Theorem 7 (Preservation for programs). Consider b : nat | Ω ` p : ↑Cunit,
a nonvolatile memory NV and a bijective map γ that matches qualifiers and
types from variables in Ω to locations in NV. For any n:nat ≥ 0, if we have
[χBε]⊗γ | n | NV | p ⇒ [χ′Bε]⊗γ′ | n′ | NV′ | p′, then b : nat | Ω ` p′ : ↑Cunit,
with γ remaining a bijective map from Ω to NV′.

Proof. By a structural induction on the typing derivation, and case distinction
on the step.

Case 1.

n > 0 n′ > 0
[χB ε]⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ B ε]⊗ γ′ | jit | n′ | NV′ | V′ | skip

[χB ε]⊗ γ | n | NV | c; p′ ⇒ [χ′ B ε]⊗ γ | n′ | NV′ | p′
(P-seq)

By inversion on the typing rules, we know that bR0 : nat | Ω | · ` c : Cunit
and b : nat | Ω ` p′ : ↑Cunit By preservation for commands, we know that
γ′ is well-formed for NV′ and V′ at the jit mode with respect to Ω and some
Σ. By definition of well-formedness, we know that for some γ1 ⊆ γ′, we have
γ1 is well-formed for Ω and NV′. But we know that γ ⊆ γ′ is well-formed
for Ω. This means that γ = γ′ and thus γ is a bijective map that matches
qualifiers and types from variables in Ω to locations in NV′.

Case 2.

n > 0 InitWorldd(NV; ρ) = NV0, V0
[χB ε]⊗ γ | aID(c0) | n | NV0 | V0 | c0 ⇒∗
[χ′ B ε]⊗ γ′ | aID(c0) | n′ | NV′ | V′ | skip

n′ > 0 NV1 = FinWorldd(NV′; V′)

[χB ε]⊗ γ | n | NV | Ckpt[(aID; ρ)](c0); p ⇒ [χ′ B ε]⊗ γ | n′ | NV1 | p
(P-CKpt)

By inversion on the typing rules, we know that bR0 : nat | Ω0 | Σ0 ` c : Cunit
and b : nat | Ω ` p′ : ↑Cunit By preservation for commands, we know that
γ′ is well-formed for NV′ and V′ at the jit mode with respect to Ω and some
Σ. By definition of well-formedness and FinWorld, we know that for some
γ1 ⊆ γ′, we have γ1 is well-formed for Ω and NV1. But we know that γ ⊆ γ′
is well-formed for Ω. This means that γ = γ′ and thus γ is a bijective map
that matches qualifiers and types from variables in Ω to locations in NV1.

