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ABSTRACT
Counterfactual conditions such as “if A were not true, then C would

not have been true” have been formally studied by philosophers

for causal claims for decades. Counterfactuals are often used infor-

mally in practice for diagnosing systems and identifying errors or

misconfigurations. This paper develops a proof theory for coun-

terfactual reasoning of Horn clauses, which have applications in

domains including security and database and program analysis.

The application to security that this paper focuses on is model-

ing and reasoning about probing attacks in Datalog-based trust

management systems, where an attacker can apply counterfactual

reasoning to obtain sensitive information embedded in the system.

Our work is inspired by a Hilbert style axiomatized system for

counterfactual reasoning for Horn clauses, which are hard to use

to construct proofs or study properties of the system. To alleviate

this difficulty, we develop a sequent calculus from first principles.

We show that the sequent calculus has cut elimination and is sound

and complete with regard to the corresponding Hilbert style axiom-

atized system. We also show how to construct proofs that model

practical counterfactual reasoning scenarios in trust management

systems using our sequent calculus rules.

1 INTRODUCTION
Counterfactual conditions such as “if A were true, then C would

have been true” and “if A were not true, then C would not have been

true” describe what could or would happen under different condi-

tions. For decades, philosophers have investigated using counter-

factuals to explain causal claims [10, 22, 25]. In the above example,

A is a likely cause of C. Counterfactual reasoning is a meta-level

reasoning about a system. In practice, people often apply ad-hoc

counterfactual reasoning to diagnosing and analyzing concrete sys-

tems, both for legitimate purposes, such as debugging, as well as

malicious ones, such as probing secrets embedded in the system.

The analyst crafts a set of inputs, feeds each input to the system,

and then draws conclusions based on differences in observable

outputs. Counterfactuals such as “if the input weren’t a null string,

the system would not have crashed” are used to pinpoint possible

causes of problems.

One important research question is how to formalize counterfac-

tual reasoning to provide a solid foundation for correct uses of such

reasoning in practice. In particular, we are interested in formalizing

counterfactual reasoning in systems that can be modeled using

Horn clauses. One concrete example of such systems are Datalog-

based trust management systems [4, 12]. These systems typically

use a set of Horn clauses to specify the attributes of users and the

policies for who can access what system resources. For instance,

suppose University U has a policy stating that a student can access

the gym as long as the student signs up for the gym service. We

can encode this policy as the following Horn clause:

U .canAccessGym(x ) :- x .registerForGym.

Here, :- is read as a reversed implication. We writeK .φ to mean that

principal K asserts that φ is true.U is the principal representing the

authority of the university. Note that this notation can be encoded

as a predicate (Section 2).

One type of counterfactual reasoning in such systems is a prob-
ing attack. A probing attack against a trust management system

involves someone who has the ability to submit additional clauses

to the system. The attacker probes the system by adding clauses

to the system and observing changes in access rights. The added

clauses often make use of sensitive information of the system that

the attacker should not have access to.

Continuing the example, an attacker A wants to know whether

her friend B has a low GPA, information which is private and should

not be leaked to A. A knows that she does not have access to the

gym currently. A then adds the following clause into the system:

A.registerForGym :- U .lowGPA(B).

This clause states that if the University authority says that student

B has a low GPA, thenA registers for the gym. Given this additional

clause, A gains access to the gym. From these two cases, A can

deduce that it must be the case that B has a low GPA. The attacker

is sure of the secret value based on counterfactual reasoning: if the

secret value were different, then a particular access right would not

have been granted.

This paper aims to design a formal logical system for counter-

factual reasoning of Horn clauses from first principles. Existing

work on counterfactual reasoning of Horn clauses provides axiom-

atized formulations. The advantage of a sequent calculus over a

Hilbert-style axiomatized system is that it is amenable to automated

theorem proving. If the sequent calculus has subformula properties,

i.e., formulas in subderivations are subformulas of the conclusion,

then sequent rules can be applied exhaustively to construct proofs.

Axiomatized systems rely more on clever applications of axioms,

which can sometimes be hard. Sequent calculus rules also provide

an inductive principle for proving meta-properties of the logical

system. Building on prior work of a Hilbert-style axiomatized sys-

tem for counterfactual reasoning for trust management policies [5],

we define a sequent calculus.

We choose Horn clauses to be the subject of counterfactual rea-

soning because Horn clauses, due to their simplicity, have been

widely used in many areas, including databases [1], logic program-

ming [36], network verification [14, 24], program analysis [8, 37],

and security [4, 7, 12]. Therefore, a solid foundation for counterfac-

tual reasoning for Horn clauses could have impact in debugging,

diagnosis, and identifying attacks in all of the above areas.

This paper makes the following technical contributions.

1



• We define the first sequent calculus for counterfactual rea-

soning of Horn clauses.

• We prove that the sequent calculus has cut elimination and

that it is sound and complete with regard to an axiomatized

system.

• We show how to construct proofs that demonstrate probing

attacks using our sequent calculus rules.

The rest of this paper is organized as follows. We briefly re-

view Horn clauses and trust management systems in Section 2. We

present the Hilbert-style system in Section 3. Our sequent calculus

rules are explained in Section 4 and properties of the calculus are

discussed in Section 5. We discuss design choices and broader ap-

plications of this formalism in Section 6. Related work is presented

in Section 7.

2 BACKGROUND
AHorn clause is a first-order logical formula of the formp1∧p2 · · ·∧
pn → q, where each pi and q are atomic predicates. Variables in

the formula are quantified at the outermost level. We will use the

Prolog/Datalog notation and write: q :- p1, · · · ,pn . We call p1 to
pn , formulas to the right of :-, the body of the clause, and q the

head of the clause. When the domain of the variables is finite, first-

order clauses can be instantiated to a finite set of propositional

clauses. We write w to denote a set of propositional clauses. We

writew ⊪d p to mean that p is derivable fromw , defined using the

inference rules shown in Figure 1. p is derivable from a policy world

if either p is in the policy world, or p is the head of a clause in the

policy world, and all body propositions of that rule are derivable

from the same policy world.

A trust management system can be viewed as a framework for

managing distributed access control [6]. Horn clauses have been

used for specifying policies in trust management systems [4, 12, 20,

23]. Below is an example encoding a Unix file system access-control

policy, stating that the owner of a file can open that file and that A
owns the file tmp.

S .owns(A, tmp). S .mayOpen(x , f ):- S .owns(x , f ).

Recall from the example earlier, S .p means principal S says p. The
says connective was introduced in authorization logics, whose

semantics and proof theory have been studied in depth (e.g., [9,

13, 15, 16]). We do not aim to model any specific authorization

logic; our goal is to use the syntax to encode real-world access

control examples. The says connective can be encoded by making

the principal S the first argument of the predicate. Below is the

pure Horn clause encoding.

owns(S,A, tmp). mayOpen(S,x , f ):- owns(S,x , f ).

Role-based and attribute-based access control policies can also be

encoded as a set of Horn clauses specifying the role, role assign-

ments, attributes, and access control decisions based on roles and

attributes. For the rest of this paper, we will use access control

policies as our main application domain. We will use policies, rules,

and clauses interchangeably. We callw a policy context.

When a principal requests access to a system resource, a proof

that the principal is allowed access needs to be constructed using

the clauses that encode the access control policies. From the above

w,p ⊪d p
At

(w,p :- q1, · · · ,qn ⊪d qi )i ∈[1,n]

w,p :- q1, · · · ,qn ⊪d p
Dlog

Figure 1: Derivability relation for Datalog rules

two policies, we can prove thatA can open file tmp, using the proof
system composed of the rules in Figure 1.

In trust management systems, the Horn clauses that encode the

access control policies and related facts are also called credentials,
as some systems require that they are signed using the private keys

of authorities. For instance, owns(S,A, tmp) is stored as a digital

certificate signed by S’s private key.
Trust management systems are distributed; principals can issue

their own credentials and are allowed to make their own policies.

The probing attack discussed earlier is caused by the attacker is-

suing credentials that make use of facts that are supposed to be

secret to the attacker. Based on differences in observable effects (i.e.,

proofs of accesses), the attacker can apply counterfactual reasoning

and deduce the existence or absence of sensitive credentials.

3 COUNTERFACTUAL REASONING
We review the formalism for specifying and reasoning about coun-

terfactuals of Horn clauses introduced by Becker et al. [5]. Our

formalism uses the same syntax and semantics, but a different

proof system (Section 4).

3.1 Syntax and Semantics of Counterfactual
Conditions

In the example from Section 1, the probes that the attacker attempts

are counterfactual conditions: if these policies were not true, access

would not have been granted. Becker et al. internalized counterfac-

tual conditions using an indexed modal operator: □w φ. Informally,

□w φ is true if after submitting policies in w , φ is derivable. For

instance,□b :- a b means after submitting the clause b :- a, b can be

derived. We summarize the syntax of all the logical formulas below.

Policy γ :: = ⊤ | p | q :- p⃗ | γ ∧ γ ′

Policy Context w :: = ⊤ | w,p | w,q :- p⃗
Formula φ :: = γ | ⊥ | ¬φ | φ ∧ φ ′ | φ ∨ φ ′

| φ → φ ′ | □γ φ

A policy, denoted γ , can be an atomic proposition, a Horn clause,

or the conjunction of a set of Horn clauses. Formulas, denoted φ,
include all of the connectives from propositional logic. The main

addition is □γ φ. It means that φ can be derived when the policy

γ is submitted. The Horn clauses are themselves counterfactual

conditions as well: p :- p1, . . . ,pn is equivalent to □(
∧n
i=1 pi ) p. We

will use these two notations interchangeably. A policy contextw is

a set of Horn clauses. The empty context is ⊤. We write ∧(w ) to
denote the policy that is the conjunction of every clause inw , and

γ to denote the set of clauses in γ .
The example in Section 1 can be formalized as follows.φ1 encodes

A’s first probe: A cannot access the gym. φ2 is A’s second probe:

after submitting the policy “if B has a low GPA, then A registers

for the gym", A can access the gym. γ0 encodes the system’s policy:

anyone who registers for the gym can access it. γ0 is the policy

context under which the probes are carried out. As will be clear
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w ⊪ p iff w ⊪d p
w ⊪ ⊤ iff always

w ⊪ ⊥ iff never

w ⊪ ¬φ iff w ̸⊪ φ
w ⊪ φ ∧ φ ′ iff w ⊪ φ andw ⊪ φ ′

w ⊪ φ ∨ φ ′ iff w ⊪ φ orw ⊪ φ ′

w ⊪ φ → φ ′ iff ifw ⊪ φ thenw ⊪ φ ′

w ⊪ □γ ′ φ iff w,γ ′ ⊪ φ

Figure 2: Formula Semantics

after we formally define probing attacks in Section 3.2, the attacker

need not know γ0.

φ1 = ¬U .canAccessGym(A)
φ2 = □A.registerForGym :- U .lowGPA(B) U .canAccesssGym(A)
γ0 = U .canAccessGym(x ) :- x .registerForGym

A proof system (see Section 3.3) for counterfactual reasoning can

show that U .lowGPA(B) is the logical consequence of the conjunc-
tion of φ1 and φ2.

Key definitions for the semantics of formulas are summarized

in Figure 2. Formulas are interpreted under a set of policies w .

The semantics for the atomic predicate is defined in terms of the

derivability of Horn clauses. The counterfactual condition □γ ′ φ is

true under policiesw if φ can be derived from the union ofw and

γ ′. The rest of the connectives are standard. We say that a formula

φ is valid if ∀w,w ⊪ φ. We write ⊪ φ to mean that φ is valid.

It is important to note that, while Horn clauses may be read

as reverse implication, q :- p is not logically equivalent to p → q.
Consider the following example. Let γ = ⊤. Then, γ ⊪ p → q since

p → q is logically equivalent to ¬p ∨ q and γ ̸⊪ p. But, γ ̸⊪ □p q
because ⊤,p ̸⊪ q. The counterfactual statement □p q indicates a

stronger relation between p and q than the material implication

p → q, so they cannot be used interchangeably.

3.2 Formal Definitions of Probing Attack
Probing attacks can be formally defined based on the semantics

shown in Figure 2. A probe π is a formula of the form □γ φ, where
φ is a □-free formula. γ is called the probe credential set and φ is

called the probe query. An observation of a probe π under a set of

policiesw0 is either π ifw0 ⊪ π , or ¬π otherwise. In our example,

U .canAccesssGym(A) is a probe query and a probe credential is

A.registerForGym :- U .lowGPA(B). A probing attack onw0 consist-

ing of probes {π1, . . . ,πn } is the conjunction of the observations of

πi ∈ {π1, . . . ,πn } underw0. We treat trust management systems as

black boxes, sow0 is not visible to an attacker, only the observations

under w0. In our example, w0 is the set of U ’s policies, including

γ0 defined above. The probe is the conjunction of φ1 and φ2. If φ
is a probing attack onw0, then the attacker knows thatw0 ⊪ φ. If
some property φ ′ holds in allw such thatw ⊪ φ, then the attacker

knows for sure that φ ′ holds underw0. We say that φ ′ is detectable.

Definition 1 (Detectability). A formula φ ′ is detectable in a prob-

ing attack φ iff ∀w s.t.w ⊪ φ,w ⊪ φ ′

Conversely, if there exists some policyw ′ such that φ holds in

w ′, butw ′ ̸⊪ φ ′, then attacker cannot be certain that φ ′ holds given
the results of the probes. Thus, φ ′ is said to be opaque.

Definition 2 (Opacity). A formula φ ′ is opaque in a probing attack

φ iff it is not detectable in φ, or equivalently, ∃w1,w1 ⊪ φ and

w1 ⊪ φ ′ and ∃w2,w2 ⊪ φ andw2 ̸⊪ φ ′

Note that our definition of Opacity differs slightly from that of

Becker et al. We made explicit that there exists two policy contexts

that produce the same observation for the probe φ, but are different
in whether φ ′ is observable.

Lemma 3 (Probing attacks). A formula φ ′ is detectable in a probing
attack φ iff ∀w ,w ⊪ φ → φ ′

In our example, ∀w , w ⊪ φ1 ∧ φ2 implies w ⊪ U.lowGPA(B).
Therefore,U.lowGPA(B) is detectable in a probing attack consisting
of φ1 and φ2 (see Section 3.1).

Consider a similar probing attack on a different policy, γ ′
0
, also

not visible to A, which states that a person can access the gym

if they have registered for the gym and paid their fees. The two

probes φ1 and φ
′
2
are shown below.

γ ′
0
= U .canAccessGym(x ) :- (x .registerForGym, x .paidFees)

φ1 = ¬U .canAccessGym(A)
φ′
2
= □A.registerForGym :- U .lowGPA(B) ¬U .canAccesssGym(A)

In this example, A sees that they cannot access the gym (φ1),
so they input the credentials: “if B has a low GPA, A registers for

the gym" and observes that they still cannot access the gym (φ ′
2
).

From this information, A may want to conclude that B does not

have a low GPA (¬U.lowGPA(B)), but it is easy to construct aw1

and w2 to show that ¬U.lowGPA(B) is opaque given the above

two probes. If we let w1 = γ ′
0
, we find that w1 ⊪ φ1 ∧ φ ′

2
and

w1 ⊪ ¬U.lowGPA(B). If we let w2 = (U.lowGPA(B),γ ′
0
), then,

w2 ⊪ φ1∧φ
′
2
, butw2 ̸⊪ ¬U.lowGPA(B), therefore ¬U.lowGPA(B)

is opaque in the probing attack φ1 ∧ φ
′
2
.

3.3 Proof System
Checking whether a probing attack can detect a secret requires us to

check∀w ,w ⊪ φ → φ ′. This is inconvenient, as we need to examine

all possible w . A proof system with derivation rules is helpful in

such situations. Becker et al. [5] provides an axiomatization of

counterfactual reasoning for Horn clauses (summarized in Figure 3).

Here, ⊢ φ denotes φ is provable by those axioms and proof rules. It

has been shown that ⊢ φ iff⊪ φ. Therefore, showingφ ′ is detectable
in probing attack φ is reduced to constructing a proof that ⊢ φ → φ ′.

Next, we explain the axioms and proof rules in more detail. Ax-

ioms (Cl1)-(Cl3) and Modus Ponens (MP) are from classical propo-

sitional logic.

Axiom (K) states that Modus Ponens is preserved under coun-

terfactual conditions. Rule (N) states that if φ is true, then φ is true

given additional policies.

Axiom (C1) is a basic requirement for counterfactuals, that if γ is

the case, then γ would hold. Axiom (C2) states that counterfactual

conditionals are stronger than material implication.

Axiom Dlog is the key counterfactual argument for Horn clauses.

It captures the essence of Horn clause reasoning. The left hand side

of the implication means that “φ would hold in the policy if the
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Axioms
⊢ φ → φ ′ → φ (Cl1)

⊢ (φ → φ ′ → φ ′′) → (φ → φ ′) → φ → φ ′′ (Cl2)

⊢ (¬φ → ¬φ ′) → φ ′ → φ (Cl3)

⊢ □γ (φ → φ ′) → □γ φ → □γ φ
′

(K)

⊢ □γ γ (C1)

⊢ □γ φ → γ → φ (C2)

⊢ □(p :- q⃗ ) φ → (q⃗ → p) → φ (Dlog)

(provided φ is □-free)
⊢ □γ ¬φ ↔ ¬□γ φ (Fun)

⊢ □γ∧γ ′ φ ↔ □γ □γ ′ φ (Perm)

Proof rules
If ⊢ φ and ⊢ φ → φ ′, then ⊢ φ ′ (MP)

If ⊢ φ then ⊢ □γ φ (N)

If ⊢ γ → γ ′ and φ is ¬ free (Mon)

then ⊢ □γ ′ φ → □γ φ

Figure 3: Axiomatized Proof System

clause p :- q⃗ were submitted”. The right hand side of the implication,

can be expanded as (q⃗ ∧¬p) ∨φ. This means that the left hand side

holds only if: either (1) φ holds in the policy anyway, even without

submitting p :- q⃗, or (2) the clause must be crucial for making φ true.

This is only possible if the body of the clause (q⃗) are all derivable
in the policy, and furthermore that p does not already hold in the

policy. Otherwise, the clause could not possibly be crucial.

Axiom (Dlog) only holds for □-free φ. Intuitively, if additional
clauses can be submitted inside φ, there is no guarantee that the

clause on the outermost level is used in the derivation. A counterex-

ample is described in detail in [5]. Briefly, the counterexample leads

to ⊢ (p → q) → □p q, which is not valid. For □p q to be true in

a policy contextw , it requires either q to already be true, or both

p and q to be true. On the other hand, p → q is true if either q is

true, or ¬p is true. Note that (p → q) and □p q are not logically

equivalent to each other. See the end of Section 3.1 for details.

Axiom (Fun) allows negation and themodal operator to commute

with each other: if after submitting the policy γ , φ is not derivable,

then it is not the case that submitting the policy γ will make φ
derivable, and vice versa.

Axiom (Perm) states that submitting polices one by one is equiv-

alent to submitting them all at once.

The proof rule (Mon) states that if φ can be derived given a set of

policies γ ′, then φ can be derived given a set of logically stronger

policies γ . This is only true if φ does not contain negation. Consider

an example where φ = ¬p. Even though ⊢ q ∧ p → q, the formula

□q ¬p → □q,p ¬p is not valid.

The proof system defined in Figure 3 can be used to prove that

a probing attack is useful for the attacker. For example, a proof of

⊢ φ1 ∧ φ2 → U .lowGPA(B) can be constructed.

The main property of the proof system is that it is sound and

complete with regard to semantics. In addition to the derivability

semantics, Becker et al. also defined Kripke semantics, as is com-

mon for modal logic. The axiomatized proof system is sound and

complete with regard to both models, where ⊨TM φ denotes that φ
is valid in the Kripke model.

Theorem 3.1. ⊪ φ ⇔ ⊨TM φ ⇔ ⊢ φ.

4 SEQUENT CALCULUS
Axiomatized systems are inconvenient for automated theorem prov-

ing and for studying meta-properties of the logic system. For in-

stance, Becker et al. have to prove a series of complex lemmas to

manipulate formula contexts. We develop a Gentzen style sequent

calculus for counterfactual reasoning of Horn clauses. A left and a

right rule is defined for each connective. The left rule, read from the

bottom up, shows how to deconstruct a connective on the left and

the right rule, read from the top down, shows how to construct a

connective on the right. Derivation rules for each of the logical con-

nectives are defined independently from each other. The sequent

calculus rules provide inductive principles to prove meta-properties

of the proof system.

Our formalism is inspired by the formalization of classical modal

S5 by Murphy et al. [27]. This formalization is a hybrid logic where

elements in the Kripke semantics are present in the sequent calculus

rules. We write φ @ w to denote the counterfactual condition that

ifw were submitted, then φ would have been true. Here, a world,

w , corresponds to a set of policies that are true in that world. The

relation between worlds are also made explicit in the proof rules.

4.1 Syntax
Formulas φ and policies γ are the same as in the previous section.

We define additional constructs for our sequent calculus below.

Judgment J :: = φ @ w
Contexts ∆, Γ :: = · | ∆, J
Positive Forms φ+ :: = γ+ | φ+ ∧ φ ′+ | φ+ ∨ φ ′+

| □γ φ
+ | φ− → φ+ | ¬φ−

Negative Forms φ− :: = ⊥ | φ− ∧ φ ′− | φ− ∨ φ ′−

| □γ φ
− | ¬φ+ | φ+ → φ−

We define positive and negative formulas. Intuitively, positive for-

mulas are the ones that cannot be made false by strengthening the

policies and negative formulas are the ones that cannot be made

false by weakening the policies. A judgment, denoted J , is a coun-
terfactual condition which states that ifw were submitted, then the

formula φ is derivable. We write Γ and ∆ to denote the contexts

that contain a set of counterfactual conditional judgments.

4.2 Derivation Rules
The main judgment of our logic is: Γ ⊢Σ ∆. This judgement means

that if all of the judgments in Γ are true, then one of the judgments

in ∆ is true. This follows the sequent calculus for classical logic. The

context Σ is a finite set of atomic propositions which includes all

propositions relevant to the application. For instance, given a trust

management system, Σ would be every atomic proposition in that

system, which is finite. We can prove as an invariant of our sequent

rules that if Γ ⊢Σ ∆, then the atomic propositions in context Γ and

∆ are a subset of Σ.
We write symbols(J ) to denote the set of atomic propositions in

J . We lift it to the logical context and write symbols(Γ) to denote
the set of atomic propositions in Γ.

The sequent rules for the connectives from propositional logic

are straightforward. They are shown in Figure 5. We omit Σ when

it is clear from the context. We explain rules directly related to

counterfactual reasoning (Figure 4).
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symbols(Γ,p @ w,∆) ⊆ Σ

Γ,p @ w ⊢Σ p @ w,∆
Init

w ⊪d p Γ,p @ w ⊢Σ ∆

Γ ⊢Σ ∆
PolCut

Γ,p @ (w,w ′,q),q @ w,p @ (w,w ′) ⊢Σ ∆

Γ,p @ (w,w ′,q),q @ w ⊢Σ ∆
PolL-W-At

Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),p @ (w,w ′) ⊢Σ ∆

Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗) ⊢Σ ∆
PolL-W-□

Γ, s @ (q :- p1, · · · ,pn ,w ), s @ w ⊢Σ ∆
Γ, s @ (q :- p1, · · · ,pn ,w ), s @ (q,w ),

p1 @ w, · · · ,pn @ w ⊢Σ ∆

Γ, s @ (q :- p1, · · · ,pn ,w ) ⊢Σ ∆
Dlog

Γ,p @ w1,p @ w2 ⊢Σ ∆ ∧(w2) @ ⊤ ⊢Σ ∧(w1) @ ⊤

Γ,p @ w1 ⊢Σ ∆
Conv

Γ ⊢Σ φ @ (w,γ ),□γ φ @ w,∆

Γ ⊢Σ □γ φ @ w,∆
□R

Γ,□γ φ @ w,φ @ (w,γ ) ⊢Σ ∆

Γ,□γ φ @ w ⊢Σ ∆
□L

Figure 4: Sequent calculus for policies

Rule Init states that if we assume that an atomic predicate p can

be derived from policies inw , then we can conclude the same. The

side condition symbols(Γ,p @ w,∆) ⊆ Σ ensures that the proof

does not include propositions that are not relevant to the system.

PolCut, PolL-W-At, PolL-W-□, Dlog, and Conv resemble left

rules, so they are read from the bottom up.

Rule PolCut connects the derivability of a proposition from a set

of Horn clauses to counterfactual reasoning. If p is derivable from a

policyw , then it must be the case that the counterfactual condition,

“ifw were submitted, then p is derivable” is true. Therefore, it can

be added to the antecedents. While it is not included as a condition

here, it will be enforced later that the propositions in p andw are

confined to atomic propositions from the set Σ.
PolL-W-At and PolL-W-□ are rules for simplifying policies

based on the derivability of Horn clauses. PolL-W-At says that if

we assume p is true givenw ,w ′, and q, and we assume that q is true

given w , then it is safe to assume that p is true given only w and

w ′; q is redundant. PolL-W-□ is similar except that the redundant

policy is of form □a⃗ b.
The Dlog rule introduces counterfactual reasoning of Horn

clauses into the sequent rules. It says that if we know that an atomic

proposition s is true given the policies inw and q :- p1, · · · ,pn , then
it must be the case that either s is already true givenw ; or if rule

q :- p1, · · · ,pn were not present, then s could be derived. The latter

part is reflected in the last premise, where the body propositions of

Γ,φ1 @ w ⊢Σ φ2 @ w,φ1 → φ2 @ w,∆

Γ ⊢Σ φ1 → φ2 @ w,∆
→R

Γ,φ1 → φ2 @ w ⊢Σ φ1 @ w,∆
Γ,φ2 @ w,φ1 → φ2 @ w ⊢Σ ∆

Γ,φ1 → φ2 @ w ⊢Σ ∆
→L

Γ ⊢Σ φ1 @ w,φ1 ∨ φ2 @ w,∆

Γ ⊢Σ φ1 ∨ φ2 @ w,∆
∨R1

Γ ⊢Σ φ2 @ w,φ1 ∨ φ2 @ w,∆

Γ ⊢Σ φ1 ∨ φ2 @ w,∆
∨R2

Γ,φ1 ∨ φ2 @ w,φ1 @ w ⊢Σ ∆
Γ,φ1 ∨ φ2 @ w,φ2 @ w ⊢Σ ∆

Γ,φ1 ∨ φ2 @ w ⊢Σ ∆
∨L

Γ ⊢Σ φ1 @ w,φ1 ∧ φ2 @ w,∆
Γ ⊢Σ φ2 @ w,φ1 ∧ φ2 @ w,∆

Γ ⊢Σ φ1 ∧ φ2 @ w,∆
∧R

Γ,φ1 ∧ φ2 @ w,φ1 @ w ⊢Σ ∆

Γ,φ1 ∧ φ2 @ w ⊢Σ ∆
∧L1

Γ,φ1 ∧ φ2 @ w,φ2 @ w ⊢Σ ∆

Γ,φ1 ∧ φ2 @ w ⊢Σ ∆
∧L2

Γ,¬φ @ w ⊢Σ φ @ w,∆

Γ,¬φ @ w ⊢Σ ∆
¬L

Γ,φ @ w ⊢Σ ¬φ @ w,∆

Γ ⊢Σ ¬φ @ w,∆
¬R

symbols(Γ,⊤ @ w,∆) ⊆ Σ

Γ ⊢Σ ⊤ @ w,∆
⊤R

symbols(Γ,⊥ @ w,∆) ⊆ Σ

Γ,⊥ @ w ⊢Σ ∆
⊥L

Figure 5: Sequent calculus for classical propositional logic

the rule are derivable inw , and s is derivable underw and the head

of the rule (q).
The next rule allows us to change the world (policies) under

which a formula is derived. Conv makes explicit the relation be-

tween worlds. If we assume that p is derivable after submitting

policesw1 (p @ w1), then it is safe to assume p @ w2 given thatw1

is weaker thanw2. More simply, this rule states that if p is derivable

givenw1 andw1 is derivable fromw2, then p should also be deriv-

able from w2. Similar to the PolCut rule, the newly introduced

worldw2 can only be composed of symbols from Σ.
The left and right rules for the □ connective simply add the

policy γ from the index of the modal operator□ to the world under

which the formula is queried. The right rule states that if φ is true

given w and γ , then □γ φ is true given only w . The left rule says
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· · · , c @ (w,a,b),a @ w, c @ (w,b) ⊢ c @ (w,b) · · ·
Init

· · · , c @ (w,a,b),a @ w ⊢ c @ (w,b),□b c @ w, · · ·
PolL-W-At

· · · ,□a∧b c @ w, c @ (w,a,b),a @ w ⊢ □b c @ w, · · ·
□R

· · · ,□a∧b c @ w,a @ w ⊢ □b c @ w,¬a @ w
□L

¬□b c @ w,□a∧b c @ w ⊢ □b c @ w,¬a @ w
¬R

¬□b c @ w,□a∧b c @ w ⊢ ¬a @ w
¬L

Figure 6: Simple probing attack proof

that to use □γ φ @ w in the context, decompose it and use the

fact that φ is true underw and γ . This rule is closely related to the

Kripke semantics of the □ modality. The Kripke semantics require

φ to be true in all worlds that are reachable fromw with distance

γ . In this rule, we only select one such world, which is (w,γ ). As a
result, we compensate with our conversion rule (see Section 6).

4.3 Example Derivations
We show in Figure 6 the proof for the counterfactual reasoning:

⊢ ¬□b c ∧ □a∧b c → ¬a. The probes tell us the following. If we
submit b, c cannot be derived. However, if we submit both a and

b, c can be derived. From the probes, we can conclude that in the

current system, a cannot be true; otherwise, submitting b would

have allowed the derivation of c . Reading from the bottom up,

first ¬L, ¬R, □L, and □R rules are used to reach the subgoal: if

c is derivable given w , a, and b, and a is derivable from w , then

c is derivable from w and b. Intuitively, this is correct because w
subsumes a. This subgoal can be discharged by applying the PolL-

W-AT rule. We complete the proof by applying the Init rule.

Next, we show the proof of the probing attack discussed in

Section 1, formalized in Section 3.1. We use the following abbrevi-

ation: Aa = U .canAccessGym(A), Gb = U .lowGPA(B), and Ra =
A.registerForGym. We write E :: to label derivations so they can

be referred to later.

E1 :: ¬Aa @ ⊤, · · · , Aa @ ⊤ ⊢ Gb @ ⊤

E2 :: · · · , Gb @ ⊤ ⊢ Gb @ ⊤

¬Aa @ ⊤, ..., Aa @ (⊤, Ra :- Gb ) ⊢ Gb @ ⊤
DLog

¬Aa @ ⊤, □Ra :- Gb Aa @ ⊤ ⊢ Gb @ ⊤
□L

Once we apply the Dlog rule, we only need to prove that if A
currently has access to the gym then B has a low GPA (E1) and that

if B has a low GPA, then B has a low GPA (E2). E1 contains a con-

tradiction on the left, because our first probe says that currently A
does not have access to the gym. We can apply ¬L rule to discharge

it. E2 can be proven by applying the Init rule.

The last example proves a more complex probing attack from [5].

Consider the following formula:

s @ a,¬s @ (a :- b), s @ (a :- b,b :- x ) ⊢ x @ ⊤

x is a sensitive credential that should not be leaked to the attacker.

On the left of the turnstile are three probes by the attacker. The

proof shows that x is detectable under these probes. Informally,

from the first probe, the attacker knows that if a is submitted, then

s is true. The second probe shows that if (a :- b) is submitted, then s

cannot be derived. From these two probes, the attacker knows that

b cannot be true. Otherwise, the second probe would have shown

that s is derivable after (a :- b) is submitted. The third probe shows

that s is derivable if two policies:(a :- b and b :- x) are submitted.

We already know from the second probe that (a :- b) alone cannot
make s derivable, so (b :- x ) is crucial in deriving s . Since we already
know that b is not true in the current context, it must be the case

that the body of (b :- x ) is true, which is the secret that the attacker

tries to guess. We explain the proofs using our sequent calculus

rules, reading from the bottom up (Figure 7). We mark formulas

used on the rules in red.

To avoid using Cut, our proof analyzes the last probe first. We

apply Dlog rule on the last probe and deconstruct the rule (b :- x ).
The first subgoal D contains a contradiction. This basically states

that there is no way s can be derived only from (a :- b). The second
subgoal E analyzes the situation where x is true under the policy

(a :- b) and s is derivable assuming b and (a :- b) are derivable.

To prove E, we apply Dlog rule and analyze the assumption: x
is true under the policy (a :- b). There are two cases: either x is

true without using a :- b, in which case we succeed in proving that

x @ ⊤; or x is true given a, and b is true. The second case is denoted
E ′. The proof of E ′ essentially derives a contradiction: s can be

derived from a :- b. This is by using the ¬L first, then applying the

PolL-W-At rule which shows that s must be derivable from a :- b,
because b is true and s can be derived from b and a :- b.

In the end, we cover all the cases, and show that x is detectable

under the three probes.

5 METATHEORY
We prove that our sequent calculus has cut elimination, is consis-

tent, and is sound and complete with regard to the axiomatized

formulation in Section 3. At the end of this section, we prove correct

a defense against probing attacks. The proof inducts over the struc-

ture of the derivation, which is a huge benefit of sequent calculus

compared to axiomatized systems.

5.1 Admissibility of Cut (Cut Elimination)
One of the most important properties of a sequent calculus is the

admissibility of cut (Theorem 4). We writeD ::, E ::, or F :: to label

derivations so they can be referred to later. We can prove the admis-

sibility of cut using similar techniques outlined by Pfenning [32].

Theorem 4 (Admissibility of Cut).
If D :: Γ ⊢ φ @ w,∆ and E :: Γ,φ @ w ⊢ ∆, then ∃F :: Γ ⊢ ∆
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D :: s @ a,¬s @ (a :- b), s @ (a :- b,b :- x ), s @ (a :- b) ⊢ x @ ⊤

E :: s @ a,¬s @ (a :- b), s @ (a :- b,b :- x ), s @ (b,a :- b),x @ (a :- b) ⊢ x @ ⊤

s @ a,¬s @ a :- b, s @ (a :- b,b :- x ) ⊢ x @ ⊤
DLog

D can be proving using ¬L and Init

E =

· · · ,x @ ⊤ ⊢ x @ ⊤ E ′ :: · · · ,¬s @ (a :- b), s @ (b,a :- b),x @ (a,⊤),b @ ⊤ ⊢ x @ ⊤

s @ a,¬s @ (a :- b), s @ (b,a :- b),x @ a :- b ⊢ x @ ⊤
DLog

E ′ =

· · · , s @ (b,a :- b), s @ (a :- b),b @ ⊤ ⊢ s @ (a :- b),x @ ⊤
Init

· · · , s @ (b,a :- b),b @ ⊤ ⊢ s @ (a :- b),x @ ⊤
PolL-W-At

· · · ,¬s @ (a :- b), s @ (b,a :- b),b @ ⊤ ⊢ x @ ⊤
¬L

Figure 7: Complex probing attack proof

Proof (sketch): Following Pfenning [32], we refer to a formula that

is introduced on the left or right as a principal formula. For the Init

rule, the principal formula is the formula appearing on both sides.

For the⊤R and⊥L rules, the principal formula is the⊤ @ w formula

appearing on the right and the ⊥ @ w formula appearing on the

left, respectively. We refer to all other formulas as side formulas.

The proof is by nested induction, first over the structure of the

cut formula, φ, and then over the structures of D and E. All proof

cases fall into 4 categories (many of these cases overlap), more

details may be found in Appendix D.

Base cases: Either D or E ends in Init, ⊤ R, or ⊥ L

• Either D or E ends in Init and the other derivation is arbi-

trary. The cut formula is p @ w . Applying the contraction

lemma on the arbitrary derivation will result in F .

• D is an arbitrary derivation and E ends in ⊤R. Then, the cut

formula is an arbitrary φ @ w . This case is covered by side

cases on E.

• D ends in ⊤R and E is an arbitrary derivation. Then, the cut

formula is ⊤ @ w . This case is covered by side cases on E.

• D ends in ⊥L and E is an arbitrary derivation. Then, the cut

formula is an arbitrary φ @ w . This case is covered by side

cases on D.

• D is an arbitrary derivation and E ends in ⊥L. Then, the cut

formula is ⊥ @ w . This case is covered by side cases on D.

Principal cases: The cut formula is the principal formula in both

D and E.D and E end in matching left and right rules of the same

connective. (1) Apply the induction hypothesis on the cut formula,

D, and each of the subderivations of E. (2) Apply the induction

hypothesis on the cut formula, each of the subderivations of D,

and E. Applying the induction hypothesis on a subformula of the

cut formula and the results of (1) and (2) gives F .

Special cases: E ends in PolCut, PolL-W-At, PolL-W-□, Dlog,

or Conv and the cut formula is one of the formulas used by the

rule. These cuts may be of interest since they involve our new rules,

but they do not actually require separate proof cases. All of these

types of cuts are covered by other cases, outlined below.

• D ends in Init. This case is covered by the base cases where

D is Init and E is an arbitrary derivation.

• The cut formula is a side formula in D. This case is covered

by the side cases on D.

Side cases onD: The cut formula is a side formula inD. There is a

case forD ending in every rule. E is always an arbitrary derivation.

• D ends in Init, ⊤ R, or ⊥ L: We can directly apply the rule

which D ends in to obtain F .

• Otherwise: We can apply the rule whichD ends in on the re-

sult of applying the induction hypothesis to the cut formula,

the subderivations of D, and E, to obtain F .

Side cases on E: The cut formula is a side formula in E. There is a

case for E ending in every rule.D is always an arbitrary derivation.

• E ends in Init, ⊤ R, or ⊥ L: We can directly apply the rule

which E ends in to obtain F .

• Otherwise: We can apply the rule which E ends in on the re-

sult of applying the induction hypothesis to the cut formula,

D, and the subderivations of E, to obtain F .

□

5.2 Consistency
Normally, with the admissibility of cut, the consistency of the logic

becomes a trivial proof by showing that there is no rule to derive

· ⊢ ⊥ @ w . However, for us, the PolCut rule could be used. To

prove consistency, we need to generalize the statement and induct

over the size of the derivation. Theorem 5 allows any counterfactual

condition of form p @ w in Γ. The ordinary consistency property

follows directly from it.

Theorem 5 (Consistency).
∀n, ∄E, ∄w , ∄Γ such that E :: Γ ⊢ ⊥ @ w and |E | ≤ n where ∀J ∈ Γ,
J = p @ w .
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5.3 Soundness
For soundness, we need to show that if φ is derivable using our

sequent rules, it is also derivable using the proof system in Figure 3.

Instead of proving this directly, we prove the soundness of our

sequent calculus with regard to the formula semantics (Theorem 6).

We write

∧
Γ to denote the conjunction of the counterfactuals

that correspond to judgments in Γ. That is, the counterfactual that
corresponds to the judgment φ @ w is □w φ. Similarly,

∨
∆ is the

disjunction of the counterfactuals that corresponds to judgments

in ∆. In combination with Theorem 3.1, Theorem 6 allows us to

connect formulas derivable in our sequent rules to those derivable

using the axioms.

Theorem 6 (Soundness).
If E :: Γ ⊢ ∆, then ∀w ,w ⊪ ¬(

∧
Γ) ∨
∨

∆.

The proof is by induction on the structure of E. Most cases are

straightforward. The most interesting case is where E ends in Conv.

The I.H. on the first premise gives us

E ′
1
:: w ⊪ ¬

∨
Γ ∨□w1

¬p ∨□w2
¬p ∨

∨
∆

but we want to show

w ⊪ ¬
∨

Γ ∨□w1
¬p ∨

∨
∆

There are several cases to consider here; namely, when w ⊪
¬
∨

Γ, when w ⊪ □w1
¬p, and so on. The important case here is

when it’s not immediately obvious if we can remove □w2
¬p from

E ′
1
, the case where

w ⊪ □w2
¬p

We need to conclude thatw,w2 ⊪ ¬p impliesw,w1 ⊪ ¬p. This
follows from our intuition about Conv because the last premise

of Conv, ∧(w2) @ ⊤ ⊢ ∧(w1) @ ⊤, suggests that w2 contains

stronger policies that w1. If p is not derivable from w2, then it

should not be derivable fromw1. However, it turns out that the I.H.

on the last premise only gives us ∀w ′,w ′ ⊪ ¬(∧w2) ∨ ∧w1, which

is not strong enough. Instead, we needw2 ⊪ ∧(w1).
In fact, we can prove the following lemma, which states that if a

policy γ2 can be derived from another policy γ1 using our sequent

rules, then γ2 is stronger than γ1 under datalog semantics.

Lemma 7. ∀γ1,γ2, If E :: γ1 @ ⊤ ⊢ γ2 @ ⊤ then γ1 ⊪ γ2.

This lemma confirms that our sequent rules ⊢ reason about coun-

terfactual conditions. If using our main judgment, we can prove

that γ2 can be derived with only the additional assumption that γ1
can be derived with no additional policy assumptions, then γ2 must

be derivable from γ1.
Proving Lemma 7 is non-trivial. Inducting over the structure of

E :: γ1 @ ⊤ ⊢Σ γ2 @ ⊤ proves insufficient because PolCut and

Conv can introduce judgements that our induction hypothesis does

not account for. We want to show that we can safely disregard these

judgements because they are derivable facts and are made redun-

dant by what we already know. Intuitively, given a sub-derivation

of γ1 @ ⊤ ⊢Σ γ2 @ ⊤ of the form Γ, ΓA ⊢Σ ∆, where ΓA contains all

the new judgments introduced via PolCut and Conv, it is the case

that

∧
Γ ⊪

∧
ΓA. If p @ w is introduced by PolCut, we already

knoww ⊪d p. If p @ w2 is introduced by Conv, we already have

p @ w1 in Γ, and w2 is stronger than w1 (by I.H.), so p @ w2 can

be derived from Γ.

To formally prove this statement, first, we define a new calculus

which contains labels that will allow us to track judgements which

have been introduced by, or are derived from judgements introduced

by, PolCut and Conv. This will allow us to distinguish judgements

of the form γ @ ⊤ from those of the form p @ w . We assign the

label ‘A’ to judgements that have been added by, or are derived

from judgements which have been added by, PolCut
+
or Conv

+
.

All other judgements are labeled with ‘O’.

For example, consider the following rule from our labeled se-

quent calculus:

symbols(w2) ⊆ Σ Γ+, (p @ w1)x , (p @ w2)A ⊢
+
Σ ∆

(∧(w2) @ ⊤)o ⊢
+
Σ ∧(w1) @ ⊤

Γ+, (p @ w1)x ⊢
+
Σ ∆

Conv
+

p @ w2 is a judgement that is being added by Conv, so it is labeled

with an ‘A’ to indicate this. We know that ∧(w2) is derivable after
submitting ⊤, so it can safely be labeled with an ‘O’. The remaining

rules, as well as details about the syntax and notation, may be found

in Appendix C.

Next, we prove that derivations using the original sequent rules

can be annotated, resulting in derivations in the labeled sequent

rules. Finally, we prove a more general lemma, which formalizes our

intuition of discarding judgments introduced via PolCut and Conv,

discussed earlier. We show a less precise and simplified version of

the lemma below to illustrate how the lemma relates derivations in

the marked up sequent rules to formula semantics.

Lemma 8. If Γ+, Γ+A ⊢
+
Σ ∆ and

∧
Γ+ ⊪

∧
Γ+A and judgments in

the contexts are can only be form γ @ ⊤, q @ w then ∃φ @ w ∈ ∆
s.t.
∧

Γ+ ⊪ □w φ.

In the above lemma Γ+A contains all the judgments that are la-

beled ’A’, which means that it is derived from judgments injected

by PolCut and Conv rules. The lemma states that if judgments

marked by the label A are derivable by counterfactuals in the rest

of the context, then one of the counterfactuals in ∆ can be derived

from the conjunction of counterfactuals in Γ+, which contain only

judgments decomposed from the judgments in the final conclusion.

Lemma 7 is a corollary. The precise lemmas are defined and proven

in Appendix C.

5.4 Completeness
For completeness, we prove that for every provable formula φ in

the axiomatized system (Figure 3), we can derive φ @ w for anyw
(Theorem 9).

Theorem 9 (Completeness). If ⊢ φ, then ∀w , · ⊢ φ @ w .

The proof of the completeness theorem shows that all of the

axioms can be derived using the sequent calculus rules and that the

proof rules are admissible in our sequent calculus. Axioms Cl1, Cl2,

Cl3, Fun, Perm, and K can be directly constructed using our sequent

rules. The derivations may be found in Figure 8. The remaining

axioms can be shown by induction over the structure of φ and we

list the lemmas for these axioms below.

Lemma 10 (Axiom C1). ∀ γ ,w , ⊢Σ γ @ (γ ,w ).

Lemma 11 (Axiom C2). ∀ φ, γ ,w , ⊢Σ (□γ φ → γ → φ) @ w .
8



Axiom Cl1

φ1 @ w, φ2 @ w ⊢Σ φ1 @ w, · · ·
Init

φ1 @ w ⊢Σ φ2 → φ1 @ w, · · ·
→ R

⊢Σ φ1 → (φ2 → φ1) @ w
→ R

Axiom Cl2

E :: φ1 → (φ2 → φ3) @ w, φ1 → φ2 @ w, φ1 @ w ⊢Σ φ3 @ w, · · ·

φ1 → (φ2 → φ3) @ w, φ1 → φ2 @ w ⊢Σ φ1 → φ3 @ w, · · ·
→ R

φ1 → (φ2 → φ3) @ w ⊢Σ ((φ1 → φ2) → (φ1 → φ3) @ w, · · ·
→ R

⊢Σ (φ1 → φ2 → φ3) → ((φ1 → φ2) → (φ1 → φ3)) @ w
→ R

We complete this derivation by repeatedly applying→L and Init to E.

Axiom Cl3

E :: ¬φ1 → ¬φ2 @ w ⊢Σ ¬φ1 @ w, φ2 → φ1 @ w, · · ·

D :: · · · , ¬φ2 @ w ⊢Σ φ2 → φ1 @ w, · · ·

¬φ1 → ¬φ2 @ w ⊢Σ φ2 → φ1 @ w, · · ·
→ L

⊢Σ (¬φ1 → ¬φ2) → (φ2 → φ1) @ w
→ R

E =

· · · , φ2 @ w, φ1 @ w ⊢Σ φ1 @ w, · · ·
Init

· · · , φ2 @ w ⊢Σ φ1 @ w, ¬φ1 @ w, · · ·
¬R

¬φ1 → ¬φ2 @ w ⊢Σ ¬φ1 @ w, φ2 → φ1 @ w, · · ·
→ R

D =

· · · , φ2 @ w ⊢Σ φ2 @ w, φ1 @ w, · · · ,
Init

· · · , ¬φ2 @ w, φ2 @ w ⊢Σ φ1 @ w, · · · ,
¬L

· · · , ¬φ2 @ w ⊢Σ φ2 → φ1 @ w, · · ·
→ R

Axiom Fun

· · · , φ @ (w, γ ) ⊢Σ φ @ (w, γ ), · · ·
Init

□γ φ @ w ⊢Σ φ @ (w, γ ), · · ·
□L

· · · ⊢Σ φ @ (w, γ ), ¬□γ φ @ w
¬R

· · · , ¬φ @ (w, γ ) ⊢Σ ¬□γ φ @ w
¬L

□γ ¬φ @ w ⊢Σ ¬□γ φ @ w
□L

· · · , φ @ (w, γ ) ⊢Σ φ @ (w, γ ), · · · · · ·
Init

· · · , φ @ (w, γ ) ⊢Σ □γ φ @ w, · · ·
□R

¬□γ φ @ w, φ @ (w, γ ) ⊢Σ · · ·
¬L

¬□γ φ @ w ⊢Σ ¬φ @ (w, γ ), · · ·
¬R

¬□γ φ @ w ⊢Σ □γ ¬φ @ w
□R

Axiom Perm

· · · , φ @ (w, γ ∧ γ ′) ⊢Σ φ @ (w, γ , γ ′), · · ·
Init

· · · , φ @ (w, γ ∧ γ ′) ⊢Σ □γ ′ φ @ (w, γ ), · · ·
□R

· · · , φ @ (w, γ ∧ γ ′) ⊢Σ □γ □γ ′ φ @ w
□R

□γ∧γ ′ φ @ w ⊢Σ □γ □γ ′ φ @ w
□L

· · · , φ @ (w, γ , γ ′) ⊢Σ φ @ (w, γ ∧ γ ′), · · ·
Init

· · · , □γ ′ φ @ (w, γ ) ⊢Σ φ @ (w, γ ∧ γ ′), · · ·
□L

□γ □γ ′ φ @ w ⊢Σ φ @ (w, γ ∧ γ ′), · · ·
□L

□γ □γ ′ φ @ w ⊢Σ □γ∧γ ′ φ @ w
□R

Axiom K

E :: · · · , φ1 → φ2 @ (w, γ ) ⊢Σ φ1 @ (w, γ ), □γ φ1 → □γ φ2 @ w, · · · D :: · · · , φ2 @ (w, γ ) ⊢Σ □γ φ1 → □γ φ2 @ w, · · ·

· · · , φ1 → φ2 @ (w, γ ) ⊢Σ □γ φ1 → □γ φ2 @ w, · · ·
→ L

□γ (φ1 → φ2) @ w ⊢Σ □γ φ1 → □γ φ2 @ w, · · ·
□L

⊢Σ □γ (φ1 → φ2) → □γ φ1 → □γ φ2 @ w
→ R

E =

· · · , φ1 @ (w, γ ) ⊢Σ φ1 @ (w, γ ), □γ φ2 @ w, · · ·
Init

· · · , □γ φ1 @ w ⊢Σ φ1 @ (w, γ ), □γ φ2 @ w, · · ·
□L

· · · , φ1 → φ2 @ (w, γ ) ⊢Σ φ1 @ (w, γ ), □γ φ1 → □γ φ2 @ w, · · ·
→ R

D =

· · · , □γ φ1 @ w, φ2 @ (w, γ ) ⊢Σ φ2 @ (w, γ ), · · · ,
Init

· · · , □γ φ1 @ w, φ2 @ (w, γ ) ⊢Σ □γ φ2 @ w, · · ·
□R

· · · , φ2 @ (w, γ ) ⊢Σ □γ φ1 → □γ φ2 @ w, · · ·
→ R

Figure 8: Derivations for the proof of Axioms Cl1, Cl2, Cl3, Fun, Perm, and K

Lemma 12 (Axiom Dlog). ∀w,φ,p, q⃗, φ, if φ is □ free then ⊢Σ
□(q :- p⃗ ) φ → (p⃗ → q) → φ @ w

Lemma 13 (Axiom MP). If ⊢ φ1 @ w and ⊢ φ1 → φ2 @ w then
⊢ φ2 @ w .
Lemma 14 (Axiom N).
∀ φ,w , γ , if ⊢Σ φ @ w , then ⊢Σ □γ φ @ w

9



The proof of Axiom Mon follows from a more general lemma

for positive and negative formulas and requires additional lemmas

to remove unnecessary judgements from the context. The proofs

of these lemmas and Axiom Mon can be found in Appendix B.

Lemma 15 (Axiom Mon). If ⊢Σ γ1 → γ2 @ ⊤ then ∀w ⊢Σ
□γ2 φ

+ → □γ1 φ
+
@ w .

Axiom Mon requires ¬-free formulas. Our Lemma 15 is a more

general form that allows not only ¬-free formulas, but also other

positive formulas.

6 DISCUSSION

Alternative Formalizations In our initial attempt, we tried to use

only one policy context and allow Γ and ∆ to only contain formulas.

The judgment is of the form:w ; Γ ⊢ ∆. The reading of this judgment

is that if policies inw are submitted, and all of the formulas in Γ are

derivable, then one of the formulas in ∆ is derivable. The precise

meaning of the judgment with regard to the model is the following:

Ifw ; Γ ⊢ ∆ then ∀w ′,w ′,w ⊪
∧

Γ →
∨

∆.
The □R and □L rules are as follows.

w,γ ; Γa , Γ ⊢ ∆b ,∆ Γa contains only positive formulas

∆b contains only negative formulas

w ; Γa ,□γ Γ ⊢ ∆b ,□γ ∆
□R’

w ;□γ φ, Γ ⊢ γ ,∆ w ;□γ φ,φ, Γ ⊢ ∆

w ;□γ φ, Γ ⊢ ∆
□L’

We write □γ Γ to denote the formula context resulting from

wrapping every formula in Γ with □γ . The □R’ introduces coun-

terfactuals on both sides of the turnstile, except for formulas in

contexts Γa and ∆b . The first premise of this rule states that if

policiesw and γ were submitted, and all the formulas in Γa and Γ
are derivable, then one of the formulas in ∆b and ∆ is derivable.

The policy context in the conclusion contains only w . However,

formulas in Γ and ∆ are wrapped under □γ . Because submittingw
and γ is the same as submittingw first, then submitting γ , if all of
the formulas in □γ Γ are true ifw is submitted, it implies that all

of the formulas in Γ are true ifw and γ is true. The same reasoning

applies to ∆. Recall that positive formulas cannot be falsified by

strengthening policies and negative formulas cannot be falsified

by weakening policies. Formulas in Γa are positive, so if they are

true under w , then they are true under w and γ . Formulas in ∆b
are negative, so if one of them is true underw and γ , then it is true

under w as well. This is why the □R rule is sound. The left rule

removes the conditional γ if the policy γ is true already.

This formulation can be shown to be sound and complete with

regard to the axiomatized system. However, cut elimination cannot

be proven. This is similar to the problem of Prawitz’s formulations

of necessity [34]. One way to solve this problem as pointed out

by Pfenning et al. is to have separate judgments for truths and

validity [33]. This is precisely what we do here. We have a separate

judgment for counterfactual conditions. Instead of having a shared

policy world, we index each formula with its policy world using

judgment: φ @ w .

World Relations and Kripke Semantics Our proof rules explic-
itly index formulas with policy worlds and operate on policy worlds.

There is a strong connection between the Kripke Semantics defined

by Becker et al. [5] and how our proof rules manipulate policy

worlds.

A Kripke model M is a triple ⟨W ,R,V ⟩, where W is a set of

worlds, R ⊆ ℘(W ) ×W ×W , and V : At→ ℘(W ). We write ℘(W )
to denote the power set ofW . The semantics of counterfactuals

given the model is as follows:

w ⊩M □γ φ iff ∀w ′,R |γ |M (w,w ′) ⇒ w ′ ⊩M φ where |γ |M = {w ∈
W | w ⊩M γ }.

Here, the accessibility relation between worlds are indexed by a

set of worlds where a policy γ is true (R |γ |M (w,w ′)).
In general, a formula is valid if it is valid for all models. However,

because the worlds are closely related to policies, not all models are

reasonable models given how policies relate to each other. Becker

et al. defined TM models, where each TM model models all pos-

sible policies and all possible policy interactions. One important

interaction between policies are the relative strength of policies.

This is what we use in our conversion rule as well. One interest-

ing observation is that our □R rule only picks one world that is

accessible from w given γ , namely (w,γ ). The Kripke semantics

require φ hold in all worlds related to w given γ (R |γ |M (w,w ′)).
This is another reason why we need the conversion rule. Intuitively,

this rule makes sure that checking φ true in one accessible world

is good enough. This also suggests that we could modify our □R

to build in conversion so all accessible worlds are considered. We

leave this for future work.

New judgement in the premise The PolCut and Conv rules in-

troduce a new judgementp @ w into the premise. As a consequence,

our sequent calculus does not have the traditional sub-formula

property. However, because we only consider systems with a finite

number of atomic propositions, there is only a finite number of

such p @ w . Further, some of the proofs of the meta-properties (e.g.,

soundness) rely on the fact that the new judgment p @ w is only

introduced when it is derivable: in the case of PolCut,w ⊪d p; and
in the case of Conv, Γ already includes p @ w ′ wherew ′ is weaker
thanw . If we were to allow the general cut rule, those proofs would

have been very difficult, if not impossible.

Applications to Other Domains In addition to security, Data-

log has been widely used in many other domains. For instance,

Datalog has been used to model networks and diagnose network

configuration [14, 24]. The counterfactual reasoning framework

could potentially be applied to these domains to diagnose and pin-

point specific configurations or nodes in the network such that if it

weren’t for those nodes, the error wouldn’t have occurred.

Counterfactual reasoning is a meta-level reasoning about a sys-

tem. Here, this system is Horn clauses. The derivability relation

for Horn clauses is fairly simple, so it is a great starting point to

build a formal proof system for counterfactual reasoning around

it. We are intersted in generalizing this framework to reason about

counterfactuals of other logic, for instance, a constructive authoriza-

tion logic. We can still interpret □γ φ as by submitting additional

rules γ , φ is derivable. Then the challenge is how to design proof

rules to capture the counterfactual reasoning in the same way the

Dlog rule does for Horn clauses. Another challenge is to identify

the requirements of the worlds in the Kripke structure to make it

compatible with the semantics of that logic.
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7 RELATEDWORK
Counterfactual reasoning has been studied by philosophers for

decades [10, 22, 25] after Lewis’s seminal book was published in

1973 [22]. Most closely related to our reading of the counterfactual

conditions□γ φ is work on conditional logic [2, 3, 11, 17, 18, 21, 28,

29]. In conditional logic, H > F is read as: if H were true then F
would have been the case; or F follows from H in all worlds where

H is true.□γ φ is similar to γ > φ. There is a set of axioms dictating

how conditionals interact with the rest of logic. Each conditional

logic admits a different set of axioms. Most of the axioms that our

sequent calculus support can be mapped to axioms of conditional

logic. One exception is the Dlog axiom, which is intrinsic to Horn

clause reasoning. Conditional logic is given possible world seman-

tics. Similar to the Kripke semantics that Becker et al. introduced,

there is a notion of accessibility of worlds indexed by conditionals

(H ), and a notion of a minimal world or multiple minimal worlds

that are accessible fromw with distanceH . Because we target Horn

clauses, the accessibility relation of the Kripke semantics for our

logic is customized to accommodate properties of Horn clauses. To

some extent, our proof system can be viewed as a special instance

of a more general conditional logic. The concrete semantics help us

avoid many of the unsatisfactory explanations of axioms in a more

general conditional logic.

Only relatively recently, applications of counterfactual and con-

ditional reasoning have found their way into computer science.

Samet [35] developed a reasoning system based on conditional logic

for game theory. Players deduce their next moves and backtrack

possible states by considering other possible worlds. Halpern later

reformalized Samet’s system by using a combination of epistemic

and conditional logic [19]. Becker et al. used counterfactual reason-

ing to model probing attacks in trust management systems [5].

Our work is inspired by the axiomatized proof system devel-

oped by Becker et al. [5]. Unfortunately, axiomatized proof systems

are known to be difficult for proof construction. To address this

problem, most recently, Pasarella et al. used a logic programming

language [26] as the operational framework for constructing proofs

in counterfactual reasoning in trust management system [30]. Their

extended semantics for logic programs, written P ⊢Ô G, model se-

mantics of counterfactual conditions. The validity of a formula G
satisfies the condition that it is not possible to find a policy ∆ such

that ∆ ⊢Ô ¬G . Different from our work, Pasarella and Lobo’s do not

provide sequent calculus formulation for counterfactual reasoning.

We believe we are the first to define a sequent calculus for coun-

terfactual conditionals based on Horn clauses. Our sequent calculus

has cut elimination. All proofs of our metatheories are clean and

easy to follow as they are either by induction over the structure of

the formula, or by induction over the sequent calculus rules.

Our formalization is influenced by the formalization of classical

modal S5 by Murphy et al. [27] and work on judgmental reconstruc-

tion of modal logic [33]. Here, the counterfactual conditional γ is

treated as a world in the Kripke model and therefore, we can bor-

row ideas from sequent calculus for modal logic. Interestingly, our

initial attempt that does not use a separate judgment φ @ w failed

in very similar ways as Prawitz’s formulations of necessity [34].

8 CONCLUSION
We presented a sequent calculus for counterfactual reasoning of

Horn clauses, which can model probing attacks in trust manage-

ment systems concisely. Our sequent calculus has cut elimina-

tion [31] and is sound and complete with respect to the axiomatized

system proposed by Becker et al. We plan to explore applications of

our sequent calculus to model counterfactual reasonings in domains

including security, networks, and program analysis.
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A BASIC PROPERTIES
Lemma 16 (Weakening). If E :: Γ ⊢ ∆ then ∀ Γ′, ∆′, ∃D s.t.
D :: Γ, Γ′ ⊢ ∆,∆′ and |D| = |E |

Proof.

By induction over the structure of E.

The cases where E ends in Init, ⊤R, or ⊥L follow from the same

rule. For the other cases, we can get the conclusion by applying the

same rule on the result of using the induction hypothesis. □
Lemma 17 (Contraction).

(1) If E :: Γ,φ @ w,φ @ w ⊢ ∆ then D :: Γ,φ @ w ⊢ ∆
(2) If E :: Γ ⊢ φ @ w,φ @ w,∆ then D :: Γ ⊢ φ @ w,∆.

Proof.

By induction on the structure of E.

The cases where E ends in Init, ⊤R, or ⊥L follow from the same

rule. For the other cases, we can get the conclusion by applying the

same rule on the result of using the induction hypothesis. □

Our Init rule only applies to atomic propositions. We formalize

it this way to simplify the cut-elimination proofs. We prove the

following lemma, which states that any formula φ can be derived

from itself. The proof is by induction over the structure of the

formula. This lemma is also a sanity check for all the left and right

rules. Each proof case uses the left rules to deconstruct the formula,

then reassembles the subformulas using the right rules.

Lemma 18 (Init). ∀φ,w , φ @ w ⊢ φ @ w .

Proof. By induction over the structure of φ.
The cases where φ is of the form ⊤, ⊥, p follow directly from ⊤

R, ⊥ L, and Init, respectively. For all other cases, the conclusion

follows from the induction hypothesis and applications of the left

and right rules for the matching connective. Some cases also involve

weakening. A representative case is shown below.

Case: φ is of the form φ1 → φ2
(G) To show: ∃F :: φ1 → φ2 @ w ⊢ φ1 → φ2 @ w
IH on φ1 gives

(1) ∃D :: φ1 @ w ⊢ φ1 @ w
IH on φ2 gives

(2) ∃E :: φ2 @ w ⊢ φ2 @ w
Weakening D gives

(3) D1 :: φ1 → φ2 @ w,φ1 @ w ⊢ φ2 @ w,φ1 @ w,
φ1 → φ2 @ w

Weakening E gives

(4) E1 :: φ1 → φ2 @ w,φ2 @ w,φ1 @ w ⊢ φ2 @ w,
φ1 → φ2 @ w

Applying→ R on D1 gives

(5) D2 :: φ1 → φ2 @ w ⊢ φ1 @ w,φ1 → φ2 @ w
Applying→ R on E1 gives

(6) E2 :: φ1 → φ2 @ w,φ2 @ w ⊢ φ1 → φ2 @ w
Applying→ L on D2 and E2 gives F

□

B COMPLETENESS
For completeness, we prove that for every provable formula φ in

the axiomatized system (Figure 3), we can derive φ @ w for anyw
(Theorem 9).

B.1 Derivations
The following axioms may be constructed directly using our se-

quent rules. Axioms Cl1, Cl2, Cl3, Fun, Perm, and K can be directly

constructed using our sequent rules. The derivations may be found

in Figure 8.

B.2 Axiom C1
Lemma 10 (Axiom C1) . For all γ , ⊢ γ @ (γ ,w ).

Proof.

By induction over the structure of γ .
When γ is of the form ⊤, the conclusion follows from the ⊤R rule.

For the cases where γ is of the form p ∈ At or q : −p⃗, the conclusion
follows from the PolCut rule. Finally, when γ is of the form γ1∧γ2,
the conclusion follows from of the use of the induction hypothesis

on γ1 and γ2 and applying ∧R on the weakened result. □

B.3 Axiom C2
Lemma 19. For all φ, γ ,w ,w ′,

(1) φ @ (w,w ′,γ ),γ @ w ⊢ φ @ (w,w ′) and
(2) φ @ (w,w ′),γ @ w ⊢ φ @ (w,w ′,γ ).
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Proof.

By induction over the structure of φ.
We prove (1) and (2) simultaneously. When φ is of the form ⊤ or

⊥, the conclusion follows directly from the ⊤R and ⊥L rules, re-

spectively. When φ is of the form p ∈ At, (1) follows from the

PolL-W-At rule and (2) from the Conv rule.

The proofs for the rest of the cases where φ involves some connec-

tive follow a similar pattern. The conclusion follows from applying

the left and right rules for the connective on the result(s) of apply-

ing the induction hypothesis on subformulas of φ. A representative

case is shown below.

Case: φ is of the form φ1 → φ2
Want to show:

(G1) ∃F1 :: φ1 → φ2 @ (w,w ′,γ ),γ @ w ⊢
φ1 → φ2 @ (w,w ′)

(G2) ∃F2 :: φ1 → φ2 @ (w,w ′),γ @ w ⊢
φ1 → φ2 @ (w,w ′,γ )

IH on φ1 gives
(1) ∃E1 :: φ1 @ (w,w ′,γ ),γ @ w ⊢ φ1 @ (w,w ′)
(2) ∃D1 :: φ1 @ (w,w ′),γ @ w ⊢ φ1 @ (w,w ′,γ )

IH on φ2 gives
(3) ∃E2 :: φ2 @ (w,w ′,γ ),γ @ w ⊢ φ2 @ (w,w ′)
(4) ∃D2 :: φ2 @ (w,w ′),γ @ w ⊢ φ2 @ (w,w ′,γ )

Weakening E1, D1, E2, and D2 gives, respectively,

(5) E ′
1
:: φ1 → φ2 @ (w,w ′),φ1 @ (w,w ′,γ ),γ @ w ⊢

φ1 → φ2 @ (w,w ′,γ ),φ2 @ (w,w ′,γ ),φ1 @ (w,w ′)
(6) D ′

1
:: φ1 → φ2 @ (w,w ′,γ ),φ1 @ (w,w ′),γ @ w ⊢

φ1 → φ2 @ (w,w ′),φ2 @ (w,w ′),φ1 @ (w,w ′,γ )
(7) E ′

2
:: φ1 → φ2 @ (w,w ′,γ ),φ2 @ (w,w ′),φ2 @ (w,w ′,γ ),

γ @ w ⊢ φ1 → φ2 @ (w,w ′),φ2 @ (w,w ′)
(8) D ′

2
:: φ1 → φ2 @ (w,w ′),φ1 @ (w,w ′,γ ),φ2 @ (w,w ′),

γ @ w ⊢ φ1 → φ2 @ (w,w ′,γ ),φ2 @ (w,w ′,γ )
Applying→ R on E ′

1
gives

(9) E3 :: φ1 → φ2 @ (w,w ′),γ @ w ⊢
φ1 → φ2 @ (w,w ′,γ ),φ1 @ (w,w ′)

Applying→ R on D ′
1
gives

(10) D3 :: φ1 → φ2 @ (w,w ′,γ ),γ @ w ⊢
φ1 → φ2 @ (w,w ′),φ1 @ (w,w ′,γ )

Applying→ R on E ′
2
gives

(11) E4 :: φ1 → φ2 @ (w,w ′,γ ),φ2 @ (w,w ′,γ ),γ @ w ⊢
φ1 → φ2 @ (w,w ′)

Applying→ R on D ′
2
gives

(12) D4 :: φ1 → φ2 @ (w,w ′),φ2 @ (w,w ′),γ @ w ⊢
φ1 → φ2 @ (w,w ′,γ )

Applying→ L on D3 and E4 gives F1

Applying→ L on E3 and D4 gives F2

□

Lemma 11 (Axiom C2). ∀ φ, γ ,w , ⊢ (□γ φ → γ → φ) @ w .

Proof.

Want to show

(G) ∃D ::⊢ (□γ φ → γ → φ) @ w
From Lemma 19 wherew ′ is ⊤,

(1) ∃E :: φ @ (w,γ ),γ @ w ⊢ φ @ w
Weakening E gives

(2) E ′ :: □γ φ @ w,φ @ (w,γ ),γ @ w ⊢
φ @ w,γ → φ @ w, (□γ φ → γ → φ) @ w

Applying □L on E ′ gives

(3) E1 :: □γ φ @ w,γ @ w ⊢
φ @ w,γ → φ @ w, (□γ φ → γ → φ) @ w

Applying→ R on E1 gives

(4) E2 :: □γ φ @ w ⊢ γ → φ @ w, (□γ φ → γ → φ) @ w
Applying→ R on E2 gives D

□

B.4 Axiom Dlog
Lemma12 (AxiomDlog). ∀w,φ,p, q⃗,φ is□ free, thenφ @ (w,q :- p⃗), p⃗ →
q @ w ⊢ φ @ w and φ @ w, p⃗ → q @ w ⊢ φ @ (w,q :- p⃗)

Proof. By induction over the structure of φ. For most cases, we

can direclty use induction hypothesis. □

B.5 Axiom MP
Lemma 13 (Axiom MP). If E1 :: · ⊢ φ1 @ w and E2 :: · ⊢ φ1 →
φ2 @ w then ∃E :: · ⊢ φ2 @ w

Proof. D :: φ1 @ w,φ1 → φ2 @ w ⊢Σ φ2 @ w may be

constructed by applying→ L and weakening on derivations from

Init. The conclusion follows by cutting φ1 @ w and φ1 → φ2 @ w
from D. □

B.6 Axiom N
We define Γ @ w as follows.

· @ w = ·

(Γ,φ @ w ′) @ w = Γ @ w,φ @ (w,w ′)
Lemma 14 (Axiom N). If E :: Γ ⊢ ∆, then ∃D :: Γ @ w ⊢ ∆ @ w

Proof.

By induction over the structure of E.

For the cases where E ends in Init, ⊤ R, or ⊥ L, the conclusion

follows directly from the Init,⊤ R, and⊥ L rules, respectively. Most

of the rest of the cases proceed the sameway: the conclusion follows

from applying the same rule on the result of applying the induction

hypothesis on the subderivations of E. The only exception is when

E ends in Conv, which is shown below.

Case: E ends in Conv

E =

E1 :: Γ,p @ w1,p @ w2 ⊢ ∆
E2 :: ∧(w2) @ ⊤ ⊢ ∧(w1) @ ⊤

Γ,p @ w1 ⊢ ∆
Conv

Want to show:

(G) ∃D :: Γ @ w,p @ (w1,w ) ⊢ ∆ @ w
IH on E1 gives

(1) D1 :: Γ @ w,p @ (w1,w ),p @ (w2,w ) ⊢ ∆ @ w
Weakening E2 gives

(2) D2 :: ∧(w2) @ ⊤, (∧(w2)) ∧ (∧(w )) @ ⊤ ⊢ ∧(w1) @ ⊤,
(∧(w1)) ∧ (∧(w )) @ ⊤

Lemma 18 gives

(3) D3 :: ∧(w ) @ ⊤ ⊢ ∧(w ) @ ⊤
Weakening D3 gives

(4) D ′
3
:: ∧(w ) @ ⊤(∧(w2)) ∧ (∧(w )) @ ⊤ ⊢ ∧(w ) @ ⊤,

(∧(w1)) ∧ (∧(w )) @ ⊤
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Applying ∧L1 on D2 gives

(5) D4 :: (∧(w2)) ∧ (∧(w )) @ ⊤ ⊢ ∧(w1) @ ⊤,
(∧(w1)) ∧ (∧(w )) @ ⊤

Applying ∧L2 on D ′
3
gives

(6) D5 :: (∧(w2)) ∧ (∧(w )) @ ⊤ ⊢ ∧(w ) @ ⊤,
(∧(w1)) ∧ (∧(w )) @ ⊤

Applying ∧R on D4 and D5 gives

(7) D6 :: (∧(w2)) ∧ (∧(w )) @ ⊤ ⊢ (∧(w1)) ∧ (∧(w )) @ ⊤
D6 is syntactic sugar for

(8) D7 :: ∧(w2,w ) @ ⊤ ⊢ ∧(w1,w ) @ ⊤
Applying Conv on D1 and D7 gives D

□

B.7 Axiom Mon
Lemma 20. If E :: Γ,γ1 @ ⊤ ⊢ γ2 @ ⊤,∆,∆→ where ∀J ∈ ∆→,
J = γ1 → γ2 @ ⊤,
then Γ,γ1 @ ⊤ ⊢ γ2 @ ⊤,∆.

Proof. By induction over the structure of E. □

Lemma 21. If E :: ⊢ γ1 → γ2 @ ⊤ then γ1 @ w ⊢ γ2 @ ⊤.

Proof. By weaking, we have γ1 @ ⊤ ⊢ γ2 @ ⊤,γ1 → γ2 @ ⊤.
Then, we can apply Lemma 20, with Γ = ∆ = · to reach the

conclusion. □

Lemma 22 (Generalized Axiom Mon). If γ1 @ ⊤ ⊢ γ2 @ ⊤ then
∀w ,

(1) φ+ @ (w,γ2) ⊢ φ
+
@ (w,γ1) and

(2) φ− @ (w,γ1) ⊢ φ
−
@ (w,γ2)

Proof. By induction over the structure of φ.
Case: φ = p

We can show that γ1 ∧ (∧w ) @ ⊤ ⊢ (γ2 ∧ (∧w )) @ ⊤. Then we can

use the Conv rule to reach the conclusion.

Case: φ+ = □γ φ
+
1

Given any w ′, we can apply I.H. on φ+
1
and instantiate w with

(w ′,γ ) to obtain φ+
1
@ (w ′,γ ,γ2) ⊢ φ

+
1
@ (w ′,γ ,γ1). Then we can

apply □R and □L rules to reach the conclusion. □

Lemma 15 (Axiom Mon). If ⊢ γ1 → γ2 @ ⊤ then ⊢ □γ2 φ
+ →

□γ1 φ,+ @ w .
Proof.

By Lemma 21

(1) γ1 @ ⊤ ⊢ γ2 @ ⊤
By applying Lemma 18, ∧R, ∧L, weakening, and (1)

(2) γ1 ∧ (∧w ) @ ⊤ ⊢ (γ2 ∧ (∧w )) @ ⊤
By Lemma 22

(3) φ+ @ (γ2,w ) ⊢ φ+ @ (γ1,w )
By weakening and □R and □L

(4) □γ2 φ
+
@ w ⊢ □γ1 φ

+
@ w .

By→R

(5) ⊢ □γ2 φ
+ → □γ1 φ

+
@ w .

□

It is not readily aparent that Axiom Mon follows from Lemma 15.

Becker et al. [5] explains that Axiom Mon says that submitting

more or strenthening policies in the counterfactual statement□γ φ

should not make the formula φ false. This is our definition of posi-

tive formulas from Section 4, so Lemma 15 is, in fact, a more general

statement which entails Axiom Mon.

B.8 Completeness
Theorem 9 (Completeness). If ⊢ φ, then ∀w , · ⊢ φ @ w .

Proof. By induction over the structure of ⊢ φ. We have shown

that all the axioms and rules that are used to construct ⊢ φ are

either axioms or admissible in our sequent calculus. Each proof

case invokes one of those lemmas.

□

C SOUNDNESS
Theorem 6 (Soundness).
If E :: Γ ⊢ ∆, then ∀w ,w ⊪ ¬(

∧
Γ) ∨
∨

∆.

Proof. By induction over the structure of E. □

C.1 Lemmas for Soundness
Proving Lemma 7 is fairly involved. Inducting over the structure

of E :: γ1 @ ⊤ ⊢Σ γ2 @ ⊤ proves insufficient because PolCut

and Conv can introduce judgements that our induction hypothesis

does not account for. We have to prove a more general lemma

instead. First, we define a new calculus which contains labels that

will allow us to track judgements which have been introduced by,

or are derived from judgements introduced by, PolCut and Conv.

This will allow us to distinguish judgements of the form γ @ ⊤

from those of the formp @ w . We assign the label ‘A’ to judgements

that have been added by, or are derived from judgements which

have been added by, PolCut
+
or Conv

+
. All other judgements are

labeled with ‘o’.

Our syntax is the same as in Section 4 with a few exceptions shown

below.

Label x :: = A | o
Judgement J , (J )x :: = γ @ w | (γ @ w )x
Contexts Γ+ :: = · | Γ+, (J )x

The judgment for the marked up derivation is Γ+ ⊢+Σ ∆. The
sequent rules are shown in Figure 9. For the following lemmas, we

define some notation:

∀J ∈ Γ+p , J = (q @ w )A ∀J ∈ Γp , J = q @ w

∀J ∈ Γ+⊤ , J = (γ @ ⊤)o ∀J ∈ (Γ⊤,∆⊤), J = γ @ ⊤

∀J ∈ Γ+At, J = (p @ q⃗)o ∀J ∈ (ΓAt,∆At), J = p @ q⃗

We prove that derivations using original sequent rules can be

annotated, which result in derivations in newly defined sequent

rules.

Lemma23. If E :: Γp , Γ⊤, ΓAt ⊢Σ ∆⊤,∆At then ∃D :: Γ+p , Γ
+
⊤ , Γ

+
At ⊢

+
Σ

∆⊤,∆At

Proof. By induction over the structure of E. Most of the work

for this proof involves showing that the induction hypothesis can

be applied to the subderivations of E. Once that has been shown,

the conclusion follows from applying the same rule from the la-

beled version of the sequent calculus on the result(s) of applying
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the induction hypothesis. We show one case below:

E =

E1 :: Γ, p @ (w, w ′, q ), q @ w, p @ (w, w ′) ⊢Σ ∆

Γ, p @ (w, w ′, q ), q @ w ⊢Σ ∆
PolL-W-At

Case: E ends in PolL-W-At

By assumption

(A) Γ,p @ (w,w ′,q),q @ w = Γp , Γ⊤, ΓAt and
∆ = ∆⊤,∆At

Subcase 1: p @ (w,w ′,q) ∈ Γp
Without loss of generality, let q @ w ∈ Γp .
If q @ w ∈ (Γ⊤, ΓAt), the proof proceeds the same, with

the label for q @ w switched.

To show:

(G)∃D :: Γ+, (p @ (w,w ′,q))A, (q @ w )A ⊢
+
Σ ∆

where Γ+, (p @ (w,w ′,q))A, (q @ w )A = Γ+p , Γ
+
⊤ , Γ

+
At

and ∆ = ∆⊤,∆At
From p @ (w,w ′,q) ∈ Γp
(1)p @ (w,w ′) is also a judgement of the form q @ w .

Then, from (A) and (1),

(2)Γ,p @ (w,w ′,q),q @ w = Γp , Γ⊤, ΓAt
By I.H. on E1

(3)Γ+, (p @ (w,w ′,q))A, (q @ w )A,
(p @ (w,w ′))A ⊢

+
Σ ∆ where

Γ+, (p @ (w,w ′,q))A, (q @ w )A, (p @ (w,w ′))A =

Γ+
′

p , Γ
+
⊤ , Γ

+
At and ∆ = ∆⊤,∆At

Applying PolL-W-At
+
on (3) gives (G)

Subcase 2: p @ (w,w ′,q) ∈ ΓAt is proven similarly

□

Next, we relate derivations in the marked up sequent rules to

formula semantics. We define polOf(J) to transform a judgment to

a policy as follows.

polOf(γ @ ⊤) = γ
polOf(p @ q⃗) = p :- q⃗

Lemma 24. If E :: Γ+p , Γ
+
⊤ , Γ

+
At ⊢

+
Σ ∆⊤,∆At where ∀J ∈ Γ+p , J =

q @ w and polOf (Γ+⊤ , Γ
+
At,w ) ⊪ q, then ∃J ∈ (∆⊤,∆At) s.t.

polOf (Γ+⊤ , Γ
+
At) ⊪polOf (J )

Proof. By induction over the structure of E. Most of the work

for this proof involves showing that the induction hypothesis can

be applied to the subderivations of E. Then, the conclusion follows

directly, or from one of the lemmas from Appendix C.2. We show

one case below:

symbols(w2) ⊆ Σ
E1 :: Γ

+, (p @ w1)x , (p @ w2)A ⊢
+
Σ ∆

E2 :: (∧(w2) @ ⊤)o ⊢
+
Σ ∧(w1) @ ⊤

Γ+, (p @ w1)x ⊢
+
Σ ∆

Conv
+

Case: E ends in PolL-W-At
+

By assumption

(A) Γ+, (p @ w1)x = Γ+p , Γ
+
⊤ , Γ

+
At s.t. ∀J ∈

Γ+p , J = q @ w and polOf(Γ+⊤ , Γ
+
At,w ) ⊪ q,

To show:

(G) ∃J ∈ (∆⊤,∆At)s .t .polOf(Γ
+
⊤ , Γ

+
At) ⊪polOf(J )

Subcase 1: x=o
Because (∧(w2) @ ⊤)o and ∧(w1) @ ⊤ are judgements of

the form γ @ ⊤

(1) (∧(w2) @ ⊤)o = Γ+
′

p , Γ
+′

⊤ , Γ
+′

At
Because Γ+p = ·

(2) ∀J ∈ Γ+
′

p , J = q @ w s.t. polOf(Γ+⊤ , Γ
+
At,w ) ⊪ q,

By I.H. on E2

(3)∧(w2) ⊪ ∧(w1)

From lemma 25 on (A3) and (p @ w1) ∈ (Γ+
′

⊤ , Γ
+
At)

(4)polOf(Γ+⊤ , Γ
+
At,w2) ⊪ p,

Because (p @ w2)A is a judgement of the form q @ w

(5) Γ+, (p @ w1)o , (p @ w2)A = Γ+
′

p , Γ
+
⊤ , Γ

+
At

Applying I.H on E1 gives (G)

Subcase 2: x=A is proven similarly

□

Lemma 7. ∀γ1,γ2, If E :: γ1 @ ⊤ ⊢Σ γ2 @ ⊤ then γ1 ⊪ γ2.
Proof.

Because γ1 @ ⊤ and γ2 @ ⊤ are judgements of the form

γ @ ⊤

(1)E :: Γ⊤ ⊢Σ ∆⊤
By Lemma 23

(2) ∃D :: (γ1 @ ⊤)o ⊢
+
Σ γ2 @ ⊤

Because γ1 @ ⊤ and γ2 @ ⊤ are judgements of the form

γ @ ⊤

(3)(γ1 @ ⊤)o ⊢
+
Σ γ2 @ ⊤ = Γ+p , Γ

+
⊤ , Γ

+
At ⊢

+
Σ ∆⊤,∆At

where Γ+p = Γ+At = ∆At = ·

From (3)

(4)∀J ∈ Γ+p , J = q @ w and polOf(Γ+⊤ , Γ
+
At,w ) ⊪ q,

By Lemma 24 on (3) and (4)

(5)∃J ∈ (∆⊤,∆At) s.t. polOf(Γ
+
⊤ , Γ

+
At) ⊪polOf(J )

From (4) and (2) γ1 ⊪ γ2
□

C.2 Properties of ⊪ and⊪d
Lemma 25 (Admissibility of Cut for ⊪). If D :: w ⊪ γ1 and
E :: w,γ1 ⊪ γ2 then ∃F :: w ⊪ γ2

Proof. If we consider the definitions for ⊪ as sequent, this is a

proof of admissibility of cut. So we proceed by induction first over

the structure of γ1 and then over the structures of D and E. The

proof closely resembles our proof of Theorem 4 and requires weak-

ening, contraction for ⊪. Most cases are straightforward, except

for the one where D ends in □R and E ends in At which requires

Lemma 30. We also need Lemma 29 to prove the admissibility of

cut for ⊪d . □

Lemma 26. ∀w , If E :: w,p :- q1 · · ·qn ⊪d s then
(1) ∃D :: w ⊪d s , or
(2) ∃D :: w,p ⊪d s , and ∀i ∈ [1,n] ∃Di :: w ⊪d qi

Proof. By induction over the structure of E. When E ends in

At, the conclusion follows directly from the At rule. We show the

proof for when E ends in Dlog below.
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Γ+, (p @ w )x ⊢
+
Σ p @ w,∆

Init
+

Γ+ ⊢+Σ ⊤ @ w,∆
⊤ R
+

Γ+ ⊢+Σ γ1 @ w,γ1 ∧ γ2 @ w,∆ Γ+ ⊢+Σ γ2 @ w,γ1 ∧ γ2 @ w,∆

Γ+ ⊢+Σ γ1 ∧ γ2 @ w,∆
∧ R
+

Γ+, (γ1 @ w )o , (γ1 ∧ γ2 @ w )o , ⊢
+
Σ ∆

Γ+, (γ1 ∧ γ2 @ w )o ⊢
+
Σ ∆

∧ L1
+

Γ+, (γ2 @ w )o , (γ1 ∧ γ2 @ w )o , ⊢
+
Σ ∆

Γ+, (γ1 ∧ γ2 @ w )o ⊢
+
Σ ∆

∧ L2
+

Γ+ ⊢+Σ φ @ (w,γ ),□γ φ @ w,∆

Γ+ ⊢+Σ □γ φ @ w,∆
□R
+

Γ+, (□γ φ @ w )x , (φ @ (w,γ ))x ⊢
+
Σ ∆

Γ+, (□γ φ @ w )x ⊢
+
Σ ∆

□L
+

w ⊪d p symbols(p @ w ) ⊆ Σ Γ+, (p @ w )A ⊢
+
Σ ∆

Γ+ ⊢+Σ ∆
PolCut

+

Γ+, (p @ (w,w ′,q))x , (q @ w )y , (p @ (w,w ′))x ⊢
+
Σ ∆

Γ+, (p @ (w,w ′,q))x , (q @ w )y ⊢
+
Σ ∆

PolL-W-At
+

Γ+, (p @ (w,w ′,□a⃗ b))A, (b @ (w, a⃗))x , (p @ (w,w ′))A ⊢
+
Σ ∆

Γ+, (p @ (w,w ′,□a⃗ b))A, (b @ (w, a⃗))x ⊢
+
Σ ∆

PolL-W-□+

Γ+, (s @ (q :- p1, · · · ,pn ,w ))A, (s @ w )A ⊢
+
Σ ∆ Γ+, (s @ (q :- p1, · · · ,pn ,w ))A, (s @ (q,w ))A, (p1 @ w )A, · · · , (pn @ w )A ⊢

+
Σ ∆

Γ+, (s @ (q :- p1, · · · ,pn ,w ))A ⊢
+
Σ ∆

Dlog
+

symbols(w2) ⊆ Σ Γ+, (p @ w1)x , (p @ w2)A ⊢
+
Σ ∆ (∧(w2) @ ⊤)o ⊢

+
Σ ∧(w1) @ ⊤

Γ+, (p @ w1)x ⊢
+
Σ ∆

Conv
+

Figure 9: Labeled sequent calculus

Subcase 1: p=s

E =

(Ei :: w, s :- q1, · · · ,qn ⊪d qi )i ∈[i,n]

w, s :- q1, · · · ,qn ⊪d s
Dlog

To show:

(G1) ∃D :: w ⊪d s , or
(G2) ∃D :: w,p ⊪d s , and ∀i ∈ [1,n] ∃Di :: w ⊪d qi

We will show G2. Because p=s

(1) D follows directly from At

By I.H. on Ei ,∀i ∈ [1,n]
(2) ∃Di :: w ⊪d qi or
∃Di :: w, s ⊪d qi and ∀k ∈ [1,n] ∃Dik :: w ⊪d qi

(1) and (2) gives (G2)

Subcase 2: p , s

E =

(Ej :: w ′, p :- q1, · · · , qn, s :- r1, · · · , rm ⊪d r j )j∈[i,m]

w ′, p :- q1, · · · , qn, s :- r1, · · · , rm ⊪d s
Dlog

Wherew ′, s :- r1, · · · , rm = w
To show:

(G1) ∃D :: w ′, s :- r1, · · · , rm ⊪d s , or
(G2) ∃D :: w ′, (s :- r1, · · · , rm ),p ⊪d s , and ∀i ∈ [1,n]
∃Di :: w

′, s :- r1, · · · , rm ⊪d qi
By I.H. on Ej , ∀j ∈ [1,n]

(A) ∃D ′j :: w
′, s :- r1, · · · , rm ⊪d r j or

(B) ∃D ′j :: w
′, (s :- r1, · · · , rm ),p ⊪d r j and ∀i ∈ [1,n]

∃Dji :: w
′, s :- r1, · · · , rm ⊪d qi

If (A):

Applying Dlog on D ′j ,∀j ∈ [i,m] gives (G1)

If (B):

By applying Dlog on D ′j ,∀j ∈ [i,m]

(B1) D :: w ′, (s :- r1, · · · , rm ),p ⊪d s

Pick any j ∈ [1,n] and (B) gives

(B2) ∃Di :: w
′, s :- r1, · · · , rm ⊪d qi

(B1) and (B2) gives (G2)

□

Lemma 27 (Contraction for ⊪). ∀w,w ′,γ If E :: w,w ′,w ′ ⊪ γ
then ∃D :: w,w ′ ⊪ γ

Proof. By induction over the structure of E. We can get the

conclusion by applying the same rule on the result of using the

induction hypothesis. Lemma 31 is required to prove contraction

for ⊪d □

Lemma 28 (Weakening for ⊪). ∀w,w ′,γ If E :: w ′ ⊪ γ then
∃D :: w,w ′ ⊪ γ with |D| = |E |

Proof. By induction over the structure of E. We can get the

conclusion by applying the same rule on the result of using the

induction hypothesis. Lemma 32 is required to prove weakening

for ⊪d □

Lemma 29 (Admissibility of Cut for⊪d ). ∀w If D :: w ⊪d p and
E :: w,p ⊪d q then ∃F :: w ⊪ q

Proof. By nested induction on the structures of D and E. The

conclusion follows from contraction when D ends in At and E is

arbitrary and from the At rule when D is arbitrary and E ends in

At. The last case, when D and E both end in Dlog, follows from

applying Dlog on the result of applying the induction hypothesis

on D and the subderivations of E. □

Lemma 30. ∀w If D :: w, q⃗ ⊪d r and E :: w,□q⃗ r ⊪d p then
∃F :: w ⊪d p
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Proof. By nested induction over the structures ofD and E. The

conclusion follows from the At rule whenD is arbitrary and E ends

in At. When D is arbitrary and E ends in Dlog, the conclusion

follows from applying Dlog on the results of applying the induction

hypothesis on D and the subderivations of E. □

Lemma 31 (Contraction for⊪d ). ∀w,w ′,γ If E :: w,w ′,w ′ ⊪d γ
then ∃D :: w,w ′ ⊪d γ

Proof. By induction over the structure of E. When E ends in

At, the conclusion follows directly from the At rule. When E ends

in Dlog, we can get the conclusion by applying the Dlog on the

result of using the induction hypothesis on the subderivations of

E. □

Lemma 32 (Weakening for ⊪d ). ∀w,w ′,γ If E :: w ′ ⊪d γ then
∃D :: w,w ′ ⊪d γ with |D| = |E |

Proof. By induction over the structure of E. When E ends in

At, the conclusion follows directly from the At rule. When E ends

in Dlog, we can get the conclusion by applying the Dlog on the

result of using the induction hypothesis on the subderivations of

E. □

D ADMISSIBILITY OF CUT
Admissibility of Cut
If D :: Γ ⊢Σ φ @ w,∆ and E :: Γ,φ @ w ⊢Σ ∆, then ∃F :: Γ ⊢Σ ∆

Proof. The proof is by nested induction, first over the structure

of the cut formula, φ @ w , and then over the structures ofD and E.

All proof cases fall into 4 categories (many of these cases overlap):

• Base cases: Either D or E ends in Init, ⊤ R, or ⊥ L

– EitherD or E ends in Init and the other derivation is arbi-

trary. The cut formula is p @ w . Applying the contraction

lemma on the arbitrary derivation will result in F .

– D is an arbitrary derivation and E ends in ⊤R. Then the

cut formula is an arbitrary φ @ w . This case is covered by

the side cases on E.

– D ends in ⊤R and E is an arbitrary derivation. The the

cut formula is ⊤ @ w . This case is covered by the side

cases on E.

– D ends in ⊥L and E is an arbitrary derivation. Then the

cut formula is an arbitrary φ @ w . This case is covered by

the side cases on D.

– D is an arbitrary derivation and E ends in ⊥L The cut

formula is ⊥ @ w . This case is covered by the side cases

on D.

• Principal cases: The cut formula is the principal formula in

bothD and E.D and E end in matching left and right rules

of the same connective. (1) Apply the induction hypothesis

on the cut formula, D, and each of the subderivations of E.

(2) Apply the induction hypothesis on the cut formula, each

of the subderivations of D, and E. Applying the induction

hypothesis on a subformula of the cut formula and the results

of (1) and (2) gives F .

• Special cases: E ends in PolCut, PolL-W-At, PolL-W-□,

Dlog, or Conv and the cut formula is one of the formulas

used by the rule.

– D ends in Init. This case is covered by the base cases

where D is Init and E is an arbitrary derivation.

– The cut formula is a side formula inD. This case is covered

by the side cases on D.

• Side cases on D: The cut formula is a side formula in D.

There is a case for D ending in every rule. E is always an

arbitrary derivation.

– D ends in Init, ⊤ R, or ⊥ L: We can directly apply the

rule which D ends in to obtain F .

– D ends in any other rule: We can apply the rule which D

ends in on the result of applying the induction hypothesis

to the cut formula, the subderivations of D, and E to

obtain F .

• Side cases on E: The cut formula is a side formula in E. There

is a case for E ending in every rule.D is always an arbitrary

derivation.

– E ends in Init, ⊤ R, or ⊥ L: We can directly apply the rule

which E ends in to obtain F .

– E ends in any other rule: We can apply the rule which E

ends in on the result of applying the induction hypothesis

to the cut formula, D, and the subderivations of E to

obtain F .

We show some representative cases below. The ones not shown

proceed in the same fashion.

Base cases
Case: D ends in Init and E is arbitrary.

D = Γ,p @ w ⊢Σ p @ w,∆
Init

and E :: Γ,p @ w,p @ w ⊢Σ ∆

To show: ∃F :: Γ,p @ w ⊢Σ ∆
F may be obtained by applying the contraction lemma on E.

Case: D is arbitrary and E ends in Init.

D :: Γ ⊢Σ p @ w,p @ w,∆

and E = Γ,p @ w ⊢Σ p @ w,∆
Init

To show: ∃F :: Γ ⊢Σ p @ w,∆
F may be obtained by applying the contraction lemma on D.

Case: D ends in ⊤ R and E is arbitrary.

⊤ @ w will be a side formula in E.

Case: D is arbitrary and E ends in ⊤ R.

The cut formula is a side formula in E.

Case: D ends in ⊥ L and E is arbitrary.

The cut formula is a side formula in D.

Case: D is arbitrary and E ends in ⊥ L.

⊥ @ w is a side formula in D
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Principal cases
Case: D ends in □ R and E ends in □ L

D =

D1 :: Γ ⊢Σ φ @ (w,γ ),□γ φ @ w,∆

Γ ⊢Σ □γ φ @ w,∆
□R

E =

E1 :: Γ,□γ φ @ w,φ @ (w,γ ) ⊢Σ ∆

Γ,□γ φ @ w ⊢Σ ∆
□L

(G) To show: ∃F :: Γ ⊢Σ ∆
Weakening and IH on □γ φ @ w , D, and E1 gives

(1) E ′
1
:: Γ,φ @ (w,γ ) ⊢Σ ∆

Weakening and IH on □γ φ @ w , D1, and E gives

(2) D ′
1
:: Γ ⊢Σ φ @ (w,γ ),∆

IH on φ @ (w,γ ), D ′
1
, and E ′

1
gives (G)

Special cases
These cases are already covered by the base cases and side cases.

We show one case in more detail, here, to make this explicit.

Case: E ends in Conv

Subcase: D ends in Init

D = Γ,p @ w1 ⊢Σ p @ w1,∆
Init

E =

E1 :: symbols(w2) ⊆ Σ
E2 :: Γ,p @ w1,p @ w1,p @ w2 ⊢Σ ∆
E3 :: ∧(w2) @ ⊤ ⊢Σ ∧(w1) @ ⊤

Γ,p @ w1,p @ w1 ⊢Σ ∆
Conv

To show: ∃F :: Γ,p @ w1 ⊢Σ ∆

Applying the contraction lemma on E gives F

The rest of the subcases are similar. We show one below.

Subcase: D ends in ∨ R1

Observe that p @ w1 must be a side formula in D.

D =

D1 :: Γ ⊢Σ p @ w1,φ1 @ w,φ1 ∨ φ2 @ w,∆

Γ ⊢Σ p @ w1,φ1 ∨ φ2 @ w,∆
∨R1

E =

E1 :: symbols(w2) ⊆ Σ
E2 :: Γ,p @ w1,p @ w2 ⊢Σ φ1 ∨ φ2 @ w,∆

E3 :: ∧(w2) @ ⊤ ⊢Σ ∧(w1) @ ⊤

Γ,p @ w1 ⊢Σ φ1 ∨ φ2 @ w,∆
Conv

(G) To show: ∃F :: Γ ⊢Σ φ1 ∨ φ2 @ w,∆
Apply weakening and IH on p @ w1, D1, and E gives

(1) D ′
1
:: Γ ⊢Σ φ1 @ w,φ1 ∨ φ2 @ w,∆

Applying ∨R1 on D ′
1
gives (G)

Side cases on D
These cases are all similar to each other.

We show all of the cases for our new rules, except □R and □L,

plus a few others

Case: D ends in Init and E is arbitrary

D = Γ,p @ w ⊢Σ φ ′ @ w ′,p @ w,∆
Init

and E :: Γ,p @ w,φ ′ @ w ′ ⊢Σ p @ w,∆

To show: ∃F :: Γ,p @ w ⊢Σ p @ w,∆

Let F = Γ,p @ w ⊢Σ p @ w,∆
Init

Case: D ends in ⊤ R and E is arbitrary

D = Γ ⊢Σ φ ′ @ w ′,⊤ @ w,∆
⊤R

and E :: Γ,φ ′ @ w ′ ⊢Σ ⊤ @ w,∆

To show: ∃F :: Γ ⊢Σ ⊤ @ w,∆

Let F = Γ ⊢Σ ⊤ @ w,∆
⊤R

Case: D ends in ⊥ L and E is arbitrary

D = Γ,⊥ @ w ⊢Σ φ ′ @ w ′,∆
⊥L

and E :: Γ,⊥ @ w,φ ′ @ w ′ ⊢Σ ∆

To show: ∃F :: Γ,⊥ @ w ⊢Σ ∆

Let F = Γ,⊥ @ w ⊢Σ ∆
⊥L

Case: D ends in→ R and E is arbitrary

D =

D1 :: Γ,φ1 @ w ⊢Σ φ ′ @ w ′,φ2 @ w,φ1 → φ2 @ w,∆

Γ ⊢Σ φ ′ @ w ′,φ1 → φ2 @ w,∆
→R

and E :: Γ,φ ′ @ w ′ ⊢Σ φ1 → φ2 @ w,∆

(G) To show: ∃F :: Γ ⊢Σ φ1 → φ2 @ w,∆
Weakening and IH on φ ′ @ w ′, D1, and E gives

(1) D ′
1
:: Γ,φ1 @ w ⊢Σ φ2 @ w,φ1 → φ2 @ w,∆

Applying→R on D ′
1
gives (G)

Case: D ends in→ L and E is arbitrary

D =

D1 :: Γ,φ1 → φ2 @ w ⊢Σ φ ′ @ w ′,φ1 @ w,∆
D2 :: Γ,φ2 @ w,φ1 → φ2 @ w ⊢Σ φ ′ @ w ′,∆

Γ,φ1 → φ2 @ w ⊢Σ φ ′ @ w ′,∆
→L

and E :: Γ,φ1 → φ2 @ w,φ ′ @ w ′ ⊢Σ ∆

(G) To show: ∃F :: Γ,φ1 → φ2 @ w ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D1, and E gives

(1) D ′
1
:: Γ,φ1 → φ2 @ w ⊢Σ φ1 @ w,∆

Weakening and IH on φ ′ @ w ′, D2, and E gives

(1) D ′
2
:: D2 :: Γ,φ2 @ w,φ1 → φ2 @ w ⊢Σ ∆

Applying→L on D ′
1
and D ′

2
gives (G)
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Case: D ends in PolCut and E is arbitrary

D =

D1 :: w ⊪d p D2 :: symbols(p @ w ) ⊆ Σ
D3 :: Γ,p @ w ⊢Σ φ ′ @ w ′,∆

Γ ⊢Σ φ ′ @ w ′,∆
PolCut

and E :: Γ,φ ′ @ w ′ ⊢Σ ∆

(G) To show: ∃F :: Γ ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D3, and E gives

(1) D ′
3
:: Γ,p @ w ⊢Σ ∆

Applying PolCut on D1, D2, and D
′
3
gives (G)

Case: D ends in PolL-W-At and E is arbitrary

D =

D1 :: Γ,p @ (w,w ′,q),q @ w,
p @ (w,w ′) ⊢Σ φ ′ @ w1,∆

Γ,p @ (w,w ′,q),q @ w ⊢Σ φ ′ @ w1,∆
PolL-W-At

and E :: Γ,p @ (w,w ′,q),q @ w,φ ′ @ w1 ⊢Σ ∆

(G) To show: ∃F :: Γ,p @ (w,w ′,q),q @ w ⊢Σ ∆
Weakening and IH on φ ′ @ w1, D1, and E gives

(1) D ′
1
:: Γ,p @ (w,w ′,q),q @ w,p @ (w,w ′) ⊢Σ ∆

Applying PolL-W-At on D ′
1
gives (G)

Case: D ends in PolL-W-□ and E is arbitrary

D =

D1 :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),
p @ (w,w ′) ⊢Σ φ ′ @ w1,∆

Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗) ⊢Σ φ ′ @ w1,∆
PolL-W-□

and E :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),φ ′ @ w1 ⊢Σ ∆

(G) To show: ∃F :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗) ⊢Σ ∆
Weakening and IH on φ ′ @ w1, D1, and E gives

(1) D ′
1
:: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),p @ (w,w ′) ⊢Σ ∆

Applying PolL-W-□ on D ′
1
gives (G)

Case: D ends in Dlog and E is arbitrary

D =

D1 :: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ w ⊢Σ
φ ′ @ w ′,∆ D2 :: Γ, s @ (q :- p1, · · · ,pn ,w ),
s @ (q,w ),p1 @ w, · · · ,pn @ w ⊢Σ φ ′ @ w ′,∆

Γ, s @ (q :- p1, · · · ,pn ,w ) ⊢Σ φ ′ @ w ′,∆
Dlog

and E :: Γ, s @ (q :- p1, · · · ,pn ,w ),φ ′ @ w ′ ⊢Σ ∆

(G) To show: ∃F :: Γ, s @ (q :- p1, · · · ,pn ,w ) ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D1, and E gives

(1) D ′
1
:: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ w ⊢Σ ∆

Weakening and IH on φ ′ @ w ′, D2, and E gives

(2) D ′
2
:: Γ, s @ (q :- p1, · · · ,pn ,w ),

s @ (q,w ),p1 @ w, · · · ,pn @ w ⊢Σ ∆
Applying Dlog on D ′

1
and D ′

2
gives (G)

Case: D ends in Conv and E is arbitrary

D =

D1 :: symbols(w2) ⊆ Σ
D2 :: Γ,p @ w1,p @ w2 ⊢Σ φ ′ @ w,∆
D3 :: ∧(w2) @ ⊤ ⊢Σ ∧(w1) @ ⊤

Γ,p @ w1 ⊢Σ φ ′ @ w,∆
Conv

and E :: Γ,p @ w1,φ
′
@ w ⊢Σ ∆

(G) To show: ∃F :: Γ,p @ w1 ⊢Σ ∆
Weakening and IH on φ ′ @ w , D2, and E gives

(1) D ′
2
:: Γ,p @ w1,p @ w2 ⊢Σ ∆

Applying Conv on D1, D
′
2
, and D3 gives (G)

Side cases on E
These cases are all similar to each other.

We show all of the cases for our new rules, except □R and □L,

plus a few others

Case: D is arbitrary and E ends in Init

D :: Γ,p @ w ⊢Σ φ ′ @ w ′,p @ w,∆ and

E = Γ,p @ w,φ ′ @ w ′ ⊢Σ p @ w,∆
Init

To show: ∃F :: Γ,p @ w ⊢Σ p @ w,∆

Let F = Γ,p @ w ⊢Σ p @ w,∆
Init

Case: D is arbitrary and E ends in ⊤ R

D :: Γ ⊢Σ φ ′ @ w ′,⊤ @ w,∆ and

E = Γ,φ ′ @ w ′, ⊢Σ ⊤ @ w,∆
⊤R

To show: ∃F :: Γ ⊢Σ ⊤ @ w,∆

Let F = Γ ⊢Σ ⊤ @ w,∆
⊤R

Case: D is arbitrary and E ends in ⊥ L

D :: Γ,⊥ @ w ⊢Σ φ ′ @ w ′,∆ and

E = Γ,⊥ @ w,φ ′ @ w ′ ⊢Σ ∆
⊥L

To show: ∃F :: Γ,⊥ @ w ⊢Σ ∆

Let F = Γ,⊥ @ w ⊢Σ ∆
⊥L

Case: D is arbitrary and E ends in→ R

D :: Γ ⊢Σ φ ′ @ w ′,φ1 → φ2 @ w,∆ and

E =

E1 :: Γ,φ1 @ w,φ ′ @ w ′ ⊢Σ φ2 @ w,φ1 → φ2 @ w,∆

Γ,φ ′ @ w ′, ⊢Σ φ1 → φ2 @ w,∆
→R

(G)To show: ∃F :: Γ ⊢Σ φ1 → φ2 @ w,∆
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Weakening and IH on φ ′ @ w ′, D, and E1 gives

(1)E ′
1
:: Γ,φ1 @ w ⊢Σ φ2 @ w,φ1 → φ2 @ w,∆

Applying→R on E ′
1
gives (G)

Case: D is arbitrary and E ends in→ L

D :: Γ,φ1 → φ2 @ w ⊢Σ φ ′ @ w ′,∆and

E =

E1 :: Γ,φ1 → φ2 @ w,φ ′ @ w ′ ⊢Σ φ1 @ w,∆
E2 :: Γ,φ2 @ w,φ1 → φ2 @ w,φ ′ @ w ′ ⊢Σ ∆

Γ,φ1 → φ2 @ w,φ ′ @ w ′ ⊢Σ ∆
→L

(G)To show: ∃F :: Γ,φ1 → φ2 @ w ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D, and E1 gives

(1)E ′
1
:: Γ,φ1 → φ2 @ w ⊢Σ φ1 @ w,∆

Weakening and IH on φ ′ @ w ′, D, and E2 gives

(2)E ′
2
:: Γ,φ2 @ w,φ1 → φ2 @ w ⊢Σ ∆

Applying impL on E ′
1
and E ′

2
gives (G)

Case: D is arbitrary and E ends in PolCut

D :: Γ ⊢Σ φ ′ @ w,∆ and

E =

E1 :: w ⊪d p E2 :: symbols(p @ w ) ⊆ Σ
E3 :: Γ,p @ w,φ ′ @ w ′ ⊢Σ ∆

Γ,φ ′ @ w ′ ⊢Σ ∆
PolCut

(G)To show: ∃F :: Γ ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D, and E3 gives

(1)E ′
3
:: Γ,p @ w ⊢Σ ∆

Applying PolCut on E1, E2, and E
′
3
gives (G)

Case: D is arbitrary and E ends in PolL-W-At

D :: Γ,p @ (w,w ′,q),q @ w ⊢Σ φ ′ @ w1,∆ and

E =

E1 :: Γ,p @ (w,w ′,q),q @ w,p @ (w,w ′),
φ ′ @ w1 ⊢Σ ∆

Γ,p @ (w,w ′,q),q @ w,φ ′ @ w1 ⊢Σ ∆
PolL-W-At

(G)To show: ∃F :: Γ,p @ (w,w ′,q),q @ w ⊢Σ ∆
Weakening and IH on φ ′ @ w1, D, and E1 gives

(1)E ′
1
:: Γ,p @ (w,w ′,q),q @ w,p @ (w,w ′) ⊢Σ ∆

Applying PolL-W-At on E ′
1
gives (G)

Case: D is arbitrary and E ends in PolL-W-□
D :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗) ⊢Σ φ ′ @ w1,∆ and

E =

E1 :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),
p @ (w,w ′),φ ′ @ w1 ⊢Σ ∆

Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),
φ ′ @ w1 ⊢Σ ∆

PolL-W-□

(G)To show: ∃F :: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗) ⊢Σ ∆
Weakening and IH on φ ′ @ w1, D, and E1 gives

(1)E ′
1
:: Γ,p @ (w,w ′,□a⃗ b),b @ (w, a⃗),p @ (w,w ′) ⊢Σ ∆

Applying PolL-W-□ on E ′
1
gives (G)

Case: D is arbitrary and E ends in Dlog

D :: Γ, s @ (q :- p1, · · · ,pn ,w ) ⊢Σ φ ′ @ w ′,∆ and

E =

E1 :: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ w,φ ′ @ w ′ ⊢Σ ∆
E2 :: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ (q,w ),

p1 @ w, · · · ,pn @ w,φ ′ @ w ′ ⊢Σ ∆

Γ, s @ (q :- p1, · · · ,pn ,w ),φ ′ @ w ′ ⊢Σ ∆
Dlog

(G)To show: ∃F :: Γ, s @ (q :- p1, · · · ,pn ,w ) ⊢Σ ∆
Weakening and IH on φ ′ @ w ′, D, and E1 gives

(1)E ′
1
:: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ w ⊢Σ ∆

Weakening and IH on φ ′ @ w ′, D, and E2 gives

(2)E ′
2
:: Γ, s @ (q :- p1, · · · ,pn ,w ), s @ (q,w ),

p1 @ w, · · · ,pn @ w ⊢Σ ∆
Applying Dlog on E ′

1
and E ′

2
gives (G)

Case: D is arbitrary and E ends in Conv

D :: Γ,p @ w1 ⊢Σ φ ′ @ w,∆ and

E =

E1 :: symbols(w2) ⊆ Σ
E2 :: Γ,p @ w1,p @ w2,φ

′
@ w ⊢Σ ∆

E3 :: ∧(w2) @ ⊤ ⊢Σ ∧(w1) @ ⊤

Γ,p @ w1,φ
′
@ w ⊢Σ ∆

Conv

(G)To show: ∃F :: Γ,p @ w1 ⊢Σ ∆
Weakening and IH on φ ′ @ w , D, and E2 gives

(1)E ′
2
:: Γ,p @ w1,p @ w2 ⊢Σ ∆

Applying Conv on E1, E
′
2
, and E3 gives (G)

□

E CONSISTENCY
Normally, with the admissibility of cut, the consistency of the logic

becomes a trivial proof by showing that there is no rule to derive

· ⊢ ⊥ @ w . However, for us, the PolCut rule could be used. To

prove consistency, we need to generalize the statement and induct

over the size of the derivation. Theorem 5 allows any counterfactual

condition of form p @ w in Γ. The ordinary consistency property

follows directly from it.

Theorem 5 (Consistency).
∀n, ∄E, ∄w , ∄Γ such that E :: Γ ⊢ ⊥ @ w and |E | ≤ n where ∀J ∈ Γ,
J = p @ w .

Proof.

By induction on n.
Base Case: n = 0

By inversion, and the restrictions on the judgements in Γ, no
such derivation could exist.

Inductive Case: n = k
Assume the conclusion holds when n < k .
Assume ∃E,w, Γ s.t.

(1) E :: Γ ⊢ ⊥ @ w
By assumption,

(2) ∀J ∈ Γ, J = p @ w
From (2),

(3) For such an E to exist, E must end in PolCut,
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PolL-W-At, PolL-W-□, Dlog, or Conv

Subcase: E ends in PolCut

E =

E1 :: w
′ ⊪d p E2 :: symbols(p @ w ′) ⊆ Σ
E3 :: Γ,p @ w ′ ⊢ ⊥ @ w

Γ ⊢ ⊥ @ w
PolCut

IH gives

(4) ∄E ′,∄Γ′,∄w ′ s.t. E ′ :: Γ′ ⊢ ⊥ @ w ′ with |E ′ | < k
and ∀J ∈ Γ′, J = p @ w

From (4),

(5) A proof of E3 cannot exist

From (5),

E cannot end in PolCut

The proofs for the case where E ends in PolL-W-At,

PolL-W-□, Dlog, and Conv proceed the same as the proof

for PolCut.

Since E cannot end in any of these rules, and E must end in

one of these rules to exist, the conclusion holds for n = k .
□
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