
Expressing Heap-shape Contracts in Linear Logic ∗

Frances Perry Limin Jia David Walker
Princeton University

{frances, ljia, dpw}@cs.princeton.edu

Abstract
Contracts (dynamically checked programmer assertions) are a
widely accepted mechanism for specifying, checking and docu-
menting properties of software components. Most, if not all, con-
tract systems expect programmers to use the native programming
language to express their program invariants. While this is most
effective for many simple invariants, expressing properties of data
structures and aliasing patterns can be extremely complicated. If
written in the native language in an unstructured way, such con-
tracts are bound to be unclear and ineffective as documentation.
In this paper, we show how to use linear logic as a language of
contracts for an imperative programming language. The high-level
nature of our linear logical contracts makes specifying memory
shape and aliasing properties of complex recursive data structures
easy. Moreover, since we give our logic a clear, compositional se-
mantics, the contracts serve as effective, executable documentation
for programmer expectations. In order to evaluate the truth of our
linear logical contracts at run time, we use a modified version of
LolliMon, a linear logic programming language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Reasoning about Programs

General Terms Languages, Reliability, Theory, Verification

Keywords Contracts, Assertions, Heap Shape, Linear Logic

1. Introduction
The recent research on separation logic by O’Hearn, Reynolds,
Yang, et al. [19, 9, 22] has made significant progress in the static
verification of the correctness of pointer programs. One of the basic
ideas of separation logic is to use the multiplicative connective
∗ to describe the disjointness of two separate pieces of memory.
Separation logic can describe aliasing and shape invariants of the
program store elegantly when compared with conventional logic.
For example, if we wish to use a conventional logic to state that the

∗ This research was supported in part by NSF grant CCR-0238328 and an
Alfred P. Sloan Fellowship. Opinions, findings, conclusions, and recom-
mendations expressed throughout this work are not necessarily the views
of the NSF or Sloan foundation and no official endorsement should be in-
ferred.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00

heap can be divided into two pieces, and one piece can be described
by F1 and one by F2, then we would need to say F1 ∧ F2 ∧ (S1 ∩
S2 = ∅) where S1 and S2 are the sets of program locations that
F1 and F2 respectively depend upon. As the number of disjoint
memory chunks increases, the separation logic formula remains
relatively simple: F1∗F2∗F3∗F4 represents four separate pieces of
the store. On the other hand, the related classical formula becomes
increasingly complex:

F1 ∧ F2 ∧ F3 ∧ F4

∧(S1 ∩ S2 = ∅) ∧ (S1 ∩ S3 = ∅) ∧ (S1 ∩ S4 = ∅)
∧(S2 ∩ S3 = ∅) ∧ (S2 ∩ S4 = ∅) ∧ (S3 ∩ S4 = ∅)

The end result is that while in theory it is possible to reason about
memory in conventional classical logic, in practice invariants con-
cerning unaliased data structures can quickly grow to an unman-
ageable size.

Separation logic has already been used to prove the correctness
of programs that manipulate complex recursive data structures. One
of the most impressive results is Birkedal et al. ’s proof of the
correctness of a copying garbage collector [3]. However, this proof
was done by hand, and manual verification is clearly far too heavy-
weight for ordinary programmers to incorporate into their everyday
programming or debugging tasks. Happily, there is much current
research focused on automating the process, but it is nevertheless
likely to be decades before ordinary programmers are able to use it
productively.

On the other hand, people have studied and used contracts
since the 1970s [20, 8, 14, 16] Contracts are specifications that
programmers use to document component requirements and to
clearly express guarantees. Importantly, contracts are executable
specifications that are evaluated at run time and actually enforce
the specified properties. When used consistently, contracts can help
improve the clarity of code and detect programmer errors. All kinds
of past and current languages include these features, including
Eiffel [15], Java [21] and Scheme [4].

Most contract systems expect programmers to use the native
programming language to express their program invariants. While
this technique is most effective for many simple invariants, express-
ing properties of data structures and aliasing patterns can be ex-
tremely complicated. In fact, any naive “roll your own” function
a programmer might write to check heap-shape properties would
have to set up substantial infrastructure to keep track of sets of lo-
cations and to record and check aliasing properties. If this infras-
tructure is set up in an ad hoc, verbose, and unstructured manner,
the meaning of contracts will be unclear and their value as docu-
mentation substantially diminished.

Hence, in this paper, we seize upon the critical insight of
O’Hearn, Reynolds, Yang and others: substructural logics, sepa-
ration logic being a special case, can be a highly effective specifi-
cation mechanisms for properties of heap shape. However, rather
than attempting to verify that substructural specifications hold stat-
ically, we explore using them as a language of contracts, evaluated
dynamically. When used as contracts, substructural specifications

are much lighter-weight verification mechanisms than when used in
static verification. A programmer can simply plop down a contract
wherever they choose in their program, employing a pay-as-you-
go strategy for making their programs more reliable. Consequently,
using substructural logics as contracts provides an opportunity for a
much more immediate impact on programming practice. Of course,
using logical assertions as contracts does not rule out using them
as annotations for static verification as well. On the contrary, the
two are quite complementary. If a programmer wishes to statically
verify a small portion of a large program, they may do so soundly
only if they are able check the preconditions of their program frag-
ment dynamically when control flows into the fragment. The most
effective way to engineer this is to ensure that one can interpret any
assertion both as part of a static program analysis and as a legal
contract that may be evaluated dynamically. In this paper, we focus
exclusively on evaluation of substructural assertions dynamically,
but we are well aware of progress on static verification using these
same assertions and hope to exploit that in the future.

To be more specific, we have implemented an imperative pro-
gramming language in which users can specify heap-shape con-
tracts using a fragment of linear logic. Linear logic shares a great
deal in common with the logic of bunched implications [18], upon
which separation logic is based. In particular, linear logic’s mul-
tiplicative connectives can specify separation or disjointedness of
heap state while its additive connectives can specify sharing. Lin-
ear logic’s unrestricted modality allows us to include and repeat-
edly reuse specifications that are independent of the current heap
shape. The main motivation for using linear logic as opposed to
separation logic is that to enforce contracts, we require some mech-
anism for evaluating logical specifications at run time. To evaluate
contracts, we incorporate a modified version of Lopez et al.’s lin-
ear logic engine LolliMon [12], a decedent of Lolli [7], into the
run-time system of our language.

In summary, our main contributions are:

• The idea that a substructural logic can be used as a language
of contracts for specifying heap-shape properties. Unlike the
ad hoc, unstructured, heap-shape contracts one might write in
native code, these contracts serve as clear, compact and seman-
tically well-defined documentation of heap-shape properties.

• An implementation of this idea using linear logic as the logical
specification language for heap shapes. Contracts written in
linear logic are evaluated using a modified version of LolliMon,
and used to verify properties of data structures coded in MiniC,
which, despite its name, is a substantial fragment of the C
programming language.

• An implemented collection of example contracts that show the
effectiveness of our technique including singly linked lists, cir-
cular lists, doubly linked lists, trees, directed acyclic graphs,
and other more complicated data structures such as red-black
trees and b-trees.

• An indexed model of linear logic augmented with inductive
definitions and a proof of soundness of our implementation
technique.

The rest of the paper is organized as follows. In Section 2
we give an informal overview of our MiniC system and its lin-
ear logical contract language. In Section 3, we introduce an in-
dexed memory model for our logic and prove the soundness of our
technique. In Section 4, we provide implementation details of the
MiniC Language and its interface with LolliMon. In Section 5 we
discuss some more complex data structures, including those involv-
ing aliasing. In Section 6, we explore example code for red-black
trees. And finally, in Section 7 we discuss related work and some
directions for future research. Please note a preliminary version of

this paper was presented at the SPACE 06 workshop, January 2006.
However, that workshop has no formal, published proceedings.

2. Overview
In this section, we illustrate the basic components of our system
by going over a simple program that includes a call to an untrusted
copy function. We also give an example of how to verify recur-
sively defined shape invariants of singly linked lists.

2.1 A Simple MiniC Program

The sample program pair.minic in Figure 1 is written in our pro-
totype system MiniC, whose syntax is a subset of ANSI-C extended
with syntax for defining clauses and asserting formulas in Lol-
liMon. The LolliMon declarations in double brackets at the very
beginning of the program are user-defined clauses describing mem-
ory shapes of concern. We will explain them in the next subsection.

In the main function, the programmer allocates a struct of type
pair tp, and then calls the copy function, which is defined in a
different source file written by another programmer. From the com-
ments, we know that copy is supposed to perform deep copying.
However, the programmer writing the main function did not write
the copy function, so he would like to check that the specifications
in the comments are met.

The last statement in the main function is the assert statement.
The linear logic formula in the double brackets describes the de-
sired shape of the memory.

2.2 Specifying Invariants in LolliMon

We use LolliMon [12], a monadic concurrent linear logic program-
ming language, as our assertion language. We have not used the
monadic features of LolliMon in our examples, so we omit them
from the paper.

In LolliMon, we define clauses consisting of a head and a
body just as we would in Prolog. Goal formulas can be queried
over the set of defined clauses. Following the style of Prolog, we
write clauses as inverted implication: Head o- Body. LolliMon
also provides the built-in predicate is which evaluates its integer
arguments and then checks that they are equal, the built-in list
operator ::, and the term nil for the empty list. Logic variables
are capitalized. Below is a sample program in LolliMon.

1 struct L nil.
2 struct L (V::Y) o-
3 lin L V, L1 is L + 1, struct L1 Y.

5 #linear lin 10 100, lin 11 200.
6 #linear lin 20 100, lin 21 200.

8 #query 1 1 1 (struct 10 (X::Y::nil),
9 struct 20 (X::Y::nil)).

In lines 1 through 3, we defined two clauses for predicate struct
that together describe a memory chunk with starting address L and
list of values stored X. We use predicate (lin L V) to describe a
memory cell whose address is L and contents is V. The multiplica-
tive conjunction, written as “,” in LolliMon, enforces that the loca-
tions in its subformulas are disjoint. For example, there is no mem-
ory that satisfies the formula ((lin 10 100), (lin 10 100)), because
that would require location 10 to be in two disjoint pieces of mem-
ory. The first clause handles the base case, where there are no more
elements in the list. In the second clause, the memory starting from
address L points to the list of elements V :: Y if L points to the first
element (lin L V) and the next location L+1 is a struct that has the
rest of the elements (struct L1 Y)1.
1 Notice that locations are treated at a high level of abstraction. Adjacent
fields in a struct or array are offset by 1.

[[
struct L nil.
struct L (V::Y) o-

lin L V, L1 is L + 1, struct L1 Y.
]]

struct pair tp { int x; int y;};

/* copy is a deep copy function that takes a
* pointer to a pair tp struct, copies the
* contents into a newly allocated struct and
* returns the pointer of the new struct */

extern struct pair tp *copy(struct pair tp *x);

int main(){
struct pair tp *pair2;
struct pair tp *pair1

= malloc(sizeof(struct pair tp));

pair1->x = 100;
pair1->y = 200;
pair2 = copy(pair1);

/* pair2 and pair1 should refer to
* different locations with the same data */

assert([[struct $pair1 (X::Y::nil),
struct $pair2 (X::Y::nil)]]);

}

Figure 1. pair.minic

On line 5, we define a linear clause that states that location 10
contains integer 100 and location 11 contains integer 200. Line 6
similarly declares that location 20 contains 100 and location 21
contains 200. The keyword #linear enforces that the clause must
be used exactly once in proving the goal. Lines 8 and 9 contain the
query to be solved. The first three parameters indicate the number
of expected solutions, the maximum number of solutions, and the
number of attempts that should be made to try to prove this query.
The last argument is the goal formula to be proved.

Here the queried formula asks if there exist two disjoint pieces
of memory and some data X and Y such that the first piece of
memory starts at location 10 and contains two elements X and Y,
and the second piece of memory starts at location 20 and contains
the same pair of values X and Y. This query succeeds because it uses
each of the linear resources exactly once, and the logical variable X
is unified with 100 and Y with 200.

2.3 Verifying a Simple MiniC Program

As we saw in the sample MiniC code pair.minic, programmers
define clauses that specify the shape and other invariants of their
data structures at the very beginning of the program. They can
then insert assertions based on these definitions at any point in the
code. These assertions may include program variables by prefixing
them with a dollar sign. Intuitively, at run time when an assert
is reached, the clause definitions and the formula describing the
current program memory are given as the logical context to the
LolliMon engine. The formula to be asserted is sent to the engine
as the query formula to be executed against the context. If the query
is proven by the logic engine, the program will continue running; if
it fails, the program will be aborted.

Assume the copy function called by the code in Figure 1 has a
correct implementation:

struct pair tp *copy(struct pair tp *p){
struct pair tp *dup

= malloc(sizeof(struct pair tp));
dup->x = p->x;
dup->y = p->y;
return dup;

};

When the assert in main is reached, the heap of this program
contains two structs: pair1 (allocated by main) and pair2 (allo-
cated by copy). Assuming pair1 is allocated at location L1 and
pair1 is allocated at location L2, then the formula describing the
current heap is

(lin L1 100), (lin (L1 + 1) 200),
(lin L2 100), (lin (L2 + 1) 200)

After the variable names are replaced by the values they are
bound to, the assert formula becomes

struct L1 (X::Y::nil), struct L2 (X::Y::nil)

The above formula is checked against the clauses defined in
the first three lines of pair.minic and the formula describing the
current heap. Assuming that L1 is 10 and L2 is 20, then the logic
program invoked to check the assertion in this MiniC program is
exactly the program in the previous subsection, so the assertion
passes.

Suppose on the other hand that the copy function is erroneously
implemented as:

struct pair tp *copy(struct pair tp *p){
return p;

};

When the assert is reached, the heap of this program has only
one struct pair1, and pair2 is an alias of pair1. The assertion is
expanded to

struct L1 (X::Y::nil), struct L1 (X::Y::nil)

And the formula describing the current heap is
(lin L1 100), (lin L1+1 200).

In this case the assertion will fail because there are not enough
linear resources to prove that there are two disjoint structs.

2.4 Specifying the Shape of Linked Lists

Here we show how to describe the invariants of non-circular singly
linked lists. Predicate (llist L) means that the memory chunk
starting from location L is a singly linked list. A location L points
to a list if either it is null (0) or it contains data Data and the value
Next in the adjacent location is a pointer to a list. Additive dis-
junction is written as “;” in LolliMon. Formula (F1; F2) describes
a memory that can be described by either F1 or F2. For example,
the memory that contains just the location 10 and its contents 100
can satisfy ((lin 10 100); (lin 10 200)) because only one of the
subformulas need to be satisfied.

llist L o- (L is 0);
(struct L (Data::Next::nil),
llist Next).

In the MiniC program llist.minic in Figure 2, the LolliMon
definitions are between line 1 and 9. In addition to the above clause
definition, the LolliMon definitions also include the type declara-
tion of the llist predicate (line 2) which specifies that the llist
predicate takes one argument of type int (a fully applied predicate
always has the special object type o); and the mode declaration
(line 4), which will be explained in Section 4. Following the Lol-
liMon definitions are the MiniC definitions that declare a list node,
struct node tp (line 11–15).

/* an llist is a non-circular linked list */
1 [[
2 llist: int -> o.

4 #mode llist +L.

6 llist L o- (L is 0);
7 (struct L (Data::Next::nil),
8 llist Next).
9]]

11 struct node tp {
12 int data;
13 struct node tp* next;
14 };
15 typedef struct node tp* list tp;

17 int main() {
18 list tp list1, list2, list3;

20 /* build a list of length 3 */
21 list3 = malloc(sizeof(struct node tp));
22 list3->data = 3;
23 list3->next = 0;
24 list2 = malloc(sizeof(struct node tp));
25 list2->data = 2;
26 list2->next = list3;
27 list1 = malloc(sizeof(struct node tp));
28 list1->data = 1;
29 list1->next = list2;

31 /* check the list is well-formed */
32 assert([[llist $list1]]);

34 /* make the list circular */
35 list3->next = list1;

37 /* this assert fails */
38 assert([[llist $list1]]);

40 return 0;
41 }

Figure 2. llist.minic

In lines 20 through 29, the main function constructs a list match-
ing the one in Figure 3. Assume that list3 is allocated at loca-
tion `3, list2 at `2, and list1 at `1. The programmer then as-
serts at line 32 that list1 is a linked list ([[llist $list1]]).
After replacing the variable with its value, the assertion formula
becomes (llist `1). Since `1 is not 0, the logic engine needs to
solve the subgoal on line 7 and 8. The linear resources correspond-
ing to memory m1 in Figure 3 are used to determine that Data is 1
and Next is `2. The logic engine then attempts to prove that `2 is
a pointer to a list using the remainder of the memory m2 and m3.
This in turn reduces to proving that `3 points to a list using m3. The

1

m1

3

m3

2

m2

m

Figure 3. Memory containing a linked list.

% ./runMiniC tests/llist.minic

Checking assertion 32.4 - 32.28:
[[llist $list1]]

Looking for 1 solutions to query: llist 1025
Attempt 1, Solution 1 with []
Success.
Time consumed 0.02

Checking assertion 38.4 - 38.28:
[[llist $list1]]

Looking for 1 solutions to query: llist 1025
Failed to find 1 solutions within 1 attempts.
Time consumed 0.03 seconds.
Assertion [[llist $list1]] Failed

at Position 38.4 - 38.28

Figure 4. The output from running llist.minic.

base case is reached when proving that 0 is a pointer to a list using
no memory. Since all subgoals are solved, the assertion passes.

On line 35, the main function changes the last element in the list
to point to the first, resulting in a circular list. The second assertion,
at line 38, begins much like the first. However, when the subgoal
of proving `3 points to a list is reached, the logic engine tries to
use the resources corresponding to m3 to prove that `3 points to a
list. The next step would be to prove that `1 points a list using no
linear resource. Unlike the first assert, where we can prove that 0
is a list pointer without using any linear resources, proving that `1

points to list requires us to consume the memory m1. However, this
resource has already been used at the very beginning of the proof,
so this assertion fails, and the MiniC interpreter throws an Assert
Failed exception.

The actual output from running llist.minic is shown in Fig-
ure 4. Each time an assertion is encountered, the line number and
formula to be queried are printed. The next line contains the query
with the program variables substituted with the actual values. And
finally, the result of running the query is printed.

3. Memory Semantics of Linear Logic
In this section, we begin by reviewing the formal syntax of linear
logic and explaining the formal syntax of recursively defined pred-
icates. Next we introduce an indexed semantics of the intuitionistic
linear logic with recursive definitions. Finally, we present our for-
mal result: the soundness of assertions. Since LolliMon is a frag-
ment of intuitionistic linear logic, all the soundness results of this
section carry over to LolliMon.

3.1 Formal Syntax

The syntax of the formulas is standard, and it includes both the mul-
tiplicative and additive linear connectives as well as the unrestricted
modality !.

Formulas F : := P | PA | (lin ` v) | 1 | F1 ⊗ F2

| F1 (F2 | > | F1 & F2 | 0
| F1 ⊕ F2 |!F | ∃x.F | ∀x.F

We use ` to denote memory locations and v to denote values.
Memory locations and values are both infinite subsets of integers.
We treat each memory word as one unit, so we write (`+1) for
the address immediately after `. The basic predicates include user
defined predicates, arithmetic predicates, and (lin ` v).

Predicate (lin ` v) describes a memory that contains only one
location ` with the contents v. The multiplicative connective ⊗
(similar to * in separation logic) separates the memory into two
disjoint pieces. For example, memory m in Figure 3 can be de-
scribed by (struct `1 (1 :: `2 :: nil)) ⊗ (struct (`2 (2 :: `3 ::

nil)) ⊗ (struct `3 (3 :: 0 :: nil)). The connective 1 is the unit of
multiplicative conjunction, and it describes empty memories. For-
mula F1 (F2 describes memories whose union with memories
described by F1 satisfy F2. Memory m1 in Figure 3 can be de-
scribed by (llist `2 (llist `1). The connective > is the unit
of the additive conjunction and describes all memories. The addi-
tive conjunction F1&F2 describes memories that satisfy both F1

and F2. For example, any memory m that satisfies F also satisfies
(F&>). Formula F1 ⊕ F2 describes memories that satisfy either
F1 or F2. Connective 0 is falsehood and no memory satisfies it.
The semantics of the unrestricted modality ! force F to be valid
with empty memory. Arithmetic predicates PA include equality
and less-than relationships over integer expressions. For example,
(x = 2) ⊕ (2 < x) is true if x is greater than or equal to two.

3.2 Recursive Definitions

In the list example in the previous section, the body of the clause
defining predicate llist contains the predicate llist itself. We
use I to denote the definition of a recursively defined predicate, and
Is to denote the list of such definitions.

Pred def I : : = ∀x1....∀xm.(F (P x1 . . . xn)
Pred defs Is : : = · | I, Is

Each definition I corresponds to a clause definition in Lol-
liMon with the free logical variables universally quantified. Predi-
cate (P x1 . . . xn) corresponds to the head of a clause and F cor-
responds to the body of the clause. We also call the body formula
F an unrolling of the head predicate (P x1 . . . xn). For example,
below is the clause definition for llist in Section 2.4 given in the
form of I:

∀l. ∀d. ∀n. ((l = 0)
⊕ ((struct l (d :: n :: nil)) ⊗ (llist n)))

(llist l

3.3 An Indexed Memory Model for Linear Logic

In order to relate assertion formulas to memory shape, we define an
indexed memory semantics for linear logic. The memory semantics
of the multiplicative and additive connectives of linear logic is very
similar to those of the separation logic [22]. The indexing scheme
is inspired by the indexed semantics model for recursive types
developed by Appel et al. [2] and the indexed memory model in
recent work by Morrisett et al. [17]. A memory m maps locations
` to values v. We write dom(m) to denote the set of locations in
the domain of m and m(`) to denote the value stored in `. We use
m1#m2 to denote that two memories m1 and m2 have disjoint
domains. Lastly m1] m2 is the union of m1 and m2 if m1#m2,
otherwise it is undefined.

The indexed semantic judgments are inductively defined over
the index n and the structure of the formula. Judgment m �

n
Is F

states that given the set of predicate definitions Is, memory m can
be described by formula F with n steps of approximation. The se-
mantics for most of the linear logic connectives are straightforward,
and they are not affected by the indexing scheme. In these cases, the
index number n is just carried through the semantic judgments. The
interesting case where the index number changes is the semantics
for recursively defined predicates such as the struct and llist
predicates from previous examples. The semantics of formulas is
given in Figure 5.

For the semantics of recursively defined predicates, intuitively,
the index n can be seen as the number of unrolling steps of the
recursively defined predicates. When the index is 0, meaning we do
not unroll the predicate at all and cannot examine the definition, all
memories satisfy the predicate. A memory m satisfies the predicate
(P t1...tn) at the nth unrolling, when m satisfies the clause body at

m �
n
Is F

• n = 0, m �n
Is F for all memory m.

• n ≥ 1,

m �
n
Is (lin ` v) iff dom(m) = ` and m(`) = v

· �Is PA iff PA is true
m �

n
Is P t1...tn iff (∀x1....∀xm.(F (P x1...xn)) ∈ Is, and

m �
n−1

Is F [t1/x1]...[tn/xn]

m �n
Is >

m �
n
Is 1 iff dom(m) = ∅

6 ∃m.m �
n
Is 0

m �n
Is F1 & F2 iff m �n

Is F1 and m �n
Is F2

m �n
Is F1 (F2 iff for all m′ and m#m′, and for all j,

0 ≤ j ≤ n such that m′ �
j
Is F1 implies m] m′ �

j
Is F2

m �n
Is F1⊗F2 iff there exists m1 and m2 such that m = m1]m2

and m1 �n
Is F1 and m2 �n

Is F2

m �
n
Is!F iff dom(m) = ∅ and · �

n
Is F

m �
n
Is F1 ⊕ F2 iff either m �

n
Is F1 or m �

n
Is F2

m �n
Is ∀x.F ′ iff for all integer a m �n

Is F ′[a/x]

m �n
Is ∃x.F ′ iff there exists integer a such that m �n

Is F ′[a/x]

Figure 5. Semantics of Formulas

the (n − 1)th unrolling. A predicate unrolls to F [t1/x1]...[tn/xn]
when (∀x1....∀xm.(F (P x1...xn)) ∈ Is.

Now we use the semantics of a list predicate (llist′ `) to illus-
trate the idea of indexing. This definition is a simplified version of
the definition of llist where the definition of struct is expanded
and the data field is dropped. The definition of llist ′ is:

∀l. ∀x.((l = 0) ⊕ (lin l x ⊗ (llist′ x))) (llist
′ l

We use Sn to represent the set of memories that satisfy formula
(llist′ `) at the nth approximation (Sn = {m|m �

n
Is llist′ `}).

• S0 = The set of all memories
• S1 = The set of all memories
• S2 = {m| m = ∅ or

m = (` 7→ v)] m0 where m0 ∈ S1}
• S3 = {m| m = ∅ or

m = (` 7→ 0) or
m = (` 7→ `1)] (`1 7→ v)] m0

where m0 ∈ S1}
• S4 = {m| m = ∅ or

m = (` 7→ 0) or
m = (` 7→ `1)] (`1 7→ 0) or
m = (` 7→ `1)] (`1 7→ `2)] (`2 7→ v)] m0

where m0 ∈ S1}

When the index n is 0, we have the least precise idea of what the
memories that satisfy llist′ ` look like, so set S0 is the set of all
memories. At one step of approximation, set S1 contains memories
that satisfy the unrolling of (llist′ `) at 0th approximation, so S1

is also the set of all memories. We can see that set S2 contains the
exact memories that satisfy lists of length 0; set S3 contains the
exact memories that satisfy lists of length 0 and 1; set S4 contains
the exact memories that satisfy lists of length 0, 1, and 2; so on and
so forth. As the index grows bigger, the set of memories that satisfy
the formula becomes smaller, and the semantic judgment becomes
more precise. As the index n approaches positive infinity, we reach
the fixed point.

Another case worth discussing is the semantic judgment of lin-
ear implication m �

n
Is F1 (F2. Because F1 is on the negative

position, we have to define the semantics so that for all approxi-
mation steps up to n, the union of m and any m′ satisfying F1,
satisfies F2.

The following lemma states that the nth approximation is al-
ways more precise than any j steps of approximation, where j is
strictly less than n. This lemma is crucial in the soundness proofs
in Section 3.5.

Lemma 1 (Downward Closure)
For all n ≥ 1, if m �

n
Is F then for all j, 0 ≤ j < n, m �

j
Is F .

3.4 Soundness of Logical Deduction

The sequent calculus of linear logic is of the form: Γ; ∆ −→ F .
Context Γ contains unrestricted resources, and context ∆ contains
linear resources. The unrestricted resources can be used any num-
ber of times to prove F , and each of the linear resources must be
used exactly once. The sequent calculus rules are provided for ref-
erence in Appendix A.

The actual logical deduction rules for LolliMon are more com-
plicated than those of linear logic due to the addition of monads.
However, LolliMon is sound with regard to the sequent calculus
rules in Appendix A. Therefore, in order to show the soundness of
the LolliMon logical deductions with regard to our memory model,
we only need to prove the soundness of the sequent calculus rules
for intuitionistic linear logic with regard to the model.

First, we define the semantics of logical contexts. A memory m
is described by the unrestricted context Γ and the linear context ∆
if m is described by the formula created by wrapping each formula
in Γ with ! and then tensoring together these formulas and all the
formulas in ∆.

We prove that if memory m is described by contexts Γ and ∆,
then m is also described by the logical consequence of Γ and ∆.

Theorem 2 (Soundness of Logical Deduction)
If Γ; ∆ −→ F and for all n ≥ 0, m �

n
Is Γ; ∆ implies m �

n
Is F .

3.5 Soundness of Assertions

Our main technical result is a proof that if an assertion of formula
F succeeds, then the current memory state can be described by F .

When an assertion is reached, the user-defined inductive defini-
tions Is are dumped into the unrestricted context Γ. The formulas
describing each allocated location in the current program heap are
dumped into the linear context ∆. We use the notation Locs(m)
to represent the set of formulas created by encoding each live heap
location ` containing value v into its describing formula (lin ` v).

We first show that the recursive definitions Is are valid with an
empty memory.

Lemma 3
For all n ≥ 1, · �

n
Is!Is

Next we show the correctness of the encoding of memory m
by Locs(m). In other words, memory m can be described by the
tensoring of all predicates in Locs(m).

Lemma 4
For all n ≥ 0, m �

n
Is

N

(Locs(m))

Finally, we show that if an assertion succeeds, then the cur-
rent memory m can be described by the asserted formula. We have
proven that the current memory can be described by the unrestricted
context built from the definitions of the recursively defined predi-
cates and the linear context built from the current memory loca-
tions. Therefore, we can invoke the soundness of logical deduction

theorem (Theorem 2) and conclude that the current memory can be
described by the asserted formula.

Theorem 5 (Soundness of Assertions)
If Is; Locs(m) −→ F , then ∀n ≥ 1, m �

n
Is F .

4. Implementation
The MiniC system consists of a simple lexer, parser, and interpreter
for a subset of C and an interface to the implementation of the logic
programming language LolliMon. When the interpreter encounters
an assertion, LolliMon is called to verify the assertion.

4.1 The MiniC Language

The MiniC language is a subset of C including basic control flow
constructs, pointers, structs, unions, and enums with the addition of
inductive definitions and assert statements in LolliMon.

A MiniC program begins with a set of LolliMon clause defini-
tions in LolliMon, which are enclosed in double square brackets.
The implementation automatically includes the definitions of the
basic predicates such as lin and struct. Next there is a sequence
of top level declarations that can include global variables, struct and
union definitions, type definitions, function declarations, and enu-
merations. Program execution begins with the distinguished main
function.

In an assert statement, the formula to be asserted is in double
square brackets. Program variables may be included in the formula
by prefixing them with a dollar sign.

The MiniC interpreter is written in OCaml. It is completely stan-
dard, except for the interpretation of assert statements. When the
interpreter encounters an assert statement, it calls the logic engine
LolliMon with three pieces of information: the user-defined defini-
tions from the top of the program, the current state of the heap, and
the formula that needs to be checked. If LolliMon succeeds in prov-
ing the formula from the provided resources, the interpreter sim-
ply continues; otherwise, the interpreter halts with an Assertion
Failed exception.

4.2 The Logic Engine

We use LolliMon [12] as the logical engine to check assertions in
MiniC programs. The backward-chaining operational semantics of
LolliMon give a natural interpretation of the logical connectives as
goal-directed search instructions.

Because linear logic requires that the formulas in the linear con-
text have to be used exactly once, the resource management for a
linear logic programming language can be quite complicated. The
resource management of LolliMon implements the Tag Frame Fast
System [13]. Each formula in the context is assigned a special tag
to indicate the usage of this formula. The linear logical context is
globally available throughout the proof, and only the tags of the for-
mulas are marked when they are used in the proof. The Tag Frame
Fast System manages to make most context manipulating opera-
tions take constant time, except the pick rule, which goes through
the context linearly to choose a formula to prove the goal predicate.
Next we will explain how we modified the implementation of Lol-
liMon to achieve reasonable performance while verifying the shape
of data structures.

Heap Context and Mode Analysis When LolliMon is called to
prove an assertion, the logical context contains the programmer
defined clauses and the logical encoding of the program heap.
Naively, we can traverse the heap and dump out all the contents
into the logical context before we start the proof. However, such
an approach will never work in practice. For one thing, we are
doubling the memory requirements to use any assertion, even one
that is related to only a single location in the program’s heap.

For another, the performance of LolliMon will suffer from a large
program heap. As we mentioned earlier, the resources management
of LolliMon contains the pick rule taking time that is linear to
the number of formulas in the context. This means that the larger
the program heap, the larger the logical context, and the worse the
performance.

Fortunately, it is not necessary to dump the formulas describing
the heap into the context. Since those formulas are all of the form
(lin ` v) where ` is the address of the location and v is its contents,
we can use a hash table with the addresses of the locations as keys
to manage the formula tags. To determine the value stored in a
location, we simply look it up in the program’s native heap. The
context for the memory contents therefore consists of the program
heap itself plus the hash table. This hash table speeds up the proof
search in two ways. One, it takes amortized constant time to look
up the predicate (lin ` v) in the context. Two, it separates the heap
formulas from the rest of the formulas in the context, and therefore
greatly decreases the time needed to pick a formula in the context.
Furthermore, we exploit the tagging system so that we only need to
create bindings for locations that have directly been used in proving
the goal in the hash table. Consequently, the memory overhead of
the hash table for tags is linear to the size of the data structure that
is of interest to the assertion,

In order for this optimization to be correct, we assume that we
never put (lin ` v) in negative positions, which means that we do
not add new (lin ` v) predicates into the context as the proof search
goes. If we added new bindings during the proof, it would not be
sound to only refer to the heap when determining the contents of a
location. We also must enforce that whenever we attempt to prove
goal (lin ` v), term ` is ground (already known). Otherwise, the
hash table is of no use. These assumptions so far have not restricted
the examples that we can check. Intuitively, we want to look up the
contents of specific memory locations, but we never need to ask the
question of which location contains a specific value.

The first assumption can be easily checked by syntactically
traversing the structure of the goal and the clauses. The second
assumption can be checked using LolliMon’s mode analysis. The
basic idea of mode analysis is to declare the input and output
modes for the arguments of each predicate. The arguments with
input mode have to be ground before proving the predicate, and the
arguments with output mode have to be ground when the predicate
is proved. Mode analysis in logic programming languages checks
the information flow of each clause definition to determine if this
definition obeys the modes declaration. Because we would like to
make sure that the first argument of the (lin ` v) predicate is always
ground when we try to prove it, we declare its mode as #mode lin
+L -V. We declare the modes of other predicates similarly. Finally,
we check that the formula to be asserted is also well-moded.

5. Further Examples: Expressing Aliasing
All the examples we have shown up to this point do not have
aliased data structures. Although linear logic is extremely well-
suited for reasoning about disjoint memory locations, it can also
express invariants involving aliasing. In this section, we show two
examples of how to express invariants of aliased data structures
using our logic.

5.1 Circular Linked Lists

The logic program defining the list predicate llist in Section 2.4
only succeeds on non-circular lists (as intended). It fails on circular
lists because each list node can only be visited once. To check for
circularity, the first node in the list need to be visited again when
the tail node is reached.

We can define circular linked lists by modifying the definition
of llist to pass around the address of the head node. The program

succeeds immediately when a node containing a pointer back to the
head node is reached, without attempting to follow that pointer.

clistnode L T o- struct L (I1::T::nil);
(struct L (I2::X::nil),

clistnode X T).
clist L o- L is 0; clistnode L L.

Predicate clistnode L T states that location L is a list that
eventually points to location T, the address of the head node of the
list. Predicate clist L is the top-level predicate for a circular list
that checks that either L is a null pointer or that it is a list that
eventually points back to itself.

For data structures that contain a small amount of specific alias-
ing, such as circular lists, we can write predicates that carry the spe-
cific aliased locations around and succeed immediately when these
locations are encountered. In this way, we still visit each location
exactly once.

5.2 Directed Acyclic Graphs

A directed acyclic graph, or DAG, may contain aliased subgraphs.
The trick from circular lists won’t work here, because we don’t
have enough information about where the aliasing may occur. In-
stead we use additive conjunction (&) and the top connective to
allow sharing between data structures. Remember that formula F1
& F2 describes memories that satisfy both F1 and F2. The connec-
tive top describes all memories.

Before going into the details of DAGs, we show a small example
of how to express that a pair of locations L1 and L2 may or
may not be aliased. Formula (lin L1 V1, lin L2 V2) fails to
describe such memories, because it only describes memories with
two unaliased locations. Instead, we can use the following formula
to describe the may-alias situation.

(lin L1 V1, top) & (lin L2 V2, top)

If the memory contains only one location `, then it can be de-
scribed by both the sub-formulas connected by &. The tensor di-
vides the memory into one part containing ` and one part contain-
ing the empty memory; ` is the witness for both L1 and L2, and
top is satisfied by the empty memory. In the case where the mem-
ory contains two locations ` and `′, the first sub-formula is satisfied
by using ` as the witness for L1 and letting top consume the rest
of the memory containing location `′; the second sub-formula is
satisfied by using `′ as the witness for L2 and letting top consume
the rest of the memory containing location `.

When a DAG has no sharing between subgraphs, it becomes a
tree. Now we examine the definition for trees, which is given below.
It states that each tree node contains data, a pointer to its right child,
and a pointer to its left child; that both of the children are trees; and
that the tree node, the left subtree, and the right subtree are pair-
wise disjoint.

tree L o- (L is 0);
(struct L (Data::Left::Right::nil),
tree Left, tree Right).

We can modify the tree definition to describe a DAG by chang-
ing the tensor between the two subtrees to the additive conjunction
& so that they can be aliased.

dag L o- (L is 0);
(struct L (Data::Left::Right::nil),
((dag Left, top) & (dag Right, top))).

The DAG definition still requires that the root node is disjoint
from both subgraphs (so that there can be no cycles), but allows the
two subgraphs to be aliased.

This definition may require the same node to be checked once
for each unique path from the root of the dag to that node. However,
the definition is still guaranteed to terminate since each use of the
definition consumes the memory for the root node.

6. Extended Example: Red-Black Trees
In this section, we will explore an example of red-black trees, which
are balanced binary search trees. We not only check the shape of the
data structure, but also check the partial ordering of the data carried
at each node, that red nodes do not have red parents, and that the
black heights of all leaves are equal.

6.1 Expressing Red-Black Tree Invariants

First, we define an auxiliary predicate, checkData, to describe the
ordering between the data D of the current node and the data Pd of
the parent node. It also takes a flag Rc to indicate if this node is a
right child (Rc is 1), left child (Rc is 0), or the special case, root (Rc
is 2), where there is no restriction on the data.

checkData D Pd Rc o-
(Rc is 0, (D = Pd; Pd > D));
(Rc is 1, (D = Pd; D > Pd));
(Rc is 2).

Next we define predicate rnode L Pd Rc Bh to mean that the
starting address of this red node is L, and the black height of all
the leaves under this node is Bh (arguments Pd and Rc have the
same meaning as above). Similarly, predicates bnode and rbnode
describe black nodes and nodes of either color respectively. The
definitions are given below. A red node contains four elements: the
color red (represented by 1), data, pointers to a left child and a right
child. The data must be appropriately related to that of its parent,
both the left and right children must be black nodes, and the black
height of the two subtrees is equal.

rnode L Pd Rc Bh o-
(struct L (1::Data::Left::Right::nil),
checkData Data Pd Rc,
bnode Left Data 0 Bh,
bnode Right Data 1 Bh).

bnode L Pd Rc Bh o-
(L is 0, Bh is 0);
(struct L (0::Data::Left::Right::nil),
checkData Data Pd Rc,
rbnode Left Data 0 Bh2,
rbnode Right Data 1 Bh2,
Bh is Bh2 + 1).

rbnode L Pd Rc Bh o-
(bnode L Pd Rc Bh); (rnode L Pd Rc Bh).

A black node is similar to a red node, except that the children
may be either color, the black height increases by one, and an
additional case to handle leaf nodes.

Finally, location L is a pointer to a red-black tree (rbtree L) if
it is a black node of some black height.

rbtree L o- bnode L 0 2 Bh.

6.2 A Red-Black Tree implementation

We took an implementation of red-black trees from The Object
Oriented Programming Web (http://www.oopweb.com) and ported
it to MiniC. The porting process was very simple, and all changes
were due to the simplicity of the MiniC parser and interpreter.

We modified the LolliMon definitions given in the previous sec-
tion to include a parent pointer and a key in the struct predicate
in order to match this C implementation. In the implementation,
leaf nodes point to a universal nil node called sentinel node. The

sentinel is heavily aliased and we applied the trick in the circular
linked list example and modified the node predicate definitions to
take the address of this sentinel node as an extra argument.

We inserted assertions in the main function after each series of
operations on the red-black tree to check that the root variable still
pointed to a red-black tree with sentinel variable as its nil node. A
subset of the code is available in Appendix B. We did not find any
errors in this implementation. However, we did introduce various
errors, and the assertions failed as expected.

7. Related and Future Work
In this section we discuss related work and future work.

7.1 Related Work

There has been a great deal of research on static shape analysis us-
ing abstract interpretation, data flow analysis, type systems, model
checking and various different kinds of logics. Efforts in this di-
rection are complementary to the dynamic shape analysis we pro-
pose in this paper. As mentioned in the introduction, the inspira-
tion for using a substructural logic to describe heap shape comes
from the work of O’Hearn, Reynolds, Yang and others on sepa-
ration logic [22] — a technique for static verification of pointer
programs. Our choice of linear logic is mostly out of practical con-
cerns; since LolliMon is available for us to use and modify.

Tools for dynamic verification of heap properties include Pu-
rify [5] and SWAT [6]. Purify traps every memory access call in a
program and detects generic problems such as dangling pointer ac-
cess. SWAT uses a profiling infrastructure to monitor memory ac-
cess operations and detect memory leaks. Both of these works focus
on dynamically detecting memory access errors and memory leaks,
whereas our work mainly focus on dynamically checking complex
programmer-specified invariants about memory shapes.

7.2 Future Work

In the future, we plan to continue working on our assertion lan-
guage in order to make it easier for programmers to master. Right
now, in order to use our system, a programmer must define clauses
and write assertions in the syntax of LolliMon. Even though the
logic programming language is declarative and relatively easy to
learn, it still requires an added learning curve for programmers un-
familiar with logic programming. The goal of the assertion lan-
guage design is to keep the declarative feature and at the same time
bring the syntax of the assertion language closer to the syntax of
defining data structures in the native language, so that the program-
mers have an easier time specifying invariants.

In this paper, we only implement a prototype system to check
the feasibility of our basic idea of checking the invariants of recur-
sive data structures dynamically using a linear logic programming
language. A lot of work remains to make this system real. Ideally,
we would like to deploy our system for ANSI C. The questions to
be solved include how to link the runtime system of C with the logic
engine, how the performance will scale to large data structures, and
how to optimize the logic engine.

Finally, we are currently engaged in research on static verifica-
tion of program properties using linear logic [1, 10, 11]. In the long
term, we hope to use the same language of heap-shape assertions
both as dynamic contracts and as annotations for static verification.

8. Conclusions
In this paper, we show how to use linear logic as a language of con-
tracts that document and enforce heap-shape properties in imper-
ative programs. Unlike the ad hoc, unstructured heap-shape con-
tracts one might write in native code, linear logical contracts are

clear, concise and have a well-defined semantics. We have imple-
mented a rather substantial C-like programming language that in-
cludes linear logical heap-shape contracts. The contracts are eval-
uated at runtime using a modified version of the LolliMon logic
programming engine. Using our implementation, we have exper-
imented with contracts for a variety of data structures including
linked lists, doubly-linked lists, circular lists, trees and DAGs. Sev-
eral of these examples are explained in this paper. Finally, we have
developed an indexed heap model for linear logic with inductive
definitions and proven that linear logic’s proof theory, and there-
fore our logic engine, is sound with respect to this model.

References
[1] A. Ahmed and D. Walker. The logical approach to stack typing.

In ACM SIGPLAN Workshop on Types in Language Design and
Implementation, New Orleans, Jan. 2003.

[2] A. W. Appel and D. A. McAllester. An indexed model of recursive
types for foundational proof-carrying code. Programming Languages
and Systems, 23(5):657–683, 2001.

[3] L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning about
a copying garbage collector. In ACM Symposium on Principles of
Programming Languages, pages 220–231, Venice, Italy, Jan. 2004.

[4] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 48–59, New York, NY,
USA, 2002. ACM Press.

[5] R. Hastings and B. Joyce. Fast detection of memory leaks and access
errors. In Proceedings of the Winter ’92 USENIX conference, pages
125–136. USENIX Association, 1992.

[6] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In ASPLOS, pages
156–164, 2004.

[7] J. S. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic. In Papers presented at the IEEE symposium
on Logic in computer science, pages 327–365, Orlando, FL, USA,
1994. Academic Press, Inc.

[8] R. C. Holt and J. R. Cordy. The Turing programming language.
Commun. ACM, 31(12):1410–1423, 1988.

[9] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable
data structures. In Twenty-Eighth ACM Symposium on Principles of
Programming Languages, pages 14–26, London, UK, Jan. 2001.

[10] L. Jia, F. Spalding, D. Walker, and N. Glew. Certifying compilation
for a language with stack allocation. In Proceedings of the Twentieth
Annual IEEE Symp. on Logic in Computer Science, LICS 2005, 2005.

[11] L. Jia and D. Walker. ILC: A foundation for automated reasoning
about pointer programs. In European Symposium on Programming
Languages, Apr. 2006.

[12] P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic
concurrent linear logic programming. In PPDP ’05, pages 35–46,
New York, NY, USA, 2005. ACM Press.

[13] P. López and J. Polakow. Implementing efficient resource man-
agement for linear logic programming. In Logic for Programming
Artificial Intelligence and Reasoning (LPAR), pages 528–543, 2004.

[14] D. C. Luckham. Programming with Specifications: An Introduction
to Anna, a Language for Specifying ADA Programs. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1990.

[15] B. Meyer. Eiffel: programming for reusability and extendibility.
SIGPLAN Not., 22(2):85–94, 1987.

[16] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[17] G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear language with
locations. In Seventh International Conference on Typed Lambda
Calculi and Applications, Apr. 2005.

[18] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

[19] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic,
number 2142 in LNCS, pages 1–19, Paris, 2001.

[20] D. L. Parnas. A technique for software module specification with
examples. Commun. ACM, 15(5):330–336, 1972.

[21] Programming with assertions. http://java.sun.com/j2se/1.4.2/docs
/guide/lang/assert.html.

[22] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, pages 55–74, 2002.

A. Sequent Calculus for
Intuitionistic Linear Logic

Γ; ∆ −→ F

Γ;F −→ F
L-Init

Γ, F ;∆, F −→ F ′

Γ, F ;∆ −→ F ′
Copy

Γ; ∆1 −→ F1 Γ;∆2 −→ F2

Γ;∆1,∆2 −→ F1 ⊗ F2

⊗R

Γ;∆, F1, F2 −→ F

Γ;∆, F1 ⊗ F2 −→ F
⊗L

Γ; ∆, F1 −→ F2

Γ; ∆ −→ F1 (F2

(R

Γ; ∆ −→ F1 Γ;∆′, F2 −→ F

Γ;∆, ∆′, F1 (F2 −→ F
(L

Γ; · −→ 1
1R

Γ; ∆ −→ F

Γ; ∆, 1 −→ F
1L

Γ;∆ −→ F1 Γ;∆ −→ F2

Γ;∆ −→ F1 &F2

&R

Γ;∆, F1 −→ F

Γ;∆, F1 &F2 −→ F
&L1

Γ;∆, F2 −→ F

Γ;∆, F1 & F2 −→ F
&L2

Γ;∆ −→ >
>R

Γ; ∆ −→ F1

Γ; ∆ −→ F1 ⊕ F2

⊕R1
Γ; ∆ −→ F2

Γ;∆ −→ F1 ⊕ F2

⊕R2

Γ;∆, F1 −→ F Γ;∆, F2 −→ F

Γ;∆, F1 ⊕ F2 −→ F
⊕L

Γ; ∆, 0 −→ F
0L

Γ; ∆ −→ F [t/x]

Γ;∆ −→ ∃x.F
∃R

Γ; ∆, F [a/x] −→ F ′

Γ; ∆,∃x.F −→ F ′
∃L

Γ; ∆ −→ F [a/x]

Γ;∆ −→ ∀x.F
∀R

Γ; ∆, F [t/x] −→ F ′

Γ; ∆,∀x.F −→ F ′
∀L

Γ; · −→ F

Γ; · −→!F
!R

Γ;F ;∆ −→ F ′

Γ; ∆, !F −→ F ′
!L

B. Redblacktree.minic
Below we include partial code for the MiniC implementation of
red-black trees 2. The delete function includes an assertion to
verify that deleting a node has not violated the red-black tree
invariants defined at the beginning of the program.

2 based on code from http://oopweb.com/Algorithms
/Documents/Sman/Volume/s rbt.txt

/* -----------------------------------
* Red-Black Tree invariants specified
* as LolliMon predicates
* ----------------------------------- */

[[
checkData: int -> int -> int -> o.
bnode: int -> int -> int -> int -> int -> o.
rnode: int -> int -> int -> int -> int -> o.
rbnode: int -> int -> int -> int -> int -> o.
rbtree: int -> int -> o.
nilnode: int -> o.

#mode checkData +X +Y +Z.
#mode rnode +L +N +P +G -B.
#mode bnode +L +N +P +G -B.
#mode rbnode +L +N +P +G -B.
#mode rbtree +L +N.
#mode nilnode +L.

checkData D Pd Rc o-
(Rc is 0, (D = Pd; Pd > D));
(Rc is 1, (D = Pd; D > Pd));
(Rc is 2).

rnode L N Pd Rc Bh o-
(struct L (Left::Right::Parent

::1::Key::Data::nil),
checkData Data Pd Rc,
bnode Left N Data 0 Bh,
bnode Right N Data 1 Bh).

bnode L N Pd Rc Bh o-
(L is N, Bh is 0);
(struct L (Left::Right::Parent

::0::Key::Data::nil),
checkData Data Pd Rc,
rbnode Left N Data 0 Bh2,
rbnode Right N Data 1 Bh2,
Bh is Bh2 + 1).

rbnode L N Pd Rc Bh o-
(bnode L N Pd Rc Bh);
(rnode L N Pd Rc Bh).

nilnode N o-
struct N (Left::Right::Parent

::0::Key::Data::nil).

rbtree Root Nilnode o-
nilnode Nilnode,
bnode Root Nilnode 0 2 Bh.

]]

/* -----------------------------------
* Declaration of node type
* ----------------------------------- */

/* Red-Black tree description */
enum nodecolor_tp {BLACK, RED};

/* node type */
struct nodeTag_tp {

struct nodeTag_tp *left;
struct nodeTag_tp *right;
struct nodeTag_tp *parent;
nodecolor_tp color;
key_tp key;
rec_tp rec;

};
typedef struct nodeTag_tp node_tp;

/* -----------------------------------
* Global variables: sentinel and root
* ----------------------------------- */

/* all leaf nodes are sentinels */
node_tp *sentinel;

/* root of Red-Black tree */
node_tp *root;

/* -----------------------------------
* Function Declarations
* (code ommitted)
* ----------------------------------- */

void rotateLeft(node_tp *x) {...}
void rotateRight(node_tp *x) {...}
status_tp find(key_tp key, rec_tp *rec) {...}
void insertFixup(node_tp *x) {...}
status_tp insert(key_tp key, rec_tp *rec) {...}
void deleteFixup(node_tp *x) {...}

/* delete node z from tree */
status_tp delete(key_tp key) {

node_tp *y;
...code ommitted...
free(y);

/* assert that delete maintains the invariants */
assert([[rbtree $root $sentinel, top]]);

return STATUS_OK;
}

/* -----------------------------------
* Main Function
* ----------------------------------- */
int main () {

rec_tp *rec;
status_tp status;
int i;

/* build sentinel (nil) node */
sentinel = malloc(sizeof(node_tp));
sentinel->left = sentinel;
sentinel->right = sentinel;
sentinel->color = BLACK;
sentinel->key = 0;
sentinel->rec = 0;

/* allocate record */
rec = malloc(sizeof(rec_tp));

/* assign initial value of root */
root = sentinel;

/* fill in with keys 0 through 14 */
i = 0;
while (i < 15) {

rec->stuff = i + 20;
status = insert(i,rec);
i = i + 1;

}

/* delete node -- includes invariant check */
status = delete(3);

}

