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Abstract
This paper presents AURA, a programming language for access
control that treats ordinary programming constructs (e.g., integers
and recursive functions) and authorization logic constructs (e.g.,
principals and access control policies) in a uniform way. AURA is
based on polymorphic DCC and uses dependent types to permit
assertions that refer directly to AURA values while keeping com-
putation out of the assertion level to ensure tractability.The main
technical results of this paper include a proof of decidability for
AURA’s type system, a fully mechanically verified proof of sound-
ness, and a prototype typechecker and interpreter.

1. Introduction
There can be no universal definition of security. Every pieceof con-
fidential data and every sensitive resource may have specialized ac-
cess control requirements. At the same time, almost every mod-
ern computer system stores some private information or provides
a service intended only for certain clients. To ensure that only al-
lowed principals—human users or other computer systems—can
reach the protected resources, these access-control requirements
must be carefully defined and enforced. Anauthorization policy
specifies whether a request by a principal to access a resource
should be granted, and areference monitormediates all access to
the resource, ensuring that handling of requests complies with the
authorization policy.

One significant challenge in building secure systems that en-
force access control is that, as the number of resources and princi-
pals grows, specifying the authorization policy becomes more dif-
ficult. The situation is further complicated in decentralized or dis-
tributed settings, where resources may have different owners and
the principals may have non-trivial trust relationships. Once the
policies become sufficiently complex, understanding whichprin-
cipals may access which resources is itself a daunting problem.
Consequently, reference monitors that enforce such policies also
become complex, which is not a desired situation when (as in a
conventional access control scheme) the reference monitoris part
of the trusted computing base.

To help mitigate this complexity, researchers have proposed
authorization logicsthat facilitate reasoning about principals, re-
quests, and policy assertions [4, 13, 19, 1, 2]. Several of these log-
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ics have been concerned with specifying access-control policies in
distributed settings [43, 5, 10, 20, 19]. Part of the appeal of autho-
rization logics is that proofs of propositions in the logic can act as
capabilitiesthat provide the reference monitor with evidence that
a given request should be granted. As proposed by Appel and Fel-
ten [5], such aproof-carrying authorizationapproach places the
burden of validating the authorization decision on the principal re-
questing access. Moreover, the explicit proofs can be logged for
future auditing, which can help track down bugs in the authoriza-
tion policy [38].

Authorization logics provide rich and concise languages for
specifying access-control policies, abstracting from low-level de-
tails like authentication and cryptography. Unfortunately, these log-
ics are rather removed from the languages used to write software
that must respect the access-control policies; typecheckers and
other tools that help the programmer write correct programswill
not necessarily help the programmer correctly make use of anau-
thorization logic. This is especially problematic in the case of the
reference monitor, which has the task of enforcing policieswritten
in the authorization logic and must still be considered partof the
trusted computing base.

This paper presents the design of AURA, a domain-specific
programming language that incorporates a constructive authoriza-
tion logic based on DCC [3, 2] as part of its type system. Rather
than mediate between programs and policy statements written in
two distinct languages, AURA usesdependent typesto permit pol-
icy statements that refer directly to AURA values (like integers or
datatype constructors). For example, a functionplayFor that acts as
a reference monitor for playing MP3 files might have the following
type, which requires a proof that principalp is permitted to access
the song:

(s :Song) → (p :prin) → pf (self says MayPlayp s) → Unit.

As indicated by this type, AURA programs may construct and ma-
nipulate authorization proofs just as they might other program val-
ues, and the AURA programming model provides notions of princi-
pals (p), authority (self), and policy assertions (MayPlay) in ad-
dition to standard functional language features like higher-order
functions, polymorphism, and recursive algebraic datatypes. In ad-
dition, security-relevant implementation details—like the creation
of audit trails or the cryptographic interpretation of certain logi-
cal statements—can be handled automatically with little tono pro-
grammer intervention.

Because policy assertions are part of AURA’s type system, de-
ciding whether to grant access amounts to typechecking a proof ob-
ject. This can be encapsulated in AURA’s runtime, removing indi-
vidual reference monitors from the trusted computing base.More-
over, any program written in AURA benefits from the immediate
availability of the authorization logic; many misbehavingprograms
can now be ruled out at compile time. Finally, DCC, on which
AURA is based, has been shown to be useful in representing other
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forms of language-based security, such as the type-based enforce-
ment of information-flow properties as found in Jif [29] or Flow-
Caml [33]; AURA thus represents a promising avenue for further
work in connecting these concepts.

The main contributions of this paper can be summarized as
follows:

• We present the design of core AURA, a language with support
for first-class, dependent authorization policies.

• We give a fully machine-checked proof of type soundness for
the core language.

• We prove decidability of AURA’s type system.

• We describe a prototype implementation of a typechecker, in-
terpreter, and sample programs.

AURA represents a relatively unexplored facet of language de-
sign. Typical dependently typed languages (see Section 6) use types
to encode precise program specifications. Our goal is different;
AURA uses dependent types to naturally connect data with proofs
for run-time policy enforcement. Compared with a conventional
dependently type language AURA adds some features—assertion
types, digitally signed objects as proofs, thesays monad andpf
modality—and restricts or removes others—only values may ap-
pear in dependent types. The result is a system tuned for dynamic
authorization but unsuitable for, e.g., static program verification.

Our proof of soundness is implemented in Coq and encom-
passes all of AURA’s features, including: higher order and poly-
morphic types, mutually recursive data types and propositions, a
restricted form of dependent types, and authorization proofs. We
believe that the mechanized proof is of independent value, because
parts of the proof may be reused in other settings.

The rest of this paper focuses on the novel core features of
AURA. The next section overviews AURA’s programming model
and illustrates the novel features by example. Section 3 gives a for-
mal account of AURA’s core language, its type system, operational
semantics, and the main technical results (soundness and decidabil-
ity of type checking). Section 4 describes our prototype implemen-
tation. Section 5 gives a larger scale example demonstrating how
AURA’s features work in concert. Section 6 situates AURA with re-
spect to related work, especially prior work on authorization logics
and languages with dependent types. Finally, Section 7 concludes
with a discussion of future avenues for extending AURA.

AURA as we present it is intended to be suitable as a compila-
tion target for a more convenient surface syntax. As such, wede-
fer the important (and practical) issues of type inference,pattern-
match compilation, and the like to future work. Additional topics
for future study include authentication, credential revocation, the
interpretation of AURA values in cryptography, and integration with
mixed language (e.g. C or .Net) systems.

2. Programming in AURA

AURA is intended to be used to implement reference monitors [11]
for access control in security sensitive settings. A reference monitor
must first mediate access by allowing and denying requests toa
resource (based, in this case, on policy specified in an authorization
logic) and second log accesses to enableex post factoaudit. This
latter point we have covered in detail elsewhere [38] (although we
discuss logging briefly in Section 2.3); in this paper we concentrate
on the details integrating programming with an authorization logic.

The potential design space of dependently-typed languagesis
quite large, and there are many challenges in striking a goodbal-
ance between expressiveness and tractability of type checking.
AURA’s design strives for simplicity, even at the cost of expres-

siveness. This section describes AURA’s design, concentrating on
the features specific to authorization policies.

As alluded to by the functionplayFor in the introduction, we
use an AURA implementation of a musical jukebox server as a
running example throughout this paper. The full example is given
in Section 5; the rest of this section will illustrateplayFor in more
detail.

2.1 AURA as an authorization logic

We first turn our attention to AURA’s assertions, which are. based
on the polymorphic core calculus of dependency (DCC) by [3] and
in particular on DCC’s interpretation as an authorization logic [2].
In both DCC and AURA, an indexed monadsays associates propo-
sitions with principals. The statementa says P holds when the
principal a has actively affirmed the propositionP, when a direct
proof for P is known, or whena says P logically follows from
monad operations that we will describe shortly—it is critical to
note, however, thata says P does not implyP. We augment DCC
with dependent types, allowing principals to assert propositions
about data, and with the constructssay and sign, which we will
describe shortly.

Principals in AURA, writtena, b, etc. and having typeprin, rep-
resent distinct components of a software system. They may cor-
respond to human users, system components such as an operat-
ing system kernel, a particular server, etc. Formally, principals are
treated as special values in AURA; they are characterized by their
ability to index the family ofsays monads.

As ‘a says’ is a monad[40], we can construct a term of type
a says P from a proof p of P using the operationreturn a p. A
proof encapsulated in asays monad cannot be used directly; rather,
the monad’s bind operation, written(bind p (λx:P. q)) allowsx to
stand in for the proof insidep and appear in the expressionq.

For example, consider the principalsa andb, the songfreebird,
and the assertionMayPlayintroduced earlier. The statements

ok : a says (MayPlay a freebird)
delegate: b says ((p:prin) → (s:Song) →

(a says (MayPlay p s)) →
(MayPlay p s))

assert thata gives herself permission to playfreebird andb dele-
gates toa the authority to make any variety ofMayPlaystatement
on his behalf. These two terms may be used to create a proof of
b says (MayPlay a freebird) as follows:

bind delegate(λd: ((p: prin) → (s: Song) →
(a says (MayPlay p s)) →
(MayPlay p s)).

return b (d a freebird ok))

Such a proof might have direct utility—it could be passed to the
playFor function if self is b—or it might become part of a larger
chain of reasoning.

In addition to return, AURA allows for the introduction of
proofs ofa says P without corresponding proofs ofP. We provide
a pair of constructs,say and sign, that represent a principal’s ac-
tive affirmation of a proposition. The valuesign(a, P) has type
a says P; intuitively we may think of it as a digital signature by
a’s private key on propositionP. Such a value is intended to have a
stable meaning as it is passed throughout a distributed systems.

A principal should only be able to create a term of the form
sign(a, P) if it is—or, at least, has access to the private key of—a.
We thus prohibit such terms from appearing in source programs and
introduce the related term(say P), which represents an effectful
computation that uses the runtime’s current authority—that is, its
private key—to sign propositionP. When executed,say Pgenerates
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a fresh valuesign(self, P), whereself is a distinguished principal
representing the current runtime authority.

It is worth noting that a principal can assert any proposition,
evenFalse. Because assertions are confined to the monad—thanks
to the non-interference property of DCC—a false assertion can do
little harm other than making the principal’s own assertions incon-
sistent. In practice, it is useful to restrict the kinds of assertions that
various principals can make, buta priori, AURA requires no such
constraints.

The concept of a program’s runtime authority already has a nat-
ural analog in the operating system world—a UNIX process, for
example, has an associated user ID that often, but not always, cor-
responds to the user who started the process. In a more distributed
setting, running under the authority ofa can indeed be represented
by possession ofa’s private key. In such a setting objects of the
form sign(a, P ) can be represented by actual digital signatures, and
principal identifiers—which, in AURA, are first class values of type
prin—can be thought of as public keys.

The restriction of authority to a single principal is only for sim-
plicity’s sake—although syntax would need to be changed, nothing
in our development would conflict with a more complex notion of
authority. AURA currently provides no means oftransferringau-
thority, in effect disallowing programs from directly manipulating
private keys; this prevents AURA programs from creating new prin-
cipals (i.e., key pairs) at runtime but also trivially disallows the ac-
cidental disclosure of private keys. Were AURA to be extended with
support for dynamically generated principals, the addition of infor-
mation flow tracking could assist in ensuring that private keys stay
sufficiently private.

2.2 Authorization proofs and dependent types

By treating assertions as types and proofs as expressions weare tak-
ing advantage of the well-known Curry-Howard Isomorphism [18,
23] between logic and programming languages. Yet while the abil-
ity to manipulate proofs just as one can manipulate other datatypes
is quite useful, we cannot hide from the fact that useful assertions
must somehow refer to objects within our language. In the above
example, for instance,freebird is data that appears at the asser-
tion (i.e., type) level; the functionplayFor in the introduction also
a clearly dependent type.

AURA incorporates dependent types directly—in contrast to, for
example, using GADTs [32] or static equality proofs [35] to sim-
ulate the required dependencies. Such an approach allows straight-
forward use of data at the type level and avoids replicating the same
constructs in both static and dynamic form, but unconstrained use
of dependent types can quickly lead to an undecidable typingjudg-
ment. Moreover, care must be taken to separate effectful computa-
tions from pure proof objects.

Much like CIC [17], AURA has separate universesType and
Prop, with Type and Prop themselves being classified byKind.
The previously mentioned assertionMayPlay, for instance, would
be given the assertion typePrin → Song→ Prop. Unlike CIC,
both types of kindType and propositions of kindProp describe
data that may be available at runtime. Propositions, however, are
required to be completely computation-free: propositionsnever
reduce and AURA does not employ type-level reduction during
typechecking, meaning that only dependencies on values (i.e., well-
formed normal forms) for which equality comparison is available
can be used non-trivially. This turns out to be enough to ensure
decidability of AURA’s type system.

AURA offers a type-refining equality test onatomic values—
for instance, principals and booleans—as well as a dynamic cast
between objects of equivalent types, which prove necessaryfor
certain equalities that arise only at runtime. For example,when
typecheckingif self = a then e1 else e2, the fact thatself = a is

automatically made available while typecheckinge1 (due to the fact
thatprin is an atomic type), and hence proofs of typeself says P
can be cast to typea says P and vice-versa.

The distinction betweenType and Prop is also illustrated by
the previously introducedsay and sign. On the one hand,say P
certainly belongs inType’s universe—not only do we intend it to
be reduced by our operational semantics, this reduction is an effect-
ful (if trivial) computation dependent on a program’s runtime au-
thority. On the other hand,sign(a,P ) should be of typea says P ,
which, likeP , is of kindProp. To solve this dilemma we introduce
the modalitypf : Prop → Type, allowing us to givesay P the
type pf (self says P ) of kind Type. Thepf modality also comes
equipped with its ownbind andreturn operations, much likessays,
thus allows proofs to be manipulated by computations while keep-
ing the worlds of computations and assertions separate.

AURA’s dependent types also address something that might
have seemed odd about our cryptographic interpretation of thesays
monad, namely that one most often thinks of digitally signing data,
whereassign(a, P ) signs only an assertion. With dependent types,
however, this issue evaporates, as an assertion can refer towhatever
data might be endorsed. We find this design compelling, because a
digital signature on raw data does not necessarily have a sensible
meaning; signing only propositions ensures that the signeddata is
attributed with some semantics, just as, for example, a physical
signature on a contract will indicate whether the signer is party to
the contract or merely a witness.

2.3 Auditing in AURA

Passing proofs at runtime is also useful for after the fact auditing
of AURA programs. The full details are given elsewhere [38] but
we note that, when full proofs are logged for every resource ac-
cess, it becomes possible to determinehowaccess was granted at a
very fine granularity. This is of great importance when the intent of
some institutional policy is not properly reflected in the actual rules
enforced by a software system—for example, an auditor can exam-
ine the proof that allowed an unwanted access to take place and
determine whether and where authority was improperly delegated.

These guarantees can be made as long as the interface to the
resources of interest is sufficiently rich: we can simply decree that
every interface function—that is, a function that wraps a lower level
operating system call—writes its arguments to the log. There are no
constraints on what the rest of the reference monitor may do other
than that it must respect this interface—it is not possible to inad-
vertently add a path through the program that causes insufficient
information to be logged. This is in keeping with AURA’s general
philosophy of resilience toward mistakes on the part of the pro-
grammer.

Returning toplayFor, let us assume that there exists a native
functionrawPlayFor : Song→ Unit that is not security-aware and
hence is not available to the programmer. We define the interface
functionplayFor as simply

λs :Song. λp :prin. λproof:pf (self says MayPlayp s).
rawPlayFors.

BecauseplayFor is an interface function—i.e., because it has ac-
cess torawPlayFor—its arguments will automatically be logged,
and because the access control policy is entirely encoded in
playFor’s signature, the log will automatically contain everything
an auditor needs to determine precisely how any song was autho-
rized to be played.

3. The AURA Core Language
This section presents the main technical contributions of this paper,
namely a formal description of the AURA core language, its type
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system, operational semantics, and the corresponding proofs of
type soundness and decidability of type checking.

We adopt the design philosophy of elaboration-style semantics
(as used, for example, by Leeet. al [27]): the AURA intermediate
language is intended to make type checking as explicit as possi-
ble. Following this principle, our design eschews complex pattern
matches, equality tests over complex values, and implicit casts.
Our goal was to cleanly divide the compiler into two parts: an
elaboration phase that uses inference, possibly with heuristics and
programmer-supplied hints, to construct an internal representation
that makes all type information explicit; and a compilationphase
that processes the fully elaborated intermediate representation into
executable code.

3.1 AURA core syntax

As described above, AURA is a call-by-value polymorphic lambda
calculus. It consists of a “term-level” programming language
(whose expressions are classified by types of kindType) for writ-
ing algorithms and manipulating data and a “proof-level” assertion
language (whose expressions are classified by propositionsof kind
Prop) for writing proofs of access-control statements. These two
languages share many features (λ-abstraction, application, con-
structors, etc.) and, due to the dependent types, propositions and
types may mentions terms. To simplify the presentation of AURA,
it makes sense to unify as many of these constructs as possible. We
thus adopt a lambda-cube style presentation [9] that uses the same
syntactic constructs for terms, proofs, types, and propositions. Dif-
ferent categories are distinguished by the type system as necessary.
This approach also has the appeal of greatly reducing the number of
objects in the language, which simplifies both the metatheory and
implementation. Our design was significantly influenced by the
Henk intermediate language [24], which also adopts this compact
representation.

The lambda-cube terms of the AURA core syntax are given by:

Terms t : : = x | ctr | . . .
| λx : t1. t2 | t1 t2 | (x : t1) → t2
| match t1 t2 with {b} | 〈t1 : t2〉

Branches b : : = · | ctr ⇒ t | b

Here,x ranges over variables, andctr ranges over programmer-
defined constructors created using data type declarations as de-
scribed below. In addition to the standard lambda abstraction,
application, and dependent arrows, AURA also has a pattern
matching construct and an explicit type cast. In the expression
match t t1 with {b}, t is the term that is being analyzed,t1 is the
return type, andb is a list of branchest1 is matched against; the
type annotationt1 in the syntax of the pattern-matching expression
ensures that type checking is straightforward even when theset of
branches is empty. The explicit cast〈t1 : t2〉 ensures (safely) that
t1 be considered at typet2.

To express and reason about access control, AURA extends the
core syntax above with additional terms. Here, and throughout the
rest of the paper, we use metavariable conventions that makeit
easier to recall constraints placed on a term by the type system:
a ranges over principals,P ranges over propositions,p ranges over
proofs,e ranges over program expressions, andv stands for values.
All of these metavariables are synonymous witht, which we use to
indicate syntactic objects of any flavor. The AURA-specific syntax

is given by1:

t : : = . . . | Type | Prop | Kind
| prin | a says P | pf P
| self | sign(a,P ) | sayP
| returns a p | binds e1 e2

| returnp p | bindp e1 e2

| if v1 = v2 then e1 else e2

3.2 Type checking AURA

AURA’s type system contains the following judgments:

Well-formed signatures S⊢ ⋄
Well-formed typing environments S⊢ E
Well-formed terms S; E ⊢ t : s
Well-formed match branches S; E; s; args ⊢ branches : t

Figure 1 shows the term type checking rules. We omit the rules
for typechecking signatures and branches, though we describe their
salient features below. The full type system can be found in the Coq
implementation.

In these judgments,S is a signature that declares types, propo-
sitions, and assertions (described in more detail below). Typing en-
vironmentsE map variables to their types as usual, but they also
record the hypothetical equalities among atomic run-time values. In
the definition of environments,E, below, a bindingx∼ (v1 = v2):t
indicates thatv1 andv2 have typet, and that the run-time values of
v1 andv2 are equal.

Environments E : : = · | E, x : t | E, x∼ (v1 = v2):t

3.3 Signatures: data declarations and assertions

Programmers can define bundles of mutually recursive data types
and propositions in AURA, just as in other programming languages.
A signatureS collects together these data definitions and, as a con-
sequence, a well-formed signature can be thought of as map from
constructor identifiers to their types. We omit the formal grammar
and typing rules for signatures, as they are largely straightforward.
Instead we explain signatures via examples.

Data definitions may be parameterized. For example, the famil-
iar polymorphic list declaration is written:

data List :Type → Type {
| nil :(t:Type) → List t
| cons:(t:Type) → t → List t → List t
}

AURA’s type system rules out data declarations that require
nontrivial equality constraints at the type level. For example, the
following GADT-like declaration is ruled out, sinceBad t uwould
imply t = u:

data Bad:Type → Type → Type {
| bad :(t:Type) → Bad t t
}

Logical connectives like conjunction and disjunction can be
encoded using dependent propositions, as in Coq and other type-
based provers. For example:

data And:Prop → Prop → Prop {
| both:(p1:Prop) → (p2:Prop) → p1 → p2 → And p1 p2
}

AURA’s type system conservatively constrainsProp definitions
to be inductive by disallowing negative occurrences ofProp con-
structors. Such a restriction is essential for consistencyof the logic,

1 In the Coq development, these constructs are represented using constants
and term application.

Draft 4 2008/5/30



S⊢ E
S; E ⊢ Type : Kind

WF-TM-TYPE
S⊢ E

S; E ⊢ Prop : Kind
WF-TM-PROP

S⊢ E S(ctr) = t

S; E ⊢ ctr : t
WF-TM-CTR

S⊢ E E(x) = t

S; E ⊢ x : t
WF-TM-FV

S; E, x : t1 ⊢ t2 : k2 k2 ∈ {Type, Prop, Kind}

S; E ⊢ (x : t1) → t2 : k2

WF-TM-ARR

S; E ⊢ t : k S; E, x : t ⊢ u : k1 S; E ⊢ (x :u) → k1 : k2 k ∈ {Type, Prop, Kind} k2 ∈ {Type, Prop}

S; E ⊢ λx : t. u : (x : t) → k1

WF-TM-ABS

S; E ⊢ t1 : (x :u2) → u S; E ⊢ t2 : u2 val(t2) or x /∈ fv(u)

S; E ⊢ t1 t2 : {x/t2}u
WF-TM-APP

S; E ⊢ e : s fully applieds ctr args k S(ctr) = k
branchescover Sbranches ctr S; E; s; args ⊢ branches : t
S; E ⊢ s : u S; E ⊢ t : u u ∈ {Type, Prop}

S; E ⊢ match e t with {branches} : t
WF-TM-MATCHES

S⊢ E
S; E ⊢ prin : Type

WF-TM-PRIN
S⊢ E

S; E ⊢ self : prin
WF-TM-SELF

S; E ⊢ a : prin S; E ⊢ P : Prop

S; E ⊢ a says P : Prop
WF-TM-SAYS

S; E ⊢ a : prin val(a) S; E ⊢ p : P S; E ⊢ P : Prop

S; E ⊢ returns a p : a saysP
WF-TM-SAYS-RET

S; E ⊢ e1 : a says P S; E ⊢ e2 : (x :P ) → a says Q x /∈ fv(Q)

S; E ⊢ binds e1 e2 : a says Q
WF-TM-SAYS-BIND

S; · ⊢ a : prin S; · ⊢ P : Prop

S; E ⊢ sign(a, P ) : a says P
WF-TM-SIGN

S; E ⊢ P : Prop

S; E ⊢ sayP : pf self says P
WF-TM-SAY

S; E ⊢ P : Prop

S; E ⊢ pf P : Type
WF-TM-PF

S; E ⊢ p : P S; E ⊢ P : Prop

S; E ⊢ returnp p : pf P
WF-TM-PF-RET

S; E ⊢ e1 : pf P S; E ⊢ e2 : (x :P ) → pf Q x /∈ fv(Q)

S; E ⊢ bindp e1 e2 : pf Q
WF-TM-PF-BIND

S; E ⊢ v1 : k S; E ⊢ v2 : k atomic Sk val(v1) val(v2) S; E, x∼ (v1 = v2):k ⊢ e1 : t S; E ⊢ e2 : t

S; E ⊢ if v1 = v2 then e1 else e2 : t
WF-TM-IF

S; E ⊢ e : s converts Es t

S; E ⊢ 〈e : t〉 : t
WF-TM-CAST

Figure 1. AURA typing rules

since otherwise it would be possible to write loops that inhabit any
proposition, includingFalse. Falseitself is definable: it is a propo-
sition with no constructors:

data False:Prop { }

Assertions, like theMayPlay proposition from above define
uninhabited constants that constructProps:

assert MayPlay:Prin → Song→ Prop

While assertions are similar in flavor to datatypes with no construc-
tors, there is a key difference. When an empty datatype is scru-
tinized by a match expression, the match may be assigned any
type. Hence if we were to defineMayPlayas an empty inductive
type, A says Falsewould follow from A says MayPlay A freebird.
In contrast, there is no elimination form for assertions. This means
that principals may sign assertion without compromising their says
monad’s consistency.

3.4 Core term typing

Type is the type for computation expressions, andProp is the
type for propositions. ConstantKind classifies bothType andProp
as shown in rules WF-TM-TYPE and WF-TM-PROP. (Here and
elsewhere, we use the lowercase word “type” to mean a classifier
in the type system—Prop andType are both “types” in this sense.)

The typechecking rules for constructors declared in the signa-
ture and free variables are completely standard (see WF-TM-CTR
and WF-TM-FV). More interesting is WF-TM-ARR, which says that
the type of an arrow is the type of arrow’s output type. The latter
is required to be one ofType, Prop, or Kind, which rules out non-
sensical arrow forms. For example,(x : Type) → Type is legal
whereas(x :Type) → self is not—the former could be the type of
the polymorphic list constructor while the latter doesn’t make sense
sinceself is a computation-level value.

The WF-TM-ABS rule for introducing functions is standard ex-
cept that, as in other lambda-cube like languages, AURA restricts
what sorts of values may be abstracted in others. The argument to
a function can be a term value, a proof, a type or a proposition. The
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resulting lambda must be typable with an arrow that itself has type
Type or Prop. These restrictions imply that all the lambda abstrac-
tions are either a computation or a proof term for a proposition.
AURA does not supportType–level lambdas as inFω because do-
ing so would require support forβ-reduction at the type level. Such
reductions, while useful for verification, appear superfluous here.

The interesting part of the WF-TM-APPrule is the side condition
that eithert2 is a value (val(t2)), or u does not depend onx
(x /∈ fv(u)). This restriction reveals that even though AURA seems
to be quite liberal with respect to the dependencies allowedby well-
formed(x :s) → t terms, the actual dependencies admitted by the
type system are quite simple. For instance, although the type system
supports singleton types like S(0), it cannot check S(1+2) because
the latter type depends on a non-value.

The upshot of these restrictions is that AURA requires that types
may only depend on values (i.e. terms that cannot reduce). This
decision limits the applicability of dependent types for program
verification tasks, but greatly simplifies the metatheory, since there
is no possibility of effectful computations appearing in a type.

Typechecking pattern match expressions is fairly standard(WF-
TM-MATCHES) , though it is a bit intricate because AURA supports
a rich class of parameterized recursive datatypes. Only expressions
that have saturated (fully applied) types can be matched against.
The types of the branches must exhaustively match the constructors
declared in the signature, and any parameters to the datatype being
analyzed are also made available inside the branches. Each branch
must return an expression of the same type, which is the result type
of the entire match expression. Since data types and propositions in
AURA may be nullary (have zero constructors), typechecking with-
out inference requires the match expression to carry an annotation.
For lack of space, we omit the auxiliary definitions and the judg-
ment used for typechecking the branches themselves.

3.5 Principals and proofs

Principals are an integral part of access control logics andAURA
treats principals as first-class objects with typeprin. The only built-
in principal is self, which represents the identity of the currently
running process (see WF-TM-PRIN and WF-TM-SELF); additional
principal identifier constants could be accommodated simply by
adding them with typeprin, but we omit such a rule for simplicity’s
sake.

As described above, AURA uses the principal-indexedsays
monad to express access control policies. Propositiona says P
means that principala has asserted propositionP (either directly or
indirectly). Expressionreturns a p is the return operation for the
a says monad, andbinds e1 e2 is the corresponding bind operation.
These constraints are shown in rules WF-TM-SAYS, WF-TM-SAYS-
RETand WF-TM-SAYS-BIND. The rules are adapted from DCC [2],
with the exception that AURA eschews DCC’s label lattice in favor
of explicit delegation among principals. (Abadi has calleda similar
DCC fragment CDD, standing for cut-down DCC).

The expressionsign(a,P ) witnesses the assertion of proposi-
tion P made by principala (WF-TM-SIGN). Sincesign(a,P ) is
intended to model evidence manufactured bya without justifica-
tion, it should never appear in a source program. Moreover, since
signed propositions are intended to be distributed and thusmay es-
cape the scope of the running AURA program, they are required to
be closed. Note, however, that the declaration signatureS must be
available in whatever context the signature is to be ascribed mean-
ing. In practice, this means that two distributed AURA programs
that wish to exchange proofs need to agree on the signatures used
to construct those proofs.

Creatingsign(a,P ) requiresa’s authority. AURA models the
authority vested in a running program using the principal constant
self. The sayP operation creates an object of typepf self says P .

Intuitively, this operation creates the signed assertionsign(self, P )
and injects it as a proof term for further manipulation (see WF-TM-
SAY).

AURA uses the constantpf : Prop → Type to wrap the
access-control proofs that witness propositions as program values,
as shown by the rule WF-TM-PF. Thepf type operates monadically:
the return operationreturnp p injects a proofp into the term level
and the corresponding bind operationbindp allows a computation
to compose proofs (rules WF-TM-PF-RET and WF-TM-PF-BIND).
This separation between proofs and computations is necessary to
prevent effectful program expressions from appearing in a proof
term. For example, ifsayP was given typeself saysP rather than
pf self says P , it would be possible to create a bogus “proof”
λx :Prop. sayx; the meaning of this “proof” would depend on the
authority (self) of the program that applied the proof object.

3.6 Equality and conversion

Some typing rules (e.g. WF-TM-APP) require checking that two
terms can be given the same type. Satisfying such constraints in a
dependently type language requires deciding when two termsare
equal—a difficult static analysis problem in the best case.

In AURA we address this with a conditional construct. Dynam-
ically, if v1 = v2 then e1 else e2 steps toe1 whenv1 andv2 are
equal, otherwise the expression steps toe2. Statically (rule WF-
TM-IF), thethen branch is typed in an environment containing the
static constraint(v1 = v2). As we will see shortly, the constraint
may be used to perform safe typecasts. This is an instance of the
type refinement problem, well known from pattern matching inlan-
guages such as Coq [16], Agda [31], and Epigram [28].

AURA limits its built-in equality tests to inhabitants ofatomic
types. First, the built inprin type is atomic. Second, a type is also
atomic when it is defined by a non-parameterizedType declara-
tion each of whose constructors take no arguments. Thelist type
above is not atomic, nor islist nat (sinceconstakes an argument).
However, the followingSongtype is atomic:

data Song: Type { | freebird: Song| ironman: Song}

Our definition of atomic type is limiting, but we believe it can be
naturally extended to first-order datatypes.

With equalities over atomic types in the context, we can now
consider the issue of general type equality. As in standard presenta-
tions of the Calculus of Constructions [9] we address type equality
in two acts.

Two types in AURA are considered equivalent when they are
related byconverts. The conversion relation, defined in Figure 2, is
reflexive, symmetric, and transitive. The key rule is CONV-AXIOM ;
it uses equality assumptions in the environment. For instance, under
assumptionx = self, termx says P converts withself says P . As
equalities only mention atomic values, conversion will only alter
the “value” parts of a type—convertible types always have the same
shape up to embedded data values.

AURA contains explicit, safe typecasts. As specified in rule
WF-TM-CAST, term 〈e : T 〉 is assigned typeT whenevere’s
type is convertible withT . Standard presentations of dependently
type languages instead use implicit conversions which may occur
anywhere in a type derivation. Using the explicit cast is appealing
because it gives an algorithmic type system. Casts have no runtime
effect and are simply discarded by our operational semantics.

3.7 Evaluation rules

Figure 3 defines AURA’s operational semantics using a call-by-
value small-step evaluation relation.

Most of the evaluation rules are straightforward. The rule PF-
BIND is a standard beta reduction for monads. TermsayP cre-
ates a proof that principalself has asserted that propositionP is
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converts Et t
CONV-REFL

converts Et s
converts Es t

CONV-SYMM

converts Es u converts Eu t
converts Es t

CONV-TRANS

x∼ (s = t):k ∈ E

converts Es t
CONV-AXIOM

converts Es1 t1 converts Es2 t2
converts E(s1 s2) (t1 t2)

CONV-APP

converts Es1 t1 converts Es2 t2
converts E(λx :s1. s2) (λx : t1. t2)

CONV-ABS

converts Es1 t1 converts Es2 t2
converts E((x :s1) → s2) ((x : t1) → t2)

CONV-ARR

Figure 2. Conversion

t 7→ t′

val(v)

(λx : t. e) v 7→ {v/x}e
APP

bindp (returnp e1) e2 7→ e2 e1

PF-BIND

sayP 7→ returnp (sign(self, P ))
SAY

v1 = v2

if v1 = v2 then e1 else e2 7→ e1

IF-EQ

v1 6= v2

if v1 = v2 then e1 else e2 7→ e2

IF-NEQ

val(v)

〈v : t〉 7→ v
CAST

(v, branches) 7→b e

match v t with {branches} 7→ e
MATCH

(v, b) 7→b e

(v, c, body) 7→c (e, 0)

(v, brn c body {rest}) 7→b e
B-HERE

(v, rest) 7→b e

(v, brn c body {rest}) 7→b e
B-EARLIER

(v, c, body) 7→c (e, n)

((c, n), (c, n), body) 7→c (body, n)
CTR-BASE

val(v2) m > 0
(v1, (c, n), body) 7→c (body, m)

(v1 v2, (c, n), body) 7→c (body,m − 1)
CTR-PARAM

(v1, (c, n), body) 7→c (e, 0)

(v1 v2, (c, n), body) 7→c (e v2, 0)
CTR-ARG

Figure 3. Reduction Rules

true; therefore, it evaluates to an assertion “signed” by principal
self. There are two possibilities in the evaluation of theif v1 =
v2 then e1 else e2 statement: whenv1 equals tov2, it evaluates
to e1; otherwise it evaluate toe2. The reduction rule for pattern
matching is most complicated, and we need to define two auxil-
iary reduction relations to implement it. We write(v, b) 7→b e to
denote the evaluation of valuev against a set of branches. These
evaluation rules search through the list of branches untilv matches
with the constructor of one of the branches, at which point the
rules focus on the branch and supply the body of the branch with
the arguments inv. The tricky part lies in correctly identifying
the arguments inv and discarding the type parameters. We write
(v, c, body) 7→c (e, n) to denote the evaluation of the body of
the branch wherev matches with the constructorc in the branch.
Here,n is the number of parameters that should be discarded before
the first argument ofv is found. Note that the semantics represents
constructors as a pair of the constructor namec and its number of
type parameters. For instance, in the definition of polymorphic lists
shown previously, the representation ofcons is (cons, 1).

3.8 Metatheory

We have proved the following progress and preservation theorems
for AURA. The soundness proofs are fully mechanized in the Coq
proof assistant.

Theorem 1 (Preservation). If S; · ⊢ e : t and e 7→ e′, then
S; · ⊢ e′ : t.

Theorem 2 (Progress). If S; · ⊢ e : t then either val(e) or existse′

such thate 7→ e′.

We have also proved that type checking in AURA is decidable
by giving a constructive proof of the following theorem:

Theorem 3 (Type Checking is Decidable).

• If S ⊢ ⋄ and S⊢ E, then∀e, ∀t, either there exists a derivation
such that S; E ⊢ e : t or there doesn’t exist a derivation such
that S; E ⊢ e : t.

• If S⊢ ⋄ then∀E either there exists a derivation such that S⊢ E
or doesn’t exist a derivation such that S⊢ E.

• Either there exists a derivation such that S⊢ ⋄ or doesn’t exists
a derivation such thatsig ⊢ ⋄.

We have mechanized all of the decidability proofs except forthe
decidability of theconvertsrelation, which is proved on paper. A
sketch of the latter is given below.

Lemma 4 (Converts is Decidable). ∀E, ∀t, ∀s, it is decidable
whether there exists a derivation such that converts Et s.

Proof (sketch):

1. Define an algorithmic version of the converts relation as fol-
lows. Given E t and s, apply CONV-APP, CONV-ABS, and
CONV-ARR rules until thet’s ands’s in all subgoals are atomic
(variables, constructors, or constants). If there exists asubgoal
convertsE t ′s′ such that one oft′ ands′ is atomic, and the
other is not, then there does not exists a derivation such that
converts Et s. Then we do a graph search using E as the graph
definition to see ift′ can reachs′. If the graph search succeeds
on all subgoals, thenconverts Et s; otherwise there does not
exist a derivation such thatconverts Et s.

2. Prove that the algorithmic version of the converts is sound and
complete with respect to the original definition.

3. The algorithmic version of converts is obviously decidable
since the graph algorithm is decidable (E is finite).

4. According to the sound and completeness argument, the con-
verts relation is decidable.
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While defining the graph search algorithm is easy on paper,
defining such a function in Coq is non-trivial; we must explic-
itly declare termination for Coq functions. Furthermore, given the
graph search function in Coq, proving the soundness and complete-
ness of the algorithm with regard to the inductively defined converts
relation also requires a significant amount of engineering;we leave
it for future work.

4. Validation and prototype implementation
Mechanized Proofs The judgments and rules presented in this
paper are a close approximation of the formal Coq definitionsof
AURA. For instance, in order to prove the preservation of pattern-
matching, we have to take the parameters and arguments supplied
to the constructor in the pattern-matching evaluation rules. In order
to prove the decidability of type checking, we strengthenedthe
typing judgments to take two signature arguments: one contains
the type declarations of the top-level constructors that can appear
in mutually recursively defined data types, and the other is used for
looking up the constructors of the data types.

AURA has 20 reduction rules, 40 typing judgments including
the well-formedness of terms, environments and signatures, and
numerous other relations such as atomic equality types to constraint
the type system. For a system of this size, implementing a fully
mechanized version of the soundness proofs of the entire language
is challenging.

We formalized the soundness proofs of AURA in the Coq proof
assistant2. We use a variant of the locally nameless representa-
tion [8] to formalize the metatheory of the language. Well doc-
umented definitions of AURA including typing-rules, reduction
rules, and other related relations are about 1400 lines of Coq code.
The progress and preservation proofs take about 6000 lines of Coq
code. Though the automation used in the these Coq proofs is rel-
atively rudimentary, we did not devote much time to writing au-
tomation tactics by ourselves.

The most intricate parts of the language design are the invariants
of the inductive data types, the dependent types, atomic equality
types, and the conversion relations. This complexity is reflected in
the Coq proof development in two ways: one is in the number of
lemmas stating the invariants of the signatures of the data types; the
other is in the number of revisions to the Coq proofs due to design
changes caused by failure to prove the soundness. We found that for
such a complicated system, mechanized proofs are definitelybetter
suited for dealing with iterative revisions of the languagedesign,
since Coq could easily identify which proofs require modification
when the language design changes.

Because AURA is a superset of system F plus inductively de-
fined data types we conjure that without much difficulty, we could
extract mechanized soundness proofs of other related type systems
from the Coq proofs of AURA.

Typechecker and Interpreter The prototype AURA type checker
and interpreter together implement the language as it is formalized
in Coq with only minor differences. The typechecker recognizes a
small number of additional types and constants that are not present
in the formal definition. These types include literal 32-bitintegers,
literal strings and tuples. Although it is derivable in AURA, we in-
clude afix constant for defining recursive functions. By using this
constant together with tuples, mutually recursive functions can be
defined more succinctly than is possible in the formal definition.To
allow for code reuse, we have added aninclude statement that per-
forms textual substitution from external files. The software sorts in-
cluded files in dependency order and copies each only once. Finally,

2 Code available at:http://www.cis.upenn.edu/~stevez/sol/

while the formal definition allows for implicit coercion, the proto-
type typechecker requires that all coercion be made explicit. The
interpreter directly implements the formally defined single-step op-
erational semantics.

AURA is not meant for general-purpose application develop-
ment; instead, we intend for it to be used synergistically with ex-
isting production programming languages. To simplifies thetech-
nical demands for reaching this goal, we intend to eventually target
the .NET runtime, as the CLR encourages language intermingling
(see Section 7). We plan to expose authorization polices written
in AURA to the .NET common type system by providing libraries
for interacting at runtime with propositions. We will also explore
the possibilities of rewriting annotated methods in compiled .NET
code to make implicit calls to these libraries. This approach should
allow any language that uses the common type system to interoper-
ate with AURA.

5. An Extended Example
In this section, we illustrates the key features of AURA’s type
system by explaining a program implementing a simple streaming
music server.

The extended code sample is listed in Figures 4 and 5. The
example program typechecks in the prototype AURA interpreter
and uses some of the language extensions discussed in Section 4.
At the very beginning (Line 1) the program imports library code
that defines unit (with other tuple types), list, and maybe types.

We imagine that the server implements the following policy.
Every song may have one or more owners, corresponding to princi-
pals who have purchased rights to play the song. Additionally, song
owners may delegate their listening rights to other principals.

The rights management policy is defined over predicatesOwns
andMayPlay, which are declared as assertions in Lines 5 and 6.
Recall that assertions are appropriate because we cannot expect to
find closed proofs of ownership and delegation in pure type theory.

The main policy rule,shareRule(see Line 12) is defined using a
say expression. The type ofshareRuleis an implication wrapped in
two monads. The outerpf monad is required becausesay accesses
a private key and must be treated effectfully. The innerself says
monad is required to track the provenance of the policy. The impli-
cation encodes the delegation policy above. TheshareRuleprovides
a way to build up a proof ofpf self says (MayPlay A s), which is
required beforeA can play songs.

The exact form ofshareRuleis somewhat inconvenient. We
derive two more convenient rules,shareRule′ andshareRule′′ (see
lines 53 and 76). These use monadic bind and return operations
to change the placement ofpf andsays type constructors relative
to shareRule’s type. The resulting type ofshareRule′′ shows that
one can obtain a proof term ofpf self says (MayPlay A s) by a
simple application ofshareRule′′ to various arguments, as shown
in Line 101.

The key functionality of the music server is provided by a
function stub,playFor, which is intended to model an effectful
function that streams a provided song to a specified principal. Its
type is given by the annotation on line 20. TheplayFor function
takes the song to be played and the principal it should play toas the
first two arguments. The third argument is a proof of the proposition
self says (MayPlay A s) demonstrating the requesting principal’s
capability to play the song, which is required by the server’s policy.
As modeling an audio API would clutter the example,playFor
simply returns a unit value. In a real implementation,playFor
would call into the trusted computing base, which would alsolog
appropriate proofs for future auditing.

The remaining code implements the application’s main com-
putation. ThehandleRequestfunction takes a delegation request
and, using a provided database of owner information, attempts to
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include ”tuple.core” include ”list.core” include ”maybe.core”
2

data Song:Type { | freebird: Song| ironman: Song}
4

assert Owns:prin → Song→ Prop;
6 assert MayPlay:prin → Song→ Prop;

8 data OwnerRecord:Type {
| ownerRecord:(p: prin) → (s: Song) →

10 (pf (self says (Owns p s))) → OwnerRecord}

12 let shareRule:
pf (self says ((o: prin) → (r: prin) → (s: Song) →

14 (Owns o s) → (o says (MayPlay r s)) → (MayPlay r s))) =
say ((o: prin) → (r: prin) → (s: Song) →

16 (Owns o s) → (o says (MayPlay r s)) → (MayPlay r s))
in

18

(∗ A real implementation would do something here∗)
20 let playFor :(s: Song) → (p: prin) →

(pf (self says (MayPlay p s))) → Unit =
22 λs: Song .λp: prin . λproof: (pf (self says (MayPlay p s))) . unit

in
24

let notFound:(p: prin) → (s: Song) →
26 (Maybe(pf (self says (Owns p s)))) =

λp: prin. λs: Song. Nothing(pf (self says Owns p s))
28 in

30 let getOwnerProof: (s: Song) → (p: prin) →
(List OwnerRecord) → (Maybe(pf (self says (Owns p s)))) =

32 λs: Song .λp: prin . λownerRecords: List OwnerRecord .
fix (λrec: (List OwnerRecord) →

34 (Maybe(pf (self says (Owns p s)))).
λl: (List OwnerRecord) .

36 match l with (Maybe(pf (self says Owns p s))) {
| nil → notFound p s

38 | cons → λx:OwnerRecord.λxs: List OwnerRecord .
match x with (Maybe(pf (self says Owns p s))) {

40 | ownerRecord→ λp′:prin. λs′:Song.
λproof: pf (self says (Owns p′ s′)).

42 if p = p′

then if s = s′

44 then
Just(pf (self says (Owns p s)))

46 〈proof: (pf (self says (Owns p s)))〉
else rec xs

48 else rec xs
} } )

50 ownerRecords
in

52

let shareRule′ :
54 (pf ((o: prin) → (r: prin) → (s: Song) →

(self says (Owns o s)) → (o says (MayPlay r s)) →
56 (self says (MayPlay r s)))) =

bind shareRule(λsr: (self says
58 ((o: prin) → (r: prin) →

(s: Song) → (Owns o s) →
60 (o says (MayPlay r s)) →

(MayPlay r s))) .
62 return (λo: prin. λr: prin. λs: Song.

λowns: (self says (Owns o s)).
64 λmay: (o says (MayPlay r s)).

bind sr (λsr′: ((o′: prin) → (r′: prin) → (s′: Song) →
66 (Owns o′ s′) → (o′ says (MayPlay r′ s′)) →

(MayPlay r′ s′)) .
68 bind owns(λowns′ :(Owns o s).

return self (sr′ o r s owns′ may)))))
70 in

Figure 4. AURA code for a music store (cont. in Figure 5).

76 let shareRule′′: (o: prin) → (p: prin) → (s: Song) →
(pf self says (Owns o s)) →

78 (pf (o says (MayPlay p s))) →
(pf self says (MayPlay p s)) =

80 λo: prin. λp: prin. λs: Song.
λownsPf: pf (self says (Owns o s)).

82 λplayPf: pf (o says (MayPlay p s)).
bind ownsPf(λopf: (self says (Owns o s)).

84 bind playPf(λppf: (o says (MayPlay p s)).
bind shareRule′ (λsr′:

86 ((o′: prin) → (r′: prin) → (s′: Song) →
(self says (Owns o′ s′)) →

88 (o′ says (MayPlay r′ s′)) →
(self says (MayPlay r′ s′))) .

90 (return (sr′ o p s opf ppf)))))
in

92

let handleRequest: (s: Song) → (p: prin) → (o: prin) →
94 (List OwnerRecord) →

(delPf: pf (o says (MayPlay p s))) → Unit =
96 λs: Song.λp: prin. λo: prin. λl: List OwnerRecord.

λdelPf: pf (o says (MayPlay p s)).
98 match (getOwnerProof s o l) with Unit {

| Nothing → unit
100 | Just → λx: (pf (self says (Owns o s))).

playFor s p(shareRule′′ o p s x delPf)
102 }

in unit

Figure 5. AURA code for a music store (cont. from Figure 4).

construct an appropriateself says MayPlay proof. If it succeeds
playSongis invoked.

The implementation ofhandleRequest(line 93) is straight for-
ward. There are two interesting things to note. First,handleRequest
takes a database of owner information expressed as a list of
OwnerRecords. OwnerRecord(line 8) is an inductive type whose
single constructor has a dependent type. BecauseownerRecord’s
third argument depends on its first two,OwnerRecordencodes an
existential type. Second, thematch expression on line 98 relies
on the fact that(getOwnerProof s o l) returns an object of type
Maybe(pf (self says (Owns p s))). Getting such a type is possible
because whengetOwnerProofpulls a proof from the list, its type
is refined so that the existentially bound principal and songare
identified withp ands.

GetOwnerProof(line 30) performs this type refinement in sev-
eral steps. It uses the fixpoint combinator (line 33) to perform a list
search. After eachOwnerRecordis decomposed, we must check its
constituent parts to determine if it is the correct record and, if so,
refine the types appropriately. The action occurs between lines 42
and 48. At runtime the firstif expression tests for dynamic equal-
ity between the principal we’re searching for,p, and the princi-
pal store in the current record,p′. A similar check is performed
for betweenSongs s ands′. If both checks succeed then we cast
proof:pf (self says Owns p′s′) to type pf (self says Owns p s) and
return it packaged as aMaybe. If either dynamic check fails we
repeat again and, if no match if found, eventually returnNothing.

6. Related Work
We have published related results on AURA0, a language closely re-
lated to theProp fragment of AURA [38]. This includes soundness
and sound normalization proofs for AURA0, as well as discussion
and examples of audit in the presence of authorization proofs.

One intended semantics for AURA implements objects of form
sign(A, P ) as digital signatures. All cryptography occurs at a lower
level of abstraction than the language definition. This approach
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has previously be used to implement declarative information flow
policies [39]. An alternative approach is to treat keys as types or
first class objects and to provide encryption or signing primitives
in the language [6, 14, 34, 26, 25]. Such approaches typically
provide the programmer with additional flexibility, but complicate
the programming model.

Authorization logics Many logics and languages [4, 5, 13, 10,
20, 2, 19] have tracked authorization usingsays. We follow the ap-
proach of DCC [2], the logic in whichsays was first defined as an
indexed monad. This is compelling for several reasons. First, DCC
proofs are lambda-terms, a fact we exploit to closely couplethe
Prop andType universes. Second, DCC is a strong logic and im-
portant authorization concepts, such as theacts-forrelation and the
hand-off rule(Asays B acts-for A) → (B acts-for A), can be de-
fined or derived. Third, DCC is known to enjoy a non-interference
property: in the absence of delegation, statements in theA says
monad will not effect theB says monad. In our setting this means
that a given program cannot be tricked by what an untrusted pro-
gram says. AURA modifies DCC in several ways. In addition to
adding dependent types, AURA omits DCC’s protects relation. The
protects relation strengthens monadic bind, making propositions
A says (B says P) andB says (A says P) interderivable. While use-
ful in other settings, such equivalences appear incorrect for ac-
cess control. Additionally AURA’s use of signatures changes some
meta-theoretic properties of the DCC leading to, for example, a
more subtle proof of normalization [38].

Fournet, Gordon and Maffeis [20, 21] discuss authorization
logic in the context of distributed systems. They use a limited
form dependent pairs to associate propositions with data. Unlike
in AURA proofs are erased at runtime. Consequently, their type
discipline is best suited for closed systems that do not require high-
assurance logging.

The Grey project [10] uses proof carrying authorization in man-
ner similar in propose to AURA. In Grey, mobile phone handsets
build authorization proofs that unlock doors. While AURA is a uni-
fied authorization logic and computation language, Grey’s logic is
not integrated with a computation language.

DeYoung, Garg, and Pfenning [19] describe a constructive au-
thorization logic that is parameterized by a notation of time. Propo-
sitions and proofs are annotated with time intervals duringwhich
they may be judged valid. This allows revocation to be modeled as
credential expiration.

The trust management system PolicyMaker [12] treats access
control decisions as a distributed programing problem. A Policy-
Makerassertionis a pair containing a function and (roughly speak-
ing) a principal. In general, assertion functions may communicate
with each other, and each function’s output is tagged by the as-
sociated principal. PolicyMaker checks if a request complies with
policy by running all assertions functions and seeing if they pro-
duce an output in which distinguished principal POLICY saysap-
prove. Principal tags appear similar is purpose, but not realization,
to says modalities in AURA. Note also that expressing security
properties via term-level computation is fundamentally different
than expressing them as types, the approach followed in mostother
work discussed here. The ideas in PolicyMaker have been refined
in KeyNote [12] and REFEREE [15].

The Fable language [36] associates security labels with data val-
ues. Labels may be used to encode information flow, access control,
and other policies. Technically, labels are terms which maybe re-
ferred to at the type level;colored judgments are used to separate
the data and label worlds. The key security property is that stan-
dard computations (i.e. application computations described with
color app) are parametric in their labeled inputs. Unlike AURA
proofs, the label sub-language (i.e. policy computations described
with color pol) admits arbitrary recursion. Hence the color sepa-

ration may restrict security sensitive operations to a small trusted
computing base, but does not give rise to a logical soundnessprop-
erty.

Dependent type theory The AURA language design was influ-
enced by dependent type systems like the Calculus of Construc-
tions (CoC) [9, 17], and proof carrying authorization logics, espe-
cially Dependency Core Calculus (DCC) [2]. Both CoC and AURA
contain dependent types and a unified syntax encompassing both
types and terms. However there are several important differences
between CoC and AURA. Most critically, CoC quotients type equal-
ity by beta-equivalence but AURA does not. Type-level beta reduc-
tion, while convenient for verification, is unnecessary forexpress-
ing authorization predicates, and greatly complicates language de-
sign and use.

As realized in the Coq Proof Assistant [16], CoC can contain
inductive types and different universes for computation and logic
types—AURA universesProp and Type correspond to Prop and
Set in Coq. However, because Set is limited to pure computations,
Coq does not wrap Props in apf monad. In Coq all inductive dec-
larations are subject to a complexpositivity constraint which en-
sures inductive types have a well-defined logical interpretation. In
contrast AURA uses a simpler positivity constraint inProp and no
constraint inType. Additionally, AURA performs less type refine-
ment than Coq for GADTs/type indices. When compared with Coq,
AURA is strictly weaker for defining logical predicates, but can de-
fine certain stronger algebra datatypes for use in computation.

Several other projects have combined dependent types and prag-
matic language design. Ynot (an embedding of Hoare Type The-
ory [30] in Coq), Agda [31], and Epigram [28] are intended to sup-
port general purpose program verification and usually require that
the programmer construct proofs interactively. In contrast Depen-
dent ML [45], ATS [45, 44], and RSP1 [42] provide distinguished
dependency domains and can only express constraints on objects
from these domains. These dependency domains are intended to
be amenable to automated analysis. Cayenne [7] extends Haskell
with general purpose dependent types. In Cayenne type equality
is checked by normalizing potentially divergent Haskell terms—a
strategy which may cause type checking itself to diverge. Hancock
and Setzer [22] present a core calculus for interactive programming
in dependent type theory. Their language uses an IO monad to en-
capsulate stateful computations. Inhabitants of the monadare mod-
eled as imperative programs and type equality is judged up toa
bisimulation on (imperative) program text.

Peyton Jones and Meijer describe the Henk typed intermedi-
ate language [24]. Henk is an extension of the lambda cube family
of programing languages that includes CoC. Like AURA, Henk is
intended to be a richly-typed compiler intermediate language. Un-
like AURA, Henk has not been proved sound. Additionally, its lack
of a pf monad (or equivalent technique for isolating computations
from proofs) makes it unsuitable for programming in the presence
of both dependent types and effects.

7. Future Work
Future work: Theory As discussed in Section 3, we have proved
that the degree to which AURA restricts dependency allows for
tractable typechecking. This does not, however, rule out the possi-
bility that this tractability could be preserved if less restrictive sorts
of dependency were added to AURA. In particular, it may well be
useful to look at the simulation of dependency with GADTs [32]
in search of examples that, while relatively simple, cannotbe han-
dled directly in AURA, and to look for ways to extend AURA with
support for such features without losing decidability.

Section 2 describes the correspondence betweena says P
and objects digitally signed bya’s private key. It is natural,
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then, to wonder about the possibility of an analog for publickey
encryption—perhaps terms of typeT for a could be constructed
from objects of typeT encrypted witha’s public key. It is unclear
how precisely to integrate such an additional monad with AURA,
however, not least because, while thesays monad makes complete
sense operating only at theProp level, we almost certainly want
to encrypt data of kindType. Additionally, our use of dependent
types means that the type of an AURA term will often reference
part of the term itself, which may well be unacceptable for data
that is meant to be encrypted.

The tracking of information flow was one of the first uses pro-
posed for DCC [3], and even without encryption AURA’s assertions
are sometimes reminiscent of confidentiality tracking; were encryp-
tion to be added, the similarities would be even more pronounced. It
may be possible to take advantage of this by equipping AURA with
a more general notion of information flow—which does not neces-
sarily have as straightforward a cryptographic interpretation—for
use internal to a single well-typed application while reverting to
the coarser-grainedsays (and possiblyfor) when communication
with the outside world is desired. The challenge, of course,is to
make this change of granularities as fluid and unencumberingas
possible.

Even without information flow it may still be useful to have
a better idea of which proofs may come from the outside world.
After all, operations on digital signatures are not trivial, but since
proofs are defined to be computation-free, a purely local proof
could be given a more efficient but less portable representation,
and certain proofs might be completely elided at runtime. For the
first case, we would first need to extend our formalism with some
notion of network communication; inference could be performed
backwards from communication points to ascertain which proofs
need not be represented in portable form. As an initial step towards
recognizing the second case, we might consider an additional form
of abstraction, with an argument that cannot be used in certain ways
but is guaranteed to be necessary at compile time only; ideally,
however, we would want to infer these abstractions as part of
compilation.

It is clear from our examples that AURA is fairly verbose. As
it is meant to be an intermediate language, this is not a pressing
usability issue. We hope that a higher-level language that generates
AURA will be able to cut down on this verbosity using inference
techniques. Our proof-passing style also suggests the use of some
variety of proof inference. Of course, this very quickly becomes
undecidable, but that does not rule out practical partial solutions.

Finally, although AURA emphasizes the security aspects of pro-
gramming with an embedded authorization logic, there mightbe
other applications of this idea. In particular, one of the challenges
of making program verification via dependent types practical is
the need to construct and otherwise manipulate proof objects. Of
course, one can always add axioms to the logic, but doing so can
easily compromise its consistency. Failures due to a poor choice of
axioms might be hard to isolate when debugging. Thesays mon-
ads of DCC provide a possible intermediate ground: One could
imagine associating a principal with each module of the program
and then allowing modules to make assertions. Explicit trust dele-
gations would then be required when importing axioms from one
module to another; such delegations would document the module
dependencies and help the type checker isolate uses of faulty ax-
ioms. We speculate that it is even possible that blame (in thestyle
similar to that proposed by Wadler and Findler [41]) can be appro-
priately assigned to offending modules whenever a run-timeerror
caused by incorrect assertions is encountered.

Future work: Practice The single-step interpreter is useful as a
tool for checking the correctness of small examples; however, it
is infeasible to use it to run code in a production environment. As

such, we are extending the implementation to generate CIL compat-
ible with both Microsoft’s .NET CLR and the open-source Mono
runtime. Don Syme’s work on ILX aids us greatly in this effort.
ILX, described in [37], is a group of extensions to the CIL that
facilitates the use of higher-order functions, discriminated unions
and parametric polymorphism. By compiling for this existing stan-
dard execution environment, we will gain access to the ecosystem
of .NET software and libraries. Most notably, we should be able
to make use of existing code for cryptography and cross-platform
networking. We will also be free from having to worry about lower-
level issues like efficient machine code generation and garbage col-
lection, both of which are well outside of the AURA project’s scope.

Additionally, there remain practical issues that AURA must ad-
dress in order to fully express policies likely to be found inits in-
tended problem domain. Chief among these is the demand for the
signatures thatexpire, either due to explicit revocation or simply the
passage of time. This stands in contrast to our current formalism—
and, indeed, most formalisms of programming languages, as aterm
that successfully typechecks is generally seen as valid forregard-
less of the time or the state of the world. It would, of course,be
possible to define the operational semantics of AURA such that ev-
ery operation has a chance to fail at runtime due to digital signature
expiration, but this would quickly make programming quite cum-
bersome. Instead, we hope to find a solution that allows time and
revocation to be referenced by AURA in an intuitive way; one pos-
sibility is, explored by Garg and Pfenning [19], is the use oflinear
logic, which is naturally suited to describing resources that can, in
some sense, be used up.
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