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Abstract Despite the practical importance of auditing, there has
been surprisingly little research into what constitutesdqjo

Authorization logics provide a principled and flexible ap- auditing proceduresThere has been work on cryptograph-
proach to specifying access control policies. One of their ically protecting logs to prevent or detect log tampering, [2
compelling benefits is that a proof in the logicegidence  11], efficiently searching confidential logs [32], and exper
that an access-control decision has been made in accor-mental research on effective, practical logging [6, 26]t Bu
dance with policy. Using such proofs for auditing reduces there is relatively little work onvhatthe contents of an au-
the trusted computing base and enables the ability to de-dit log should be or how to ensure that a system implemen-
tect flaws in complex authorization policies. Moreover, the tation performs appropriate logging (see Wee’s paper on a
proof structure is itself useful, because proof normalat ~ logging and auditing file system [33] for one approach to
can yield information about the relevance of policy state- these issues, however).
ments. Untrusted, but well-typed, applications that asces  In this paper, we argue that audit log entries should
resources through an appropriate interface must obey the constituteevidencehat justifies the authorization decisions
access control policy and create proofs useful for audit. made during the system’s execution. Following an abun-

This paper presentsAURA(, an authorization logic dance of prior work on authorization logic [4, 24, 17, 1, 27,
based on a dependently-typed variant of DCC and proves2, 21], we adopt the stance that log entries should contain
the metatheoretic properties of subject-reduction and nor proofsthat access should be granted. Indeed, the idea of
malization. It shows the utility of proof-based auditingsin ~ 10gging such proofs is implicit in the proof-carrying autho
number of examples and discusses several pragmatic issuezation literature [5, 7, 10], but, to our knowledge, theus
that must be addressed in this context. of proofs for auditing purposes has not been studied out-
right.

There are several compelling reasons why it is advan-
tageous to include proofs of authorization decisions in the
log. First, by connecting the contents of log entries dlyect
. ) o to the authorization policy (as expressed by a collection of

Logging i.e. recording for subsequent audit significant je5 stated in terms of the authorization logic), we obtain
events that occur during a system's execution, has long been, yrincipled way of determining what information to log.
recognized as a crucial part of building secure systems. Agecong, proofs contain structure that can potentially help

typical use of logging is found in a firewall, which might - 5qministrators find flaws or misconfigurations in the autho-
record the access control decisions that it makes when de;

- : . ' rization policy. Third, storing verifiable evidence helgs r
ciding whether to permit connection requests. In this case,y,,ce the size of the trusted computing base; if every access-

the log might consist of a sequence of time stamped strings;estricting function automatically logs its arguments egd

v_vritten to a file where each entry indicates some informa- sult, the reasoning behind any particular grant of access ca
tion about the nature of the request (IP addresses, port NUMy ot be obscured by a careless or malicious programmer.

bers,et.c.) and whether t_he requestlwas permitted. Other  the impetus for this paper stems from our experience
scenarios place more stringent requirements on the log. Fogiih the (ongoing) design and implementation of a new

example, a bank server’s transactions log should be tam'security—oriented programming language callegRA [25].
per resistant, and log entries should be authenticated and
not easily forgeable. Logs are useful because they can help INote that the term auditing can also refer to the practicstatically

P : : : validating a property of the system. Code review, for exanpeeks to
administrators audit the system both to identify sources of find flaws in software before it is deployed. Such auditingoiscourse,

unu_sua! or ma.-"f:ious behavior and to find flaws in the au- yery important, but this paper focuses dynamicauditing mechanisms
thorization policies enforced by the system. such as logging.

1 Introduction




The primary goal of this work is to find mechanisms that
can be used to simplify the task of manipulating authoriza-
tion proofs and to ensure that appropriate logging is always

Untrusted Code Auditable
Formal Policy

performed regardless of how a reference monitor is imple- _— Rules
mented. Among other features intended to make building Application
secure software easierURA provides a built-in notion of E_xtended Zext
principals, and its type system treats authorization goof Signature
as first-class objects; the authorization policies may them e 1 op; ) op NN
selves depend on program values. Kernel Sk

This paper focuses on the use of proofs for logging pur- raw-op; raw-op,

poses and the way in which we envision structuringrA
software to take advantage of the authorization policies to Log Resource
minimize the size of the trusted computing base. The main
contributions of this paper can be summarized as follows.
Section 2 proposes a system architecture in which log-
ging operations are performed by a trusted kernel, which

Trusted Computing Base

can be thought of as part of theuRA runtime system. Figure 1. A monolithic application decom-
Such a kernel accepts proof objects constructed by pro- posed into several components operating
grams written in AIRA and logs them while performing with various degrees of trust.

security-relevant operations.

To illustrate AURA more concretely, Section 3 develops
a dependently typed authorization logic based on DCC [2]
and similar to that found in the work by Gordon, Fournet,
and Maffeis [19, 20]. This language,uRA, is intended

Unfortunately, access-control decisions are not always
made in accordance with institutional intent. This can occu
for a variety of reasons including the following:

to model the fragment of ARA relevant to auditing. We 1. The reference monitor implementation or rule lan-
show how proof-theoretic properties such as subject reduc-  gyage may be insufficient to express institutional in-
tion and normalization can play a useful role in this context tent. It this case, the rules must necessarily be too re-
Of particular note is the normalization result fouRA, au- strictive or too permissive.

thorization proofs.

Section 4 presents an extended example of a file system 2. The reference monitor may be configured with an in-
interface; as long as a client cannot circumvent this inter- correct set of rules.
face, any reference monitor code is guaranteed to provide o )
appropriate logging information. This example also demon- 3 The reference monitor itself may be buggy. That is,
strates how additional domain-specific rules can be built on it may reach an incorrect decision even when starting
top of the general kernel interface, and how the logging of from correct rules.

proofs can be useful when it isn't obvious which of these ¢ first ang second points illustrate an interesting ten-

rules are appropriate. sion: rule language expressiveness is both necessary and

Of course, there are many additional engineering prob- , .,y 1e matic. While overly simple languages prevent ef-
lems that must be overcome before proof-enriched aUd't'ngfective realization of policy intent, expressive langusge
becomes practical. Although it is not our intent to address make it more likely that a particular rule set has unin-

all _Of those issues here, Section 5 highlights Some of _thetended consequences. The latter issue is particularlgacut

sahe_nt chal_lenges and sketches future research dirsction in light of Harrison and colleagues’ observation that de-

Section 6 discusses related work. termining the ultimate effect of policy changes—even in
simple systems—is generally undecidable [23]. The third

2 Kernd Mediated Access Control point recognizes that reference monitors may be complex
and consequently vulnerable to implementation flaws.

A common system design idiom protects a resource with  The AURA programming model suggests a different ap-
areference monitgrwhich takes requests from (generally) proach to protecting resources, illustrated in Figure Jer&h
untrusted clients and decides whether to allow or deny ac-are three main components in the system: a trusted kernel,
cess to the resource [12]. Ideally a reference monitor shoul an untrusted application, and a set of rules that consttiete
be configured using a well-specified setoliesthat define  formal policy. The kernelitself contains alog and a reseurc
the current access-control policy and mirror the intent of to be protected. The application may only request resource
some institutional policy. access through kernel interfaég. This interface (made



up of theop,s in the figure) wraps each of the resource’s and resource by checking and logging access control proofs;

native operations (thew-op,s) with new operations taking we assume that applications are prevented from accessing

an additional argument—a proof that access is permitted.resources directly by using standard resource isolatidn te

Yk andX.,; contain constant predicate symbols that may niques deployed in operating systems or type systems.

be occur in these proofs. A resourceR is a stateful object with a set of opera-
Unlike in the standard reference monitor model, an tors that may query and update its state. Formatly—

AURA kernel forwards every well-typed request to its un- (o, States/g, J) wheres € Statesand

derlying resource. Eaalp, function takes as an additional

argument a proof that the operation is permitted and returns

a corresponding proof that the operation was performed, soThe current state is an arbitrary structure that represent-
the well-typedness of a call ensures that the requested acing R's current state, an®tatesis the set of all possi-
cess is permitted. Proofs can be typechecked dynamicallyple resource statesly is the resource’s interface; each
in time linearly proportional to the size of the proof should raw-op, : T; = S, is an operator with its corresponding
the request not come from a well-typed application. More- type signature. The transition functiérdescribes how the
over, logging these proofs is enough to allow an auditor to raw operations update state, as well as their input-ougput b
ascertain precisely why any particular access was allowed. havior. For instance(u, ') = d(raw-op;, v, ) when raw
We define a languageura, to provide an expressive  gperationi—given inputv and initial resource state—
policy logic for writing rules and kernel interface types. | produces output and updates the resource state'to
is a cut-down version of full ARA [25], which itself is We formalize a trusted kernelK as a tuple
a polymorphic and dependent variant of Abadi's Depen- (1, R Sy, I ); the authority of the kernel is denoted
dency Core Calculus [3, 2]. InURAq, software compo-  py the constant principat. The first componentl,, is a
nents may be explicitly associated with one or more princi- jist of proofs representing the log. The second component
pals. Typically, a trusted kernel is identified with pringlp  js the resource encapsulated by the kernel. Signature
K, and an untrusted application may work on behalf of sev- 53, contains pairs of predicate®kToOp, : T; — Prop
eral principals:A, B, etc. Principals can make assertions; gnd Didop, : 7, — S; — Prop for eachraw-op; of
for instance, the (inadVisable) rule “the kernel asserds th type T, = S; in Ig. These predicates serve as the core
all principals may open any file,” is written as proposition |exicon for composing access control rules: a proof of
K says ((A:prin) — (f:string) — OkToOpen A f). EV- K says OkToOp ¢ signifies that an operatiomaw-op is
idence for this rule contains one or more signature objects—permitted with inputt, and a proof ofk says DidOp ¢ s
possibly implemented as cryptographic signatures—thatir means thataw-op was run with inputt and returneds.
refutably tie principals to their utterances. Lastly, the kernel exposes an application programming

The above deSign carries several benefits. Kernels IOginterface Ik, which contains a Security-aware wrapper
the reasoning used to reach access control decisions; if @peration
particular access control decision violates policy intaut
is allowed by the rules, audit can reveal which rules con- op; : (z: T;) = K says (OkToOp; z) =
tributed to this failure. Additionally, because all resceir {y:5;; K says DidOp, = y}
access is accompanied by a proof, the trusted computin
base is limited to the proof checker and kernel. As small,
standard programs these components are less likely to suf{x rather than's. .
fer from software vulnerabilities than than traditionaillf The type OfOp_i shows that the kernel requires tvyo ar-
scale reference monitors. guments before it will provide accessraw-op,. The first

A key design principle is that kernels should be small and ahrgumhenlz is silmplyaw-opi’sh input; th_e second IiIS a proof
general: this is realized by removing complex, specialized that the kernel approves the operation, typically a compo-

reasoning about policy (e.g. proof search) from the trustedsmon of policy rules (globally known statemen_ts s_igned by
computing base. In this senseyRa systems are to tradi- K) and statements made by other relevant principals. The

tional reference monitors as operating system microkernel "€turn value obp; is a pair ofraw-op;s output with a proof
are to monolithic kernels. that acts as a receipt, affirming that the kernel catedop;

and linking the call’'s input and output. Note thakToOp;
andDidOp, depend on the argumentsandy.
The final components in the model are the application,
We model a system consisting of a trusted keriRel  the rule set, and the extended signature. We assume ei-
wrapping a security-oblivious resour@eand communicat-  ther that the application is well-typed—and thus that it re-
ing with an untrusted application. The kernel is the trusted spectsix—or, equivalently, that the kernel performs dy-
system component that mediates between the applicatiomamic typechecking on incoming untrusted arguments. The

Ip =raw-op; : 1} = Si,...,raw-op,, : 1, = S,

gfor eachraw-op; in /. Applications must accegsthrough

2.1 The formal system description



rule set is simply a well-known set of proofs intended to

Resource evaluation is the simplest evaluation system.

represent some access control policy; the extended signaA transition/g; § - c—{raw-op,v}—"0¢’ may occur when
ture .. in Figure 1) defines predicate symbols that these is a well typed input foraw-op,; according to resource in-

rules may use in addition to those definedip.

Remote procedure call example Consider a simple re-
mote procedure call resource with only the single raw op-
eration,raw-rpc : string = string. The kernel associated
with this resource exposes the following predicates:

Yk = OKToRPC : string — Prop,
DidRPC : string — string — Prop

and the kernel interface

I =rpc: (z:string) = K says OkToRPC = =
{y:string; K says DidRPC z y}.
A trivial policy could allow remote procedure call. This

policy is most simply realized by the singleton rule set
Rules= {r¢ : K says ((x:string) — OKToRPC x)}.

2.2 State transition semantics

While the formalism presented thus far is sufficient to
describe what ARA, systems look like at one instant in
time, it is much more interesting to consider an evolving

terfacel/r andj specifies thataw-op;, givenv and starting
with a resource in statg, returnsy and updates the resource
state too’. (In the following we will generally omit the-

and objects to its left, as they are constant and can be in-
ferred from context.)

The logged evaluation relation is more interesting: in-
stead of simply updating resource states, it updates config-
urations. A configuratio, is a triple(L, o, S), whereL
is a list of proofs representing a log,is an underlying re-
source state, anflis a set of proofs of the forrsign(A, P)
intended to track all assertions made by principals. There
are two logged evaluation rules;SAY andL-AcCT.

Intuitively, L-SAY allows principals other than the kernel
K to add objects of the forraign(A, P) to S, correspond-
ing to the ability of clients to sign arbitrary propositions
as long as all of signatures found withihalready appear
in S. This last condition is writtelS = P and prevents
principals from forging evidence—in particular, from ferg
ing evidence signed big. S F P holds when all signatures
embedded irP appear inS.

Rule L-AcT models the use of a resource through it's
public interface. The rules ensure that both of the opera-
tion’s arguments—the data componerand the proop—
are well typed, and all accepted access control proofs are
appended to the log. After the resource is called through its

system. Here we describe variant operational semantics okaw interface, the kernel signs a new proof tegmas a re-

the AURA, system at a semi-formal level, with emphasis
on logging. The full AJRA language includes a computa-
tion fragment capable of expressing the ideas in this sectio

ceipt; it is both logged and added & Again, the premise
S F p guarantees the unforgeability 8fn objects.
The semi-logged relation functions similarly (see rules

by way of a standard monadic state encoding, although itss-Say ands-AcT), although it logs only the list of opera-
analysis by Jia and colleagues [25] does not address loggingions performed rather than any proofs.

directly.

By examining the rules in Figure 2, we can see that

To demonstrate the key components of authorization andthe kernel may only sigmidOp receipts during evalua-

auditing in AURA(, we consider evaluations from three per-
spectives listed as follows. In each we will consider up-
dating states according to the transition relations defined
Figure 2.

1. Resource evaluation, written witH }—", models the

state transition for raw resources. This relation does no

logging and does not consider access control.

. Logged evaluation, written with{}—!, models state
transitions of an ARA( system implementing logging
as described in this paper. All proofs produced or con-
sumed by the kernel are recorded in the log.

. Semi-logged evaluation, written with{ }—*, models
the full system update with weaker logging. While
proofs are still required for access control, the log con-
tains only operation names, not the associated proofs.

tion. Since statements signed by any other principal may
be added t& at any time, we may identify the initial set of
sign objects inS with the system’s policy rules.

Audit and access control The three transition relations
permit different operations and record different inforimat
about allowed actions. Resource evaluation allows all-well
typed calls to the raw interface, and provides no infornmatio
to auditors. Semi-logged evaluation allows only authatize
access to the raw interface via access control, and provides
audit information of the list of allowed operations. Logged
evaluation, like semi-logged evaluation, allows only audth
rized access to the raw interface; it also produces a more
informative log of the proofs of the authorization decision
Intuitively, semi-logged and logged evaluation, which de-
ploy access control, allow strictly fewer operations then r
source evaluation. Logged evaluation provides more infor-



Resource evaluation relation; - + -—{-}>"-

sobFw:T  raw-op,: T = Selg (=, 0") = é(raw-op;, v, o)

R-ACT
IR; 6 F o—{raw-op; v}—="0’

Semi-logged evaluation relation; -; - = -—{-}—*-

op, : (z: T) = K says OkToOp, = {y:5;K says DidOp; z y} € Ik SEp
cokv: T Yext; - F p: K says OkToOp; v (u,0’) = §(raw-op;, v, o) q = sign(K, DidOp; v u)

s-AcT
Yewt; I; 6 F (L, 0,8){op;,v,p—=°(op, :: L0’ ,SU{q})
Yeat; = P Prop A#K SEP s
S-SAY
Yewt; I 0 - (L, 0,S){assertd says P}—*(L,0,S U {sign(4, P)})
Proof-logged evaluation relation-; -; - - -—{ -} ‘
op, : (z: T) = K says OkToOp, = {y:5;K says DidOp, z y} € Ik SEp
goko: T Yext; - F p: K says OkToOp; v (u,0’) = raw-op; (v, o) g = sign(K, DidOp; v u) A
L-ACT

Yeat; Ix;0 F (L, o, S)—{opi,v,p}—>l(q mpn Lo, SU{q})

Yieat; = P Prop A#£K SEP

L-SAY
Yeut; Ix; 0 F (L, 0,S){assertd says P}—!(L,0,S U {sign(4, P)})

Figure 2. Operational semantics

mation than the semi-logged evaluation for auditing, and For a set of tracesg(H)]|,,, is defined ag |7 |,/ | 7 € H}.
semi-logged evaluation provides more information than re- Analogous functions can be defined to relate other pairs of
source evaluation. evaluation schemes.
The rest of this section sketches a technical framework The o, Sp-histories of a configurationC, written
in which the above claims are formalized and verified. The H'(oq, So, C), is defined as the set of all traces that ter-
main result, Lemma 2.1, states that logged evaluation pro-minate at configuratioft’ and begin with an initial state of
vides more information during audit than resource evalua- the form(nil, oo, Sp). Theop-histories of a resource state
tion; similar results hold when comparing the logged and o, written H" (0q, o), is defined as the set of all resource
semi-logged relations or the semi-logged and resource redraces that terminate at
lations. Before we present the formal statement of this The following lemma makes precise the claim that
lemma, we define a few auxiliary concepts. logged evaluation is strictly more informative, for audit,
Each of the three relations can be lifted to detizees than resource evaluation. It describes a thought expetimen
For instance, a resource trace is a sequence of the form  where an auditor looks at either a logged evaluation con-
figuration or its erasure as a resource state. In either case
T = oo—{raw-op; v }="01 - {raw-op,, v, }="oy the auditor can consider the histories leading up to his ob-
. i o servation. The lemma shows that there are histories con-
Logged and sgml-logged traces are defined S|m|Ia‘\‘rIy. , sistent with resource evaluation that are not consistettit wi
The following meta-funptpn, pronoun(;ed erase, logged evaluation. Intuitively, this means logged evalua-
shows how a logged trace is implemented in terms of its i,y makes more distinctions than—and is more informative

encapsulated resource: than—resource evaluation.

\(L,0,8)]ir =0 Lemma 2.1. There exists a kernek’, extended signature
C—{assert_}-!r|,,, = . Yeat, configurationC' = (L, 0, S), rule setSy, initial trace
€A }_)lTJl/ Iy oo and resource trace such thatr € H"(09,0), butr ¢
[Cop, v, =7y = [Clyr A (rawop, o) =" ey | (HY (00, 8, C)) i



Proof Sketch By construction. LeStates= {up, down},

with initial state up. Pick a configurationC' whose t,s u= k|T|e Terms
log contains six proofs and reflects a trace of the form
(_ up, _)—{ =1, down, ) —{}~'(_,up,_). Now con- k == Kind”|Kind" Sorts
sider trivial resource trace = up. Observe that ¢ | Prop|Type Base kinds
H"(up, |C];).), butr ¢ HY(C). O
T,P == string|prin Base types

Not surprisingly, it is possible to make similar distinc- | z]a Variables and constants
tions between logged and semi-logged histories, as logged | tsayst Says modality
histories can ensure that a particulaACT step occurred, | (z:t)— ¢t Logical implication
but this is not possible in the semi-logged case. As we will | (z:t) =t Computational arrows
see in Section 3.3, this corresponds to the inability of the | {at;t} Dependent pair type
semi-logged system to distinguish between different goof
of the same proposition and thus to correctly assign blame. e,p == "a" |"b" | ... String literals

| A|B]|C... Principal literals
; | sign(A,t) Signature

3 Thelogic | return@[t] ¢ Injection intosays

This section defines ¥RA(, a language for express- | bindz = tint Reasoning undesays
ing access control. BRA, is a higher-order, depen- | Awtt|it Abstraction, application
dently typed, cut-down version of Abadi's Dependency A Pair

Core Calculus [3, 2], Following the Curry-Howard isomor-
phism [16], AURA, types correspond to propositions relat-

Figure 3. Syntax of AURAq

ing to access control, and expressions correspond to proofs

of these propositions. Dependent types allow propositions(.+ . 4,1 lambda abstractiona:t,. t5, function applica-
to be pa_rametenzed by quects of interest, such as prinCi-tion ¢, ¢,, and pair(t1, t,), AURA, includes a special com-
pals or file handles. The interface between application andpytational function typéxz:t;) = t,. Intuitively, (z:t;) —

kernel code is defined using this language.

After defining the syntax and typing rules oURA, and
illustrating its use with a few simple access-control exam-
ples, this section gives the reduction rules farmx, and

to is used for logical implication andz:t;) = ¢, de-
scribes kernel interfaces; Section 3.2 discusses thisdurt
We will sometimes writé; — to,t1 = to, and{ti;t2} as
a shorthand fofxz:t1) — to, (z:t1) = to, and{x:ty;t2},

discusses the importance of normalization with respect torespectively, when does not appear free i5.

auditing. It concludes with proofs of subject reduction,
strong normalization and confluence foluRa; details
may be found in theaccompanying technical report [31].

3.1 Syntax

Figure 3 defines the syntax ofukA,, which features
two varieties of terms: access control propfawvhich are
classified by corresponding propositioRsof kind Prop,
and conventional expressiors which are classified by
typesT of the kindType.? For ease of the subsequent pre-
sentation of the typing rules, we introduce two sotad”
andKind", which classifyProp andTyperespectively. The
base types arprin, the type of principals, angring; we
usez to range over variables, amdo range over constants.
String literals aré " —enclosed ASCII symbolg, B, C etc.
denote literal principals, while principal variables aratw
tenA, B, C.

In addition to the standard constructs for the func-
tional dependent typer:t;) — (2, dependent pair type

20ur use of several syntactic categories in Figure 3 is pufoghjilus-
trative purposes.

As in DCC, the modalitysays associates claims relating
to access control with principals. The tereturn@[A] p
creates a proof ofdA says P from a proof of P, while
bind x = p; in py allows a proof ofA says P, to be
used as a proof aP;, but only within the scope of a proof
of A says P». Finally, expressions of the forsign(A, P)
represent assertions claimed without proof. Such an expres
sion is indisputable evidence th&t was asserted byl—
rather than, for example, someone to whdrhas delegated
authority. Such signed assertions must be verifiable, bind-
ing (i.e. non-repudiable), and unforgeable; signaturdémp
mentation strategies are discussed in Section 5.

3.2 Type system

AURA(’s type system is defined in terms of constant sig-
naturesy:, and variable typing contexis, which associate
types to global constants and local variables, respegtivel
and are written:

Fu=-|Tz:t Yu=-]%,a:t.



ST SET Y+T T € {string,prin}
— T-PROP ——= T-TYPE T-BASE
3;T'F Prop : Kind 3;T'F Type: Kind ;T'HT - Type
YET z:tel YFT a:tey ;T Fty :prin ;T'Fty : Prop
T-VAR T-CONST T-SAYS
»;I'kFa:t ;I'kFa:t ;T -1t saysty : Prop
Tkt ky SiD,o:ty Fito: ko ki € {KindP,Type, Prop} ko € {Type, Prop} T
-ARR
S:TE (x:th) — to: ko
Dbty ky SiD,x ity g ke k1, ko € {Type, Prop}
T-PAIRTYPE
ST A{aityta} : ke
YET Ae{AB,...} ;- Ft:Prop
- T-SIGN
;T Hsign(A,t): A sayst
YET se{"a","b",...} ;T Fty :prin ;T Htg:se X;T'F sy : Prop
: T-LITSTR T-RETURN
YTk s:string 5Tk return@lty] ¢o : ¢ says so
T Ae{AB...} S;Thej:tsays Py X;T,a:Pilbey:tsays P x ¢ fu(P)
- T-LITPRIN - - T-BIND
Y;T'H A:prin ;T'Ebindx = ejiney : ¢t says P
Y:Ix:tkp: P 5T F (x:t) — P:PrOpT S:Tkty: (v:P) — P Si:Ikty: Py
-LAM -APP
5T dastp: (:t) — P STk ty to: {ta/x}P
ST Ety sy S:TF o {t1/x}se SiDo:sibsotk
T-PAIR
E; '+ <t1,t2> : {.%'281; 82}
YDkt ity ty € {Kind® Kind", Prop, Type} e YDkt :k ke {TypeProp} X;T,z:t;Fto . c
- -ARR-
T Ety ST F (z:ty) = to
Figure 4. The typing relation
Typechecking consists of four judgments: Rule T-SIGN states that a signed assertion created by the

principal A signing a proposition” has typeA says P;

g t <1: glgntatut;e_z IS V\ilefll-formded here, P can be any proposition, even false. More interest-
S.TEf g Ton etx h IS \tNeet orme ing, however, is whe® contains a constant symbol defined
’ 1:t2  1€MMiy NAs ypes in the signaturez; as there is no introduction form for con-

I Ht Computation type is well-formed

stants, there can be no proof Bfwithin the logic, but the
The signatur& is well-formed if¥ maps constants to types ~ existence of signatures allows for terms of typesays P.

of sortKind®—in other words, all ARA, constants con-  These signed assertions are an essential part of encoding ac
struct propositions. The contektis well-formed with re-  cess control. The premises ofsTeN typechecksA and P
spect to signatur& if T' maps variables to well-formed in the empty variable context, as signatures are intended to
types. A summary of the typing rules for terms can be found have unambiguous meaning in any scope—a signature with
in Figure 4. Most of the rules are straightforward, and we free variables is inherently meaningless.

explain only a few key rules. The rule TRETURN states that if we can construct a



proof termp for propositionP, then the ternmeturn@[A] p applications where the full speaks-for relation may be too

is a proof term for propositiodl says P—in other words, permissive.

all principals believe what can be independently verified.  Recall also the Remote Procedure Call example from

The T-BIND rule is a standard bind rule for monads and en- Section 2.1. While an application might usg (of type

sures that what principal believes can only be used when K says ((z:string) — OKToRPC x)) directly when build-

reasoning fromd’s perspective. ing proofs, it could also construct a more convenient dérive
The rule for the functional dependent typeaRR re- rule by using AJRAy’s bind to reason fronK’s perspective.

stricts the kinds of dependencies allowed by the type sys-For instance:

tem, ruling out functional dependencies on objects of kind _

Type. Note that, in the T=AM rule, the type of the lambda ro : (w:string) — K says OKToRPC x

abstraction must be of kinflrop. With such restrictions in ro = Az:string.bindy = rginreturn@QKly x

place, it is rather straightforward to observe that these tw

rules allow us to express flexible access control rules while Rules liker, and its derivatives, however, are likely too

at the same time ruling out type level computations and pre-trivial to admit interesting opportunities for audit; a reor

serving decidability of type checkin. interesting policy states that any principal may perform a

The interfaces between the application code and the ker-remote procedure call so long as that principal signs the in-
nel also requires a type description. For this reasargAy put string. One encoding of this policy uses the extended
introduces a special computational arrow typet,) = context

to. Computations cannot appear in proofs or propositions.
This decouples BRA( proof reduction from effectful com-
putation, and simplifies the interpretation of proposition
While AURA [25] demonstrates how to achieve similar re-
sults using a single arrow type and restrictions on applica- Rules= {r,
tions, computation types simplify the exposition afRA,.

The typing rule TPAIRT YPE for dependent pairs is stan-
dard and permits objects of kindg/pe and Prop to be
freely mixed; for simplicity we prohibit types and propo-
sitions themselves from appearing in a pair. Notice that
AURA, features an introduction proof for pairs but no cor- ,, _ hind z = 7, in
responding elimination form. While full BRA does, of L . L
cour:se, fe%ture such termsuRA, uses dependent pairs refurn@[Kj(z " hi " A sign(A, ReqRPC " hi "))
only when associating proofs with the data on which they P2 = (Az:K says OkToRPC " ab".
depend, and hence the elimination forms for pairs are un- Ay:C says ReqRPC "cd" . x)

necessary and have been elided for brevity. (bind z = 71 in

Yeat = ReqRPC : string — Prop, Xk
and singleton rule set

= sign(K, (x:string) — (A:prin) —
(A says ReqRPC z) — OKTORPC z)}.

Given this rule, an auditor might find the following proofs
in the log:

return@[K](z "ab" B sign(B,ReqRPC "ab"))
3.3 Examples .
(sign(C,RegRPC " cd")).

The combination of dependent types anddfes modal-
ity in AURA( can express many interesting policies. For in-
stance, Abadi's encoding of speaks-for [2] is easily addpte

As p; contains onhyA’s signature, and as signatures are un-
forgeable, the auditor can conclude tAds responsible for
the request—the ramifications of this depend on the real-

A speaksfor B £ B says ((P:Prop) — A says P — P) yvorld context of in question. Progh is more complicated;
it contains signatures from bothandC. An administrator

Adding dependency allows for more fine grained delega- can learn several things from this proof.

tion. For example, we can encode partial delegation: We can simplify the analysis gf, by reducing it as dis-
cussed in the following section. Taking the normal form of
B says ((x:string) — A says Good x — Good x) p2 (i.e., simplifying it as much as possible) yields

HereA speaks foB only when certifying that a string is ~ p5 = bind z =
“good.” Such fine-grained delegation is important for real in return@[K](z " ab" B sign(B, ReqRPC "ab" ).

3Using two sortsKind™ andKindf, makes it easy to state these restric- This term contains onljz’s signature and hencBemay be
tions on function types. Full BRA [25] implements a similar restriction !

using only a single sort; this makes some of its typing ruigsty heavier, CO_nSidered a(_:cou.ntabl-e for the .aCtion-. This is exactly the
but the two approaches appear largely equivalent. ruling out of histories discussed in Section 2.2.
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R-sAYs

R-BINDC

Figure 5. Selected reduction rules

Proofsp, andp), illustrate a tension inherent to this com-
putation model. A configuration whose log contaiswill
be associated with fewer histories (i.e. those in which
make no assertions) than an otherwise similar configura-
tion containingp,. While normalizing proofs inform pol-
icy analysis, it can also discard interesting informati®ao.
see this, consider ho@'s signature may be significant on
an informal level. If the application is intended to pass-nor
malized proofs to the kernel, then this is a sign that the ap-
plication is malfunctioning. If principals are only supgals
to sign certain statements’s apparently spurious signature
may indicate an violation of that policy, even if the sigratu
was irrelevant to actual access control decisions.

3.4 Formal language properties

Subject reduction As the preceding example illustrates,
proof simplification is a useful tool for audit. Following
the Curry-Howard isomorphism, proof simplification corre-
sponds to\-calculus reductions on proof terms.

Most of the reduction rules for ¥rRA, are standard; se-
lected rules can be seen in Figure 5, and the entire reduc
tion relation can be found in theaccompanying technical re-
port[31]. Forbind, in addition to the standard congruence

beta reduction, and commute rules as found in monadic lan-
guages, we also include a special beta reduction rule R-

BINDS. The RBINDS rule eliminates bound proofs that are
never mentioned in thigind’s body. Rule RBINDS permits
simplification of terms likebind « sign(A, P) in t,
which are not subject to RtND T reductions. AIRA dis-
allows reduction undesign, as signatures are intended to
represent fixed objects realized, for example, via crypto-
graphic means.

The following lemma states that the typing of an expres-
sion is preserved under reduction rules:

Lemma 3.1 (Subject Reduction)If - ¢t — ¢ andX; T +
t:sthenX; 't : s.

Proof Sketch.The proof proceeds by structural induction
on the reduction relation and depends on several standard
facts. Additionally, the RBINDS cases requires a non-
standard lemma observing that we may remove a variable
x from the typing context whem is not used elsewhere in
the typing judgment. O

Proof normalization An expression is imormal form
when it has no applicable reduction rules; as observed in
Section 3.3, reducing a proof to its normal form can be
quite useful for auditing. Proof normalization is most use-
ful when the normalization process always terminates and
every term has a unique normal form.

An expressiont is strongly normalizingif application
of any sequence of reduction rulesttalways terminates.
A language is strongly normalizing if all the terms in the
language are strongly normalizing. We have proved that
AURA is strongly normalizing, which implies that any al-
gorithm for proof normalization will terminate. The detail
of the proofs are presented in theaccompanying technical
report [31].

Lemma 3.2 (Strong Normalization) AURA, is strongly
normalizing.

Proof Sketch.We prove that AIRA( is strongly normal-
izing by translating AIRA, to the Calculus of Construc-
tions extended with dependent pairs, which is known to
be strongly normalizing [22], in a way that preserves both
types and reduction steps. The interesting cases are the
translations of terms relating to tlseys monad:return ex-
pressions are droppelind expressions are translated to to
lambda application, and a temsign(¢1, t2) is translated to a
variable whose type is the translationtgf One subtle point

is the tracking of dependency in the types of these newly in-
troduced variables, which must be handled delicately.

We have also proved thatuRA is confluent—i.e., that
two series of reductions starting from the same term can
always meet at some point. Let-* ¢’ whenever = ¢/ or
t reduces ta@’ in one or more steps.

Lemma 3.3 (Confluence) If ¢t —* ¢;, andt —* to, then
there existgs such that; —* t3 andty —* t3.

Proof Sketch.We first prove that ARA, is weakly con-
fluent, which follows immediately from inspection of the
reduction rules. We then apply the well-known fact that
strong normalization and weak confluence imply conflu-
ence. O



A direct consequence of these properties is that every
AURA( term has a unique normal form; any algorithm for
proof normalization will yield the same normal form for a
given term. This implies that the set of relevant evidence—  OkToOpen: {Mode; string} — Prop
i.e., signatures—in a given proof term is also unique, an DidOpen: (z : {Mode; string}) —
important property to have when assigning blame. FileDes — Prop

Kernel Signature x ‘

| Kernel Interfacel i |

4 FIIe&/Stem Examme open: (z : {Mode; string}) =

As a more substantial example, we consider a file system K says OkToOpen z =
in which file access is authorized using/®a, and log en- {h:FileDes;K says DidOpen z h}
tries consist of authorization proofs. In a traditional iles-
tem, authorization decisions regarding file access are mad

AEAdditional Types in Extended Signatu¥g ...

when a file is opened, and thus we begin by considering owns : prin — string — Prop
only theopen operation and only briefly consider additional ReqOpen: Mgde — string — Prop
operations. Ouopen is intended to provide flexible access Allow : prin — Mode — string — Prop

control on top of a system featuring a correspondavg
open and associated constants: Rule Seth:

ownerf : K says Owns A f

Mode : Type FileDes : Type
delegate: K says ((A : prin) — (B : prin) —
RDONLY : Mode WRONLY : Mode (m : Mode) — (f : string) —
APPEND : Mode RDWR : Mode A says ReqOpenm f —
K says Owns B f —
raw-open : {Mode; string} = FileDes B says Allow Am f —

OkToOpen (m, f))

We can imagine thataw-open is part of the interface to .
an underlying file system with no notion of per-user ac- owned: K says ((A : prin) — (m : Mode) —
cess control or ARA, principals; it, of course, should not (f : string) —
be exposed outside of the kernel. Taking inspiration from é Sys geqoien mf—=
Unix, we defineRDONLY, WRONLY, APPEND, andRDWR says Owns A f —

; . . . OkToOpen (m, f))
(the inhabitants oMode), which specify whether to open a

file for reading only, overwrite only, append only, or unre- readwrite : K says ((A : prin) — (B : prin) —

stricted reading and writing, respectively. TypieDes is (f : string) —

left abstract; it classifies file descriptors—unforgeatze c B says Allow A RDONLY f —

pabilities used to access the contents of opened files. B says Allow A WRONLY f —
Figure 6 shows the interface ¢pen, the extended signa- B says Allow A RDWR f)

ture of available predicates, and the rules used to coristruc

the proofs of typex says OkToOpen (m, f) (for some file read: K says ((A : prin) — (B : prin) —

f and moden) thatopen requires OkToOpen andDidOpen (f : string) —

B says Allow A RDWR f —

are as specified in Section 2, and the other predicates have
B says Allow A RDONLY f)

the obvious reading®wns A f states that the principal

owns the filef, ReqOpen m f is a request to open fil¢ write : K says ((A : prin) — (B : prin) —

with modem, andAllow A m s states thatd should be al- (f : string) —

lowed to openf with modem. (As we are not modeling B says Allow A RDWR f —

authentication we will take it as given that all proofs ofeéyp B says Allow A WRONLY f)

A says ReqOpenm f come fromA; we discuss ways of

enforcing this in Section 5.) append: K says ((A : prin) — (B : prin) —
We assume, for each fil¢, the existence of a rule (f - string) —

ownerf of type K says Owns A f for some constant prin- B says Allow A RDWR f —

cipal A—as only one such rule exists for anfyand no B says Allow A APPEND f)

other means are provided to generate proofs of this type, we
can be sure that each file will always have a unique owner.  Figure 6. Types for the file system example
Aside from such statements of ownership, the only rule a
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file system absolutely needsdslegate, which states that  ure 6 might well be supplemented with, for example
the kernel allows anyone to access a file with a particular

mode if the owner of the file allows it. surely : K says ((A : prin) — (B : prin) —
The other rules, however, are of great convenience. The (f :string) —

rule owned relieves the file owned from the need to create B says Allow A RDONLY f —

signatures of typed says Allow A m f for files A owns, B says Allow A APPEND f —

while readwrite allows a user who has acquired read and B says Allow A RDWR f)

write permission for a file from different sources to open

the file for reading and writing simultaneously. The rules maybe : K says ((A : prin) — (B : prin) —

read, write, and append do the reverse, allowing a user (f :string) —

to drop fromRDWR mode toRDONLY, WRONLY, or AP- B says Allow A WRONLY f —

PEND. These last four rules simply reflect semantic facts B says Allow A APPEND f)

about constants of typ@ode.

With the rules given in Figure 6 and the other constructs
of our logic it is also easy to create complex chains of dele-
gation for file access. For example, Alicg) (may delegate
full authority over any files she can access to BBpWith
a signature of type

Rulesurely is clearly erroneous, as it allows a user with only
permission to read from and append to a file to alter its ex-
isting content, but such a rule could easily be introduced by
human error when the rule set is created. Since any uses of
this rule would be logged, it would not be possible to ex-
ploit such a problematic rule without leaving a clear record
of how it was done, allowing a more prudent administrator
A says (C : prin — m : Mode — f : string — to correct the rule set.

B says Allow C'm f — A says Allow C'm f), Rule maybe, on the other hand, is a bit more subtle—
it states that the ability to overwrite a file is strictly more
or she may restrict what Bob may do by adding further re- powerful than the ability to append to that file, even in the
quirements or’, m, or f. She might restrict the delegation absence of any ability to read. Whether such a rule is valid
to files that she owns, or replacéwith B to prevent Bob  depends on the expectations of the system’s useagbe
from granting access to anyone but himself. She could dois clearly unacceptable if users desire to allow others to

both with a signature of type overwrite but not to append to files; otherwis@aybe may
be seen as quite convenient, allowing, for examples, easy
A says (m : Mode — f : string — K says Owns A f continuation of I.ong write operat?onsthat were prematurel
B says Allow B m f — A says Allow B m f). aborted. Examining the proofs in the log can help the ad-

ministrator determine whether the inclusionnedybe best
suits the needs of most users.
As described in Section 2, the kernel logs the arguments e have so far discussed ondpen, but there is still
to our interface functions whenever they are called. So far mych Aura, has to offer a file system, even in the context

we have only one such functionpen, and logging its ar-  of gperations that do not involve authorization.
guments means keeping a record every time the system per-

mits a file to be opened. Given the sort of delegation chains

that the rules allow, it should be clear that the reason why anR€ading and writing  While access permission is granted

open operation is permitted can be rather complex, which When a file is opened, it is worth noting that, as presented,

provides a Strong motivation for the |Ogg|ng of proofs' the typeFiIeDes ConVeyS no information about what sort
One can easily imagine using logged proof terms—and of access has been granted; consequently, attempting, for

. : . . .~ example, to write to a read-only file descriptor will re-
in particular proof terms in normal form, as described in . : .
. . _— ult in a run-time error. Since we already have a system

Section 3.3—to assist in assigning the blame for an unusual . A
. Ny . with dependent types, this need not be the case; while it
file access to the correct principals. For example, a single. o

o . . is somewhat orthogonal to our concerns of authorization,
principal who carelessly delegatB®WR authority might

7 FileDes could easily be made to depend on the mode with
be blamed more severely than two unrelated principals whoWhiCh a file has been opened. and operations could expect
unwittingly delegateRDONLY and WRONLY authority to b ! b P

someone who later makes usereddwrite. Examining the file descriptors equipped with the corrétbde arguments.

structure of proofs can once again allow an auditor to, in the This would, however, require some analog to the subsump-

. . L tion rulesread, write, andappend—and perhaps als@ad-
terminology of Section 2.2, rule out certain histories. : X :
write—along with, for pragmatic reasons, a means of pre-

We can also see how logging proofs might allow a sys- yenting the kernel from logging file contents being read or
tem administrator to debug the rule set. The rules in Fig- yritten as discussed in Section 5.
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Close Atfirst glance it seems that closing a file, like read- table of signatures as abstract data values; sagrhmay

ing or writing, is an operation that requires only a valid file then be represented as an index into the moderator’s table.
descriptor to ensure success, yet there is something mere thSuch indices can be small while still allowing for easy type
type system can provide. For example, if we require a cor- inference, but such a scheme requires a closed system with
respondingdidOpen when constructing proofs of typ@k- a mutually trusted component. In a small system, the mod-
ToClose, we can allow a user to share an open file descrip- erator can be the kernel itself, but a larger system might
tor with other processes secure in the knowledge that thosecontain several kernels protecting different resources an
processes will be unable to prematurely close the file. In administered by disparate organizations, in which case find
addition, logging of file close operations can help pinpoint ing a suitable moderator may be quite difficult.

erroneous double closes, which, while technically harsjles
may be signs of deeper logic errors in the program that trig-
gered them.

Temporary signatures Real-world digital signature im-
plementations generally include with each signature an in-

terval of time outside of which the signature should not be
. . . . . considered valid. In addition, there is often some notion of
Ownership File creation and deletion are certainly oper-

. . o a revocation list to which signatures can be added to ensure
ations that should require authorization, and they are es-, . . o S
. . . o . . their immediate invalidation. Both of these concepts could
pecially interesting due to their interaction with tbevns

predicate. The creation of fil¢ by principalA should in- bZtg?J?r:(;?itOl:;rietgrnfril aznpd”rr]r::ilprzlitlirmrfih:\tm:]%nttl:r?oijveilﬁ-
troduce a rulewnerf : Owns A f into the rule set, while g Y P Y g g

the deletion of a file should remove said rule: a means of advance how long this delegation should last. Potentially

L . . . mutable rules—which could be very important in a truly
transferring file ownership would also be desirable. This .~ . . . ;
: istributed setting—can even be represented by digital sig
can amount to treating a subset of our rules as a protecte ) .
. . . . hatures in the presence of a revocation list.
resource in its own right, with a protected interface to ¢hes . . .
! . The question remains, however, how best to integrate
rules and further rules concerning the circumstances under, : . .
. . these concepts with UrRA,. One possible answer is to
which access to this new resource should be granted. An . ; !
; . . ; change nothing in the logic and simply allow for the pos-
alternate approach is to dispense with ownership rules com-

pletely and instead use signed objects and signature revocaSlblllty that any proof might be declared invalid at runtime

tion, discussed further in Section 5, to represent owngrshi due o an expired S|gn_ature. Fqllowmg th|§ strategy reuIr
operations to dynamically validate the timestamps in the

signatures before logging, thereby making all kernel oper-
5 Discussion ations partial (i.e., able to fail due to expired proofs). In
such a setting, it seems appealing to incorporate some kind

Signatureimplementation Thus far we have treated sig-  of transaction mechanism so that clients can be guaranteed
natures as abstract objects that may only be created by printhat their proofs are current before attempting to pass them
cipals or programs with sufficient authority. This suggests to the kernel. While easy to implement, this approach may
two different implementation strategies. be unsatisfying in that programmers are left unable to rea-

The first approach is cryptographicsign object can be  son about or account for such invalid proofs.
represented by a digital signature in public key cryptogra-  Signatures might also be limited in the number of times
phy. Each principal must be associated with a well known they may be used, and this seems like a natural application
public key and in possession of its private counterpart; im- for linear or affinetypes (see Bauest al. for an authoriza-
plementing rule TSIGN reduces to calling a digital signa- tion logic with linearity constraints [8]). Objects of a éar
ture verification function. The cryptographic scheme iswel or affine type must be used exactly or at most once, respec-
suited for distributed systems with mutual distrust. tively, making such types appropriate for granting access t

A decision remains to be made, however: we can in- a resource only a set number of times. They can also be
terpretsign(A, P) either as a tuple containing the crypto- used to represent protocols at the type level, ensuring, for
graphic signature along with and P in plaintext, or as the  example, that a file descriptor is not used after it is closed.
cryptographic signature alone. In the latter case sigeatur Garg, deYoung, and Pfenning [18] are studying a con-
are small (potentially constructed from a hash of the con- structive and linear access control logic with an expliniit
tents), but recovering the text of a proposition fromitsgiro  intervals. Their syntax includes propositions of the form
(i.e., doing type inference) may not be possible. In the for- PQ[T}, T»], meaning ‘P is valid between time%; and7.”
mer case, inference is trivial, but proofs are generallydar ~ To handle time, the judgment system is parameterized by an
Note that proof checking ofigns in either case involves interval; the interpretation of sequedt I'; A = P|[I] is,
validating digital signatures, a polynomial time operatio “given assumption@, T', andA, P is valid during interval

An alternative implementation of signatures assumes.” Adopting this technique could allow ¥rRA, to address
that all principals trust sommoderator who maintains a  the problems of temporal policies, though it is currently un
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clear what representations of time and revocation might bes poral policies and authentication described above, we-anti
balance concerns of simplicity and expressive power. ipate several other concerns that need to be addressed.

In particular, we will require efficient log operations and
compact proof representations. Prior work on proof com-
pression for proof-carrying code [28] should apply in this
setting, but until we have experience with concrete exam-
ples, it is not clear how large the authorization proofs may
become in practice. A related issue is tool support for
browsing querying the audit logs: tools should allow system
administrators to issue queries against the log and analyze
the evidence that is present and rules that have been used.

For client developers, we expect that it will often prove
useful to log information beyond what is logged by the ker-
nel. A simple means of doing this is to treat the log itself
as a resource protected by the kernel. The kernel interface
could expose a generic “log” operation

Proof normalization Proofs in normal form are useful for
audit because they provide a particularly clear view of au-
thorization decisions. Normalization, however, is an expe
sive operation—even for simply typed lambda calculus, the
worst-case lower-bound on the complexity of the normal-
ization is on the order oéxp(2,n), whereexpg2,0) = 1,
exp2,n) = 29¥02(-1) etc., andn is the size of the
term [30]. Furthermore, the size of a normalized proof can
grow to exg2,n) as well. On the other hand, checking
whether a proof is in normal form is linear to the size of the
proof, and, in practice, non-malicious proof producers wil
likely create proofs that are simple to normalize. Conse-
qguently, where the normalization process should be carried
out depends on the system in question.
A kernel operating in a highly untrusted environment log : (x : string) — K says OkToLog z —
might require all submitted proofs to be in normal form, K says DidLog z
shifting the computational burden to potentially maligou
clients (as is commonly done to defend against denial of with (hopefully permissive) rules for constructimiToLog
service attacks). By contrast, a kernel providing servioes  proofs. It might be especially useful to log failed attempts
a “smart dust” network might normalize proofs itself, shift at proof construction. For example, users of the file system
ing work away from computationally impoverished nodes presented in Section 4 might repeatedly attempt to cortstruc
and onto a more robust system, again a standard designproofs for APPEND access given only the privileges nec-
Server side normalization might be done online as proofsessary foWRONLY access, indicating that the ruieaybe
come in (to amortized computation cost) or offline during might be appropriate for their needs.
audit (to avoid latency). Ultimately, the URA program- Conversely, some operations take arguments that should
ming model naturally accommodates these approaches andot be logged, perhaps due to security or space constraints.
others; an implementation should allow programmers to se-Section 4 mentions the possibility of logging file read and
lect whatever normalization model is appropriate. write operations, which touches on both these issues—even
if it were practical to log all data read from and written
Authentication In Section 4 we assumed that signatures to each file, many users would likely prefer that their file
of type A says ReqOpenm f are always sent fromi. contents not be included in the system logs. Terms that
Such an assumption is necessary because we are not cumust be excluded from the log, however, limit not just the
rently modeling any form of authentication—or even the as- scope of auditing but also the dependencies that may oc-
sociation of a principal with a running program—buta more cur within propositions, as it would hardly suffice for data

realistic solution is needed when moving beyond the scopeexcised from the log to appear inside a type annotation.
of this paper. For example, communication between pro-

grams running on behalf of different principals could take 6 Reated Work
place over channel endpoints with types that depend on the
principal on the other end of the channel. Earlier work on proof-carrying access control [4, 5, 14,
Of course, when this communication is between differ- 9, 10, 19] recognized the importancesalys and provided
ent machines on an inherently insecure network, problemsa variety of interpretations for it. Garg and Pfenning [21]
of secure authentication become non-trivial, as we must im-and, later, Abadi [2] introduced the treatmentays as an
plement a secure channel on top of an insecure one. In pracindexed monad. Both systems [21, 3] also enjoy the cru-
tice this is done with cryptography, and one of the long-term cial noninterference property: in the absence of delegatio
goals of the AIRA project is to elegantly integrate crypto- nothingB says can cause to say false. ARA( builds on
graphic methods with the type system, following the work this prior work, especially Abadi's DCC, in several ways.
of, for example, Fournegt al.[20]. The addition of dependent types enhances the expressive-
ness of DCC, and the addition sign allows for a robust
Pragmatics We are in the process of implementing distributed interpretation ofays. AURA('s treatment of
AURA, in part to gain practical experience with the method- principals as terms, as opposed to members of a special
ology proposed in this paper. Besides the issues with tem-index set, enables quantification over principals. Lastly,
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AURA( eliminates DCC's bhuilt-in acts-for lattice (which base. The systems differ in three key respects. First, the
can be encoded as described in Section 3.3) along with theLAFS policy language is too weak to express mamrA,
protects relation (which allows additional commutatiodan policies. Second, BRA, requires some privilegel says
simplification ofsays with with regards to that lattice). rules to bootstrap a policy, while LAFS can be completely
Our work is closely related to Fournet, Gordon and Maf- configured with non-privileged policies. Third, the LAFS
feis’s research on authorization in distributed systert8, [  interface is designed to be transparent to application code
20] Fournetet al. work with an explicitr-calculus based — and does not provide any access control properties; instead
model of computation. Like us, they use dependent types toLAFS logs—but does not prevent—rule violations.
express access control properties. Fournet and colleagues Cederquist and colleagues describe a distributed system
focus on the security properties that are maintained dur-architecture with discretionary logging and no reference
ing execution, which are reflected into the type system us-monitor [14]. In this system agents—i.e. principals—may
ing static theorem proving and a type constru@er The choose to enter proofs (written in a first-order natural de-
inhabitants ofok, however, do not contain dynamic infor-  duction style logic) into a a trusted log when performing
mation and cannot be logged for later audit. Additionally, actions. Cederquigt al. formalize accountability such that
while AURA, treats signing abstractly, Fournet and col- agents are guilty until proved innocent—that is, agents use
leagues’ type system (and computation model) can explic-10g entries to reduce the quantity of actions for which they
itly discuss cryptographic operations. can be held accountable. This relies on the ability of some
Trust management systems like PolicyMaker and author_ity to independently obserye certain_actions; sich o
Keynote [13] are also related to our work. Trust manage- S€rvations are necessary to begin the audit process.
ment systems are meant to determine whether a set of cre- .
dentials proves that the request complies with a security7 Conclusion

licy, and th | li heck- . . L
policy, an oy USe generd’ purpose somplance chec This paper has argued for evidence-based auditing, in

ers to verify these credentials. In PolicyMaker, proofs hich audit | i tai fs about authorizati
are programs—uwritten in a safe language—that operate on/nich auditiog entries contain proots about authorizgtion

strings; a request is allowed when the application can such proofs are usgfulforminimizingthetrusted compL_Jti_ng
combine proofs such that the result returns true on in- base and provide information tha’F can help debug ppI|C|es.
put r. While validity of AURA, propositions is tested by This paper has presented an architecture _for structursg sy
type checking, validity in PolicyMaker is tested byalua- tems in terms of trustgd kernels whose mterfaces_requwe
tion; this represents a fundamentally different approaches toproofs. As a concrete instance of this approach, th's paper
logic. Similar to this paper, trust management systems in—has_ developed 'ARAO_' a depen_dently-typed authonz_atm_n
tend for proof checking to occur in a small and application- logic that enjoys subject reduction and strong normalirati

independent trusted computing base;proof search may bé)rope(rjtlﬁs. Severa] gxampl;as_ US'Q@FAA% havg demo.n-
delegated to untrusted components. strated how we envision applying these ideas in practice.
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