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Abstract
Recent years have seen a dramatic increase in the number and im-
portance in daily life of mobile devices. The security properties that
these devices provide to their applications, however, are inadequate
to protect against many undesired behaviors. A broad class of such
behaviors is violations of simple information-flow properties.

This paper proposes an enforcement system that permits An-
droid applications to be concisely annotated with information-flow
policies, which the system enforces at run time. Information-flow
constraints are enforced both between applications and between
components within applications, aiding developers in implement-
ing least privilege. We develop a detailed model of our enforce-
ment system using a process calculus, and use the model to prove
noninterference. Our system and model have a number of use-
ful or novel features, including support for Android’s single- and
multiple-instance components, floating labels, declassification and
endorsement capabilities, and support for legacy applications. Our
design fits the Android programming model cleanly enough that
we have developed a fully functional prototype on Android 4.0.4.
We tested our prototype on a Nexus S phone, verifying that it can
enforce practically useful policies that can be implemented with
minimal modification to off-the-shelf applications.

Keywords information flow; Android; run-time enforcement;
language-based security

1. Introduction
Recent years have seen a dramatic increase in the number and
importance in daily life of smartphones and similar mobile devices.
The security properties that mobile devices and their operating
systems provide to their applications, however, are inadequate to
protect against many undesired behaviors, contributing to the rapid
rise in the amount of malware targeting mobile devices [21, 27].

To mitigate application misbehavior, mobile OSes like Android
rely largely on strong isolation between applications, as well as
permission systems that limit communication between applications
and access to resources and sensitive APIs. Researchers have in-
vestigated these mechanisms at length, finding them vulnerable to
application collusion through the use of covert channels [22, 31],
information-flow leaks [11, 31], and privilege-escalation attacks [7,
13]. Attempts to address these issues have produced tools for de-
tecting information leaks [6, 10, 18], improvements to permission
systems (e.g., [24, 26]), as well as more powerful mechanisms for
restricting applications’ access to data and resources (e.g., [4]).

Many commonly discussed misbehaviors that are beyond the
reach of Android’s permission system are violations of simple
information-flow properties. This is because Android’s permission
system supports only those policies that allow or deny communi-

cation or access to sensitive resources based on the identity (and
associated, mostly static permissions) of the caller and callee. Once
data has been sent from one application to another, the sender has
relinquished all control over it. Similarly, when deciding whether
to allow a caller to access an API, the system can base its decision
only on the permissions that the caller holds; it cannot take into
account the caller’s prior behavior.

Recent work on understanding or preventing undesired informa-
tion flows on Android typically focuses on using a specific mecha-
nism to enforce a pre-determined global policy [6, 10]. Other works
have developed more powerful mechanisms that track control flow
to enable more informed enforcement and allow finer-grained con-
trol over communication and resource accesses [4, 8]; these also
typically lack convenient policy languages. Although a few formal
analyses of Android’s security architecture have provided some in-
sight about its limitations [32], works that introduce more power-
ful mechanisms typically do not formally investigate the properties
that those mechanisms exhibit.

Our work is the first to propose a DIFC-style enforcement sys-
tem for Android that allows convenient, high-level specification of
policy and has a well-understood theory, backed by a proof of non-
interference. Building on techniques for controlling information
flow in operating systems [20, 34], our system permits program-
mers to specify policy via programmer- or system-defined labels
applied to applications or application components. Specifying and
enforcing policy at the level of application components is a prac-
tically interesting middle ground between process-level (e.g., [20])
and instruction-level (e.g., [23]) enforcement of information-flow
policies, offering finer-grained control than process-level enforce-
ment, but retaining most of its convenience. Labels specify a com-
ponent’s or application’s secrecy level, integrity level, and declas-
sification and endorsement capabilities. We also allow floating la-
bels, which specify the minimal policy for a component, but permit
multipurpose components (such as an editor) to be instantiated with
labels derived from their callers (e.g., to prevent them from exfil-
trating a caller’s secrets).

We develop a detailed model of our enforcement system us-
ing a process calculus, using which we prove noninterference for
the enforcement system. The modeling—and the design of the
system—is made particularly challenging by the desire to fully sup-
port key features of Android’s programming model. Challenging
features include single- and multiple-instance components and en-
forcement at two levels of abstraction—at the level of applications,
which are strongly isolated from each other, and application com-
ponents, which are not. This formal analysis reveals that floating
labels and the ability of single-instance components to make their
labels stricter at run time—features that appear necessary to sup-
port practical scenarios—can, if not implemented carefully, easily
compromise the noninterference property of the system.
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The contributions of this paper are the following:
1. We propose the first DIFC-style enforcement system for An-

droid that allows convenient, high-level specification of policy
and has a well-understood theory (Section 3).

2. We develop a faithful process-calculus model of Android’s
main programming abstractions and our system’s enforcement
mechanism (Section 4).

3. We define noninterference for our enforcement system and
prove that it holds (Section 5).

4. We implement our system on top of Android 4.0.4 and test it
on a Nexus S phone. Through a case study with minimally
modified off-the-shelf applications, we show that our system
can specify and enforce practically interesting policies, and
that this enforcement is compatible with the Android runtime
(Section 6).

2. Background and Related Work
In this section we give a high-level overview of Android (Sec-
tion 2.1) and review related work (Section 2.2).

2.1 Android Overview
Android is a Linux-based, open-source OS. Android applications
are written in Java and each executes in a separate Dalvik Virtual
Machine (DVM) instance.

Applications are composed of components, which come in four
types: activities define a specific user interface (e.g., a dialog win-
dow); services run in the background and have no user interface;
broadcast receivers listen for system-wide broadcasts; and content
providers store data and provide an SQL-like interface for sharing
data between applications.

Activities, services, and broadcast receivers communicate via
asynchronous messages called intents. If a recipient of an intent
is not instantiated, the OS will create a new instance. The recip-
ient of an intent is specified by its class name or by the name of
an “action” to which multiple targets can subscribe; hence, any
component can attempt to send a message to any other component.
The OS mediates both cross- and intra-application communications
via intents. Between applications, intents are the only (non-covert)
channel for establishing communication. Components within an
application can also communicate in other ways, such as via public
static fields. Such communication is not mediated, and can be un-
reliable because components are short lived—Android can garbage
collect all but the currently active component. Hence, although nei-
ther Java’s abstractions nor the Android abstractions built on top
of them prevent unmediated communication between components,
the Android programming model strongly discourages it. We will
often write that a component calls another component in lieu of
explaining that the communication is via an intent.

Android uses permissions to protect components and sensitive
APIs: a component or API protected by a permission can be called
only by applications that hold this permission. Permissions are
strings (e.g., android.permission.INTERNET) defined by the sys-
tem or declared by applications. Applications acquire permissions
only at install time, with the user’s consent. Additionally, content
providers use URI permissions to dynamically grant and revoke ac-
cess to their records, tables, and databases.

2.2 Related Work
Information Flow Enforcing information-flow policies has been
an active area of research. Some works use language-based tech-
niques and develop novel information-flow type systems (cf. [30])
that provably enforce noninterference properties; others use run-
time monitoring techniques (e.g., [2, 17]). Our approach is most

similar to work on enforcing information-flow policies in operat-
ing systems [20, 33, 35]. There, each process is associated with
a label specifying its information-flow policies. The components
in our system can be viewed as processes in an operating system.
However, most of these systems do not prove any formal proper-
ties of their enforcement mechanisms. Krohn et al. [19] presented
one of the first proofs of noninterference for practical DIFC-based
operating systems. Our design is inspired by Flume [20], but has
many differences. For instance in Flume, floating labels are not al-
lowed. In Android, as we show through examples, floating labels
are of practical importance. Because Flume has no floating labels,
a stronger noninterference can be proved for it than for our sys-
tem: their definition of noninterference is based on a stable fail-
ure model, which is a simulation-based definition. Our definition is
trace-based, and does not capture information leaks due to a high
process stalling.

Recent work on run-time enforcement of information-flow poli-
cies on mobile code [1, 2, 17] tracks information flow at a much
finer level of granularity than ours.

There has been a rich body of work on noninterference in pro-
cess calculi [14, 29]. Recently, researchers have re-examined defi-
nitions of noninterference for reactive systems [3, 28]. In these sys-
tems, each component waits in a loop: once inputs are available, the
component processes an input and produces one or more outputs
(inputs to other components). These works propose new definitions
of noninterference based on the (possibly infinite) streams pro-
duced by the system. Our definition of noninterference is weaker,
since we only consider finite prefixes of traces. These models are
similar to ours, but do not consider shared state between compo-
nents, and assume the inputs and outputs are the only way to com-
municate, which is not the case for Android.

Android Security Many works have recently focused on Android
security, analyzing Android’s permission system [6, 9], developing
tools to detect misbehaving applications [12, 16], and proposing
new protection mechanisms (e.g., [24, 26]). Android’s permission
system has been shown to be inadequate to protect against many
common attacks, including privilege-escalation attacks [7, 13] and
information leaks [5, 10, 11, 31].

Closest to the goal of our work are projects such as Taint-
Droid [10] and AppFence [18], which aim to automatically detect
and prevent dangerous information leaks. They operate at a much
finer granularity than our mechanism, tracking tainting at the level
of variables, and enforce fixed policies. Several works have pro-
posed more general mechanisms. Dietz et al. developed a system
in which applications can attest (via digital signatures) to their call-
ing context, and these attestations can be used later when reasoning
about whether a call should be allowed [8]. In a similar vein, Bugiel
et al. developed a system that monitors interactions between appli-
cations at run time and uses this information to make access-control
decisions [4]. Both of these works develop powerful enforcement
mechanisms, from which we borrow when implementing our own.
Our focus, additionally, is on supporting flexible, application- and
component-centric policies, and on formally verifying the proper-
ties of our enforcement mechanism.

Formal analyses of Android-related security issues and language-
based approaches to solving them have received less attention. Shin
et al. [32] developed a formal model to verify functional correct-
ness properties of Android, which revealed a flaw in the permission
naming scheme and a possible attack. Closest to our work is Sorbet,
a set of enhancements to Android’s permission system designed to
enforce information-flow-like policies, for which some correctness
properties were also formally proved [15]. The work described in
this paper is different in several respects: we build on more well-
understood theory of information flow; we support more flexible
policies (e.g., in Sorbet it is not possible to specify that information
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Figure 1. Motivating example: a simple scenario that cannot be
implemented using Android permissions.

should not leak to a component unless that component is protected
by some permission); and we formally model our enforcement
system in much greater detail, thus providing much stronger guar-
antees about the correctness of our system.

3. Approach Overview
We next describe a scenario that exemplifies the inability of An-
droid’s permission system to specify and enforce many simple,
practical policies (Section 3.1). We then discuss the key design
choices of our system (Section 3.2), how it enforces policies (Sec-
tion 3.3), and design limitations (Section 3.4).

3.1 Motivating Scenario
Suppose a system has the following applications: a secret-file man-
ager for managing files such as a diary and lists of bank-account
numbers; a text editor and a viewer that can modify and display this
content; and an email application. Because of their sensitive con-
tent, we want to prevent the files that are managed by the secret-file
manager from being inadvertently or maliciously transmitted over
the Internet; sending files over the Internet should be allowed only
if the user explicitly requests it through the file manager. The files
need to be viewed and edited. Building a special editor and viewer
just for secret files would be impractical, and so these tasks have to
be handled by a general-purpose editor and viewer. This scenario is
shown in Figure 1.

The desired (information-flow) policy, and interactions between
applications shown in this example, are representative of practical
scenarios that Android currently cannot satisfactorily handle.

In Android, one might attempt to implement this policy as fol-
lows. The file manager could require that its callers have the Read-
File permission, which would prevent applications from reading the
files directly from the content provider that stores them. When a
user wished to edit or view a file, the file manager would dynami-
cally grant a URI permission to permit access to that file. To prevent
the editor and viewer from exfiltrating data, the user might choose
to install only viewers and editors that do not have the Internet per-
mission, which Android applications need in order to create TCP
connections. The email application would need the Internet permis-
sion to send email; it, too, would be granted a URI permission by
the file manager when the user wanted to send a file by email (the
only legitimate reason, in our scenario, for sending a file over the
Internet).

This attempt at implementing the desired policy using Android
permissions fails. Once the editor and viewer have gained access to
the secret data, they cannot send it over the Internet directly (as they
lack the Internet permission), but they can exfiltrate it by sending
it to the email application or to any other application that has the
Internet permission. To compound the problem, both the viewer and
the editor may have legitimate reasons to access the Internet when
they are being used on non-secret data, and preventing them from
doing this may be an unreasonable restriction.

A further concern is implementing least privilege within appli-
cations. If an application has many privileges (e.g., it is by policy
allowed to access various sensitive resources), one would like to
segment the code and the policy so that the privileges are granted

only to the subset of the application’s code that requires them. This
concern is practically relevant in Android: applications often must
be granted tens of permissions in order to function correctly; each
permission is needed in only one or a small number of instances,
but all components of the application receive all permissions.

We next describe some of our system’s key features and how
they help enforce our example policy. We revisit the example more
concretely in Section 6.

3.2 Key Design Choices
We next discuss the design of our system, including the level of
abstraction at which we enforce policies and specifying policies
via information-flow labels.

3.2.1 Enforcement Granularity
Traditionally, languages and systems that supported information-
flow properties did so either at instruction level (e.g., [17, 23])
or at process level (e.g., [20]). Android’s division of applications
into components invites the exploration of an interesting middle
ground—each Android component could be regarded as a process,
and policy could be specified and enforced at the level of com-
ponents. Android applications are typically divided into a rela-
tively small number of key components, e.g., an off-the-shelf file-
manager application with which we experimented was comprised
of five components. Hence, component-level specification would
likely not be drastically more complex than application-level spec-
ification. This additional granularity, however, could enable poli-
cies to be more flexible and better protect applications (and com-
ponents) from harm or misuse.

Unfortunately, enforcing purely component-level policies is dif-
ficult. Android strongly encourages the use of components as mod-
ules that communicate only through narrow, well-defined inter-
faces. In fact, the Android runtime may garbage collect any com-
ponent that is not directly involved in interacting with the user;
using the narrow interfaces for communication between compo-
nents is the only reliable method of cross-component communi-
cation. However, neither Android nor Java prevent components
that belong to the same application from exchanging information
without going through the Android-mediated interfaces for cross-
component communication. Components are composed of normal
Java classes, which can communicate independently of component
boundaries by directly reading and writing public static fields. In
other words, Android’s component-level abstractions are not ro-
bust enough to be used as an enforcement boundary; fully medi-
ating interactions between components would require a lower-level
enforcement mechanism. Although such low-level enforcement is
possible, e.g., with instruction-level information-flow tracking [23],
implementation and integration with existing systems is difficult
and can cause substantial run-time overhead.

In this paper we pursue a hybrid approach. We allow pol-
icy specification at both component level and application level.
Application-level policies are feasible to enforce strictly because
Android provides strong isolation between applications; the chan-
nels between them are few enough for an enforcement system to
be able to monitor them. Enforcement of component-level policies,
however, is best-effort: When programmers adhere to Android’s
programming conventions, potential policy violations that are the
result of application compromise or common programmer errors
(i.e., errors that do not break the component abstraction) will be
prevented by the enforcement system. On the other hand, if an ap-
plication does not adhere to Android’s programming conventions
for implementing interactions between components, these compo-
nents will be able to circumvent their own policies (but not their
own application’s or any other application’s policies).
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The purpose of component-level policies is to give program-
mers a tool to help them better police their own code and imple-
ment least privilege. In addition to helping regulate interactions
between components within an application, component-level pol-
icy also acts in concert with application-level policy to regulate in
more detail which cross-application interactions should be allowed.
When two components belonging to different applications try to
communicate, this will be allowed only if it is consistent with both
application-level and component-level policy.

3.2.2 Policy Specification via Labels
We use labels to express information-flow policies and track infor-
mation flows at run time. A label is a triple (s, i, δ), where s is a set
of secrecy tags, i a set of integrity tags, and δ a set of declassifica-
tion and endorsement capabilities. For convenience, we also refer
to s as a secrecy label and i as an integrity label; and to δ as the
set of declassification capabilities, even though δ also includes en-
dorsement capabilities. Labels are initially assigned to applications
and components by developers in each application’s manifest; we
call these static labels. At run time, each application and compo-
nent also has an effective label, which is derived by modifying the
static label to account for uses of declassification and endorsement.
Additionally, secrecy labels s and integrity labels i can be declared
as floating; we explain this below.

Labels as Sets of Tags The choice to implement secrecy and in-
tegrity labels as sets of tags was motivated by the desire to help
with backward compatibility with standard Android permissions.
In Android, the set of permissions is not pre-defined; any applica-
tion can declare new permissions at installation time. In our sys-
tem, each application can similarly declare new secrecy and in-
tegrity tags, which can then be used as part of its label. The lattice
over labels, which is required for enforcement, does not need to
be explicitly declared—this would be impractical if different appli-
cations declare their own tags; rather, the lattice is defined by the
subset relation between sets of tags. To support legacy applications,
the permissions that those applications possess or require of their
callers can be mapped to tags, and the policy expressed through
permissions can be mapped to a label. We discuss this further in
Section 6.

Declassification and Endorsement The declassification capabil-
ities, δ, that are part of a component’s or application’s label specify
which tags the component or application may remove from s and
which tags it may add to i. We specify the declassification capa-
bilities as part of a component’s (or application’s) label because
whether or not a component should be allowed to declassify or en-
dorse is a part of the security policy; to make it easier to reason
about policy, we want to express it clearly and in a declarative way.
Furthermore, this way of specifying declassification policy also
aids in backward compatibility: declassification (or endorsement)
that is permitted by policy can be applied to a legacy application or
component automatically by the enforcement system when neces-
sary to make a call succeed.

Returning to the example from Section 3.1, the secret-file man-
ager application may be labeled with the policy ({FileSecret},
{FileWrite}, {-FileSecret}). Intuitively, the first element of this la-
bel conveys that the secret-file manager is tainted with the secret
file’s secrets (and no other secrets); the second element that the
file manager has sufficient integrity to add or change the content
of files; and the third element that the file manager is allowed to
declassify by removing FileSecret from its secrecy label. When it
starts executing, the file manager’s effective label will be the same
as the static label we just described. If the file manager then ex-
ercises its declassification capability -FileSecret, its effective label
will become ({}, {FileWrite}, {-FileSecret}).

The complement to declassification and endorsement is rais-
ing a label. Any component may make its effective secrecy label
more restrictive by adding tags to it, and its effective integrity label
weaker by removing tags. After a component has finished execut-
ing code that required declassification or endorsement, it will typ-
ically want to raise its effective label to the state it was in prior to
declassification or endorsement. Components without declassifica-
tion capabilities can also raise their labels, but this is rarely likely
to be useful, since raising a label can be undone only through the
use of declassification or endorsement.

Floating Labels Some components or applications, e.g., an editor
or a library component, may have no secrets of their own that they
need to protect but may want to be compatible with a wide range
of other applications. In such cases, we can mark the secrecy or
integrity label as floating, e.g., (F{}, F{}, {}), to indicate that
the secrecy or integrity element of a component’s effective label
is inherited from its caller. The inheriting takes place only when
a component is instantiated, i.e., when its effective label is first
computed.

In our example, the editor application’s static policy is (F{},
F{}, {}). If instantiated by the file manager, the editor’s effec-
tive secrecy label would become {FileSecret}, allowing the editor
and the file manager to share data, but preventing the editor from
calling any applications or APIs that have a weaker secrecy label
than {FileSecret}. If the editor also had its own secrets to protect,
we might give it the static label (F{EditorSecret}, F{}, {}). Then,
the editor’s effective label could be floated at instantiation to, e.g.,
({EditorSecret, FinancialSecret}, {}, {}), but any instantiation of
the editor would carry an effective secrecy label at least as restric-
tive as {EditorSecret}.

Returning to our example: when the editor is instantiated by the
file manager, its static integrity label F{} would yield an effective
integrity label {FileWrite}, permitting the editor to save files, and
preventing components without a FileWrite integrity tag from send-
ing data to the editor.

Unlike secrecy and integrity labels, declassification capabilities
cannot be changed dynamically; they are sufficiently powerful (and
dangerous) that allowing them to be delegated is too likely to yield
a poorly understood policy.

3.3 Enforcement
The crux of our enforcement system is a reference monitor that
intercepts calls between components and permits or denies a call
based on the caller’s and callee’s labels. Much of the reference
monitor’s responsibility is maintaining the mapping from applica-
tions and components (and their instances) to their effective labels.
As we will discuss in Section 6, we build our reference monitor on
top of Android’s activity manager. In our formal model (Section 4)
we abstract the bookkeeping responsibilities into a label manager
and the purely enforcement duties into an activity manager. We
next discuss how our reference monitor makes enforcement deci-
sions and how our system handles persistent state.

3.3.1 Application- and Component-level Enforcement
Whenever two components attempt to communicate via an intent,
our reference monitor permits or denies the call by comparing the
labels of the caller and the callee. In the simple case, when the
caller and callee are part of the same application this comparison is
straightforward: the call is allowed if the caller’s effective secrecy
label is a subset of the callee’s and the caller’s effective integrity
label is a superset of the callee’s; otherwise, the call is denied.

The comparison is more interesting when the caller and callee
are in different applications. Then, a call is allowed if it is consistent
with both component-level labels and application-level labels of the
caller’s and callee’s applications. This requires four comparisons
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between pairs of labels. If any comparison indicates that the call
should be denied, it is denied; otherwise the call is allowed.

If both the callee component and the callee’s application have
a floating label, and the callee’s application is not running prior
to a call, then the callee’s and the callee’s application’s effective
labels will be constructed by adding to their static labels the super-
sets of the tags of the caller and the caller’s application. In other
words, the callee’s effective integrity label will be the union of its
static integrity label, the caller’s effective integrity label, and the
caller’s application’s effective integrity label. The callee’s effective
secrecy label and the callee’s application’s effective labels will be
constructed similarly.

Declassification and endorsement may change the effective la-
bels of components and applications, and are permitted only when
consistent with policy. For programmer convenience, we allow a
caller component to declassify and endorse automatically when this
is necessary for an outgoing call to be permitted. We discuss this
further in Section 6.

From the standpoint of policy enforcement, returns (from a
callee to a caller), including those that report errors, are treated just
like calls. As a consequence, a return may be prohibited by policy
(and prevented) even if a call is allowed.

Much of the functionality of Android applications is accom-
plished through calls to Android and Java APIs, which provide
functions such as accessing the file system or opening sockets.
These APIs are not themselves components or applications; how-
ever, we assign them labels similarly as we would to components.

3.3.2 Persistent State
Many components are multi-instance: each attempt to communi-
cate with such a component causes a new instance to be cre-
ated. Such components intuitively pose little difficulty for enforc-
ing information-flow properties, since each attempt to communi-
cate with one generates a fresh instance, bereft of any information-
flow entanglements with other components.

More interesting are single-instance components, which can be
targets for multiple calls from other components, and whose state
persists between those calls. Interaction between single-instance
components and the ability of components to raise their labels can
at first seem to cause problems for information-flow enforcement.

Consider, for example, malicious components A and B, which
seek to communicate via a colluding single-instance component C.
Suppose that A’s static secrecy label is {FileSecret} and B’s is {},
making direct communication from A to B impossible; C’s static
secrecy label is {}. Component C, upon starting, sends B an intent,
then raises its effective label to {FileSecret}. A sends the content
of a secret file to C; this is permitted according to their labels. If the
content of the secret file is “Attack at dawn,” C exits; otherwise, C
continues running. B calls C, then calls C again; and if B receives
two calls from C, then it learns that A’s secret file is “Attack at
dawn.” C can only send the second call to B after it exits, which
only happens when A’s secret file is “Attack at dawn.”

The information leak in this scenario arises because C has
changed (declassified!) its label by exiting. To prevent scenarios
like this (and to allow us to prove noninterference, which also
ensures that no similar scenarios remain undiscovered), raising a
label must change not only a component’s effective label, but also
its static label.

3.4 Design Limitations
We explicitly avoid addressing several issues that impact the secu-
rity our enforcement system provides in practice.

We do not attempt to address communication via covert chan-
nels, such as timing channels. Recent work has identified ways in

which these may be mitigated via language-based techniques [36];
but such techniques are outside the scope of this paper.

A second major area that our work does not address is the ro-
bustness of Android’s abstractions. In particular, stronger component-
level abstractions might permit robust, instead of best-effort, en-
forcement of information-flow policies within applications. Im-
proving these abstractions, or complementing them by, e.g., static
analysis, could thus further bolster the efficacy of our approach.

Many security architectures are vulnerable to user error. Our
system does not address this problem; we design an infrastructure
that supports rich, practically useful policies. Because our approach
allows developers to better protect their applications, they may have
an incentive to use it. However, we do not tackle the problem of
preventing the user from making poor choices (e.g., agreeing to
trust an untrustworthy application).

4. Process Calculus Model
We next show how to encode Android applications and our en-
forcement mechanism in a process calculus. Our encoding captures
the key features necessary to realistically model Android, such as
single- and multi-instance components, persistent state within com-
ponent instances, and shared state within an application.

4.1 Labels and Label Operations
Labels express information-flow policies and are also used to track
flows at run time. A label is a composed of sets of tags. We assume
a universe of secrecy tags S and integrity tags I. Intuitively, each
secrecy tag in S denotes a specific kind of secret, e.g., contact
information or financial data. Each integrity tag in I denotes a
capability to access a security-sensitive resource.

Simple labels κ ::= (σ, ι)
Label quantifiers Q ::= C | F
Process labels K ::= (Q(σ), Q(ι), δ)

A simple label κ is a pair of a set of secrecy tags σ drawn from S
and a set of integrity tags ι drawn from I. Simple labels form a lat-
tice (L,v), whereL is a set of simple labels andv is a partial order
over simple labels. Intuitively, the more secrecy tags a component
has, the more secrets it can gather, and the fewer components it
can send intents to. The fewer integrity labels a component has, the
less trusted it is, and the fewer other components it can send intents
to. Consequently, the partial order over simple labels is defined as
follows: (σ1, ι1) v (σ2, ι2) iff σ1 ⊆ σ2, and ι2 ⊆ ι1

Secrecy and integrity labels are annotated with C for concrete
labels or F for floating labels, as described in Section 3.2. A
process label is composed of a secrecy label, an integrity label,
and a set of declassification capabilities δ. An element in δ is of
the form −ts, where ts ∈ S, or +ti, where ti ∈ I. A component
with capability −ts can remove the tag ts from its secrecy tags σ;
similarly, a component that has +ti can add the tag ti to its integrity
tags ι.

We define operations on labels to allow the reference monitor
to compare labels, compute the effects of declassification, and
instantiate floating labels (Figure 2).

An AM erasure function K− is used by the activity manager
to reduce process labels to simple labels that can easily be com-
pared. Erasure removes the declassification capabilities from K,
and reduces a floating secrecy label to the top secrecy label. This
captures the idea that declassification capabilities are not relevant
to label comparison, and that a callee’s floating secrecy label will
never cause a call to be denied. The PF erasure functionK∗ is used
in defining noninterference, and is explained in Section 5.

The declassification operation K ]d δ1 removes from K the
secrecy tags in δ1, and adds the integrity tags in δ1. Dually, the
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AM Erasure C(σ)− = σ F (σ)− = >
(Q(σ), Q(ι), δ)− = ((Q(σ))−, ι)

PF Erasure C(ι)∗ = ι F (ι)∗ = >
(Q(σ), Q(ι), δ)∗ = (σ, (Q(ι))∗)

Raise (Q(σ), Q(ι), δ) ]rz (σ′, ι′) = (Q(σ ∪ σ′), Q(ι ∩ ι′), δ)
Declassify (C(σ), C(ι), δ) ]d δ1 =

(C(σ\{t|(−t) ∈ δ1}), C(ι ∪ {t|(+t) ∈ δ1}), δ)
Merge (C(σ), C(ι)) ]M (C(σ′), C(ι′)) = (C(σ ∪ σ′), C(ι ∩ ι′))
Instantiate
C(σ1) CS C(σ2) = C(σ1) F (σ1) CS C(σ2) = C(σ1 ∪ σ2)
C(ι1) CI C(ι2) = C(ι1) F (ι1) CI C(ι2) = C(ι1 ∪ ι2)
(s1, i1, δ) C (C(σ2), C(ι2)) = (s1 CS C(σ2), i1 CI C(ι2), δ)

Figure 2. Summary of label operations.

raise operation K ]rz (σ, ι) adds to K the secrecy tags in σ and
removes from K the integrity tags in ι.

When a component that has a floating label is called, its label
needs to be instantiated based on the caller’s label. We writeKCκ
to denote the instantiation of a potentially floating labelK based on
the caller’s simple label κ. The resulting label inherits all the tags
from both of the labels.

4.2 Preliminaries
We chose a process calculus as our modeling language because it
captures the distributed, message-passing nature of Android’s ar-
chitecture. The Android runtime is the parallel composition of com-
ponent instances, application instances, and the reference monitor,
each modeled as a process.

Process Calculus The syntax of our modeling calculus, defined
below, is based on π-calculus. To avoid confusing the parallel
composition in process calculus with the BNF definitions, we use
′|′ instead of | for parallel composition.

Names a ::= x | c | aid ·c | aid ·cid ·c
Label ctx ` ::= aid | cid | c | (`1, `2)
Pattern patt ::= x | | c | ( = x) | ctr patt1 · · · pattk

| (patt1, · · · , pattn)
Expr e ::= x | a | ctr e1 · · · ek | (e1, · · · , en)
Process P ::= 0 | in a(x).P | in a(patt).P | out e1(e2).P

| P1 + P2 | νx.P | !P | (P1
′|′ P2) | `[P ]

| if e then P1 else P2

| case e of{ ctr1~x1 ⇒ P1 · · · | ctrn~xn ⇒ Pn}
aid denotes an application identifier, and cid a component

identifier, both drawn from a universe of identifiers. c denotes
constant channel names. A composed constant name is a constant
name c prefixed by an application ID (aid ·c) or by application and
component IDs (aid ·cid ·c). These names model specific interfaces
provided by an application or a component; we will show examples
later in this section.

Expressions e include variables, names, and data constructors.
We extend the standard definition of a process P with if state-
ments, pattern-matching statements, and a pattern-matched input
inx(patt). This input only accepts outputs that match with patt.
A pattern can be a variable x, where the x will be bound in the
process after the input; a wildcard that matches everything; and a
constance c. An equality check pattern is written = x, where x
is not considered bound in the process after the input; instead, x is
bound earlier and by the time the pattern-matched is evaluated, x
is substituted with a ground term. A pattern can also be a data con-
structor, or a tuple of patterns. These extensions can be encoded
directly in π-calculus, but we add them as primitive constructors to
simplify the representation of our model.

The only major addition is the labeled process `[P ]. Label
contexts ` include the unique identifiers for applications (aid )

and components (cid ), channel names (c) that serve as identifiers
for instances, and a pair (`1, `2) that represents the label of a
component and its application. Bundling a label with a process aids
noninterference proofs by making it easier to identify the labels
associated with a process.

We define standard structural congruence and labeled transition
rules for the calculus in Appendix A.

Common Encoding Structures We summarize the basic con-
structs that model commonly used programming idioms.

To establish communication between processes P andQ, P can
generate a new channel r, send it only to Q, and then wait for
messages on r. When a service process has many active instances,
this ensures that a call to one instance will not be confused with
calls to other instances.

We use the choice operator together with the pattern-matched
input to encode a process that can handle several different requests.
For example, the following process evaluates to P1 if a request rd
is received, and to P2 if a request wt is received: in c(rd, x1).P1 +
in c(wt, x2).P2.

We encode a recursive process using the ! operator. Often, a
recursive process P is of the form !(in c(x).P ′), where P ′ contains
out c(y). The ! operator is also used to encode the fragment of
an application or a component from which run-time instances are
generated. A process !(in c(x).P ) will run a new process P each
time a message is sent to c. This models the creation of a run-time
instance of an application or a component. In both cases, we call
channel c the launch channel of P , and say that P is launched
from c.

4.3 A Model of Android and Our Enforcement Architecture
We model as processes the three main kinds of constructs neces-
sary to reason about our enforcement mechanism: application com-
ponents, the activity manager, and the label manager. The activity
manager is the part of the reference monitor that mediates calls and
decides whether to allow a call based on the labels of the caller and
the callee. The label manager is the part of the reference monitor
that keeps track of the labels for each application, component, and
application and component instance.

Life-cycles of Applications and Components Android supports
single- and multi-instance components. Once created, a single-
instance component can receive multiple calls; the instance body
shares state across all these calls. A fresh instance of a single-
instance component is created only when the previous instance has
exited and the component is called again. For a multi-instance com-
ponent, a new instance is created on every call to that component.

All calls are asynchronous; returning a result is treated as a
call from the callee to the caller. When a component instance
is processing a call, any additional intents sent to that instance
(e.g., new intents sent to a single-instance component, or results
being returned to a multi-instance component) are blocked until the
processing has finished.

A single-instance component is initially unlaunched. When an
intent is sent to an unlaunched component, the reference mon-
itor creates a new instance of the component, which becomes
launched. Once the instance exits, the component goes back to
the unlaunched state. The reference monitor does not explicitly
track whether multi-instance components have been launched.

Similarly to a single-instance component, an application is ini-
tially unlaunched. The first call to one of its components changes
the application’s state to launched, and creates a new application
instance. After one of its components executes the exit applica-
tion instruction, the application enters the exiting state. In this state,
the reference monitor will not initiate new calls to the application.
Once all of its components’ instances exit, the application instance
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Component body A(cid , aid , I, cAI , csv , cls , cnI , clock , rt, V ) ::=
· · ·
| out tm(raiseA, aid , cAI , δ, ι).A(· · · )
| out tm(raiseC, cid , cnI , δ, ι).A(· · · )
| out tm(dclassifyA, cAI , δ).A(· · · )
| out tm(dclassifyC, cnI , δ).A(· · · )
| out am(callI , rt, aid , cAI , cidce , I) ′|′ A(· · · )
| out am(callE , rt, cAI , cnI , aidce , cidce , I) ′|′ A(· · · )
| out am(exitA, aid , cid , cAI , cnI , rt, e)
| out am(exitC, aid , cid , cAI , cnI , rt, e)
| out cls(e).out clock () | out csv (wt, e).A(· · · )
| νr.out csv (rd, r).in r(x).A(· · · , V ∪ {x})

Figure 4. Partial encoding of component bodies.

exits, and the application returns to the unlaunched state. We as-
sume a cooperative environment where an application exits only
after each of its components exits on its own. We do not model
the run-time monitor force quitting an application, as this makes it
hard to correctly implement cleaning up dangling state, and does
not critically affect noninterference.

Encoding Applications and Components The encoding of ap-
plications and components is shown in Figure 3. We summarize
special-purpose channels in Figure 5. We delay explaining the la-
bel contexts `[...] that surround processes until Section 5—they are
annotations that facilitate proofs, and have no run-time meaning.

The encodings of single- and multi-instance components are
the same except for a label that distinguishes between them; the
differences in run-time behavior are due to how they are handled
by the reference monitor.

The event loop body of a component CB(arg, s) waits on its
new intent channel cnI before executing its program (A(...), de-
fined later). The output 〈out I(self)〉 is purely for the proof of non-
interference; we will revisit this in Section 5. The parameters arg,
together with s, appear free inA. They are generated by outer-layer
processes, which we explain next. The event loop CE(arg) is trig-
gered by an input to the local state channel cls , which is sent by this
component instance when the previous intent has been processed.
This ensures that each iteration of a component instance shares the
local state of the previous iterations.

A component CP(aid , cid , cAI , csv ) is launched from a des-
ignated creation channel aid ·cid ·ccT . The message it receives on
the creation channel is a tuple ( =cAI , I, cnI , clock , rt) whose first
argument ( ) must match the current application instance (cAI ). I
is the intent conveyed by the call. cnI is the new intent channel.
clock is the channel used to signal the reference monitor that this
instance has finished processing the current intent and is ready to
receive a new one. Finally, rt contains information about whether
and on what channel to return a result.

Once a component instance is created, it generates a new name
for the local state channel cls . The process running in parallel with
the component event loop launches the event loop by passing an
initial local state σ0 to the cls channel, and then sending the intent
I to cnI .

The body of the shared state SVBody processes read and write
requests through the channel csv , and is launched through channel
csvL.

An application App(aid) with ID aid is composed of compo-
nents CP i(aid , cid i, cAI , csv ) running in parallel, and a shared
state SV. Each application has a designated launch channel aid ·cL.
The channel cAI , passed as an argument to the launch channel,
serves as a unique identifier for an application instance. Once an
application is launched, it launches the shared state with an initial
value. At this point, the application’s components are ready to re-

ceive calls, and we call this application instance an active launched
instance.

Component Body We define the body of a component in terms
of the operations that a component can perform. It is parameterized
over several variables, most of which were introduced previously.
The only new variable is the last one, V , which is a set of variables
that are free in the body; these are bound by outer-layer case
statements or ν. In Figure 4, we omit the variables when they are
clear from the context.

A component can use if statements and case statements. A
component can change its label or its application’s label only by
sending explicit requests to the label manager.

A component can call another component in the same appli-
cation by sending a request out am(callI , rt, . . .) to the activity
manager. Here am is the designated channel to send requests to
the activity manager. The argument rt is NONE if no return is ex-
pected; otherwise the caller includes in rt its application’s ID and
application’s instance ID, new intent channel, and the lock channel
(SOME(aid , cAI , cnI , clock )).

To exit, an instance sends a request to the activity manager
(out am(exitC, · · · )), which contains information for cleaning up
its state and any return information (rt). An instance can also
terminate the application upon exiting (out am(exitA, · · · )). After
one of these two messages is sent, the instance is left as dead code
guarded by the input to channel cls . No one can send new intents to
this instance, since the channel cnI is not available to receive input.

A component can also start another iteration of its body:
(out cls(k, e).out clock (k)). The output to the channel clock will
inform the activity manager that the component is ready to receive
another intent. The activity manager always waits for an output
on this channel before sending a new intent to the channel cnI .
Therefore, clock acts like a lock.

Finally, a component can read or write to the shared variable in
its application.

Label Manager The label manager maintains the mappings from
applications, components, and run-time instances to labels, and
processes calls to update the mapping. The label manager’s local
state is a label map Ξ defined as follows:

Ξ ::= · | Ξ, aid 7→ U(K) | Ξ, aid 7→ L(cAI ,K)
| Ξ, aid 7→ onEx(cAI ,K) | Ξ, aid ·cid 7→ S(K)
| Ξ, aid ·cid 7→ SL(cnI ,K) | Ξ, aid ·cid 7→ M(K)
| Ξ, cAI 7→ DA(K, LC(cnI1 , ...cnIn )) | Ξ, cnI 7→ DC(clock ,K)

If an application has not been launched, then its aid maps to U(K),
where K is the application’s static label. Once an application is
launched, its aid maps to L(cAI ,K), where cAI is its instance ID,
and K the static label. After one of its components sends a call to
terminate the application, but before the application exits, aid maps
to onEx(cAI ,K).

Unlaunched single-instance components have their ID (aid ·cid )
mapped to a S(K), where K is their static label. Ξ maps the ID of
running single-instance components to SL(cnI ,K), where cnI is
the new-intent channel for this instance, and K the static label. For
multi-instance components, Ξ maps the component ID to M(K).

The last kind of mapping in Ξ records the labels of each run-
time instance (of applications and single- and multi-instance com-
ponents). An application instance channel cAI maps to a pair of
its current label and a list of the active new-intent channels of its
components. A component new intent channel cnI maps to a pair
(clock ,K), where clock is the lock channel for the instance andK is
its effective label.

We the detailed definition of the label manager can be found
in Appendix C. When a component instance requests to declassify,
the label manager checks that the calling instance has the capabil-
ities to do so, and if appropriate updates the current label for that
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Parameters arg = aid , cid , I, cAI , csv , cls , cnI , clock , rt
Comp. loop body CB(arg, s) = in cnI (I).〈out I(self)〉.A(arg, {s})
Comp. event loop CE(arg) = !(in cls(s).CB(arg, {s}))
Component CP(aid , cid , cAI , csv ) = !(in aid ·cid ·ccT ( =cAI , I, cnI , clock , rt).

(cAI , cnI )[νcls .(out cls(σ0).out cnI (I) ′|′ CE(arg))]

Shared store body SVBody(csvL, csv ) = in csv (rd, r).out r(x).out csvL(x) + in csv (wt, v).out csvL(v)
Shared store SV(csvL, csv ) = !(in csvL(x).SVBody(csvL, csv ))

Application body AppBody(aid , cAI ) = νcsvL.νcsv .out csvL(s0).(SV(csvL, csv ) ′|′
(cAI , cid1)[CP1(aid , cid1, cAI , csv )] ′|′ · · · ′|′ (cAI , cidn)[CPn(aid , cidn, cAI , csv )])

Application App(aid) = aid [!(in aid ·cL(cAI ).cAI [AppBody(aid , cAI )])]

Figure 3. Encoding of applications and components.

ID launch channel instance ID instance-specific channels
Application aid aid ·cL cAI csvL: shared variable launch channel

csv : shared variable read-write channel
Component cid aid ·cid ·ccT cnI clock : lock channel for processing new intents (returns)

cls : launch channel of the instance’s local state

Figure 5. Summary of identifiers for applications and components. cAI , cnI , and clock are generated by the activity manager; csvL, csv , and
cls are generated by the application or component.

instance. As discussed earlier, raising is allowed only if neither the
application label nor the component label is floating, and raising
the label of a single-instance component (or application) will cause
the label of that component (or application) to stay raised even after
the instance exits.

The label manager also answers queries from the activity man-
ager for labels. Such queries cannot be made by components, since
they would leak information. The label manager also processes re-
quests from the activity manager to update its mapping when ap-
plications or components launch and exit. When a component ex-
its, the label manager removes the current instance’s mapping, and
restores a single-instance component’s mapping to its static label.
When the last component of an application exits, the label manager
cleans up the application’s state.

Activity Manager Android’s activity manager mediates all intent-
based communication between components, preventing any com-
munication that is prohibited by policy. We describe here the en-
hanced activity manager that we use for enforcement in our system.

The top-level process of the activity manager is of the form:
AM =!(AMI + AME + AMEX + AMR). The activity manager
processes four kinds of calls: AMI processes calls between compo-
nents within the same application; AME processes inter-application
calls; AMEX processes exits, and AMR processes returns. We focus
on explaining the fragment of the encoding of the activity manager
that processes calls between components within the same applica-
tion (Figure 6).

When the activity manager receives a request to send intent I
to a component with ID cidce , it first looks up the callee’s label
by sending a request to the label manager. The label manager’s
reply will indicate one of four cases: the callee (1) does not ex-
ist; (2) is a single-instance component without an active instance;
(3) is a single-instance component with one instance; or (4) is a
multi-instance component. If the callee does not exist, the activ-
ity manager exits. When the callee is a single-instance component
with no active instance, the activity manager allows the call if the
caller’s label is lower than or equal to the callee’s label. To do this,
the activity manager (1) generates a new intent channel and a lock
channel for the new instance; (2) updates the label for that compo-
nent to indicate one instance launched, inserts the mapping for the
new-intent channel, and records this new active instance in the label
map and (3) sends a message containing the intent to the callee’s

0 AMI = in am(callI , kAcr , kCcr , rt, aid , cAI , cidce , I).
1 νc. out tm(lookUp, cidce , c). in c(s).
2 case s of NE ⇒ 0
3 | S(kce)⇒

if kCcr
− v kce−

4 then νcnI .νclock .
5 out tm(upd, { (aid ·cidce ,SL(cnI , kce)),
6 (cnI , (clock , kCcr C kce)), (cAI , {cnI })}).
7 (aid , (cAI , cnI ))[out aid ·cid ·ccT (cAI , I, cnI , clock ,NONE)]
8 else 0
9 | SL(cnI , ks)⇒ νc. out tm(lookUp, cnI , c).in c(DC(clock , )).
10 in clock (). νc. out tm(lookUp, cnI , c).in c(DC( , kd)).
11 if kCcr

− v kd−
12 then if kCcr

− = kd
− ∨ concrete(ks)

13 then (aid , (cAI , cnI ))[out cnI (I)]
14 else (aid , (cAI , cnI ))[out clock ()]
15 | (aid , (kAcr , kCcr ))[out am(callI , kAcr , kCcr , rt,
16 aid , cAI , cidce , I)]
17 else (aid , (cAI , cnI ))[out clock ()]
18 |M(kce)⇒
19 if kcr

− v kce−
20 then νcnI .νclock .
21 out tm(upd, { (cnI , (clock , kCcr C kce)), (cAI , {cnI })}).
22 (aid , (cAI , cnI ))[out aid ·aid ·ccT (cAI , I, cnI , clock , rt)]
23 else 0

Figure 6. Partial encoding of the activity manager.

creation channel. Single-instance components never return, so the
last argument of the message is always NONE.

If the callee is a single-instance component with an active in-
stance, the activity manager waits to receive a message on the lock
channel. At this point, it knows that no other process can have the
lock to communicate with the callee. The activity manager then al-
lows the call if the simple label of the caller is lower than or equal
to that of the callee.

Because calls to single-instance components (e.g., an editor)
often result in replies to the caller (e.g., to return edited text), legacy
applications may function poorly if the callee’s responses cannot be
returned. Hence, if the activity manager detects that a callee has an
effective label that would not allow a reply to the caller, but a static
label that would, the activity manager delays the original call. After
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the callee exits, the call has a chance to complete (although it may
have to compete with other calls to the same callee). If the call is
denied, the lock on the callee is released so that other processes can
send new intents to the callee.

Calls to multi-instance callees are treated similarly to calls to
unlaunched single-instance callees. If the call is permitted, a new
callee instance is launched. Returns are treated similarly to calls to
active instances of single-instance components.

The code fragment in Figure 6 illustrates some key design de-
cisions of the activity manager: how to maintain the label mapping
throughout the life cycle of an instance, and when to allow, deny,
or delay a call. The omitted part of the encoding deals with cross-
application calls; there, we need to enforce both the application-
level policies and the component-level policies.

An application resembles a single-instance component: both al-
low only one active instance and both admit shared state within
each instance; hence, the life cycle of applications is managed sim-
ilarly to that of single-instance components, except that application
exit is more complicated as it has to allow all its active component
instances to exit.

Overall System We assume that an initial process init bootstraps
the system. This process launches the label manager with the static
label map that reflects the labels of applications and components at
install time, and then calls the first process with fixed labels.

S = TM |AM |App1(aid1) | · · · |Appn(aidn) | init

5. Noninterference
To show that our enforcement mechanism prevents information
leakage, we prove a noninterference theorem. We formally define
noninterference in terms of trace equivalence of processes, and
sketch the strategy of the proof that our enforcement mechanism
guarantees noninterference.

We use the simple label κL as the label of malicious compo-
nents. For convenience, we call components whose labels are not
lower than or equal to κL high components, and those with labels
lower than or equal to κL low components. We want to show that,
from the malicious components’ point of view, a system S that con-
tains both high and low components behaves the same as a system
composed of only the low components in S. We rely on definitions
of process equivalence to specify when two systems behave the
same.

Choice of Process Equivalence Two of the most commonly used
definitions of process equivalence are trace equivalence and barbed
bisimulation. Processes P and Q are trace equivalent if for any
trace t generated by P , Q can generate an equivalent trace t′, and
vice versa. Barbed bisimulation is a stronger notion of equivalence:
two processes that are trace equivalent may not be bisimilar. Bisim-
ulation additionally requires those two processes to simulate each
other after every τ transition.

Our decision about which notion of process equivalence to use
for our noninterference definition is driven by the functionality re-
quired of the system so that practically reasonable policies can be
implemented. As we discussed earlier, floating labels are essential
to implement practical applications in Android. However, allow-
ing an application (or single-instance component) to have a float-
ing label weakens our noninterference guarantees: in this case, we
cannot hope to have bisimulation-based noninterference. We next
describe a timing channel involving floating components that pre-
vents bisimulation-based noninterference from being established.

We focus on secrecy labels, and use H as high and L as low.
Component A is high, component B is single-instance, and has a
floating low label, and components C and D are high. Component

A starts first. If its secret is 1, it calls B; otherwise, it does not. D
eventually calls B. Whenever B receives a call, it attempts to call
C. Consider the following: If C receives a call from B then C learns
that A’s secret is 0 or that D called C before A did. If C does not
receive a call from B for a long time, it guesses that A’s secret is 1.
When A calls B, B’s label is instantiated to H, and its subsequent
call to C is denied by the reference monitor. Therefore, C gains
knowledge about A’s secret based on whether it receives a call from
B. This would not occur if B was a multi-instance component. D’s
call to B would start another instance of B, which would always be
able to call C. Thus, whether or not A calls B would not change the
number of calls that C receives from B.

The proof of bisimulation-based noninterference fails if we al-
low single-instance components or application labels to float. Trace
equivalence-based noninterference does not flag this as an informa-
tion leak, because the system with high components can always de-
lay A’s call and process D’s call first, allowing B’s call to C always
to succeed. This is only feasible because trace equivalence does
not require lock-step simulation and thus the trace generated by the
system with high components can simulate the system without high
components starting from the initial state.

One interesting observation is that bi-simulation-based nonin-
terference can rule out certain timing attacks. The reason is that bi-
simulation implicitly assumes a fair scheduler that schedules every
possible transition, since the definition requires every τ transition
to be simulated.

Rather than disallowing floating labels, we compromise by us-
ing a weaker definition of non-interference. This definition is nev-
ertheless strong enough that non-interference would not hold if our
system allowed: (1) explicit communication between a high com-
ponent and a low component; or (2) implicit leaks in the implemen-
tation of the reference monitor, such as branching on information
from a high component and affecting low components differently
depending on the branch. We believe, hence, that this definition
of non-interference, though not as strong as a bisimulation-based
definition, provides substantial assurance of our system’s ability to
prevent impermissible information flows.

High and Low Components We use the label contexts of pro-
cesses to identify the high and low components in the system. The
current label of a process can be deduced from these label contexts
together with the label map Ξ. For a process with nested label con-
texts `1[...`n[P ]...], the innermost label `n reflects the current label
of process P .

Our mechanism enforces information-flow policies at both the
component level and application level. We would like to define a
notion of noninterference that demonstrates the effectiveness of the
enforcement at both levels. Next we explain how to use the appli-
cation ID, the component-level label, and the application-level to
decide whether a process is high or low for the our noninterference
theorem.

Without loss of generality, we pick one application, whose com-
ponents do not access the shared state, and decide whether each of
its components is high or low solely based on its component-level
label; while all other applications are treated as high or low at the
granularity of an application, based on their application-level la-
bels. For the rest of this section, we write aidc to denote the spe-
cific application whose components we treat as individual entities
and disallow their accesses to the shared state.

Now we can define the procedure of deciding whether a process
is high or low more formally. We define a binary relation vaidc

between a label context (aid , (κ1, κ2)) and a simple label κ. We
say that (aid , (κ1, κ2)) is lower than or equal to κ relative to aidc.
This relation compares the application-level label (κ1) to κL if the
application is not aidc, and compares the component-level label
(κ2) to κL if the application ID is aidc.
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(aid , (κ1, κ2)) vaidc κL iff κ1 v κL and aid 6= aidc
or κ2 v κL and aid = aidc

Given the label map Ξ, let Ξ〈c〉 denote the label associated
with a channel name c in Ξ. We say that a process of the form
aid [...(cAI , cnI )[P ]...] is a low process with regard to κL if
(aid , ((Ξ〈cAI 〉)∗, (Ξ〈cnI 〉)∗) vaidc κL; otherwise it is a high
process. Formal definitions of rules for deciding whether processes
of this and other forms are high or low can be found in Appendix G.

The function K∗ (Figure 2) removes the declassification capa-
bilities in K, and reduces floating integrity labels to the lowest in-
tegrity label (on the lattice). This is because a call to a component
with a floating integrity label may results in a new instance with a
low integrity label, a low event observable by the attacker; hence, a
floating component should always be considered a low component.

Traces The actions relevant to our noninterference definitions
are intent calls received by an instance, since the only explicit
communication between the malicious components (applications)
and other parts of the system is by sending and receiving intents.

We assume that an intent I belongs to a (possibly infinite) set
of constant channel names; i.e., intents are also modeled as chan-
nels. To facilitate our definition of noninterference, the encoding
of components includes a special output action 〈out I(self)〉 (Fig-
ure 3). This outputs to the intent channel the pair of the application
ID and the current label of the instance. Here, self denotes the run-
time labels of the the current application-instance and component-
instance1.

We restrict the transition system to force the activity manager’s
processing of a request—from receiving it to denying, allowing,
or delaying the call—to be atomic. Some requests require that a
lock be acquired; we assume the activity manager will only process
a request if it can grab the lock. This matches reality, since the
run-time monitor will process one call at a time, and the run-
time monitor’s internal transitions are not visible to the outside
world. We define Android-specific transitions rules consisting of
(1) ordinary π-calculus transition rules for component instances,
(2) the atomic transition rules for the reference monitor, and (3)
two special transition rules shown below. We write a small-step
transition as S α−→AS

′, and S τ
=⇒AS

′ to denote zero or multiple
τ transitions from S to S′. Relevant definitions can be found in
Appendix E and F.

Ξ〈cAI 〉 = kA Ξ〈cnI 〉 = kC

ν~x.P |TMI(Ξ) | aid [cAI [(cAI , cid)[(cAI , cnI )[out I(self).P ]]]]
out I((aid,(kA,kC)))−→A ν~x.P |TMI(Ξ) | aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]]

Ξ〈cAI 〉 = kA Ξ〈cnI 〉 = kC

AM |TM | ν~x.TMI(Ξ) |Q | aid [cAI [(cAI , cid)[(cAI , cnI )[out I(self).P ]]]]
out I((aid,(kA,kC)))−→A

AM |TM | ν~x.TMI(Ξ) |Q | aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]]

The first rule inserts the current label into the request so that
we can annotate the activity manager with appropriate labels. The
purpose of the second rule is to annotate the label of that output
event.

Traces that we care about are composed of output actions to
intent channels (out I((aid , (kA, kC)))). We call such an action
low, if (aid , (kA∗, kC∗)) vaidc κL; and high otherwise.

Noninterference We define the projection of traces t|aidc
κL

, which
removes all high actions from t. The function projT(Ξ;κL; aidc)

1 Note that the label could change between receiving the intent and output
to the intent channel if another component raises the application-level
label. This is not relevant to our noninterference proofs since the message
processing is inherently asynchronous, and there is no guarantee that the
label of the instance will remain the same between the receipt and the
processing of a message.

removes from Ξ mappings from IDs or channel names to high
labels. Similarly, proj(P, κL, aidc,Ξ) removes high components,
applications, and instances from P . The resulting configuration is
the low system that does not contain secrets or sensitive interfaces.

We say that a declassification step is effective with regard to κL
and aidc if the label of the declassified instance before the step is
not lower than or equal to κL relative to aidc, and the label after
is either lower than or at κL relative to aidc. We call a sequence
of transitions t

=⇒A valid if each step preserves the application-
level label of aidc (application aidc cannot exit the application
or raise its application-level label), and if it is not an effective
declassification step.

We prove a trace-equivalence-based noninterference theorem.
The noninterference theorem only concerns traces generated by
valid transitions. Declassification can cause the low actions that
follow it to differ between the two systems. However, we do allow
arbitrary declassification prior to the projection of the high compo-
nents. A component that declassified will be treated as a low com-
ponent, and will afterward be denied any secrets unless further de-
classification occurs elsewhere. Changing aidc’s application-level
label interferes with our attempt to view components in aidc as
independent entities. Nonetheless, the theorem still captures the re-
quirements on both cross-application and intra-application commu-
nications.

Theorem 5.1 (Noninterference).
For all κL, for all applications App(aid1), · · · ,App(aidn),
given a aidc (aidc = aidi), i = 1 . . . n, whose components do not access
the shared variable
let S = AM |TM |App(aid1), · · · ,App(aidn) be the initial system con-
figuration, S=⇒AS

′,
S′ = AM |TM | ν~c.(TMI(Ξ) |AC(aidc) |S′′),
where TMI(Ξ) is an instance of the tag manager, Ξ is the current label map,
and AC(aidc) is an active launched instance of aidc
let Ξ′ = projT(Ξ;κL; aidc),
SL = AM |TM | ν~c′.(TMI(Ξ

′) | proj(AC(aidc) |S′′, κL, aidc,Ξ′))

1. ∀t s.t. S′ t
=⇒AS1, and t

=⇒A is a sequence of valid transitions, ∃t′ s.t.

SL
t′

=⇒ASL1, and t|vaidc
κL

= t′|vaidc
κL

2. ∀t s.t. SL
t

=⇒ASL1, and t
=⇒A is a sequence of valid transitions, ∃t′

s.t. S′ t
′

=⇒AS1, and t|vaidc
κL

= t′|vaidc
κL

Proof Strategy Proving condition (2) in Theorem 5.1 is trivial,
since any trace generated by the system without high components
can be generated by the system with high components. The harder
case is condition (1). We would like to show that the system with
high components simulates the system without high components.
A simulation relation is defined as follows:

Definition 1 (Γ-simulation). Γ is a set of names. R is a simulation if
and only if P R Q implies

• P τ−→ P ′, then exists Q′ such that Q τ
=⇒ Q′, and P ′ R Q′

• for every b ∈ Γ, P
out b(`)−→ P ′ and ` vaidc κL implies exists Q′ such

that Q
out b(`)
=⇒ Q′, and P ′ R Q′

We define a relation P R(aidc,κL) Q, which requires P and
Q to agree on low components. We then prove that (1) R(aidc,κL)

is a simulation relation, (2) S and the projection of S are related
by R(aidc,κL). Then, by induction on the length of traces, we can
prove condition (1) for Theorem 5.1.

6. Implementation and Case Study
We implemented our system on top of Android 4.0.4, leveraging
techniques similar to those used by several other works (e.g., [4,
15]). Here we give a high-level overview and describe in detail our
policy for the example scenario from Section 3.1.

10



Policy Specification We extend Android’s manifest file syntax
for declaring and using permissions to also specify information-
flow labels. We treat each permission as a tag, and add a flag
to indicate whether it is an integrity tag or a secrecy tag, or a
declassification or endorsement capability. The static label of an
application or component is thus derived by processing all the
permission declaration statements. Unlike in stock Android, we
allow both applications and components to be assigned labels;
component labels are also defined in the application’s manifest file.

Reference Monitor Our enforcement system is designed around
a central reference monitor that mediates communication between
components. Android’s activity manager (ActivityManager) al-
ready largely accomplishes this, although it enforces a much less
rich policy than we desire and often does not have sufficient infor-
mation to enforce our information-flow policies.

We modify the activity manager so that mediation of all rel-
evant calls is handled by our own system instead. Enforcing our
information-flow policies requires substantial additional bookkeep-
ing (the data structures of the label manager) for tracking running
instances and their effective labels. We also modify the activity
manager to automatically apply declassification and endorsement
when these are necessary for a call to succeed; a developer can, if
she wishes, explicitly override this, but the automation eases the
burden on developers and helps with backward compatibility.

The biggest challenges in implementing our enforcement sys-
tem were in providing more detailed information to the activ-
ity manager than it was previously basing its decisions on. More
specifically, we had to enhance Android’s IPC data structures to
carry information about the calling component instance, rather than
just about the calling component instance’s application. Another
challenge was to capture operations not mediated by the activity
manager, such as opening a socket or a file. Android’s permission-
based policies that govern such operations are implemented not by
the activity manager, but by access-control checks in the underly-
ing OS. We used TOMOYO [25], middleware that replaces scat-
tered, low-level access-control checks with centralized ones, and
extended TOMOYO to redirect its access checks from its own ref-
erence monitor to ours. In addition to giving our reference monitor
more direct control over system behaviors that Android’s activity
manager did not directly mediate, this approach has the advantage
of extending our enforcement mechanism to application fragments
written in native code.

Backwards Compatibility To aid in backward compatibility with
legacy applications, we mapped system-declared permissions to
secrecy and integrity tags: we mapped permissions that protect data
resources from reading to secrecy tags; and permissions that protect
data resources from being written, and security-relevant interfaces
from being accessed, to integrity tags. In the absence of component-
level policy (which is always absent for legacy applications), we
assign to components their enclosing application’s labels.

To capture the flow of information when a security-relevant
Android or Java API method is called, we assigned signatures to
API methods to express the secrecy and integrity labels that the
caller should have to be able to call the method and to get a result.
We assigned signatures to a fraction of the Java and Android APIs,
but extending this to all of them involves no technical challenges.

This approach to obtain labels from permissions allowed us to
compile existing applications without modifying their code. How-
ever, using these labels directly, some calls that would be permitted
by the permission system will now be denied. Next we explain why
and how to address this.

One reason why a call is denied is because it potentially leaks
information. In Android’s permission system, the caller normally
does not specify policies. In our system, caller’s permissions could

be translated into secrecy tags. For example, the permission sys-
tem allows the Messaging application to be started by the Contacts
application to send a text message to a specific contact. The Con-
tacts app has several secrecy tags that the Messaging app does not,
such as Read Social Stream, which allows it to access, e.g., photos
posted on social networks. The Contacts app could potentially leak
this information through the Messaging app. In this case, to allow
in our system the call (to start the Messaging app) that was allowed
in stock Android, we give the Contacts app declassification capa-
bilities for these secrecy tags that the Messaging app does not have.
Since the Contacts app is built-in, this level of trust is appropriate,
because these built-in Apps are considered trusted. Similar scenar-
ios apply to integrity tags as well (please see our tech report for
more detail).

We assigned declassification and endorsement capabilities man-
ually to make sure that our assignments don’t sacrifice security.
During this process we identified applications that violate the prin-
ciple of least privilege asking more permissions than they actually
need. An example is that the Camera application requests a permis-
sion to read the SMS content provider without ever using it.

Motivating Scenario Revisited We now show how to specify the
policy from our example from Section 3.1 and walk through its en-
forcement. Recall that our scenario involves a secret-file manager,
a text editor, and an email application. The high-level policy is to
prevent secret files from being leaked on the Internet, but to allow
them to be manipulated by applications and emailed at the user’s
behest. The files may be edited, but the editor must not leak them
via the network; files can be emailed only if the file manager itself
calls the email application. We extend the example to also allow
files to be emailed if they are first encrypted.

We first show how to implement this policy by assigning
application-level labels. The file manager is labeled with ({FileSecret},
{FileWrite}, {-FileSecret}). The editor is labeled with (F{}, F{},
{}), to indicate that its effective secrecy and integrity labels are in-
herited from its caller, but it has no ability to declassify or endorse.
The email application is labeled with the policy ({ReadContacts,
. . .}, {}, {+Internet, . . .}). The . . . in the policy are various addi-
tional secrecy tags and endorsement capabilities that enable the
email application to read user accounts (ReadContacts), cause the
phone to vibrate, access the network state (+Internet), etc. To per-
mit callers with low integrity, tags that permit access to resources
(e.g., to vibration functionality) appear as endorsement capabili-
ties rather than integrity tags. The encryption application is labeled
with the policy (F{}, F{}, {-T, +WriteExternalStorage}). It has
floating secrecy and integrity labels and can declassify all secrets it
acquires from its callers (presumably after encrypting them). This
gives it the ability to leak any secret, and so it must be trusted to
correctly encrypt files and not reveal files without encrypting them.
The encryption application also needs the WriteExternalStorage tag
to be able to store encrypted data on the SD card.

This choice of labels achieves our desired functionality in
the following way: The editor’s label floats to ({FileSecret},
{FileWrite}, {}) when it is called by the file manager. As the editor
cannot declassify FileSecret, it cannot leak the file; because it has
FileWrite, it can save the file back into secret storage. However,
if the user wants to email the file, she can invoke the email ap-
plication directly through the file manager. The file manager adds
the file content to the intent that starts the email application, and re-
moves the FileSecret tag by declassifying before sending the intent.
The file can also be released, legitimately, via the encryption appli-
cation. If invoked by the file manager, the encryption application
floats to ({FileSecret}, {FileWrite}, {-T, +WriteExternalStorage}),
but its capability to declassify any secret (-T) allows it to declassify
and release it to any application.
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Contacts application:
{{ReadContacts, GetAccounts, AccessFineLocation,

AccessCoarseLocation, ReadProfile, ReadSocialStream,
ReadPhoneState, ReadSyncSettings, GoogleAuthMail,
ReadWriteAllVoiceMail},
{CallPrivileged,WriteContacts, ManageAccounts, WriteProfile,

Internet, Nfc, ModifyAudioSettings, ModifyPhoneState,
WakeLock, WriteExternalStorage, WriteSettings, UseCredentials,
Vibrate, AddVoicemail, ReadWriteAllVoiceMail, Reboot,
AllowAnyCodecForPlayback, ReceiveBootCompleted},
{-GetAccounts, -ReadSocialStream, -ReadSyncSettings,

+-ReadWriteAllVoicemail}}

Mms application:
{{ReadContacts, ReadProfile, ReadSms, AccessNetworkState,

ReadPhoneState, AccessFineLocation, AccessCoarseLocation},
{ReceiveBootCompleted, CallPhone, WriteContacts,

ReceiveSms, ReceiveMms, SendSms, Vibrate, Internet
WriteSms, ChangeNetworkState, WakeLock,
WriteExternalStorage, InstallDrm},
{+ReceiveBootCompleted, +CallPhone, +WriteContacts,

+ReceiveSms, +ReceiveMms, +SendSms, +Vibrate,
+WriteSms, +ChangeNetworkState, +InstallDrm}}

Figure 7. The labels for the Contacts application and Mms appli-
cation (the built-in messaging application) as used in our measure-
ments.

We used component-level policy to restrict the file manager’s
declassification capability to only the component whose task is
to send files to other applications. The duties of the components
can be inferred from their names. We label the Main activity and
the File provider with ({FileSecret}, {FileWrite}, {}) since they
need to handle files; the Help and DirectoryInfo activities with
({FileSecret}, {}, {}); the Settings activity with ({FileSecret},
{FileWrite}) because it needs to return a result to the Main ac-
tivity; and the Send activity with ({FileSecret}, {FileWrite}, {-
FileSecret}).

Implementation and Performance Measurements Our case study
is fully implemented and has been tested on a Nexus S phone. As
part of booting the phone to the point where it can execute ordinary
applications, over 50 Google-provided applications start running;
this provided a good test of our backward compatibility and aided
in debugging our system. Our case study used minimally modified
off-the-shelf applications: Open Manager v2.1.8, Qute Text Editor
v0.1, Android Privacy Guard v1.0.9, Email v2.3.4. We modified
manifest files, added sending functionality to some, and added a
content provider to Open Manager. Our system’s implementation
totaled approximately 1200 lines of code, not counting TOMOYO:
approximately 650 in the reference monitor, 400 for bookkeeping,
100 for enhancing IPCs, and 50 for syntactic support for policies
specified as labels.

Based on informal testing, the run-time performance of our
system is sufficiently good for any additional latencies not to be
observable to the user in practice.

We also ran microbenchmarks: we measured the overhead our
system adds to the time it takes for an intent to be delivered, as well
as the main component of that overhead that is added by our sys-
tem, the time it takes to perform the checks incurred by each call.
All measurements were taken on a Nexus S phone running Android
compiled from unmodified source version 4.0.4 r1.1 (referred to as
stock Android) or the same version of Android with our modifica-
tions added (referred to as our system), and were taken over 200
runs.

The measurements we report on are for intents sent between
components of two Google-provided applications that are pack-
aged with stock Android, the PeopleActivity component of the
Contacts application (com.android.contacts) and the ComposeMes-
sageActivity component of the Mms application (com.android.mms,
Android’s built-in messaging application). Each component’s la-
bels are the same as those for the enclosing application and are
shown in Figure 6. The overall time to send an intent we mea-
sure from immediately before the call to startActivity(...) inside
com.android.contacts.interactions.PhoneNumberInteraction.perform
Action(...) until the first line of com.android.mms.ui.ComposeMessage
Activity.onCreate(...). For stock Android, the average measured time
is 64.0 ms (std. dev. 11.3 ms; median 64.0 ms); for our system the
average is 51.0 ms (std. dev. 29.7 ms; median 51.0 ms). That the
average for our system is lower than for stock Android shows the
inability of such benchmarks to accurately capture overheads in
multithreaded environments with many processes running simul-
taneously, but the benchmark results also show that the overhead
incurred by our system is small relative to the time it takes to deliver
an intent.

When focusing just on the time our system takes to perform the
four label checks required to decide whether a call between these
two components should be allowed, we find that the set of four
checks takes an average of 7.5 ms (std. dev. 6.4 ms; median 7.5
ms).

7. Conclusion
We propose the first DIFC-style enforcement system for Android
that allows convenient, high-level specification of policy and has a
well-understood theory. To support Android’s programming model
the system had to incorporate several features that are new to
information-flow systems, including multi-level policy specifica-
tion and enforcement, floating labels, and support for persistent
state and single-instance components. Our system strikes a balance
between providing strong formal properties (noninterference) and
applicability, achieving most of each. A prototype and case study
validate the design of our system, and confirm that it can enforce
practical policies on a Nexus S phone.
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Appendix
A. Additional Definitions for the Process Calculus
Structural Congruence Structural congruence ≡ is the smallest
congruence on processes that satisfies the axioms below.

id [P + Q ] ≡ id [P ] + id [Q ]
id [P |Q ] ≡ id [P ] | id [Q ]
id [0 ] ≡ 0
id [ νx.P ] ≡ νx.id [P ] if x /∈ fn(id)
P | (Q |R) ≡ (P |Q) |R
P |Q ≡ Q |P
P |0 ≡ P
P + Q ≡ Q + P
P + (Q + R) ≡ (P + Q) + R
νx.0 ≡ 0
P + 0 ≡ P
νx.νy.P ≡ νy.νx.P
νx.(P |Q) ≡ P | νx.Q if x /∈ fn(P )
!P ≡ P | !P

Labeled Transition Rules A complete list of the labeled transi-
tion rules is shown in Figure 8. The rule for pattern-matched input
requires the existence of a substitution σ for bound variables in
patt, such that the value z output on channel x is the same as the
term resulting from applying the substitution to the pattern patt(σ).

Lemma A.1. If P α−→ P ′, and P ≡ Q, then exists Q′ such that
Q

α−→ Q′ and Q′ ≡ P ′

Proof. By induction on the structural congruence relation.

B. Lemmas About Label Operations
We prove several key properties about label operations (Figure 2),
which will be used in the noninterference proofs.

Lemma B.1. If K2
− v K1

− then K∗2 v (K1 C K2)∗ and
K∗1 v (K1 CK2)∗.

Lemma B.2. K∗1 v K1 ]M K∗2 and K∗2 v K1 ]M K∗2

C. Encoding of the Label Manager
The encoding of the label manager is shown in Figure 9. The label
manager is launched from channel tt, and the argument sent to tt is
the current label map of the system. Requests to the label manager
are sent to the channel tm. At the end of processing each request,
the label manager will launch itself again with the current label
map. This also ensures that at any time there is only one active
copy of the label manager running.

Note that we do not allow a floating application and single-
instance component to raise their labels. As we discussed in Sec-
tion 3.2.2, the raise operation has to raise both the static and the
effective label. If we allowed a floated instance to raise its label,
we would have allowed a high component (this floated instance) to
affect low components by changing its static label, which could be
low.

D. Encoding of the Activity Manager
Recall that the top-level process of the activity manager is of the
form: AM =!(AMI + AME + AMEX + AMR).

We have explained the encoding of the sub-process of the activ-
ity manager that handles intra-application calls (Figure 6) in Sec-
tion 4.3. Here, we show the encoding of AME , which processes
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Activity Manager Inter-app Call AME =
68 in am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I).
69 νr.out tm(lookUp, aidce).in r(s1). out tm(lookUp, aidce ·cidce , r).in r(s2).
70 case (s1, s2) of (NE, ) ⇒ 0
71 | ( ,NE) ⇒ 0
72 | (U(kAce),S(kCce)) ⇒ if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

73 then νcAI .νcnI .νclock .
74 out tm(upd, { (aidce , L(kAce , cAI )),
75 (cAI ,DA(kAce C (kAcr ]M kCcr ), LC({cnI }))),
76 (aid ·cidce ,SL(cnI , kCce)),
77 (cnI , (clock , kCce C (kAcr ]M kCcr )))}).
78 (aidce , cAI )[out aidce ·cL(cAI )]
79 | (aidce , (cAI , cnI ))[out aidce ·cid ·ccT (cAI , I, cnI , clock ,NONE)]
80 else 0
81 | (U(kAce),M(kCce)) ⇒ if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

82 then νcAI .νcnI .νclock .
83 out tm(upd, { (aidce , L(kAce , cAI )),
84 (cAI ,DA(kAce C (kAcr ]M kCcr ), LC({cnI }))),
85 (cnI , (clock , kCce C (kAcr ]M kCcr )))}).
86 (aidce , cAI )[out aid ·cL(cAI )]
87 | (aidce , (cAI , cnI ))[out aid ·cid ·ccT (cAI , I, cnI , clock , rt)]
88 else 0
89 | (L(cAI , kAce),S(kCce)) ⇒ out tm(lookUp, cAI , r).in r(DA(kAd, )).
90 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

91 then if (conrete(kAce)∧ kAcr
− v kAd− ∧ kCcr

− v kAd− )
92 ∨(floating(kAce) ∧ kAcr

− = kAd
− ∧ kCcr

− = kAd
− )

93 then νcnI .νclock .out tm(upd, { (cAI , {cnI }),
94 (aid ·cidce , SL(cnI , kCce)),
95 (cnI , (clock , kCce C (kAcr ]M kCcr )))}).
96 (aidce , (cAI , cnI ))[ out aid ·cid ·ccT (cAI , I, cnI , clock ,NONE) ]
97 else (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
98 else 0
99 | (L(cAI , kAce),SL(cnI , kCce))
100 ⇒ out tm(lookUp, cAI , r).in r(DA(kAd, )).
101 out tm(lookUp, cnI , r).in r(DC(clock , )). in clock ().
102 out tm(lookUp, cnI , r).in r(DC( , kCd)).
103 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

104 then if (conrete(kAce) ⊃ (kAcr
− v kAd− ∧ kCcr

− v kAd−))
105 ∧ (floating(kAce) ⊃ (kAcr

− = kAd
− ∧ kCcr

− = kAd
−))

106 ∧ (conrete(kCce) ⊃ (kAcr
− v kCd− ∧ kCcr

− v kCd−))
107 ∧ (floating(kCce) ⊃ (kAcr

− = kCd
− ∧ kCcr

− = kCd
−))

108 then (aidce , (cAI , cnI ))[ out cnI (I) ]
109 else (aidce , (cAI , cnI ))[ out clock () ]
110 | (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
111 else (aidce , (cAI , cnI ))[ out clock () ]
112 | (L(cAI , kAce),M(kCce)) ⇒ out tm(lookUp, cAI , r).in r(DA(kAd)).
113 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

114 then if (conrete(kAce)∧ kAcr
− v kAd− ∧ kCcr

− v kAd− )
115 ∨(floating(kAce) ∧ kAcr

− = kAd
− ∧ kCcr

− = kAd
− )

116 then νcnI .νclock .out tm(upd, { (cAI , {cnI }),
117 (cnI , (clock , kCce C (kAcr ]M kCcr )))}).
118 (aidce , (cAI , cnI ))[ out aid ·cid ·ccT (cAI , I, cnI , clock , rt) ]
119 else (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
120 else 0
121 | (onEx(), ) ⇒ 0

Figure 11. Encoding of the subprocess of the activity manager that handles calls between applications.
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P |Q τ−→ νy.(P ′ |Q′)

P
νy.out x(y)−→ P ′ Q

in x(y)−→ Q′ y /∈ fn(P )

P |Q τ−→ νy.(P ′ |Q′)
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P
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νy.out x(y)−→ P ′

P
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id [P ]
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P
α−→ P ′

!P
α−→ P ′ | !P

P
in x(y)−→ P ′ P

out x(y)−→ P ′′

!P
τ−→ P ′ |P ′′ | !P

P
in x(y)−→ P ′ P

νy.out x(y)−→ P ′′ y /∈ fn(P )

!P
τ−→ νy.(P ′ |P ′′) | !P

if true then P1 else P2
τ−→ P1

if false then P1 else P2
τ−→ P2

case ctr i ~ei of{ | ctr1~x1 ⇒ P1 · · · | ctrn~xn ⇒ Pn}
τ−→ Pi[~ei/~xi]

Figure 8. Labeled Transition Rules for the Core Calculus

inter-application calls (Figure 11); AMEX , which processes exits;
and AMR, which processes returns (Figure 10).

For the inter-application calls, we need to consider four kinds
of labels: the application labels of the caller and the callee, and the
component labels of the caller and the callee. Based on possible
combinations of the kinds of the callee’s application label and
the component label, we have several cases to consider. We next
describe several of the more interesting cases.

When the callee application is unlaunched, the callee compo-
nent must be unlaunched as well. In this case, the activity manager
allows the call only if the caller’s current application label and com-

Label Mngr TM =
0 !( in tt(x).
1 in tm(lookUp, id, r). out r(x(id)).out tt(x)
2 +in tm(cleanA, aid , cid , cAI , cnI ).
3 case x(aid)of
4 L(cAI , k)⇒ out tt(x[aid 7→ onEx(cAI , k)]).
5 out tm(cleanC, aid , cid , cAI , cnI )
6 | ⇒ out tm(cleanC, aid , cid , cAI , cnI )
7 +in tm(cleanC, aid , cid , cAI , cnI ).
8 case x(aid .cid)of SL(cAI , cnI , clock , kCs)⇒
9 if x(cAI ) = (k, {cnI }) ∧ x(aid) = onEx(cAI , kAs)
10 then out tt(x [aid .cid 7→ S(kCs)]
11 [aid 7→ U(kAs)]\cAI \cnI )
12 else out tt(x[aid .cid 7→ S(kCs)]
13 [cAI 7→ x(cAI )\cnI ]\cnI )
14 |M(kCs)⇒if x(cAI ) = (kAd, {cnI })
15 ∧ x(aid) = onEx(cAI , kAs)
16 then out tt(x[aid 7→ U(kAs)]\cAI \cnI )
17 else out tt(x[cAI 7→ x(cAI )\cnI ]\cnI )
18 +in tm(dclassifyA, cAI , δ).
19 if dL(x(cAI )) ⊇ δ
20 then out tt(x[cAI 7→ x(cAI ) ]d δ])
21 else out tt(x)
22 +in tm(dclassifyC, cnI , δ).
23 if dL(x(cnI )) ⊇ δ
24 then out tt(x[cnI 7→ x(cnI ) ]d δ])
25 else out tt(x)
26 +in tm(raiseA, aid , cAI , σ, ι).
27 if floating(x〈aid〉)
28 then out tt(x)
29 else out tt(x[aid 7→ x(aid) ]rz (σ, ι)]
30 [cAI 7→ x(cAI ) ]rz (σ, ι)])
31 +in tm(raiseC, aid , cid , cnI , d).
32 case x(aid ·cid) of M(k)⇒
33 out tt(x[cnI 7→ x(cnI ) ]rz (σ, ι)])
34 | SL( )⇒
35 if floating(x〈aid ·cid〉) ∨ floating(x〈aid〉)
36 then out tt(x)
37 else out tt(x[aid ·cid 7→ x(aid ·cid) ]rz (σ, ι)]
38 [cnI 7→ x(cnI ) ]rz (σ, ι)])

Figure 9. Encoding of the label manager.

ponent label are each lower than or equal to the static labels of the
callee. If the call is allowed, the activity manager generates a new
application instance channel cAI and updates the application label
from unlaunched to launched. The activity manager also launches
a new instance for the callee component in the same way as in the
intra-application case. It records the new instance of the component
in the mapping of cAI . Finally, it sends a message to the launch
channel of the callee application, and sends the intent to the create
channel of the callee component.

Note that the instantiation of a floating label takes both the
caller’s application label and the caller’s component label into
consideration. To help with this, we use the label merge operation
κ1 ]M κ2, which produces a simple label whose secrecy label is
the union of the secrecy labels of κ1 and κ2, and whose integrity
label is the intersection of the integrity labels of the two (Figure 2).

When the callee application is launched, and the callee compo-
nent is either multi-instance or unlaunched single-instance, the ac-
tivity manager’s label checks also take into account the callee appli-
cation’s instance label. As mentioned earlier, an application is simi-
lar to a single-instance component. Therefore, when the static label
of the callee application is a floating label, we delay the call unless
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Activity Manager Exit AMEX =
39 in am(exitA, kAce , kCce , aidce , cidce , cAI ce , cnI ce , rt, I).
40 out tm(cleanA, aidce , cidcecAI ce , cnI ce ).
41 case rt of NONE⇒ 0
42 | SOME(aidcr , cAI , cnI , clock )⇒
43 (aidce , (kAce , kCce))[out am(return, kAce , kCce , aidce ,
44 cAI ce , aidcr , cAI , cnI , clock , I)]
45 + in am(exitC, kAce , kCce , aidce , cidce , cAI ce , cnI ce rt, I).
46 out tm(cleanC, aidce , cidce , cAI ce , cnI ce ).
47 case rt of NONE⇒ 0
48 | SOME(aidcr , cAI , cnI , clock )⇒
49 (aidce , (kAce , kCce))[out am(return, kAce , kCce , aidce ,
50 aidcr , cAI , cnI , clock , I)]

Activity Manager Return AMR =
51 in am(return, kAce , kCce , aidce , cAI ce , aidcr , cAI , cnI , clock , I).
52 in clock ().
53 if aidce = aidcr

54 then νr.out tm(lookUp, cnI , r).in r(s).
55 case s of ( , kCd) ⇒
56 if kCce

− v kCd−
57 then (aidcr , (cAI , cnI ))[ out cnI (I) ]
58 else (aidcr , (cAI , cnI ))[ out clock () ]
59 | ⇒ 0
60 else νr.out tm(lookUp, cAI , r).in r(s1).
61 out tm(lookUp, cnI , r).in r(s2).
62 case (s1, s2) of ((DA(kAd), ), ( , kCd))⇒
63 if kAce

− v kAd− ∧ kAce
− v kCd−

64 ∧ kCce
− v kAd− ∧ kCce

− v kCd−
65 then (aidcr , (cAI , cnI ))[ out cnI (I) ]
66 else (aidcr , (cAI , cnI ))[ out clock () ]
67 | ⇒ 0

Figure 10. Encoding of the subprocesses of the activity manager
that handle exit and return calls.

the label of the caller and the callee match exactly. This is for the
same reason as the delay for a single-instance floating component:
the delay preserves noninterference without affecting the function-
ality of the caller (as much as a denied call would). If the call is
allowed, the activity manager takes additional actions as in the case
described above, except that no application-instance channel needs
to be generated. However, the label manager’s application-instance
label map is updated to include the newly launched component in-
stance.

Finally, when both the callee application and callee component
are launched, the activity manager needs to check the instance
labels. Similarly to the above case, calls may be delayed if either
the application or the component is floating and the caller’s labels
do not match the dynamic labels of the callee.

When the activity manager receives a request to exit the compo-
nent (application), it calls the label manager to update the mappings
for the exiting component (application) instance, and restores labels
for the component (application) if necessary. Please refer to the la-
bel manager encoding for details. If the return argument rt indicates
that the caller is waiting for a result, the activity manager sends a
request to itself to return to the caller based on the arguments in rt.

The return is handled similarly to a call to a launched single-
instance component. The activity manager first waits for the lock
of the component it wants to return to. When the activity manager
obtaines the lock, it compares the application ID of the caller
and the callee. If they are the same, then the return is treated as
an intra-application return: only the component-level labels are
compared to decide whether to allow the return or release the lock.

If the application IDs of the caller and the callee are different, then
the return is treated as an inter-application return, and both the
application-level and the component-level labels are compared to
decide whether to allow the return.

E. Stable Configurations
We define stable configurations as configurations where the activ-
ity manager and the label manager are at a stable state. We ignore
the internal steps of the activity manager interacting with the la-
bel manager since these are invisible to applications. There is no
need to model transitions of the Android system configuration at
a finer granularity. We instead assume that activity and label man-
agers take only atomic steps from a stable configuration to another
stable configuration. We formally define these transition rules in
Appendix F.

We first define relevant configurations of components and appli-
cations. We call the sub-processes of CP(aid , cid , cAI , csv ) after
input to the creation channel a starting configuration of an instance
of the component with ID aid ·cid . A process is an instance of the
component with ID aid ·cid if it is the starting configuration or any
sub-process reduced from that starting configuration. Each instance
is uniquely identified by its new intent channel cnI . Similarly, we
call the instantiated body of App(aid) a starting configuration of an
instance of the application with ID aid . A process is an instance of
the application with ID aid if it is the starting configuration or any
sub-process reduced from the starting configuration. Each instance
is uniquely identified by its instance channel cAI .

We say that an application (component) instance is active when
it is possible for that instance to reduce without input actions from
other processes. Terminal instances are the ones that cannot reduce
further without inputs from other processes. A terminal component
instance (written CompT(~x)) can be either an unlaunched compo-
nent event loop, or the component loop body waiting for new intent
calls. The first terminal configuration is reached after the instance
executes either the application exit or the component exit instruc-
tion. In this case, the instance does not re-launch its local state (cls ).
Since no other process will send inputs to cls , this configuration
cannot further reduce. The second kind of terminal instance has two
subcases. The difference between the two is in the label context of
the output to the lock channel. One is produced by the component
instance, and therefore has a layered context; the other is produced
by the activity manager, and therefore has a simple label context.
The latter occurs when an activity manager instance obtained the
lock, but the call was denied, and it has to re-release the lock so
that other callers can proceed. Note that this simple label suffices
for the proofs.

Terminal component instance CompT(~x) ::=
aid [cAI [(cAI , cid)[(cAI , cnI )[CE(· · · )]]]]
| aid [cAI [(cAI , cid)[(cAI , cnI )[CB(· · · )]]]]
′|′ aid [cAI [(cAI , cid)[(cAI , cnI )[out clock ()]]]]

| aid [cAI [(cAI , cid)[(cAI , cnI )[CB(· · · )]]]]
′|′ (aid , (cAI , cnI ))[out clock ()]]]]

Terminal application instance AppT(~x) =
aid [cAI [(cAI , cid1)[CP1(aid , cid1, cAI , csv )]]]
′|′ · · ·
′|′ aid [cAI [(cAI , cid1)[CPm(aid , cidm, cAI , csv )]]]
′|′ aid [cAI [SV(csvL, csv )]]
′|′ aid [cAI [SVBody(csvL, csv )]]
′|′ CT1(· · · ) · · · ′|′ CTn(· · · )

A terminal application instance (written AppT(~x)) contains all
of its unlaunched component bodies, unlaunched shared variable,
shared variable instance, and all terminal component instances.
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Next, we define stable activity manager instances, denoted
AMI(~x). These instances include launching an application (com-
ponent) and sending an intent to the launched instance; sending
a new intent to a launched instance; and requests to return to the
caller. These are the configurations where an atomic reduction step
will stop. As we mentioned earlier, an activity instance can also
generate an output to the instance’s lock channel. We consider this
output to be part of the configuration of the component instance,
and, therefore, it is not included in the definitions of AMI(~x). How-
ever, the execution of the activity manager does stop when such
output is produced.

Stable activity manager instances AMI(~x) ::=
(aid , (cAI , cnI ))[ out aid ·cid ·ccT (cAI , I, cnI , clock , O) ]

| (aid , cAI )[out aid ·cL(cAI )]
′|′ (aid , (cAI , cnI ))[out aid ·cid ·ccT (cAI , I, cnI , clock , O)]

| (aid , (cAI , cnI ))[ out cnI (I) ]
| (aid , (kA, kC))[

out am(callE , kA, kC,O, aid , aidce , cidce , I)]
| (aid(kA, kC))[out am(return, kA, kC, aid ,

aidcr , cAI , cnI , clock , I)]

We will write TMI(Ξ) to denote an instance of the label manager,
which is the sub-process of TM (Figure 9) after the input to the
launch channel (TM =!(in tt(Ξ).TMI(Ξ))). Here, Ξ is the label map
of the label manager instance.

Definition 2. A configuration S is a terminal configuration if all
the application instances are terminal, and S does not contain any
activity manager instances.

Definition 3. We say that a configuration of an application
AC(aid) is valid if AC(aid) = App(aid) |Q |P1 | · · · |Pn, where
Q is a valid active instance of aid , and ∀i ∈ [1, n], Pi is a terminal
instance of aid .

Definition 4. We say that a configuration of an application P
is a valid projected configuration if there exists Q such that
Q can only contain the parallel composition of App(aid) and
aid [cAI [(cAI , cid i)[CP i(aid , cid i, cAI , csv )]]], where cAI is the
ID for the active instance in P , and P |Q is a valid configuration
for application aid .

Each stable system configuration satisfies certain invariants. We
define two relations, � and �m, between a static label and an
effective label. The relation � holds for every pair of static and
effective labels of an application or single-instance component in
a stable configuration. The relation �m holds for every pair of
static and effective labels of a multi-instance component in a stable
configuration. A multi-instance component can raise its instance
label without affecting its static label. As we discussed earlier, an
application or single-instance component has to raise its effective
and static label at the same time. Therefore, the only time the
effective label is not lower than or equal to the static label is when
the static label is a floating label.

Definition 5. K � K′ iff K = ( , , δ) and K′ = ( , , δ) and
one of the follow holds

1. K∗ v K′∗ and K′∗ 6v K∗ implies K is a floating label
2. K∗ 6v K′∗ and K∗ ]d δ v K′∗

Definition 6. K �m K′ iff K = ( , , δ) and K′ = ( , , δ) and
one of the follow holds

1. K∗ v K′∗
2. K∗ 6v K′∗ and K∗ ]d δ v K′∗

We define a stricter relation K �s K
′ (K �ms K

′), such
that K �s K

′ (K �ms K
′) is true if and only if condition 1 in

Definition 5 (Definition 6) holds. These two relations do not allow
declassification.

We define a valid pair of a label map and an application configu-
ration with respect to a set of free names, written valid(~x,Ξ,AC(aid)),
as follows.

Definition 7. valid(~x,Ξ,AC(aid)), if
• fn(Ξ) ∪ fn(AC(aid)) ⊆ ~x
• if Ξ(aid) = U(k), then AC(aid) does not contain any active

instances of aid
• if Ξ(aid) = L(cAI , kAs) or Ξ(aid) = onEx(cAI , kAs), then

Ξ(cAI ) = DA(kAd, LC(LC)) and one of the following holds
1. There is no active instance of aid yet, but there is an output

to the launch channel of aid , and kAs �s kAd; or
2. All of the following hold

the active instance of aid is guarded by the label cAI
kAs � kAd
if Ξ(aid .cid) = S(kCs), then AC(aid) does not con-
tain any active instance of cid
if Ξ(aid .cid) = SL(cAI , cnI , clock , kCd), then Ξ(cnI ) =
DC(clock , kCd) and either (1) there is no active instance
of cid yet, but there is an output to the create channel of
cid , and kCs �s kCd
or (2) AC(aid) contains one active instance of cid
guarded by cnI , cnI ∈ LC, and kCs � kCd
if Ξ(aid .cid) = M(kCs), then either
(1) Ξ(cnI ) = DC(clock , kCd) and AC(aid) may con-
tain multiple active instances of cid , each guarded by a
distinct channel cnI , cnI ∈ LC, and kCs �m kCd; or
(2) there are multiple outputs to the create channel of
aid .cid , each has a label kCd and a distinct chan-
nel name cnI as the argument, and cnI ∈ LC, and
kCs �ms kCd
for all cnI ∈ LC, cnI is a new intent channel for either a
single-instance or a multi-instance component instance
(as described in the above two bullets)

Now we define a stable system configuration stb(S) as follows:

Definition 8. stb(S) iff

S = TM |AM | ν~x.TMI(Ξ) |AMI1 · · · |AMIk
|AC(aid1) | · · · |AC(aidn)

where AC(aid i) is a (projected) valid configuration of an applica-
tion, and ∀i ∈ [1, n], valid(~x,Ξ,AC(aid i)),

A stable configuration contains an activity manager, a label
manager, a label manager instance, several stable activity manager
instances, and valid application configurations. Note that ~x contains
all the free names in the configuration.

F. Android-specific Transition Rules
We define all the Android-specific transitions rules in Figure 12.

Lemma F.1 (Progress of stable configurations). If stb(S), then
either S is at a terminal state, or exists S′ such that S α−→AS

′.

Proof. By examining the definition of stb(S)

Lemma F.2 (Preservation of stable configurations). If stb(S) and
S

α−→AS
′, then stb(S′).

Proof. By examining the definition of stb(S)

The above lemmas ensure the well-definedness of the transition
relations of the Android-specific transitions.
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S
α−→≡ S′ stb(S) stb(S′)

S
α−→AS

′

S
τ

=⇒≡ S′

stb(S) stb(S′) the transitions in τ
=⇒ are all internal transitions

of the activity manager (instance) and label manager (instance)
and S′ is the first stable configuration

S
τ−→AS

′

S
τ

=⇒≡ S′

stb(S) stb(S′) the transitions in τ
=⇒ are all internal transitions

of a read or a write to the shared variable of one instance
and S′ is the first stable configuration

S
τ−→AS

′

Ξ〈cAI 〉 = kA Ξ〈cnI 〉 = kC

TM |AM | ν~x.(TMI(Ξ) |P
| aid [cAI [(cAI , cid)[(cAI , cnI )[out am(req, ~e)]]]])

τ−→ATM |AM | ν~x.(TMI(Ξ) |P
| aid [cAI [(cAI , cid)[(kA, kC )[out am(req, kA, kC , ~e)]]]])

Ξ〈cAI 〉 = kA Ξ〈cnI 〉 = kC

AM |TM | ν~x.TMI(Ξ) |Q | aid [cAI [(cAI , cid)[(cAI , cnI )[out I(self).P ]]]]
out I((aid,(kA,kC)))−→A

AM |TM | ν~x.TMI(Ξ) |Q | aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]]

Figure 12. Android-specific transition rules.

G. Process Projections
We define the projection functions for processes in Figures 13 and
14. The projection function proj(P,Ξ, aidc, κL) removes from P
any high processes (processes whose behavior should not affect the
attacker) and dead code (processes guarded by channel names that
do not exist in the label map). Figure 13 presents rules for processes
that are guarded by label contexts that appear in application config-
urations. Figure 14 defines rules for processes with simplified label
contexts. These label contexts come from the activity manager or
the simplify function, which we introduce later. For nested label
contexts, the only ones that are relevant for deciding the label of a
process are the application ID on the outermost level, and the chan-
nel(s) on the innermost level. If a process’s application ID is aidc,
then the component-level label is used; otherwise, the application-
level label is used.

We say a process P contains fewer components than Q (written
P ≤ Q) if Q is the parallel composition of P and another process.

Definition 9. P ≤ Q def
= Q = P |Q1

H. Label Map Projection and Relations
We define projection functions on the label map in Figure 15. Func-
tion projT(Ξ; aidc;κL) removes high mappings from the label
map. Similarly to the process projection functions, we treat the
mappings associated with an application ID that is not aidc and
those that are differently. We examine all mappings associated with
one application together. If this application’s ID is not aidc and
it is not launched yet, then the projection function keeps all the
mappings when aid is mapped to a low label; otherwise the pro-
jection function removes all those mappings. If this application’s
ID is not aidc and its running instance’s channel ID is cAI , then
the projection keeps all the mappings when cAI is mapped to a low
label; when both aid and cAI are mapped to high labels, the pro-

proj(P,Ξ, aidc, κL)

Ξ〈cAI 〉 = K K∗ v κL aid 6= aidc

proj((aid , (cAI , cnI ))[P ],Ξ, aidc, κL) = (aid , (cAI , cnI ))[P ]
SA-L1

Ξ〈cAI 〉 = K K∗ 6v κL aid 6= aidc

proj((aid , (cAI , cnI ))[P ],Ξ, aidc, κL) = 0
SA-H1

Ξ〈cAI 〉 = K K∗ v κL aid 6= aidc

proj((aid , cAI )[P ],Ξ, aidc, κL) = (aid , cAI )[P ]
SA-L2

Ξ〈cAI 〉 = K K∗ 6v κL aid 6= aidc

proj((aid , cAI )[P ],Ξ, aidc, κL) = 0
SA-H2

P 6= l[P ′] kA∗ v κL aid 6= aidc

proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = (aid , (kA, kC))[P ]
SA-L3

P 6= l[P ′] kA∗ 6v κL aid 6= aidc

proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = 0
SA-H3

Ξ〈cnI 〉 = K K∗ v κL
proj((aid , (cAI , cnI ))[P ]],Ξ, aidc, κL) = (aid , (cAI , cnI ))[P ]

SC-L1

Ξ〈cnI 〉 = K K∗ 6v κL
proj((aid , (cAI , cnI ))[P ],Ξ, aidc, κL) = 0

SC-H1

P 6= l[P ′] kC∗ v κL
proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = (aid , (kA, kC))[P ]

SC-L2

P 6= l[P ′] kC∗ 6v κL
proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = 0

SC-H2

P 6= l[P ′] kC∗ v κL aid 6= aidc

proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = (aid , (kA, kC))[P ]
SC-L3

P 6= l[P ′] kC∗ 6v κL aid 6= aidc

proj((aid , (kA, kC))[P ],Ξ, aidc, κL) = 0
SC-H3

cAI /∈ dom(Ξ)
or aid /∈ dom(Ξ) or cnI /∈ dom(Ξ)

proj((aid , (cAI , cnI ))[P ],Ξ, aidc, κL) = 0
S-D1

cAI /∈ dom(Ξ) or aid /∈ dom(Ξ) aid 6= aidc

proj((aid , cAI )[P ],Ξ, aidc, κL) = 0
SA-D2

Figure 14. Projection of simplified processes.

jection removes all of those mappings; when aid is mapped to a
low label, but cAI is mapped to a high label, the projection function
only keeps the static labels for components, and restores aidc to
be unlaunched. The last case is the case for floating applications. A
discrepancy in the mapping of aid and cnI is only possible if aid ’s
static label is floating and a high component launched this appli-
cation. In a system without high components, such calls would not
have existed; therefore, application aid remains unlaunched.

When the application’s ID is aidc, since our proof setup as-
sumes that this particular application is launched, the label for aidc
and its corresponding instance channel cAI remain the same after
the projection. For this application, a separate projection function is
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proj(P,Ξ, aidc, κL)

P 6= l[P ′] aid 7→ U(K) ∈ Ξ K∗ v κL aid 6= aidc

proj(aid [P ],Ξ, aidc, κL) = aid [P ]
A-L1

P 6= l[P ′] aid 7→ U(K) ∈ Ξ K∗ 6v κL aid 6= aidc

proj(aid [P ],Ξ, aidc, κL) = 0
A-H1

P 6= l[P ′] aid 7→ Q(c,K) ∈ Ξ K∗ v κL aid 6= aidc

proj(aid [P ],Ξ, aidc, κL) = aid [P ]
A-L2

P 6= l[P ′] aid 7→ Q(c,K) ∈ Ξ K∗ 6v κL aid 6= aidc

proj(aid [P ],Ξ, aidc, κL) = 0
A-H2

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ v κL aid 6= aidc

proj(aid [cAI [P ]],Ξ, aidc, κL) = aid [cAI [P ]]
A-L3

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ 6v κL aid 6= aidc

proj(aid [cAI [P ]],Ξ, aidc, κL) = 0
A-H3

P 6= l[P ′] cAI /∈ dom(Ξ)

proj(aid [cAI [P ]],Ξ, aidc, κL) = 0
A-D1

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ v κL aid 6= aidc

proj(aid [cAI [(cAI , cid)[P ]]],Ξ, aidc, κL) = aid [cAI [(cAI , cid)[P ]]]
A-L4

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ 6v κL aid 6= aidc

proj(aid [cAI [(cAI , cid)[P ]]],Ξ, aidc, κL) = 0
A-H4

P 6= l[P ′] cAI /∈ dom(Ξ) or cid /∈ dom(Ξ)

proj(aid [cAI [(cAI , cid)[P ]]],Ξ, aidc, κL) = 0
AC-D2

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ v κL aid 6= aidc

proj(aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]],Ξ, aidc, κL) = aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]]
A-L5

P 6= l[P ′] cAI 7→ DA(K,L) ∈ Ξ K∗ 6v κL aid 6= aidc

proj(aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]],Ξ, aidc, κL) = 0
A-H5

P 6= l[P ′] cAI /∈ dom(Ξ) or cid /∈ dom(Ξ) or cnI /∈ dom(Ξ)

proj(aid [cAI [(cAI , cid)[(cAI , cnI )[P ]]]],Ξ, aidc, κL) = 0
AC-D3

proj(aidc[cAI [P ]],Ξ, aidc, κL) = aidc[cAI [P ]]
C

P 6= l[P ′] Ξ(aidc.cid) = K K∗ v κL
proj(aidc[cAI [(cAI , cid)[P ]]],Ξ, aidc, κL) = aidc[cAI [(cAI , cid)[P ]]]

C-L1

P 6= l[P ′] Ξ(aidc.cid) = K K∗ 6v κL
proj(aidc[cAI [(cAI , cid)[P ]]],Ξ, aidc, κL) = 0

C-H1

P 6= l[P ′] cnI 7→ DC(c,K) ∈ Ξ K∗ v κL
proj(aidc[cAI [(cAI , cid)[(cAI , cnI )[P ]]]],Ξ, aidc, κL) = aidc[cAI [(cAI , cid)[(cAI , cnI )[P ]]]]

C-L2

P 6= l[P ′] cnI 7→ DC(c,K) ∈ Ξ K∗ 6v κL
proj(aidc[cAI [(cAI , cid)[(cAI , cnI )[P ]]]],Ξ, aidc, κL) = 0

C-H2

proj(P |Q,Ξ, aidc, κL) = proj(P,Ξ, aidc, κL) | proj(Q,Ξ, aidc, κL)
PARR

Figure 13. Projection of processes.
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defined for the mappings for its components (instances). The func-
tion projTC(Ξ; aidc;κL) removes high mappings related to com-
ponents from the application with ID aidc. In most cases, the pro-
jection preserves the mapping if the label is low, and removes it if
it is high. The special case is when a single-instance component’s
static label is low, but the effective label for its instance channel
cnI is high. This is analogous to the case of floating application.
Here, the single-instance component has a floating label, and there-
fore the projection removes the instance label and maps the com-
ponent’s static label to be single, unlaunched.

We also define two relations between two label maps: Ξ -κL
aidc

Ξ′ and Ξ -κL
comp Ξ′. These two relations closely match the projec-

tion functions. Intuitively, Ξ is the label map for the system with
high components, and Ξ′ is the label map for the system without
high components. These two relations force Ξ and Ξ′ to agree on
low mappings. Again, we need two relations because of the differ-
ent treatment of labels based on whether they are related to applica-
tion aidc. The relation -κL

comp relates two label maps only contain-
ing mappings related to aidc. Most cases are straightforward. The
interesting cases are AL-Float and C-SL-Float, where the mapping
of a floated high instance relates to an unlaunched low static map.

We prove several basic properties of the label map functions and
projection functions.

Lemmas H.1 and H.2 state that a label map relates to the pro-
jected label map.

Lemma H.1.
If Ξ = Ξ0,Ξ1 and Ξ0 = aidc 7→ L(cAI , kAs), cAI 7→

DA(kAd, LC(CL)) and projTC(Ξ; aidc;κL) = Ξ′, then Ξ′ =
Ξ′0,Ξ

′
1 where Ξ′0 = aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL′)),

and Ξ1 -κL
comp Ξ′1

Proof. By induction on the derivation of projTC(Ξ; aidc;κL).

Lemma H.2. Ξ -κLaidc
projT(Ξ; aidc;κL)

Proof. By induction on the derivation of projT(Ξ; aidc;κL).

Lemma H.3. -κLaidc
is transitive.

Proof. By induction on the first -κL
aidc

relation.

Lemma H.4. If Ξ1 ≺ Ξ2, where ≺ is -κL
aidc

or -κL
comp then for all

x such that x ∈ dom(Ξ1), and (Ξ2〈x〉)∗ v κL, Ξ2〈x〉 = Ξ1〈x〉.

Proof. By induction on the ≺ relation.

Lemma H.5. If ΞP -κL
aidc

ΞQ, then proj(P, κL, aidc,ΞP ) ≤
proj(P, κL, aidc,ΞQ)

Proof. By induction on the structure of P . Use Lemma H.4 in
the base case. That the projection on the left exists implies the
projection on the right also exists.

We prove that the we can obtain a stable configuration by pro-
jecting the label map ΞP , and then projecting the process with the
new label map.

Lemma H.6. If S is a stable configuration,
S = TM |AM | ν~x.TMI(ΞP ) |P , Ξ′P = projT(ΞP ; aidc;κL)
S′ = TM |AM | ν~x′.TMI(Ξ

′
P ).proj(P, κL, aidc,Ξ

′
P ) is a stable

configuration where ~x′ ⊆ ~x.

Proof. By examining the definition of stb(S).

I. Label Updates
Operations such as calls, raising labels, declassification and exiting
will cause the label map to be updated. We classify these label
updates either as a high update or a low update. The judgment
aidc, κL,Ξ1 ` Ξ : LO states that an update in Ξ is a low
update with regard to aidc, κL and a label map Ξ1. Here, Ξ1 is
the current label map of the configuration. Similarly, the judgment
aidc, κL,Ξ1 ` Ξ : HI states that Ξ is a high update.

Figures 17 and 18 present rules for valid low label updates.
Rules in Figure 17 apply to updates related to an application whose
ID is not aidc; while rules in Figure 18 apply to updates to an ap-
plication of ID aidc. Deciding whether an update is low or high is
based on the effective label of the instance of the updated applica-
tion (component), which is the last premise of each rule. When the
v in that premise is replaced by 6v, we obtain rules for valid high
updates, except for updates resulting from declassification, where
the update is a high update if the declassified label is high. We show
these two rules in Figure 19.

The main observation is that when the update is a high update,
the changes to the system configuration only affect high compo-
nents and are not observable by the attacker.

The following lemmas concern the effects of low (high) label
updates on the label map relation and the process projection func-
tions. When an update is a low update, the update preserves the
label map relation, when applied to both maps (Lemma I.1). When
the update is a high update, updating the label map on the left of
that relation preserves that relation (Lemma I.2).

Lemma I.1.

1. If Ξ1 -κL
comp Ξ2 and aidc;κL; (Ξ0,Ξ1) ` Ξ : LO where

Ξ0 = aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), then
Ξ1 ] Ξ -κL

aidc
Ξ2 ] Ξ

2. If Ξ1 -κL
aidc

Ξ2, aidc, κL,Ξ1 ` Ξ : LO then Ξ1 ] Ξ -κL
aidc

Ξ2 ] Ξ

Proof. By examining all valid updates.

Lemma I.2.

1. If Ξ1 -κL
comp Ξ2 and aidc;κL; (Ξ0,Ξ1) ` Ξ : HI where

Ξ0 = aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), then
Ξ1 ] Ξ -κL

aidc
Ξ2

2. If Ξ1 -κL
aidc

Ξ2, aidc, κL,Ξ1 ` Ξ : HI then Ξ1 ] Ξ -κL
aidc

Ξ2

Proof. By examining all valid updates.

Lemma I.3 states that projecting a process using the label map
of Ξ updated with high updates, results in a process containing
fewer components than projecting the same process with Ξ. This is
because high updates to a label map result in more high mappings
in the map, and, therefore, more processes will be removed by the
projection using the updated map than the original one.

Lemma I.3. If aidc;κL; (Ξ0,Ξ1) ` Ξ : HI and P does not
contain processes guarded by new names (cAI or cnI ) in Ξ, then
proj(P, κL, aidc,ΞP ] Ξ) ≤ proj(P, κL, aidc,ΞP )

Proof. By induction on the structure of P .

The next lemma states that low updates to a label map preserve
the less-than relation of two projected processes.

Lemma I.4. If proj(P, κL, aidc,ΞP ) ≤ proj(Q,κL, aidc,ΞQ),
Ξ1 -κL

aidc
Ξ2, P does not contain processes guarded by new

names (cAI or cnI ) in Ξ, and aidc;κL; (Ξ0,Ξ1) ` Ξ : LO then
proj(P, κL, aidc,ΞP ] Ξ) ≤ proj(Q,κL, aidc,ΞQ ] Ξ)
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projT(Ξ; aidc;κL)

projT(·; aidc;κL) = · A-EMPTY

projT(Ξ; aidc;κL) = Ξ′ K∗ v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} aid 6= aidc

projT(Ξ, aid 7→ U(K),Ξ1; aidc;κL) = Ξ′, aid 7→ U(K),Ξ1

A-UL

projT(Ξ; aidc;κL) = Ξ′ K∗ 6v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} aid 6= aidc

projT(Ξ, aid 7→ U(K),Ξ1; aidc;κL) = Ξ′
A-UH

projT(Ξ; aidc;κL) = Ξ′ Q = L or onEx kA∗d v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} aid 6= aidc

projT(Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1; aid1;κL)
= Ξ′, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1

A-LL

projT(Ξ; aidc;κL) = Ξ′ kA∗s 6v κL kA∗d 6v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} aid 6= aidc

projT(Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1; aid1;κL) = Ξ′
A-LH

projT(Ξ; aidc;κL) = Ξ′

kA∗s v κL kA∗d 6v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} dom(Ξ2) = CL aid 6= aidc

projT(Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1,Ξ2; aidcκL) = Ξ′, aid 7→ U(kAs),Ξ1

A-FH

projTC(Ξ; aidc;κL) = Ξ′ projT(Ξ1; aidc;κL) = Ξ′1

projT(Ξ,Ξ1; aidc;κL) = Ξ′,Ξ′1
A-C

projTC(Ξ; aidc;κL)

projTC(aidc 7→ L(cAI , k), cAI 7→ x; aidc;κL) = aidc 7→ L(cAI , k), cAI 7→ x
C-BASE

projTC(Ξ; aidc;κL) = Ξ′ K∗ v κL
projTC(Ξ, aidc·cid 7→ S(K); aidc;κL) = Ξ′, aidc·cid 7→ S(K)

C-SL
projTC(Ξ; aidc;κL) = Ξ′ K∗ 6v κL

projTC(Ξ, aidc·cid 7→ S(K); aidc;κL) = Ξ′
C-SH

projTC(Ξ; aidc;κL) = Ξ′ K∗ v κL
projTC(Ξ, aidc·cid 7→ M(K); aidc;κL) = Ξ′, aidc·cid 7→ M(K)

C-ML
projTC(Ξ; aidc;κL) = Ξ′ K∗ 6v κL

projTC(Ξ, aidc·cid 7→ M(K); aidc;κL) = Ξ′
C-MH

kC∗s 6v κL kC∗d 6v κL projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL\cnI )); aidc;κL) = Ξ′

projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), aidc·cid 7→ SL(cAI , cnI , clock , kCs), cnI 7→ DC(clock , kCd); aidc;κL) = Ξ′
C-SLH

KC∗s v κL KC∗d 6v κL projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL\cnI )); aidc;κL) = Ξ′

projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), aidc·cid 7→ SL(cAI , cnI , clock , kCs), cnI 7→ DC(clock , kCd); aidc;κL)
= Ξ′, aidc·cid 7→ S(kCs)

C-FH

kC∗d v κL projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)); aidc;κL) = Ξ′

projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), aidc·cid 7→ SL(cAI , cnI , clock , kCs), cnI 7→ DC(clock , kCd); aidc;κL)
= Ξ′, aidc·cid 7→ SL(cAI , cnI , clock , kCs), cnI 7→ DC(clock , kCd)

C-SLL

K∗d v κL projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)); aidc;κL) = Ξ′

projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), cnI 7→ DC(clock , kCd); aidc;κL) = Ξ′, cnI 7→ DC(clock , kCd)
C-CL

K∗d 6v κL projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL\cnI )); aidc;κL) = Ξ′

projTC(Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)), cnI 7→ DC(clock , kCd); aidc;κL) = Ξ′
C-CH

Figure 15. Projection of label map for a specific application.
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Ξ -κLaidc
Ξ′

· -κL
aidc

Ξ
A-EMPTY

dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} Ξ -κL
aidc

Ξ′ K∗ v κL aid 6= aidc

Ξ, aid 7→ U(K),Ξ1 -κLaidc
Ξ′, aid 7→ U(K),Ξ1

AU-LOW

Ξ -κL
aidc

Ξ′ K∗ 6v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} aid 6= aidc

Ξ, aid 7→ U(K),Ξ1 -κL
aidc

Ξ′
AU-HIGH

Ξ -κL
aidc

Ξ′ Q = L or onEx kA∗d v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} ∪ CL aid 6= aidc

Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1 -κLaidc
Ξ′, aid 7→ Q(cAI , kAs), cAI 7→ DA(kAd, LC(CL)),Ξ1

AL-LOW

Ξ -κL
aidc

Ξ′ kA∗s 6v κL kA∗d 6v κL dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk} ∪ CL aid 6= aidc

Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1 -κL
aidc

Ξ′
AL-HIGH

Ξ -κL
aidc

Ξ′ dom(Ξ1) = {aid ·cid1, · · · , aid ·cidk}
dom(Ξ2) = CL kA∗s v κL kA∗d 6v κL Q = L or onEx aid 6= aidc

(Ξ, aid 7→ Q(cAI , kAs), cAI 7→ DA(KAd, LC(CL)),Ξ1,Ξ2 -κL
aidc

Ξ′, aid 7→ U(kAs),Ξ1

AL-FLOAT

Ξ -κL
aidc

Ξ′ Ξ1 -κL
comp Ξ′1 aid 6= aidc

Ξ, aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL)),Ξ1 -κL
aidc

Ξ′aidc 7→ L(cAI , kAs), cAI 7→ DA(kAd, LC(CL′)),Ξ′1
A-COMP

Ξ -κLcomp Ξ′

· -κL
comp Ξ

C-EMPTY
Ξ -κL

comp Ξ′ K∗ v κL
Ξ, aidc·cid 7→ S(K) -κL

comp Ξ′, aidc·cid 7→ S(K)
C-SU-LOW

Ξ -κL
comp Ξ′ K∗ v κL

Ξ, aidc·cid 7→ M(K) -κL
comp Ξ′, aidc·cid 7→ M(K)

C-M-LOW

K∗d v κL Ξ -κL
comp Ξ′

Ξ, aidc·cid 7→ SL(cAI , cnI , clock ,Ks), cnI 7→ DC(clock ,Kd) -
κL
comp Ξ′, aidc·cid 7→ SL(cAI , cnI , clock ,Ks), cnI 7→ DC(clock ,Kd)

C-SL-LOW

K∗d v κL Ξ -κL
comp Ξ′

Ξ, cnI 7→ DC(clock ,Kd) -
κL
comp Ξ′, cnI 7→ DC(clock ,Kd)

C-NI-LOW
Ξ -κL

comp Ξ′ K∗ 6v κL
Ξ, aidc·cid 7→ S(K) -κL

comp Ξ′
C-SU-HIGH

K∗s v κL K∗d 6v κL Ξ -κL
comp Ξ′

Ξ, aidc·cid 7→ SL(cAI , cnI , clock ,Ks), cnI 7→ DC(clock ,Kd) -
κL
comp Ξ′, aidc·cid 7→ S(Ks)

C-SL-FLOAT

Ξ -κL
comp Ξ′ K∗ 6v κL

Ξ, aidc·cid 7→ M(K) -κL
comp Ξ′

C-M-HIGH
K∗s 6v κL K∗d 6v κL Ξ -κL

comp Ξ′

Ξ, aidc·cid 7→ SL(cAI , cnI , clock ,Ks), cnI 7→ DC(clock ,Kd) -
κL
comp Ξ′

C-SL-HIGH

K∗d 6v κL Ξ -κL
comp Ξ′

Ξ, cnI 7→ DC(clock ,Kd) -
κL
comp Ξ′

C-NI-HIGH

Figure 16. Relation between label maps.
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aidc, κL,Ξ1 ` Ξ : LO

aid 6= aidc Ξ1(aid) = L(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ onEx(cAI , kAs), cAI 7→ DA(kAd, LC(CL\cnI )), \cnI : LO

A-ONEXITA-M

aid 6= aidc Ξ1(aid) = L(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC({cnI })) kA∗d v κL
aid , κL,Ξ1 ` aid 7→ U(kAs), \cnI , \cAI : LO

A-EXITA-M1

aid 6= aidc Ξ1(aid) = onEx(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC({cnI })) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ U(kAs), \cnI , \cAI : LO

A-EXITA-M2

aid 6= aidc Ξ1(aid) = L(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(aid ·cid) = SL(kCs, cnI ) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ onEx(cAI , kAs), cAI 7→ DA(kAd, LC(CL\cnI )), aid ·cid 7→ S(kCs), \cnI : LO

A-ONEXITA-S

aid 6= aidc Ξ1(aid) = L(cAI , kAs) Ξ1(aid ·cid) = SL(kCs, cnI ) Ξ1(cAI ) = DA(kAd, LC({cnI })) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ U(kAs), aid ·cid 7→ S(kCs), \cnI : LO

A-EXITA-S1

aid 6= aidc Ξ1(aid) = onEx(cAI , kAs) Ξ1(aid ·cid) = SL(kCs, cnI ) Ξ1(cAI ) = DA(kAd, LC({cnI })) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ U(kAs), aid ·cid 7→ S(kCs), \cnI : LO

A-EXITA-S2

aid 6= aidc Ξ1(cAI ) = DA(kAd, LC(CL)) kA∗d v κL
aidc, κL,Ξ1 `, cAI 7→ DA(kAd, LC(CL\cnI )), \cnI : LO

A-EXITC-M

aid 6= aidc Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(aid ·cid) = SL(kCs, cnI ) kA∗d v κL
aidc, κL,Ξ1 ` cAI 7→ DA(kAd, LC(CL\cnI )), aid ·cid 7→ S(kCs), \cnI : LO

A-EXITC-S

aid 6= aidc Ξ1(aid) = Q(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) δ ⊆ dL(kAd) (kAd)∗ v κL
aidc, κL,Ξ1 ` aid 7→ Q(cAI , kAs), cAI 7→ DA(kAd ]d δ, LC(CL)) : LO

A-DECLASSIFYA

aid 6= aidc
Ξ1(aid) = Q(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL))Ξ1(cnI ) = DC(c, kCd) δ ⊆ dL(kCd) (kAd)∗ v κL

aidc, κL,Ξ1 ` cnI 7→ DC(c, kCd ]d δ) : LO
A-DECLASSIFYC

aid 6= aidc Ξ1(aid) = Q(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) kA∗d v κL
aidc, κL,Ξ1 ` aid 7→ Q(cAI , kAs ]rz (σ, ι)), cAI 7→ DA(kAd ]rz (σ, ι), LC(CL)) : LO

A-RAISEA

aid 6= aidc Ξ1(aid ·cid) = SL(kCs, cnI ) Ξ1(cnI ) = DC(c, kCd) kA∗d v κL
aidc, κL,Ξ1 ` aid ·cid 7→ SL(kCs ]rz (σ, ι), cnI ), cnI 7→ DC(c, kCd ]rz (σ, ι)) : LO

A-RAISEC-S

aid 6= aidc Ξ1(aid ·cid) = M(kCs) Ξ1(cnI ) = DC(c, kCd) kA∗d v κL
aidc, κL,Ξ1 ` aid ·cid 7→ M(kCs), cnI 7→ DC(c, kCd ]rz (σ, ι)) : LO

A-RAISEC-M

aid 6= aidc Ξ1(aid ·cid) = M(kCs) Ξ1(aid) = L(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) kA∗d v κL
aidc, κL,Ξ1 ` cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAd, LC(CL ∪ {cnI })) : LO

A-CALL-C-M

aid 6= aidc Ξ1(aid) = L(cAI , kAs) Ξ1(aid ·cid) = S(kCs) Ξ1(cAI ) = DA(kAd, LC(CL)) kA∗d v κL
aidc, κL,Ξ1 ` aid ·cid 7→ SL(kCs, cnI ), cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAd, LC(CL ∪ {cnI })) : LO

A-CALL-C-S

aid 6= aidc
Ξ1(aid ·cid) = M(kCs) Ξ1(aid) = U(kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) K− v kAs− kAs CK∗ v κL

aidc, κL,Ξ1 ` aid 7→ L(cAI , kAs), cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAs CK, LC({cnI })) : LO
A-CALL-AC-M

aid 6= aidc
Ξ1(aid) = U(kAs) Ξ1(aid ·cid) = S(kCs) Ξ1(cAI ) = DA(kAd, LC(CL)) K− v kAs− kAs CK∗ v κL

aidc, κL,Ξ1 ` aid 7→ L(cAI , kAs), aid ·cid 7→ SL(kCs, cnI ), cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAs CK, LC({cnI })) : LO
A-CALL-AC-S

Figure 17. Valid low lable updates (part 1 of 2).

23



aidc, κL,Ξ1 ` Ξ : LO

Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(cnI ) = DC(c, kCd) kC∗d v κL
aidc, κL,Ξ1 `, cAI 7→ DA(kAd, LC(CL\cnI )), \cnI : LO

C-EXITC-M

Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(aidc·cid) = SL(kCs, cnI ) Ξ1(cnI ) = DC(c, kCd) kC∗d v κL
aidc, κL,Ξ1 ` cAI 7→ DA(kAd, LC(CL\cnI )), aidc·cid 7→ S(kCs), \cnI : LO

C-EXITC-S

Ξ1(cnI ) = DC(c, kCd) δ ⊆ dL(kCd) (kCd)
∗ v κL

aidc, κL,Ξ1 ` cnI 7→ DC(c, kCd ]d δ) : LO
C-DECLASSIFYC

Ξ1(aidc·cid) = SL(kCs, cnI ) Ξ1(cnI ) = DC(c, kCd) kC∗d v κL
aidc, κL,Ξ1 ` aidc·cid 7→ SL(kCs ]rz (σ, ι), cnI ), cnI 7→ DC(c, kCd ]rz (σ, ι)) : LO

C-RAISEC-S

Ξ1(aidc·cid) = M(kCs) Ξ1(cnI ) = DC(c, kCd) kC∗d v κL
aidc, κL,Ξ1 ` aidc·cid 7→ M(kCs), cnI 7→ DC(c, kCd ]rz (σ, ι)) : LO

C-RAISEC-M

Ξ1(aidc·cid) = M(kCs) Ξ1(aidc) = L(cAI , kAs)
Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(cnI ) = DC(c, kCd) K− v kCs− kCs CK∗ v κL

aidc, κL,Ξ1 ` cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAd, LC(CL ∪ {cnI })) : LO
C-CALL-C-M

Ξ1(aidc) = L(cAI , kAs) Ξ1(aidc·cid) = S(kCs)
Ξ1(cAI ) = DA(kAd, LC(CL)) Ξ1(cnI ) = DC(c, kCd) K− v kCs− kCs CK∗ v κL

aidc, κL,Ξ1 ` aidc·cid 7→ SL(kCs, cnI ), cnI 7→ DC(c, kCs CK), cAI 7→ DA(kAd, LC(CL ∪ {cnI })) : LO
C-CALL-C-S

Figure 18. Valid low lable updates (part 2 of 2).

aidc, κL,Ξ1 ` Ξ : HI

aid 6= aidc
Ξ1(aid) = Q(cAI , kAs) Ξ1(cAI ) = DA(kAd, LC(CL)) δ ⊆ dL(kAd) (kAd ]d δ)∗ 6v κL

aidc, κL,Ξ1 ` aid 7→ Q(cAI , kAs), cAI 7→ DA(kAd ]d δ, LC(CL)) : HI
A-DECLASSIFYA-HI

Ξ1(cnI ) = DC(c, kCd) δ ⊆ dL(kCd) (kCd ]d δ)∗ 6v κL
aidc, κL,Ξ1 ` cnI 7→ DC(c, kCd ]d δ) : HI

C-DECLASSIFYC-HI

Figure 19. Selected rules for valid high label updates.

Proof. By induction on the structure of P .

J. Proof of Noninterference
Recall that the core of the noninterference proof is to find a simu-
lation relation between the system with high components and the
system without high components (Section 5). We define a rela-
tion R(aidc,κL) below, and show that it is a simulation relation
(Lemma J.5).

We first define a function sp(P ) to simplify a labeled process
wrapped in adjacent nested labels to a labeled process wrapped by
a pair of its application ID and the innermost label:
sp(aid [l1[l2 · · · lk[P ]]]) = (aid , lk)[P ] or aid [P ],
where P 6= l[P ′].

Definition 10. P R(aidc,κL) Q iff

• P and Q are stable configurations,
• P = TM |AM | ν~x.TMI(ΞP ) |P0,
• Q = TM |AM | ν~x′.TMI(ΞQ) |Q0,
• ΞP -κL

aidc
ΞQ

• proj(sp(P0), κL, aidc,ΞP ) ≤ proj(sp(Q0), κL, aidc,ΞP )

We first prove several key lemmas that are used in the proof
of Lemma J.5. These lemmas identify conditions on the label map
updates and the system configuration P to ensure the simulation
relation between the system with high components (P ) and the
related system without high components (Q) holds.

The following lemma states that if the label map does not
change and P does not generate any new low components when
P takes a step to P ′, then P ′ relates to Q.

Lemma J.1. If

1. P R(aidc,κL) Q, P τ−→AP
′,

2. P = TM |AM | ν~x.TMI(ΞP ) |P0,
3. P ′ = TM |AM | ν~x′.TMI(ΞP ) |P ′0,
4. proj(sp(P ′0), κL, aidc,ΞP ) ≤ proj(sp(P0), κL, aidc,ΞP )

then P ′ R(aidc,κL) Q

Proof. By P R(aidc,κL) Q, (1)-(3) hold
(1) Q = TM |AM | ν~y.TMI(ΞQ) |Q0,
(2) ΞP -κL

aidc
ΞQ

(3) proj(sp(P0), κL, aidc,ΞP ) ≤ proj(sp(Q0), κL, aidc,ΞQ)
By (3), assumption 4, and ≤ is transitive
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(4) proj(sp(P ′0), κL, aidc,ΞP ) ≤ proj(sp(Q0), κL, aidc,ΞQ)
By (1) (2) and (4), P ′ R(aidc,κL) Q

Lemma J.2 states that if the label map does not change and the
components that reduce in P are low components when P steps to
P ′, thenQ can take the same step as P toQ′, and P ′ andQ′ relate.

Lemma J.2. If
• P R(aidc,κL) Q,
• P τ−→AP

′,
• P = TM |AM | ν~x.TMI(ΞP ) |P1 |P2,
• P ′ = TM |AM | ν~x′.TMI(ΞP ) |P1 |P ′2,
• Q = TM |AM | ν~y.TMI(ΞQ) |Q1 |Q2,
• proj(sp(P2), κL, aidc,ΞP ) = sp(Q2) = sp(P2)
• Q takes the same step as P to Q′

then P ′ R(aidc,κL) Q
′

Proof. By P R(aidc,κL) Q, (1) and (2) hold
(1) ΞP -κLaidc

ΞQ
(2) proj(sp(P1), κL, aidc,ΞP ) ≤ proj(sp(Q1), κL, aidc,ΞQ)
Because Q take the same step as P , so
(3) Q′ = TM |AM | ν~y′.TMI(ΞQ) |Q1 |Q′2
By sp(P2) = sp(Q2) and (3),
(4) sp(P ′2) = sp(Q′2)
By Lemma H.5 on (1) and (4)
(5) proj(sp(P ′2), κL, aidc,ΞP ) ≤ proj(sp(Q′2), κL, aidc,ΞQ)
By (2) and (4),
(6) sp(proj(sp(P1 |P ′2), κL, aidc,ΞP ))
≤ proj(sp(Q1 |Q′2), κL, aidc,ΞQ)

By (1), (3) and (6)
P ′ R(aidc,κL) Q

′

If the label map changes when P steps to P ′, but the update
preserves the label map relation between P ′ and Q, and P ′ does
not have more low components than P according to the new label
map, then P ′ and Q relate.

Lemma J.3. If
1. P R(aidc,κL) Q,
2. P τ−→AP

′,
3. P = TM |AM | ν~x.TMI(ΞP ) |P0,
4. P ′ = TM |AM | ν~x′.TMI(Ξ

′
P ) |P ′0,

5. Ξ′P -κL
aidc

ΞQ
6. proj(sp(P ′0), κL, aidc,Ξ

′
P ) ≤ proj(sp(P0), κL, aidc,ΞP )

then P ′ R(aidc,κL) Q

Proof. By P R(aidc,κL) Q, (1)-(2) hold
(1) Q = TM |AM | ν~y.TMI(ΞQ) |Q0,
(2) proj(sp(P0), κL, aidc,ΞP ) ≤ proj(sp(Q0), κL, aidc,ΞQ)
By (2), assumption 6, and ≤ is transitive
(3) proj(sp(P ′0), κL, aidc,Ξ

′
P ) ≤ proj(sp(Q0), κL, aidc,ΞQ)

By (3) and assumption 5, P ′ R(aidc,κL) Q

Finally, when the update to the label map is a low update, and
the components that reduce in P exist inQ as well, thenQ can take
the same step as P and P ′ and Q′ relate.

Lemma J.4. If
1. P R(aidc,κL) Q,
2. P τ−→AP

′,
3. P = TM |AM | ν~x.TMI(ΞP ) |P1 |P2,
4. P ′ = TM |AM | ν~x′.TMI(ΞP ] Ξ) |P1 |P ′2,
5. Q = TM |AM | ν~y.TMI(ΞQ) |Q1 |Q2,
6. proj(sp(P2), κL, aidc,ΞP ) = sp(Q2) = sp(P2)
7. Q takes the same step as P to Q’

8. aidc, κL,ΞP ` Ξ : LO

then P ′ R(aidc,κL) Q
′

Proof. By P R(aidc,κL) Q, (1) and (2) hold
(1) ΞP -κL

aidc
ΞQ

(2) proj(sp(P1), κL, aidc,ΞP ) ≤ proj(sp(Q1), κL, aidc,ΞQ)
Because Q take the same step as P ,
(3) Q′ = TM |AM | ν~y′.TMI(ΞQ ] Ξ) |Q1 |Q′2
By sp(P2) ≤ sp(Q2),
(4) sp(P ′2) = sp(Q′2)
by Lemma I.1 on (1) and assumption 8,
(5) ΞP ] Ξ -κL

aidc
ΞQ ] Ξ

By Lemma H.5 on (4) and (5)
(6) proj(sp(P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(Q′2), κL, aidc,ΞQ ] Ξ)

By Lemma I.4 on (1), (2) and assumption 8
(7) proj(sp(P1), κL, aidc,ΞP ] Ξ)
≤ proj(sp(Q1), κL, aidc,ΞQ ] Ξ)

By (6) and (7),
(8) proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(Q1 |Q′2), κL, aidc,ΞQ ] Ξ)

By (3), (5) and (8), P ′ R(aidc,κL) Q
′

Now we prove the main lemma, which states thatR(aidc,κL) is
a simulation relation.

Lemma J.5. R(aidc,κL) is a Γ-simulation relation.

Proof. We need to prove two conditions: (1) τ transition preserves

R(aidc,κL), and (2) if P R(aidc,κL) Q, P
out b(aid,(KA,KC))−→ P ′

and (aid , (K∗A,K
∗
C)) vaidc κL, then Q

out b(aid,(KA,KC))
=⇒ Q′,

and P ′ R(aidc,κL) Q
′.

By the definition of P R(aidc,κL) Q, we know that stb(P ).
We examine all possible proof cases for conditions (1) and (2),
given that P is a stable configuration. The proof cases for (1) are
categorized below. There is only one proof case for condition (2),
and it is similar to case 1 for condition (1), and we omit the details
here.

1. Transitions that do not change the labels of any components
(Figure 20).
(a) Read/write to shared variable.
(b) Launch component loop body for the first time through

channel cls .
(c) Re-launch component loop body through cls .
(d) First output to cnI right after the instance is created.
(e) Output to cnI from the activity manager.

2. Transitions that cause the component’s label context to change
(Figure 20, 21).
(a) The special transitions that record the current labels for

requests to the activity manager.
(b) Launch an application.
(c) Launch the shared variable SVBody.
(d) Launch a component instance through its create channel

ccT .
3. Operations on labels.

(a) Raise.
(b) Declassify.

4. Component exit and application exit (Figure 23).
5. Calls and returns.

(a) Calls (returns) are denied or delayed.
In these cases, the label map does not change, and no low
components are generated by the transition. The proofs for
these cases are straightforward: we use Lemma J.1 and J.2.
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(b) Calls are allowed.
In all proof cases, we distinguish between whether the up-
date to the configuration is low or high. In the former case,
because of the properties of the label operations, both the
caller and the callee’s label have to be low and thus Q takes
the same step. In the latter case, P ′ relates toQ directly. We
show two proof cases, one for intra-application calls (Fig-
ure 24) and the other for inter-application calls (Figure 25).
The rest of the cases follow the same strategy.

(c) Returns are allowed.
The proofs for this case are similar to the case where a call
to a launched application or a single-instance component is
allowed.

Transitions that do not change the labels of any compo-
nents. We show the case of reading the shared variable;
the proofs for all other cases follow the same strategy.
P = TM |AM | ν~y.(TMI(ΞP ) |P1 |P2)
P ′ = TM |AM | ν~y.(TMI(ΞP ) |P1 |P ′2)
P2 = aid [...[(cAI , cnI )[νr.out aid ·csv (rd, r).in r(x).A(...)]].]])

| aid [...[(cAI , cnI )[SVBody(...)]]]]
P ′2 = aid [...[(cAI , cnI )[A(...)]]]]) | aid [...[(cAI , cnI )[SVBody(...)]]]]

Case: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q contains P2

as a sub-process,
Let Q = TM |AM | ν~y.(TMI(ΞQ) |Q1 |P2)
Q takes the same step as P to Q′

By Lemma J.2, P ′ R(aidc,κL) Q
′.

Case: proj(sp(P2), κL, aidc,ΞP ) = 0
proj(sp(P ′2), κL, aidc,ΞP )=proj(sp(P2), κL, aidc,ΞP )=0.
Therefore,
proj(sp(P1 |P ′2), κL, aidc,ΞP )≤proj(sp(P1 |P2), κL, aidc,ΞP ).
By Lemma J.1, P ′ R(aidc,κL) Q.

Transitions that cause the component’s label context to change.

(a) Special transitions that record the current labels for requests to
the activity manager. We list the case for callE ; other cases are
similar.
P = TM |AM | ν~y.(P1 |P2)
P ′ = TM |AM | ν~y.(P1 |P ′2)
P2 = aid [· · · [(cAI , cnI )[out am(callE , rt, aid , aidce , cidce , I)]]],
P ′2 = (aid , (kA, kC))[out am(callE , kA, kC, rt, aid , aidce , cidce , I)])
The label map remains the same.

Case: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q contains
P2 as a sub-process.
Q takes the same step as P to Q′.
By Lemma J.2, P ′ R(aidc,κL) Q

′.

Case: proj(sp(P2), κL, aidc,ΞP ) = 0.
proj(sp(P ′2), κL, aidc,ΞP ) = 0.
proj(sp(P1 |P ′2), κL, aidc,ΞP )
≤ proj(sp(P1 |P2), κL, aidc,ΞP ).

Let Q′ = Q,
By Lemma J.1, P ′ R(aidc,κL) Q

′.

(b) Launch an application.
P = TM |AM | ν~y.(P1 |P2)
P ′ = TM |AM | ν~y.(P1 |P ′2)
P2 = (aid , cAI )[out aid ·cL(cAI )] | aid [App(aid)]
P ′2 = aid [cAI [AppBody(aid , cAI )]] | aid [App(aid)]
Let Ξ(aid) = Q(kAs, ), Ξ(cAI ) = DA(kAd, ).
By P is a stable configuration, we know that kAs �s kAd.
By our assumption that the application with aidc is already
launched, we know that aid 6= aidc.
The label map remains the same.

Case: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q contains
P2 as a sub-process.
Q takes the same step as P to Q′.
By Lemma J.2, P ′ R(aidc,κL) Q

′.

Case: proj(sp(P2), κL, aidc,ΞP ) = 0,
or proj(sp(P2), κL, aidc,ΞP ) = aid [App(aid)] .
proj(sp(P ′2), κL, aidc,ΞP )=proj(sp(P2), κL, aidc,ΞP ).
proj(sp(P1 |P ′2), κL, aidc,ΞP )≤proj(sp(P1 |P2), κL, aidc,ΞP ).
Let Q′ = Q,
By Lemma J.1, P ′ R(aidc,κL) Q

′.

Figure 20. Selected proof cases for Lemma J.5 from categories 1
and 2 (part 1 of 2).
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Transitions that cause the component’s label context to change.
(c) Launch SV

P = TM |AM | ν~y.(P1 |P2)
P2 = aid [cAI [νcsvL.νcsv .out csvL(s0).(P3 | SV(csvL, csv ))]])
P3 = (cAI , cid1)[CP1(aid , cid1, cAI , csv )] | · · ·

| (cAI , cidn)[CPn(aid , cidn, cAI , csv )]
P ′ = TM |AM | ν~y.νcsvL.νcsv .(P1 |P ′2 |P ′3)
P ′2 = aid [cAI [(cAI , cid1)[CP1(aid , cid1, cAI , csv )]]] | · · ·

| aid [cAI [(cAI , cidn)[CPn(aid , cidn, cAI , csv )]]]
P ′3 = aid [cAI [SVBody(csvL, csv )]] | aid [cAI [(SV(csvL, csv ))]])
By our assumption that the application with aidc is already
launched, we know that aid 6= aidc.
letP ′3 = P ′2 | aid [cAI [SVBody(csvL, csv )]] | aid [cAI [(SV(csvL, csv ))]]
The label map remains the same.

Case: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q contains
P2 as a sub-process
Q takes the same step as P to Q′. By
Lemma J.2, P ′ R(aidc,κL) Q

′.

Case: proj(sp(P2), κL, aidc,ΞP ) = 0
By all components in P2 and (P ′2 |P ′3) are guarded by the
same channel cAI ,
proj(sp(P ′2 |P ′3), κL, aidc,ΞP )
= proj(sp(P3), κL, aidc,ΞP ) = 0

proj(sp(P1 |P ′2 |P ′3), κL, aidc,ΞP )
≤proj(sp(P1 |P2), κL, aidc,ΞP ).
Let Q′ = Q,
By Lemma J.1, P ′ R(aidc,κL) Q

′.

(d) Launch a component instance through its create channel ccT .
P = TM |AM | ν~y.(P1 |P2)
P ′ = TM |AM | ν~y.(P1 |P ′2)
P2 = (aid , (cAI , cnI ))[out aid ·cid ·ccT (I, cnI , clock , rt)]

| aid [cAI [(cAI , cid)[CP(aid , cid , cAI , csv )]]]
P ′2 = aid [cAI [(cAI , cid)[CP(aid , cid , cAI , csv )]]]

| aid [cAI [(cAI , cid)[(cAI , cnI )[νcls .(out cls(σ0).out cnI (I)
|CE(· · · ))]]]]

Case: aid 6= aidc. Even though P ′ contain components with
a different label than P , they are still guarded by cAI , so
the proofs are similar to the previous case where no label is
changed in the transition (1).

Case: aid = aidc.
Ξ(cid) = M(kCs), or Ξ(cid) = SL(· · · , kCs)) and
Ξ(cnI ) = DC(kCd, )
By P is a stable configuration, we know that kCs �s kCd
or kCs �ms kCd

subcase: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q
contains P2 as a sub-process.
Q takes the same step as P to Q′.
By Lemma J.2, P ′ R(aidc,κL) Q

′.

subcase: proj(sp(P2), κL, aidc,ΞP ) = 0, or
proj(sp(P2), κL, aidc,ΞP )
= (aid , (cAI , cid))[CP(aid , cid , cAI , csv )]
proj(sp(P ′2), κL, aidc,ΞP )=proj(sp(P2), κL, aidc,ΞP ).
proj(sp(P1 |P ′2), κL, aidc,ΞP )
≤ proj(sp(P1 |P2), κL, aidc,ΞP ).

Let Q′ = Q,
ByLemma J.1, P ′ R(aidc,κL) Q

′.

Figure 21. Selected proof cases for Lemma J.5 from category 2
(part 1 of 2).

Operations on labels.
1. An application raises its label
P = TM |AM | ν~y.(TMI(ΞP ) |P1 |P2)
P2 = aid [· · · [(cAI , cnI )[out tm(raiseA, aid , cAI , σ, ι).A(· · · )]]]
P ′ = TM |AM | ν~y.(TMI(ΞP ] Ξ) |P1 |P ′2)
Ξ = aid 7→ ΞP (aid) ]rz (σ, ι), cAI 7→ ΞP (cAI ) ]rz (σ, ι)
P ′2 = aid [· · · [(cAI , cnI )[A(· · · )]]]
Since we disallow components in aidc to raise the application
label, it is the case that aid 6= aidc.
Let Q = TM |AM | ν~y.(TMI(ΞQ) |Q0)

Case: proj(sp(P2), κL, aidc,ΞP ) = sp(P2), and Q contains
P2 as a sub-process.
Q takes the same step as P to Q′.
aidc, κL,ΞP ` Ξ : LO
By Lemma J.4, P ′ R(aidc,κL) Q

′.

Case: proj(sp(P2), κL, aidc,ΞP ) = 0,
aidc, κL,ΞP ` Ξ : HI
By Lemma I.2, ΞP ] Ξ -κL

aidc
ΞQ

The mapping of cAI became higher after the raise operation.
proj(sp(P ′2), κL, aidc,ΞP ] Ξ)
=proj(sp(P2), κL, aidc,ΞP ) = 0,

By Lemma I.3,
proj(sp(P1), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1), κL, aidc,ΞP )

proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1 |P2), κL, aidc,ΞP )
≤ proj(sp(Q0), κL, aidc,ΞQ)

Let Q = Q′, P ′ R(aidc,κL) Q
′.

2. A component raises its label.
When aid 6= aidc, the application-level label does not changes,
so the proof is similar to proof case (1).
When aid = aidc, it is similar to the raising application-level
label case.

Figure 22. Selected proof cases for Lemma J.5 from category 3.
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Component exit and application exit. We show one case where
the exiting component is single-instance, application does not exit,
and the rest of the cases are similar, since we only need to classify
the updates to the label map as high or low.
P = TM |AM | ν~y.(TMI(ΞP )P1 |P2)
P2 = aid [(kA, kC)[out am(exitC, kA, kC, aid , cid , cAI , cnI , rt, e)]]
P ′ = TM |AM | ν~y.(TMI(ΞP ] Ξ) |P1 |P ′2
P ′2 = (aidce , (kAce , kCce))[out am(return, kAce , kCce , · · · )]
(where rt = SOME(· · · ), need to return to caller)
or P ′2 = 0 (if rt = NONE, no need to return to caller)
Ξ = (aid ·cid 7→ S(kCs)), (cAI 7→ ΞP (cAI )\cnI ), \cnI
Let Q = TM |AM | ν~y.(TMI(ΞQ) |Q0)

By the rules for τ−→A, and that exit is always the last instruction in
a component,
ΞP (aid ·cid) = SL(· · · , kC), ΞP (cAI ) = Q(kA, )

Case: (aid , (kA, kC))∗ v κL,
proj(sp(P2), κL, aidc,ΞP ) = sp(P2) and Q contains P2 as a
sub-process.
Q takes the same step as P to Q′.
aidc, κL,ΞP ` Ξ : LO.
By Lemma J.4, P ′ R(aidc,κL) Q

′.

Case: (aid , (kA, kC))∗ 6v κL
proj(sp(P2), κL, aidc,ΞP ) = 0,
Because P2 and P ′2 are guarded by the same label,
proj(sp(P ′2), κL, aidc,ΞP ] Ξ)
= proj(sp(P2), κL, aidc,ΞP ) = 0,

aidc, κL,ΞP ` Ξ : HI
By Lemma I.2, ΞP ] Ξ -κL

aidc
ΞQ

proj(sp(P ′2), κL, aidc,ΞP ] Ξ)
= proj(sp(P2), κL, aidc,ΞP ) = 0
By Lemma I.3,
proj(sp(P1), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1), κL, aidc,ΞP )
proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1 |P2), κL, aidc,ΞP )
≤ proj(sp(Q0), κL, aidc,ΞQ)
Let Q′ = Q, P ′ R(aidc,κL) Q

′.

Figure 23. Selected proof cases for Lemma J.5 from category 4.

Case: Activity manager processes an intra-application request to
call an unlaunched single-instance component, and the call is
allowed:
aid = aidc, ΞP (aid ·cidce) = S(kCce) and kCcr

− v kCce
−

P = TM |AM | ν~y.(TMI(ΞP ) |P1 |P2)
P2 = (aid , (kAcr , kCcr ))[ out am(callI , kAcr , kCcr , rt,

aid , cAI , cidce , I) ]
P ′ = TM |AM | ν~y.νcnI ce .νclock (TMI(ΞP ] Ξ) |P1 |P ′2
Ξ = aid ·cidce 7→ SL(cnI ce , clock , kCce),

cnI ce 7→ DC(clock , kCce C kCcr )
P ′2 = (aid , (cAI , cnI ce ))[ out aid ·cidce ·ccT (cAI , I, cnI ce ,

clock ,NONE) ]

subcase: kCce C kC∗cr v κL,
aid , κL,ΞP ` Ξ : LO
By Lemma B.1, kC∗cr v κL and kC∗ce v κL
Q contains P2 as a subprocess
proj(sp(P2), κL, aidc,ΞP ) = sp(P2)
Let Q = TM |AM | ν~y.(TMI(ΞQ) |Q1 |P2)
Q takes the same step as P to Q′

By Lemma J.4, P ′ R(aidc,κL) Q
′

subcase: kCce C kC∗cr 6v κL
aid , κL,ΞP ` Ξ : HI
proj(sp(P ′2), κL, aidc,ΞP ] Ξ) = 0
By Lemma I.2, ΞP ] Ξ -κL

aidc
ΞQ

By Lemma I.3,
proj(sp(P1), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1), κL, aidc,ΞP )

proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(P1, κL, aidc,ΞP )

proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1 |P2), κL, aidc,ΞP )

By Lemma J.3, P ′ R(aidc,κL) Q

Figure 24. A proof case for an intra-application call (for
Lemma J.5, category 5).
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Activity manager processes an inter-application request to call an
launched application and an unlaunched single-instance compo-
nent, and the call is allowed:
aidce 6= aidc, ΞP (aidce) = U(kAce),
ΞP (aidce ·cidce) = S(kCce)
kAcr

− v kAce
−, kAcr

− v kCce
−,

kCcr
− v kAce

−, kCcr
− v kCce

−

P = TM |AM | ν~y.(TMI(ΞP ) |P1 |P2)
P2 = (aid , (kAcr , kCcr ))[ out am(callI , kAcr , kCcr , rt, aid ,

cAI , cidce , I) ]
P ′ = TM |AM | ν~y.νcAI .νcnI .νclock (TMI(ΞP ] Ξ) |P1 |P ′2)
P ′2 = (aidce , cAI )[out aidce ·cL(cAI )]

| (aidce , (cAI , cnI ))[out aidce ·cid ·ccT (I, cnI , clock ,NONE)]
Ξ = aidce 7→ L(kAce , cAI )),

cAI 7→ (DA(kAce C (kAcr ]M kCcr )LC({cnI })),
aid ·cidce 7→ SL(cAI , cnI , clock , kCce),
cnI 7→ (clock , kCce C (kAcr ]M kCcr ))

subcase: kAce C (kAcr ]M kCcr )∗ v κL,
aid , κL,ΞP ` Ξ : LO
By Lemma B.1, Lemma B.2 kC∗cr v κL, kA∗cr v κL, and
kA∗ce v κL
Q contains P2 as a subprocess
proj(sp(P2), κL, aidc,ΞP ) = sp(P2)
Let Q = TM |AM | ν~y.(TMI(ΞQ) |Q1 |P2)
By ΞP -κL

aidc
ΞQ,

ΞP (aidce ·cid) = ΞQ(aidce ·cid)
Q can take the same step as P to Q′

By Lemma J.4
P ′ R(aidc,κL) Q

′

subcase: (kAce C (kAcr ]M kCcr ))∗ 6v κL,
aid , κL,ΞP ` Ξ : HI
proj(sp(P ′2), κL, aidc,ΞP ] Ξ) = 0
By Lemma I.2,
ΞP ] Ξ -κLaidc

ΞQ
By Lemma I.3,
proj(sp(P1), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1), κL, aidc,ΞP )

proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(P1, κL, aidc,ΞP )

proj(sp(P1 |P ′2), κL, aidc,ΞP ] Ξ)
≤ proj(sp(P1 |P2), κL, aidc,ΞP )

By Lemma J.3, P ′ R(aidc,κL) Q

Figure 25. A proof case for external calls (for Lemma J.5, category
5).
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