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Abstract. Recent years have seen a dramatic increase in the number and im-
portance of mobile devices. The security properties that these devices provide
to their applications, however, are inadequate to protect against many undesired
behaviors. A broad class of such behaviors is violations of simple information-
flow properties. This paper proposes an enforcement system that permits Android
applications to be concisely annotated with information-flow policies, which the
system enforces at run time. Information-flow constraints are enforced both be-
tween applications and between components within applications, aiding develop-
ers in implementing least privilege. We model our enforcement system in detail
using a process calculus, and use the model to prove noninterference. Our sys-
tem and model have a number of useful and novel features, including support
for Android’s single- and multiple-instance components, floating labels, declas-
sification and endorsement capabilities, and support for legacy applications. We
have developed a prototype of our system on Android 4.0.4 and tested it on a
Nexus S phone, verifying that it can enforce practically useful policies that can
be implemented with minimal modification to off-the-shelf applications.

1 Introduction

Recent years have seen a dramatic increase in the number and importance of smart-
phones and other mobile devices. The security properties that mobile operating systems
provide to their applications, however, are inadequate to protect against many undesired
behaviors, contributing to the rapid rise in malware targeting mobile devices [27,20].

To mitigate application misbehavior, mobile OSes like Android rely largely on
strong isolation between applications and permission systems that limit communication
between applications and access to sensitive APIs. Researchers have investigated these
mechanisms, finding them vulnerable to application collusion [32,21], information-flow
leaks [32,12], and privilege-escalation attacks [9,13]. Attempts to address these issues
have produced tools for detecting information leaks [11,7,17], improvements to permis-
sion systems (e.g., [26,24]), as well as other mechanisms for restricting applications’
access to data and resources (e.g., [5]).

Many common misbehaviors that are beyond the reach of Android’s permission
system are violations of simple information-flow properties. This is because Android’s



permission system supports only those policies that allow or deny communication or
access to sensitive resources based on the (mostly static) permissions of the caller and
callee. Once data has been sent from one application to another, the sender has relin-
quished all control over it.

Recent work on preventing undesired information flows on Android typically fo-
cuses on using a specific mechanism to enforce a pre-determined global policy [11,7].
Other works have developed more powerful mechanisms that track control flow and
allow finer-grained control over communication and resource accesses [10,5]; these
also typically lack a convenient policy language. Although a few formal analyses of
Android’s security architecture have provided some insight about its limitations [33],
works that introduce more powerful mechanisms typically do not formally investigate
the properties that those mechanisms exhibit.

This paper fills many of these gaps by proposing a DIFC-style enforcement system
for Android that allows convenient, high-level specification of policy and has a well-
understood theory, backed by a proof of noninterference. Building on techniques for
controlling information flow in operating systems [19,36], our system permits policy
to be specified via programmer- or system-defined labels applied to applications or ap-
plication components. Enforcing information-flow policies at the level of application
components is a practically interesting middle ground between process- (e.g., [19]) and
instruction-level (e.g., [23]) enforcement, offering finer-grained control than process-
level enforcement, but retaining most of its convenience. Labels specify a component’s
or application’s secrecy level, integrity level, and declassification and endorsement ca-
pabilities. We also allow floating labels, which specify the minimal policy for a compo-
nent, but permit multipurpose components (e.g., an editor) to be instantiated with labels
derived from their callers (e.g., to prevent them from exfiltrating a caller’s secrets).

We develop a detailed model of our enforcement system using a process calculus,
using which we prove noninterference. The modeling—and the design of the system—
is made particularly challenging by the desire to fully support key features of Android’s
programming model. Challenging features include single- and multiple-instance com-
ponents and enforcement at two levels of abstraction—at the level of applications,
which are strongly isolated from each other, and at the level of application compo-
nents, which are not. Our formal analysis reveals that floating labels and the ability of
single-instance components to make their labels stricter at run time—features that ap-
pear necessary to support practical scenarios—can, if not implemented carefully, easily
compromise the noninterference property of the system.

Proving noninterference was also challenging because traditional ways in which
information-flow systems are modeled in process calculi do not directly apply to An-
droid: the security level of the channel through which an Android component commu-
nicates changes as the system executes. To model this, we enhance pi-calculus with a
labeled process, `[P ], to associate each component with its run-time security level. The
labeled process and the techniques for specifying noninterference can be applied to the
modeling of other distributed systems, such as web browsers.

The contributions of this paper are the following:

1. We propose the first DIFC-style enforcement system for Android that allows con-
venient, high-level specification of policy and has a well-understood theory (§3).



2. We develop a faithful process-calculus model of Android’s main programming ab-
stractions and our system’s enforcement mechanism (§4).

3. We define noninterference for our enforcement system and prove that it holds (§5),
in the presence of dynamically changing security levels of components.

4. We implement our system on Android 4.0.4 and test it on a Nexus S phone; through
a case study with minimally modified off-the-shelf applications, we show that our
system can specify and enforce practically interesting policies (§6).

For space reasons, we omit many details, which appear in our technical report [1].

2 Background and Related Work

In this section we briefly introduce Android and review related work.
Android Overview Android is a Linux-based OS; applications are written in Java
and each executes in a separate Dalvik Virtual Machine (DVM) instance. Applications
are composed of components, which come in four types: activities define a specific
user interface (e.g., a dialog window); services run in the background and have no user
interface; broadcast receivers listen for system-wide broadcasts; and content providers
provide an SQL-like interface for storing data and sharing them between applications.

Activities, services, and broadcast receivers communicate via asynchronous mes-
sages called intents. If a recipient of an intent is not instantiated, the OS will create a
new instance. The recipient of an intent is specified by its class name or by the name of
an “action” to which multiple targets can subscribe. Any component can attempt to send
a message to any other component. The OS mediates both cross- and intra-application
communications via intents. Between applications, intents are the only (non-covert)
channel for establishing communication. Components within an application can also
communicate in other ways, such as via public static fields. Such communication is
not mediated, and can be unreliable because components are short lived—Android can
garbage collect all but the currently active component. Hence, although Android’s ab-
stractions do not prevent unmediated communication between components, the pro-
gramming model discourages it. We will often write that a component calls another
component in lieu of explaining that the communication is via an intent.

Android uses permissions to protect components and sensitive APIs: a component
or API protected by a permission can be called only by applications that hold this per-
mission. Permissions are strings (e.g., android.permission.INTERNET) defined by the
system or declared by applications. Applications acquire permissions only at install
time, with the user’s consent. Additionally, content providers use URI permissions to
dynamically grant and revoke access to their records, tables, and databases.
Related Work We discuss two categories of most closely related work.
Information Flow Enforcing information-flow policies has been an active area of re-
search. Some develop novel information-flow type systems (cf. [31]) that enforce non-
interference properties statically; others use run-time monitoring, or hybrid techniques
(e.g., [8,29,22,2,3,16]). These works track information flow at a much finer level of
granularity than ours; in contrast, the goals of our design included minimally impacting
legacy code and run-time performance on Android.



Our approach is most similar to work on enforcing information-flow policies in
operating systems [37,35,19]. There, each process is associated with a label. The com-
ponents in our system can be viewed as processes in an operating system. However,
most of these works do not prove any formal properties of their enforcement mecha-
nisms. Krohn et al. [18] presented one of the first proofs of noninterference for practical
DIFC-based operating systems. Our design is inspired by Flume [19], but has many dif-
ferences. For instance, Flume does not support floating labels. In Android, as we show
through examples, floating labels are of practical importance. Because Flume has no
floating labels, a stronger noninterference can be proved for it than can be proved for
our system: Flume’s definition of noninterference is based on a stable failure model, a
simulation-based definition. Our definition is trace-based, and does not capture infor-
mation leaks due to a high process stalling.

A rich body of work has focused on noninterference in process calculi [14,30].
Recently, researchers have re-examined definitions of noninterference for reactive sys-
tems [4,28]. In these systems, each component waits in a loop to process input and
produce one or more outputs (inputs to other components). These works propose new
definitions of noninterference based on the (possibly infinite) streams produced by the
system. Our definition of noninterference is weaker, since we only consider finite pre-
fixes of traces. These reactive models are similar to ours, but do not consider shared state
between components, and assume the inputs and outputs are the only way to communi-
cate, which is not the case for Android. Further, to model the component-based Android
architecture more faithfully, we extend pi-calculus with a label context construct, which
also enables formal analysis of our enforcement mechanism in the presence of Android
components’ ability to change their labels at run time. To our knowledge, such dynamic
behavior has rarely been dealt with in the context of process calculus.

Android Security Android’s permission system has been shown inadequate to pro-
tect against many attacks, including privilege-escalation attacks [9,13] and information
leaks [11,32,6,12]. Closest to the goal of our work are projects such as TaintDroid [11]
and AppFence [17], which automatically detect and prevent information leaks. They
operate at a much finer granularity than our mechanism, tracking tainting at the level of
variables, enforce fixed policies, and have not been formally analyzed.

Formal analyses of Android-related security issues and language-based approaches
to solving them have received less attention. Shin et al. [33] developed a formal model
to verify functional correctness properties of Android, which revealed a flaw in the
permission naming scheme [34]. Our prior work proposed a set of enhancements to
Android’s permission system designed to enforce information-flow-like policies, for
which some correctness properties were also formally proved [15]. The work described
in this paper is different in several respects: we build on more well-understood theory of
information flow; we support more flexible policies (e.g., in prior work it is not possible
to specify that information should not leak to a component unless that component is
protected by some permission); we make persistent state more explicit; and we formally
model our enforcement system in much greater detail, thus providing much stronger
correctness guarantees. The labeled context used in the modeling and the techniques
developed for specifying noninterference in this paper can be applied to other systems,



and we view the formalism as a main contribution of this paper. In comparison, the
proofs in our prior work are customized for that specific system.

3 Enforcing Information-Flow Properties

We next describe a scenario that exemplifies the Android permission system’s inability
to implement many simple, practical policies (§3.1). We then discuss key aspects of our
system and show it can specify (§3.2) and enforce (§3.3) richer policies.

3.1 Motivating Scenario File manager 
for secret files 

Private 
files 

Editor 

Viewer 

Email 

Internet 
… 
 
 

Fig. 1: A simple scenario that cannot be im-
plemented using Android permissions.

Suppose a system has the following
applications: a secret-file manager for
managing files such as lists of bank-
account numbers; a general-purpose
text editor and a viewer that can modify
and display this content; and an email
application. Because of their sensitive
content, we want to prevent files managed by the secret-file manager from being inad-
vertently or maliciously sent over the Internet; this should be allowed only if the user
explicitly requests it through the file manager. This scenario is shown in Figure 1.

The desired (information-flow) policy is representative of practical scenarios that
Android currently does not support. In Android, one might attempt to prevent the editor
or viewer from exfiltrating data by installing only viewers and editors that lack the
Internet permission; these then could not send out secret data directly, but they could
still do so via another application that has the Internet permission (e.g., the email client).

3.2 Key Design Choices

In general, the attacker model we consider is one where an application may try to ex-
filtrate data or access sensitive resources that it is not permitted to access, including by
taking advantage of cooperating or buggy applications.

We now discuss the design of our system and explain how it can specify and enforce
our desired example policy. We revisit the example more concretely in §6.
Enforcement Granularity Traditionally, information-flow properties have been en-
forced either at instruction level (e.g., [23,16]) or at process level (e.g., [19]). Android’s
division of applications into components invites the exploration of an interesting middle
ground between these two. Android applications are typically divided into a relatively
few key components, e.g., an off-the-shelf file manager with which we experimented
was comprised of five components. Hence, component-level specification would likely
not be drastically more complex than application-level specification. This additional
granularity, however, could enable policies to be more flexible and better protect appli-
cations (and components) from harm or misuse.

Unfortunately, enforcing purely component-level policies is difficult. The Android
programming model strongly encourages the use of components as modules. In fact,



the Android runtime may garbage collect any component that is not directly involved in
interacting with the user; using Android’s narrow interface for communication between
components is the only reliable method of cross-component communication. However,
neither Android nor Java prevent components that belong to the same application from
exchanging information without using the Android interfaces, e.g., by directly writing
to public static fields. Hence, Android’s component-level abstractions are not robust
enough to be used as an enforcement boundary; fully mediating interactions between
components would require a lower-level enforcement mechanism. Although such en-
forcement is possible, e.g., with instruction-level information-flow tracking [23], im-
plementation and integration with existing platforms and codebases is difficult and can
cause substantial run-time overhead.

We pursue a hybrid approach. We allow policy specification at both component level
and application level. Enforcement of component-level policies is best-effort: When
programmers adhere to Android’s programming conventions for implementing interac-
tions between components, most potential policy violations that are the result of appli-
cation compromise or common programmer errors will be prevented by the enforce-
ment system. On the other hand, the components of a non-conformant application will
be able to circumvent its component-level policy (but not its application-level policy,
nor other applications’ application- or component-level policy). Thus, component-level
policies are a tool to help programmers to better police their own code and implement
least privilege, and also act in concert with application-level policy to regulate cross-
application interactions at a more fine-grained level. However, application-level policies
are enforced strictly because Android provides strong isolation between applications.

Policy Specification via Labels We use labels to express information-flow policies
and track information flows at run time. A label is a triple (s, i, δ), where s is a set of
secrecy tags, i a set of integrity tags, and δ a set of declassification and endorsement
capabilities. For convenience, we also refer to s as a secrecy label and i as an integrity
label; and to δ as the set of declassification capabilities, even though δ also includes en-
dorsement capabilities. Labels are initially assigned to applications and components by
developers in each application’s manifest; we call these static labels. At run time, each
application and component also has an effective label, which is derived by modifying
the static label to account for declassification and endorsement. Additionally, secrecy
labels s and integrity labels i can be declared as floating; we explain this below.

Labels as Sets of Tags Implementing secrecy and integrity labels as sets of tags was
motivated by the desire to help with backward compatibility with standard Android per-
missions. In Android, any application can declare new permissions at installation time.
We similarly allow an application to declare new secrecy and integrity tags, which can
then be used as part of its label. The lattice over labels, which is required for enforce-
ment, does not need to be explicitly declared—this would be impractical if different
applications declare their own tags. Rather, the lattice is defined by the subset relation
between sets of tags. The permissions that legacy applications possess or require of
their callers can be mapped to tags and labels. A more detailed discussion can be found
in our technical report [1].

Declassification and Endorsement The declassification capabilities, δ, specify the tags
a component or application may remove from s or add to i. We make the declassification



capabilities part of the label, because whether a component may declassify or endorse
is a part of the security policy. Declaratively specifying declassification policy makes
it easier to reason about and aids backward compatibility: declassification (or endorse-
ment) that is permitted by policy can be applied to a legacy application or component
automatically by the enforcement system when necessary for a call to succeed.

Returning to the example from §3.1: The secret-file manager application may be
labeled with the policy ({FileSecret}, {FileWrite}, {-FileSecret}). Intuitively, the first
element of this label conveys that the secret-file manager is tainted with the secret files’
secrets (and no other secrets); the second element that the file manager has sufficient
integrity to add or change the content of files; and the third element that the file manager
is allowed to declassify. The file manager’s effective label will initially be the same as
this static label. If the file manager exercises its declassification capability -FileSecret,
its effective label will become ({}, {FileWrite}, {-FileSecret}).

The complement to declassification and endorsement is raising a label. Any com-
ponent may make its effective secrecy label more restrictive by adding tags to it, and
its effective integrity label weaker by removing tags. After a component has finished
executing code that required declassification or endorsement, it will typically raise its
effective label to the state it was in prior to declassification or endorsement. Components
without declassification capabilities can also raise their labels, but this is rarely likely
to be useful, since raising a label can be undone only by declassifying or endorsing.
Floating Labels Some components or applications, e.g., an editor, may have no secrets
of their own but may want to be compatible with a wide range of other applications. In
such cases, we can mark the secrecy or integrity label as floating, e.g., (F{}, F{}, {}), to
indicate that the secrecy or integrity element of a component’s effective label is inherited
from its caller. The inheriting takes place only when a component is instantiated, i.e.,
when its effective label is first computed. Floating labels serve a very similar purpose
to polymorphic labels in Jif [23].

In our example, the editor’s static policy is (F{}, F{}, {}). If instantiated by the file
manager, the editor’s effective secrecy label becomes {FileSecret}, allowing the editor
and the file manager to share data, but preventing the editor from calling any applica-
tions or APIs that have a secrecy label weaker than {FileSecret}. If the editor also had
secrets to protect, we might give it the static label (F{EditorSecret}, F{}, {}). Then, the
editor’s effective label could be floated to ({EditorSecret, FileSecret}, {}, {}), but any
instantiation of the editor would carry an effective secrecy label at least as restrictive as
{EditorSecret}. Similarly, when the editor is instantiated by the file manager, its static
integrity label F{} would yield an effective integrity label {FileWrite}, permitting the
editor to save files, and preventing components without a FileWrite integrity tag from
sending data to the editor.

Unlike secrecy and integrity labels, declassification capabilities cannot be changed
dynamically; they are sufficiently powerful (and dangerous) that allowing them to be
delegated is too likely to yield a poorly understood policy.

3.3 Enforcement Approach and Limitations

We described in §3.2 how to specify rich, practically useful policies in our system; we
next outline how they are enforced. The crux of our enforcement system is a reference



monitor that intercepts calls between components, which we build on top of Android’s
activity manager (§6). Much of its responsibility is maintaining the mapping from appli-
cations and components (and their instances) to their effective labels. Our formal model
(§4) abstracts the bookkeeping responsibilities into a label manager and the purely en-
forcement duties into an activity manager. We next discuss how our reference monitor
makes enforcement decisions and how our system handles persistent state.

Application- and Component-level Enforcement When two components try to com-
municate via an intent, our reference monitor permits or denies the call by comparing
the caller’s and the callee’s labels. When the caller and callee are part of the same ap-
plication, the call is allowed only if the caller’s effective secrecy label is a subset of the
callee’s and the caller’s effective integrity label is a superset of the callee’s. The compar-
ison is more interesting when the caller and callee are in different applications. Then, a
call is allowed if it is consistent with both component-level labels and application-level
labels of the caller’s and callee’s applications.

If the callee component (and application) has a floating (static) label, the callee’s
effective integrity label is constructed as the union of its static integrity label and effec-
tive integrity labels of the caller and the caller’s application. The effective secrecy label
(and the callee’s application’s effective labels) is constructed similarly.

Declassification and endorsement change the effective labels of components and
applications, and are permitted only when consistent with policy. For programmer con-
venience, the reference monitor will automatically declassify or endorse a caller com-
ponent when this is necessary for a call to be permitted. We discuss this further in §6.

From the standpoint of policy enforcement, returns (from a callee to a caller), in-
cluding those that report errors, are treated just like calls. As a consequence, a return
may be prohibited by policy (and prevented) even if a call is allowed.

Much of the functionality of Android applications is accomplished by calling An-
droid and Java APIs, e.g., for accessing files or opening sockets. We assign these APIs
labels similarly as we would to components. For instance, sending data to sockets po-
tentially allows information to be leaked to unknown third parties; therefore, we assign
a label with an empty set of secrecy tags to the socket interface to prevent components
with secrets from calling that API. We treat globally shared state, e.g., individual files,
as components, and track their labels at run time.

Persistent State Multi-instance components intuitively pose little difficulty for enforc-
ing information-flow policies: each call to such a component generates a fresh instance
of the component bereft of any information-flow entanglements with other components.

More interesting are single-instance components, which can be targets for multiple
calls from other components, and whose state persists between those calls. Interaction
between single-instance components and the ability of components to raise their labels
can at first seem to cause problems for information-flow enforcement.

Consider, for example, malicious components A and B that seek to communicate
via a colluding single-instance component C. Suppose that A’s static secrecy label is
{FileSecret} and B’s is {}, preventing direct communication from A to B; C’s static
secrecy label is {}. Component C, upon starting, sends B an intent, then raises its effec-
tive label to {FileSecret}. A sends the content of a secret file to C; their labels permit
this. If the content of the secret file is “Attack,” C exits; otherwise, C continues running.



B calls C, then calls C again. If B receives two calls from C, then it learns that A’s secret
file is “Attack.” C can only make the second call to B after exiting, which only happens
when A’s secret file is “Attack.” The information leak arose because C changed its label
by exiting. To prevent such scenarios (and to allow us to prove noninterference, which
ensures that no similar scenarios remain undiscovered), raising a label must change not
only a component’s effective label, but also its static label.
Limitations We do not address communication via covert channels, e.g., timing chan-
nels. Recent work has identified ways in which these may be mitigated by language-
based techniques [38]; but such techniques are outside the scope of this paper. We also
do not address the robustness of Android’s abstractions: stronger component-level ab-
stractions would permit robust, instead of best-effort, enforcement of information-flow
policies within applications. Improving these abstractions, or complementing them by,
e.g., static analysis, could thus bolster the efficacy of our approach.

Many security architectures are vulnerable to user error. On Android, a user can
at installation time consent to giving an application more privileges than is wise. Our
system does not address this; we design an infrastructure that supports rich, practically
useful policies. Because our approach allows developers to better protect their applica-
tions, they may have an incentive to use it. However, we do not tackle the problem of
preventing the user from making poor choices (e.g., about which applications to trust).

4 Process Calculus Model

We next show a process calculus encoding of Android applications and our enforce-
ment mechanism. The full encoding captures the key features necessary to realistically
model Android, such as single- and multi-instance components, persistent state within
component instances, and shared state within an application. Many details that we omit
for brevity can be found in our technical report [1].

4.1 Labels and Label Operations

Labels express information-flow policies and are used to track flows at run time. A label
is composed of sets of tags. We assume a universe of secrecy tags S and integrity tags
I. Each secrecy tag in S denotes a specific kind of secret, e.g., contact information.
Each integrity tag in I denotes a capability to access a security-sensitive resource.

Simple labels κ ::= (σ, ι) Process labels K ::= (Q(σ), Q(ι), δ) where Q = C or Q = F

A simple label κ is a pair of a set of secrecy tags σ drawn from S and a set of
integrity tags ι drawn from I. Simple labels form a lattice (L,v), where L is a set of
simple labels and v is a partial order over simple labels. Intuitively, the more secrecy
tags a component has, the more secrets it can gather, and the fewer components it can
send intents to. The fewer integrity labels a component has, the less trusted it is, and
the fewer other components it can send intents to. Consequently, the partial order over
simple labels is defined as follows: (σ1, ι1) v (σ2, ι2) iff σ1 ⊆ σ2, and ι2 ⊆ ι1

Secrecy and integrity labels are annotated with C for concrete labels or F for float-
ing labels. A process label K is composed of a secrecy label, an integrity label, and a
set of declassification capabilities δ. An element in δ is of the form −ts, where ts ∈ S,



AM Erasure of label C(σ)− = σ F (σ)− = > (Q(σ), Q(ι), δ)− = ((Q(σ))−, ι)
PF Erasure of label C(ι)∗ = ι F (ι)∗ = > (Q(σ), Q(ι), δ)∗ = (σ, (Q(ι))∗)
Label Declassify (C(σ), C(ι), δ) ]d δ1 =

(C(σ\{t|(−t) ∈ δ1}), C(ι ∪ {t|(+t) ∈ δ1}), δ)

Fig. 2: Selected label operations.

or +ti, where ti ∈ I. A component with capability −ts can remove the tag ts from its
secrecy tags σ; a component that has +ti can add the tag ti to its integrity tags ι.

We define operations on labels (Figure 2). An AM erasure function K− is used by
the activity manager to reduce process labels to simple labels that can easily be com-
pared. This function removes the declassification capabilities from K, and reduces a
floating secrecy label to the top secrecy label. This captures the idea that declassifica-
tion capabilities are not relevant to label comparison, and that a callee’s floating secrecy
label will never cause a call to be denied. The PF erasure function K∗ is used in defin-
ing noninterference, and is explained in §5. The declassification operation K ]d δ1
removes from K the secrecy tags in δ1, and adds the integrity tags in δ1.

4.2 Preliminaries

We chose a process calculus as our modeling language because it captures the dis-
tributed, message-passing nature of Android’s architecture. The Android runtime is the
parallel composition of component instances, application instances, and the reference
monitor, each modeled as a process.

The syntax of our modeling calculus, defined below, is based on π-calculus. We use
′|′ for parallel composition, and reserve | for BNF definitions. aid denotes an appli-
cation identifier, and cid a component identifier, both drawn from a universe of identi-
fiers. c denotes constant channel names. Specific interfaces provided by an application
or component are denoted as aid ·c and aid ·cid ·c.

The only major addition is the labeled process `[P ]. Label contexts ` include the
unique identifiers for applications (aid ) and components (cid ), channel names (c) that
serve as identifiers for instances, and a pair (`1, `2) that represents the label of a com-
ponent and its application. Bundling a label with a process aids noninterference proofs
by making it easier to identify the labels associated with a process.

Names a ::= x | c | aid ·c | aid ·cid ·c Proc P ::= 0 | in a(x).P | in a(patt).P
Label ctx ` ::= aid | cid | c | (`1, `2) | out e1(e2).P | P1 + P2 | νx.P | !P
Expr e ::= x | a | ctr e1 · · · ek | (P1

′|′ P2) | `[P ] | if e then P1 else P2

| (e1, · · · , en) | case e of{ctr1x1 ⇒ P1...
| ctrnxn ⇒ Pn}

We extend the standard definition of a processP with if statements, pattern-matching
statements, and a pattern-matched input inx(patt) that accepts only outputs that match
with patt. These extensions can be encoded directly in π-calculus, but we add them as
primitive constructors to simplify the representation of our model.



Application App(aid) = aid [!(in aid ·cL(cAI ).cAI [AppBody(aid , cAI )])]

App body AppBody(aid , cAI ) = νcsvL.νcsv .out csvL(s0).(SV (csvL, csv )
′|′

(cAI , cid1)[CP1(aid , cid1, cAI , csv )]
′|′ · · ·

′|′ (cAI , cidn)[CPn(aid , cidn, cAI , csv )])
Component CP(aid , cid , cAI , csv ) = !(in aid ·cid ·ccT ( =cAI , I, cnI , clock , rt).

(cAI , cnI )[...in cnI (I).〈out I(self)〉.A(...)])
Comp body A(cid , aid , I, cAI , rt, ...) ::= ... | out am(callI , rt, aid , cAI , cidce , I)

′|′A(...)

Fig. 3: Partial encoding of applications and components.

4.3 A Model of Android and Our Enforcement Architecture

We model as processes the three main constructs necessary to reason about our enforce-
ment mechanism: application components, the activity manager, and the label manager.
The activity manager is the part of the reference monitor that mediates calls and decides
whether to allow a call based on the caller’s and the callee’s labels. The label manager
is the part of the reference monitor that keeps track of the labels for each application,
component, and application and component instance.

Life-cycles of Applications and Components and Their Label Map A large part of
the modeling effort is spent on ensuring that the process model faithfully reflects the
life-cycles of applications and components, which is crucial to capturing information
flows through persistent states within or across the life-cycles. The reference monitor
maintains a label map Ξ , which reflects these life-cycles.

Android supports single- and multi-instance components. Once created, a single-
instance component can receive multiple calls; the instance body shares state across all
these calls. A fresh instance of a single-instance component is created only when the
previous instance has exited and the component is called again. A component does not
share state across its instantiations. For a multi-instance component, a new instance is
created on every call to that component. An application is similar to a single-instance
component, and all component instances within one application instance share state.

All calls are asynchronous; returning a result is treated as a call from the callee to
the caller. When a component instance is processing a call, any additional intents sent
to that instance (e.g., new intents sent to a single-instance component, or results being
returned to a multi-instance component) are blocked until the processing has finished.

Encoding Applications and Components A partial encoding of applications and com-
ponents is shown in Figure 3. We delay explaining the label contexts `[...] until §5—they
are annotations that facilitate proofs, and have no run-time meaning.

We encode a recursive process using the ! operator. A process !(in c(x).P ) will run
a new process P each time a message is sent to c. This models the creation of a run-time
instance of an application or a component. In both cases, we call channel c the launch
channel of P , and say that P is launched from c.

An application App(aid) with ID aid is the parallel composition of a shared state
SV and components CP i(aid , cid i, cAI , csv ). Each application has a designated launch
channel aid ·cL. The channel cAI , passed as an argument to the launch channel, serves
as a unique identifier for an application instance. Once an application is launched, it



0 AMI = in am(callI , kAcr , kCcr , rt, aid , cAI , cidce , I).
1 νc. out tm(lookUp, cidce , c). in c(s).
2 case s of ...
18 |M(kce)⇒ if kcr

− v kce−
19 then νcnI .νclock . out tm(upd, { (cnI , (clock , kce C kCcr

−)), ...}).
20 (aid , (cAI , cnI ))[out aid ·aid ·ccT (cAI , I, cnI , clock , rt)]
21 else 0

Fig. 4: Partial encoding of the activity manager.

launches the shared state. At this point, the application’s components are ready to re-
ceive calls, and we call this application instance an active launched instance.

A component CP(aid , cid , cAI , csv ) is launched from a designated creation chan-
nel aid ·cid ·ccT after a message is received on that channel. The message is a tuple
( =cAI , I, cnI , clock , rt) whose first argument ( ) must match the current application
instance (cAI ). I is the intent conveyed by the call. cnI is the new intent channel for
the component to process multiple calls. clock is the channel used to signal the refer-
ence monitor that this instance has finished processing the current intent and is ready
to receive a new one. Finally, rt contains information about whether and on what chan-
nel to return a result. A components receives messages on the new intent channel, then
proceeds to execute its body (denoted A).

The body of a component is defined in terms of the operations that a component can
perform. It is parameterized over several variables, which are free in the body and are
bound by outer-layer constructs. A component can use if and case statements, and read
or write to the shared state in its application. It can also request from the label manager
to change its (and its application’s) label, and can call another component by sending a
request to the activity manager. All of these operations are encoded using the process
calculus. E.g., the call operation is encoded as out am(callI , rt, . . .), where am is the
designated channel to send requests to the activity manager.

Label Manager & Activity Manager The label manager TM maintains the label map
Ξ and processes calls to update the mapping through a designated channel tm.

Android’s activity manager mediates all intent-based communication between com-
ponents, preventing any communication that is prohibited by policy. The top-level pro-
cess of the activity manager is of the form: AM =!(AMI + AME + AMEX + AMR).
The activity manager processes four kinds of calls: AMI processes calls between com-
ponents within the same application; AME processes inter-application calls; AMEX pro-
cesses exits, and AMR processes returns.

We show an example of processing calls between components within the same ap-
plication (Figure 4): When the activity manager receives a request to send intent I to
a component cidce , it asks the label manager for the callee’s label. A possible reply is
one that indicates that the callee is a multi-instance component (M(kce)). The activity
manager allows the call if the caller’s label is lower than or equal to the callee’s. If the
call is permitted, a new callee instance is launched. To do this, the activity manager (1)
generates a new-intent channel and a lock channel for the new instance; (2) updates the



label mapping to record the label of this new active instance; and (3) sends a message
containing the intent to the callee’s creation channel.

Overall System We assume that an initial process init bootstraps the system and
launches the label manager with the static label map that reflects the labels of appli-
cations and components at install time, and then calls the first process with fixed labels:
S = TM |AM |App1(aid1) | ... |Appn(aidn) | init.

5 Noninterference

To show that our system prevents information leakage, we prove a noninterference the-
orem. We use the simple label κL as the label of malicious components. We call com-
ponents whose labels are not lower than or equal to κL high components, and others low
components. Low components are considered potentially controlled by the attacker. We
want to show that a system S that contains both high and low components behaves the
same as a system composed of only the low components in S.

Choice between Trace & Bisimulation-based Equivalence Processes P and Q are
trace equivalent if for any trace generated by P ,Q can generate an equivalent trace, and
vice versa. Another commonly-used equivalence, barbed bisimulation, is stronger: it
additionally requires those two processes to simulate each other after every τ transition.

Our decision about which notion of process equivalence to use for our noninterfer-
ence definition is driven by the functionality required of the system so that practically
reasonable policies can be implemented. As discussed earlier, floating labels are essen-
tial to implement practical applications in Android. However, allowing an application
(or single-instance component) to have a floating label weakens our noninterference
guarantees: In this case, we cannot hope to have bisimulation-based noninterference
(see our technical report [1] for an example).

Rather than disallowing floating labels, we use a weaker, trace-equivalence-based
definition of noninterference. This still provides substantial assurance of our system’s
ability to prevent disallowed information flows: noninterference would not hold if our
system allowed: (1) explicit communication between high and low components; or (2)
implicit leaks in the reference monitor’s implementation, such as branching on data
from a high component affecting low components differently depending on the branch.

High and Low Components Most commonly seen techniques that classify high and
low events based on a fixed security level assigned to each channel cannot be directly
applied to the Android setting, as the components may declassify, raise, or instantiate
their labels at run time. Whether an input (output) is a high or low event depends on the
run-time label of the component that performs the input (output). Similarly, whether a
component is considered high or low, also depends on its run-time label. This makes the
definitions and proofs of noninterference more challenging. To capture such dynamic
behavior, we introduce the label contexts of processes, and use the run-time mapping
of these labels in the label manager to identify the high and low components in the
system. The current label of a process can be computed from its label context and the
label mapΞ . For a process with nested label contexts `1[...`n[P ]...], the innermost label
`n reflects the current label of process P .



Our mechanism enforces information-flow policies at both component and appli-
cation level; we consequently define noninterference to demonstrate the effectiveness
of the enforcement at both levels. Next, we explain how to use the application ID, the
component-level label, and the application-level label to decide whether a process is
high or low for our noninterference theorem.

Without loss of generality, we pick one application whose components do not access
the shared state of that application, and decide whether each of its components is high or
low solely based on each component’s label; all other applications, whose components
may access the shared applicate state, are treated as high or low at the granularity of an
application, based on their application-level labels. We write aidc to denote the specific
application whose components we treat as individual entities and disallow their accesses
to the shared state.

Now we can define the procedure of deciding whether a process is high or low. We
first define a binary relation vaidc

between a label context (aid , (κ1, κ2)) and a simple
label κ. We say that (aid , (κ1, κ2)) is lower than or equal to κ relative to aidc. This
relation compares the application-level label (κ1) to κL if the application is not aidc,
and compares the component-level label (κ2) to κL if the application ID is aidc.
(aid , (κ1, κ2)) vaidc κL iff κ1 v κL when aid 6= aidc and κ2 v κL when aid = aidc

Now, given the label map Ξ , let Ξ〈c〉 denote the label associated with a channel
name c in Ξ . We say that a process of the form aid [...(cAI , cnI )[P ]...] is a low process
with regard to κL if (aid , ((Ξ〈cAI 〉)∗, (Ξ〈cnI 〉)∗) vaidc

κL; otherwise, it is a high
process. Please see our tech report for a formal definition and additional details [1].

The function K∗ (Figure 2) removes the declassification capabilities in K, and re-
duces floating integrity labels to the lowest integrity label (on the lattice). This is be-
cause a call to a component with a floating integrity label may result in a new instance
with a low integrity label, a low event observable by the attacker; hence, a floating
component should always be considered a low component.

Traces The actions relevant to our noninterference definitions are intent calls received
by an instance, since the only explicit communication between the malicious compo-
nents (applications) and other parts of the system is via intents. We model intents I as
channels. The encoding of components includes a special output action 〈out I(self)〉
right after the component receives a new intent (Figure 3). This outputs to the intent
channel the current labels of the component, denoted by self. Traces consist of these
outputs (out I(aid , (kA, kC))), which contain information about both what the recip-
ient has learned and the security label of the recipient. We call such an action low, if
(aid , (kA, kC)) vaidc

κL, and high otherwise.
We restrict the transition system to force the activity manager’s processing of a

request—from receiving it to denying, allowing, or delaying the call—to be atomic.
Some requests require that a lock be acquired; we assume the activity manager will
only process a request if it can grab the lock. This matches reality, since the run-time
monitor will process one call at a time, and the run-time monitor’s internal transitions
are not visible to the outside world. We write a small-step Android-specific transition
as S α−→AS

′, and S τ
=⇒AS

′ to denote zero or multiple τ transitions from S to S′.

Noninterference We define the projection of traces t|aidc
κL

, which removes all high
actions from t. The function projT(Ξ;κL; aidc) removes from Ξ mappings from IDs



or channel names to high labels. Similarly, proj(P, κL, aidc, Ξ) removes high compo-
nents, applications, and instances from P . The resulting configuration is the low system
that does not contain secrets or sensitive interfaces.

We say that a declassification step is effective with regard to κL and aidc if the label
of the declassified instance before the step is not lower than or equal to κL relative to
aidc, and the label after is. We call a sequence of transitions t

=⇒A valid if each step pre-
serves the application-level label of aidc (application aidc cannot exit the application
or raise its application-level label), and if it is not an effective declassification step.

We prove a noninterference theorem, which captures the requirements on both cross-
application and intra-application communications. The theorem only concerns traces
generated by valid transitions. Declassification can cause the low actions that follow it
to differ between the two systems. However, we do allow arbitrary declassification prior
to the projection of the high components. A component that declassified will be treated
as a low component, and will afterward be denied any secrets unless further declassi-
fication occurs elsewhere. Changing aidc’s application-level label interferes with our
attempt to view components in aidc as independent entities.

Theorem 1 (Noninterference)
For all κL, for all applications App(aid1), · · · ,App(aidn),
given a aidc (aidc = aid i), i = 1 . . . n, whose components do not access the shared variable,
let S = AM |TM |App(aid1), · · · ,App(aidn) be the initial system configuration, S=⇒AS

′,
S′ = AM |TM | νc.(TMI(Ξ) |AC (aidc) |S′′), where TMI(Ξ) is an instance of the tag man-
ager, Ξ is the current label map, and AC (aidc) is an active launched instance of aidc,
let Ξ ′ = projT(Ξ;κL; aidc),
SL = AM |TM | νc′.(TMI(Ξ

′) | proj(AC (aidc) |S′′, κL, aidc, Ξ ′))
1. ∀t s.t. S′ t

=⇒AS1, and t
=⇒A is a sequence of valid transitions, ∃t′ s.t. SL

t′
=⇒ASL1, and

t|vaidc
κL = t′|vaidc

κL

2. ∀t s.t. SL
t

=⇒ASL1, and t
=⇒A is a sequence of valid transitions, ∃t′ s.t. S′ t

′
=⇒AS1, and

t|vaidc
κL = t′|vaidc

κL

6 Case Study and Implementation

We implemented our system on Android 4.0.4, using techniques similar to those used
by other works [5,15]. Here we describe in detail our policy for the example scenario
from §3.1, and briefly discuss our implementation.

Motivating Scenario Revisited The policy of our example from §3.1 prohibits secret
files from being leaked on the Internet, but allows them to be manipulated by applica-
tions and emailed at the user’s behest. Files may be edited, but can be emailed only if
the file manager itself calls the email application. We extend the example to also allow
files to be emailed if they are first encrypted.

We first show how to implement this policy by assigning application-level labels.
The file manager is labeled with ({FileSecret}, {FileWrite}, {-FileSecret}). The editor
is labeled with (F{}, F{}, {}), to indicate that its effective secrecy and integrity labels
are inherited from its caller, but it has no ability to declassify or endorse. The email ap-
plication is labeled with ({ReadContacts, . . .}, {}, {+Internet, . . .}). The “. . . ” signify



additional secrecy tags and endorsement capabilities that enable the email application to
read user accounts, cause the phone to vibrate, etc. To permit callers with low integrity,
tags that permit access to resources (e.g., to vibration functionality) appear as endorse-
ment capabilities rather than integrity tags. The encryption application is labeled with
(F{}, F{}, {-T, +WriteExternalStorage}). It has floating secrecy and integrity labels and
can declassify all secrets it acquires, and so it must be trusted to correctly encrypt files
and not reveal files without encrypting them. The encryption application also needs the
WriteExternalStorage tag to be able to store encrypted data on the SD card.

This choice of labels achieves our desired functionality as follows: When called by
the file manager, the editor’s label floats to ({FileSecret}, {FileWrite}, {}). The editor
cannot declassify FileSecret and so cannot leak the file; because it has FileWrite, it can
save the file to secret storage. To email the file, a user invokes the email application
via the file manager, which adds the file content to the intent that starts the email appli-
cation, and removes FileSecret by declassifying before sending the intent. The file can
also be released via the encryption application. If invoked by the file manager, the en-
cryption application floats to ({FileSecret}, {FileWrite}, {-T,+WriteExternalStorage});
its capability to declassify any secret (-T) allows it to release data to any application.

We used component-level policy to restrict the file manager’s declassification capa-
bility to only the component whose task is to send files to other applications. The duties
of the components can be inferred from their names. We label the Main activity and the
File provider with ({FileSecret}, {FileWrite}, {}) since they need to handle files; the
Help and DirectoryInfo activities with ({FileSecret}, {}, {}); the Settings activity with
({FileSecret}, {FileWrite}) because it needs to return a result to the Main activity; and
the Send activity with ({FileSecret}, {FileWrite}, {-FileSecret}).

Implementation Our case study is fully implemented and has been tested on a Nexus
S phone. We extended Android’s manifest file syntax to support our labels. Run-time
enforcement is via extensions to Android’s activity manager, which already mediates
communication between components. The biggest challenges were in providing more
detailed information about callers to the activity manager and capturing low-level ac-
tions that it did not mediate; we do this via kernel-level middleware [25]. For backward
compatibility, we mapped system-declared permissions to secrecy and integrity tags,
and assigned label signatures to Android and Java APIs. Please see our technical re-
port [1] for more detail about the implementation.

As part of booting the phone to the point where it can execute ordinary applications,
over 50 built-in applications start running. Our case study used minimally modified
off-the-shelf applications: Open Manager 2.1.8, Qute Text Editor 0.1, Android Privacy
Guard 1.0.9, Email 2.3.4. Our system’s implementation totaled ∼1200 lines of code:
∼650 in the reference monitor, 400 for bookkeeping, 100 for enhancing IPCs, and 50
for syntactic support for labels. We measured overheads on the order of 7.5 ms for the
label checks incurred by each call3. Performance was sufficiently good for this overhead
not to be observable to the user.

3 Even averaging over hundreds of runs, variance between sets of runs was too great to report
more precise measurements.



7 Conclusion

We propose the first DIFC-style enforcement system for Android that allows conve-
nient, high-level specification of policy and has a well-understood theory. To support
Android’s programming model the system had to incorporate several features that are
new to information-flow systems, including multi-level policy specification and en-
forcement, floating labels, and support for persistent state and single-instance compo-
nents. Our system strikes a balance between providing strong formal properties (non-
interference) and applicability, achieving most of each. A prototype and case study
validate the design of our system, and confirm that it can enforce practical policies on a
Nexus S phone.
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