Homomorphisms and Minimality for Enrich-by-Need Security Analysis

Daniel J. Dougherty
Worcester Polytechnic Institute

Joshua D. Gutman
The MITRE Corporation

John D. Ramsdell
Worcester Polytechnic Institute

Abstract—A cryptographic protocol can be deployed in a variety of environments, but existing methods of protocol analysis focus only on the protocol, without being sensitive to assumptions about these environments.

We present LPA, a tool which analyzes protocols in context. LPA uses two programs, cooperating with each other: CPSA, a well-known system for protocol analysis, and Razor, a model-finder based on SMT technology. Our analysis follows the enrich-by-need paradigm, in which models of protocol execution are generated and examined.

The choice of which models to generate is important, and we develop a careful motivation for and evaluation of LPA’s strategy of building minimal models. In fact “minimality” can be defined with respect to either of two preorders, namely the homomorphism preorder and the embedding preorder (i.e. the preorder of injective homomorphisms); we discuss the merits of each. Our main technical contributions are algorithms for building homomorphism-minimal models and for generating a set-of-support for the models of a theory, in each case by scripting interactions with an SMT solver.

I. INTRODUCTION

Cryptographic protocol analysis is well-developed, and many tools and rigorous techniques can be used to determine what confidentiality, authentication (among others, [RGL16a], [EMM09], [Bla02], [CM12]), and indistinguishability properties (e.g. [Bla02], [Bla02], [Bla08]) a protocol satisfies.

However, what goals a protocol needs to achieve depends on the applications that use it. The applications require certain security functionality; a protocol is acceptable if it achieves at least what that functionality relies on. Often, an attack shows that a protocol ensures less than an application needed. For instance, in the TLS resumption attacks [RRDO10], cf. [BDF14], [RGL16b], the protocol did not allow the server application to distinguish unauthenticated input at the beginning of a data stream from subsequent authenticated input. This may lead to erroneous authorization decisions.

Conversely, a protocol may be good enough for an application because of environmental assumptions the application ensures. For instance, some protocols fail if the same long-term key is ever used by a principal when playing the server role and also when playing a client role. However, some applications ensure that no server ever executes the protocol in the client role at all. This policy would ensure that an otherwise weak protocol reliably supports the application’s needs.

Logical Protocol Analysis is our term for combining a protocol analyzer with these additional concerns, which we analyze via model finding. Our goal is to analyze cryptographic protocols that include trust axioms that cannot be stated using the typical input to a protocol analyzer such as CPSA.

Flawed protocols are often deployed, and may be embedded in widely used devices before the flaws are understood. Such protocols can still achieve desired security goals when used in a restricted context. If the context can be modeled using environmental assumptions and other trust axioms, Logical Protocol Analysis can be used to discover whether the goals are met in the actual context of use.

A. An Example: DoorSEP

Consider a motivating scenario; see Section IV-A for more details. The protocol, called the Door Simple Example Protocol (DoorSEP), is derived from an expository protocol due to Bruno Blanchet [Bla08], who designed it to have a weakness. Despite this weakness, the protocol can achieve the needs of an application subject to a trust assumption.

Imagine a door D which is equipped with a badge reader, and a person P equipped with a badge. When the person swipes the badge, the protocol executes. Principals such as doors or persons are identified by the public parts of their key pairs, with D^{-1} and P^{-1} being the respective principal’s private keys. We write $\langle \{M\} \rangle_K$ for the encryption of message M with key K. We represent digital signatures $\langle \{M\} \rangle_P$ as if they were the result of encrypting with P’s private key.

The person initiates the exchange by creating a fresh symmetric key K, signing it, and sending it to the door encrypted with the door’s public key. The door extracts the symmetric key after checking the signature, freshly generates a token T, and sends it to the person encrypted with the symmetric key. The person demonstrates they are authorized to enter by decrypting the token and sending it as plain text to the door.

DoorSEP may be expressed in Alice and Bob notation:

\[
\begin{align*}
P &\rightarrow D \colon \langle \{K\} \rangle_{P^{-1}} D \\
D &\rightarrow P \colon \langle \{T\} \rangle_K \\
P &\rightarrow D \colon T.
\end{align*}
\]

An analysis of DoorSEP by CPSA shows an undesirable execution of this protocol. Assume the person’s private key
is uncompromised and the door has received the token it sent out. In this situation, CPSA deduces that person P freshly created the symmetric key K. However, there is nothing in this protocol to ensure that the person meant to open door D. If adversary A gets P to use compromised door D', the adversary can perform a man-in-the-middle attack:

$$P \rightarrow A : \{ \{K\}_{P^{-1}} \}_{D'}$$
$$A \rightarrow D : \{ \{K\}_{P^{-1}} \}_{D}$$
$$D \rightarrow A : \{T\}_{K}$$
$$A \rightarrow D : T.$$

Without additional assumptions, the door cannot authenticate the person requesting entry.

But possibly we can trust the person to swipe her badge only in front of doors our organization controls. And we can ensure that our doors have uncompromised private keys. If so, then the adversary cannot exercise the flaw.

We regard this as a trust assumption, and we can express it as an axiom:

If an uncompromised signing key P^{-1} is used to prepare an instance of the first DoorSEP message, then its owning principal has ensured that the selected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be split between the person and the organization controlling the door. The person makes sure to swipe her badge only at legitimate doors of the organization’s buildings. The organization maintains a security posture that protects the corresponding private keys.

Is DoorSEP good enough, assuming the trust axiom?

To analyze this protocol with this trust assumption we use a model finder, namely Razor [SDD15]. We provide it a theory leading to a model containing the man-in-the-middle attack. We then add the trust axiom above. The axiom makes it so that the adversary cannot decrypt the message sent by the person.

The generated model is then given to CPSA, which infers that the door can decrypt the person’s message only if the person intended it for this door. Thus, the protocol has achieved its job, ensuring that the door opens only when an authorized person requests it to open.

B. Protocols and theories

Security conclusions require protocol analysis combined with other properties, which we will assume are given axiomatically by a theory \mathcal{G}. We also regard a protocol Π as determining an axiomatic theory $Th(\Pi)$, namely the theory of Π’s executions, as Π runs possibly in the presence of a malicious adversary. Thus, we would like to understand the joint models of $\mathcal{G} \cup Th(\Pi)$, where of course these theories may share vocabulary.

The implications of policies expressed in first-order logic can be understood from their models.

A policy that includes a theory about a cryptographic protocol allows one to determine the impact of the policy on the execution of a protocol. However, deducing protocol executions is not something that can be efficiently done within an SMT solver. An external, finely tuned tool is called for; this is the role that CPSA plays.

In the DoorSEP case, the relevant \mathcal{G} is the trust axiom. The models of this theory are runs of the protocol in which the doors and people act as assumed in it.

Enrich-by-need: Indeed, our approach is to construct minimal models in a homomorphism order. We refer to these minimal models as shapes [Gut11]. The shapes show all of the minimal, essentially different things that can happen subject to $\mathcal{G} \cup Th(\Pi)$: every execution contains instances—meaning homomorphic images—of the shapes. This is useful to the security analyst who can inspect the minimal models and appraise whether they are compatible with his needs. The analyst can do this even without being able to explicitly state the key security goals. In the case in which $\mathcal{G} = \emptyset$, so that only $Th(\Pi)$ matters, generating these shapes is the central functionality of CPSA [RGL16a].

We call this approach to security analysis enrich-by-need, since we build homomorphism-minimal models by rising stepwise in the homomorphism order, gradually generating them all. CPSA does so using a “authentication test” method, which yields a compact, uniform way to generate the set of minimal models of the protocol theory $\mathcal{G} \cup Th(\Pi)$.

Indeed, a further advantage arises in the case where there is a finite set of finite shapes. In that case, we can summarize them in a sentence, called a shape analysis sentence constructed as the disjunction of their diagrams [Gut14], [Ram12]. The diagram of a finite model is (roughly) the conjunction of the atomic formulas true in it. The shape analysis sentence is thus true in all of the shapes. Moreover, its syntactic form ensures that its truth will be preserved by homomorphisms. Thus, it will be true in all models of $\mathcal{G} \cup Th(\Pi)$. Indeed, no strictly stronger formula can be true in all the models. We regard the shape analysis as a security goal achieved by $\mathcal{G} \cup Th(\Pi)$.

Thus, finding a finite set of finite shapes determines a strongest security goal that the system achieves.

We already have a special tool, called CPSA [RGL17], that computes the shapes and their sentences for a protocol Π acting alone. It uses optimized algorithms that we have proved correct for protocol analysis [Gut11], [LRT11]. Thus, we need to extend it so that it can cooperate with another tool to adapt its results to provide models of the whole theory $\mathcal{G} \cup Th(\Pi)$. We effectively split $Th(\Pi)$ into two parts, a hard part Th_h and an easy part Th_e. Only CPSA will handle the hard part.

Our strategy is to use a general-purpose model-finder, Razor [SDD15] to look for minimal models of $\mathcal{G} \cup Th_e$ that extend a fragment of a model. When the resulting model \mathcal{H} contains additional behavior of Π, we return to CPSA to handle the hard part Th_h, enriching \mathcal{H} with some possible executions. We then return these extensions to Razor. If this process terminates, we have a minimal joint model. By iterating our search, we obtain a covering set of minimal joint models.
Razor, in turn, is built as a wrapper around a Satisfiability Modulo Theories (SMT) [BSS+09] solver, specifically Z3 [DMB08a].

C. Contributions

This report has two goals. First, we define and justify the methods that the new Razor uses to drive Z3 to generate homomorphism-minimal models of a given theory. These homomorphisms are not necessarily embeddings; that is, a homomorphism to construct may map distinct values in its source model to the same value in its target model. To begin with, we need a method to construct, from a model A, a set of sentences homFrom_A, true in precisely those models B such that there is a homomorphism from A to B. We also need a method to construct, from a model A, a set of sentences homTo_A, true in precisely those models B such that there is a homomorphism from B to A.

We show how to use these two resources to compute a set of minimal models that covers all of the models; this method is codified in Razor.

Second, we develop a particular architecture for coordinating Razor and CPSA. In this architecture, Razor handles all aspects of $\mathcal{G} \cup \text{Th}(\Pi)$ except that it does not enrich a fragmentary execution of Π to obtain its shapes, i.e. the minimal executions that are its images. Instead, we generate an input to CPSA that contains the substructure A_0 containing only protocol behavior. CPSA computes the shapes and extracts the strongest security goal that applies to A_0. It returns this additional information to Razor, which then iterates. We call this cooperative architecture LPA for Logical Protocol Analysis.

Structure of the paper: In Section II we fix some preliminary definitions and notation; we introduce the two existing tools which coordinate to make LPA in Section III. In Section IV we describe LPA itself and how it is used to analyze the DoorSEP protocol. Section V is a development of some of the underlying theory of using SMT solving to compute and present models, with an emphasis on the question: which models should be presented to the user? We end with conclusions and a discussion of future work.

D. Related Work

Model-finding is an active area of investigation [ZZ95], [McC01], [CS03], [BS06], [NM06], [FJ07], [BF-DNT09], [RTGK13]. But—with some exceptions noted below—existing model-finders compute an essentially random set of models. Close in spirit to our goals and techniques are lightweight formal methods tools such as Alloy [Jac12] and Marble [FKMT05], [NBD+10]. These three tools are based on the Kodkod model-finder [TJ07].

Logic programming languages produce single, least models as a consequence of their semantics; this is not a notion of minimality based on homomorphisms, and is traditionally tied to Horn-clause theories. Generalizations for non-Horn theories have already been used in specifying the semantics of disjunctive logic programming [LMR92] and of database updates [FUV83] and in non-monotonic reasoning, especially circumscription [Rob01]. In more specialized settings, generation of minimal models usually relies on dedicated techniques, often based on tableaux [Nte96] or hyperresolution [BY00]. Aluminum [NSD+13b] supports exploration by returning minimal models: it instruments the model-finding engine of Alloy. The Network Optimized Datalog tool [LBG14], which has been released as a part of Z3 [DMB08b], presents limited minimization for reasoning about beliefs in the context of network reachability policies.

There is surprisingly little work devoted to analyzing security protocols in the context of trust assumptions. Our previous work on a Cryptographic Protocol Programming Language [GTC04], [GHR05] led to a programming language that would allow protocol actions to be controlled by a trust management policy.

The Tamarin prover [MSCB13] can limit the context in which a protocol is to be analyzed by restricting its analysis to a user-specified subset of all protocol traces. In contrast, our primary interests lie in enriching the context in which analysis is done by including trust management, access control, etc., and in generating principled output instances. There was also related work in the applied π-calculus [BFGP04], [GP05], [FGM05]. Protocol analysis sometimes builds in environmental assumptions in a security goal hypothesis, by assuming that some keys are uncompromised, or that some principal names are unequal. However, the focus of that research has been on the pure problem of determining the security properties of protocols in isolation.

The mathematical motivations for minimality are detailed in [17] but one can also ask for motivations grounded in user-experience research. There has been relatively few user studies of formal methods tools; [DNH+17] reports preliminary work in the model-finding context.

II. Foundations

A. Models and Homomorphisms

In this chapter we present some of the foundations of model-finding, focusing on the use of an SMT solver. In broadest terms, model-finding is the following task: given a logical theory \mathcal{T}, produce one or more (finite) models of \mathcal{T}.

Of course a typical satisfiable theory will have many models. Special emphasis is given in this paper to the question of which models should be presented to the user? One answer—embodied in the LPA tool—is based on the fundamental notion of homomorphism between models, with a focus on models that are minimal (see Section V) in the pre-order determined by homomorphism.

Fix a signature Σ. A model A for signature Σ is defined as usual: a collection of sets interpreting the sorts of Σ, and a collection of functions and relations interpreting the function and relation symbols of Σ. In this paper we work with finite models exclusively.
Definition 1. Let \(\mathcal{A} \) and \(\mathcal{B} \) be \(\Sigma \)-models. A function \(h : |\mathcal{A}| \to |\mathcal{B}| \) is a homomorphism if

1. \(\mathcal{A} \models f(a_1, \ldots, a_n) = a \) implies \(\mathcal{B} \models f[h(a_1), \ldots, h(a_n)] = h(a) \) and
2. \(\mathcal{A} \models R(a_1, \ldots, a_n) \) implies \(\mathcal{B} \models R[h(a_1), \ldots, h(a_n)] \).

Model \(\mathcal{B} \) is a submodel of \(\mathcal{A} \) if \(|\mathcal{B}| \subseteq |\mathcal{A}| \) and the inclusion function is a homomorphism.

Write \(\mathcal{A} \preceq \mathcal{B} \) if there is a homomorphism \(h : \mathcal{A} \to \mathcal{B} \), and write \(\mathcal{A} \approx \mathcal{B} \) if \(\mathcal{A} \preceq \mathcal{B} \) and \(\mathcal{B} \preceq \mathcal{A} \). Write \(\mathcal{A} \not\preceq \mathcal{B} \) if there is an injective homomorphism \(h : \mathcal{A} \to \mathcal{B} \), and write \(\mathcal{A} \not\approx \mathcal{B} \) if \(\mathcal{A} \not\preceq \mathcal{B} \) and \(\mathcal{B} \not\preceq \mathcal{A} \). We will sometimes use the phrase “hom-cone of \(\mathcal{A} \)” to refer to the set of models \(\mathcal{B} \) for which there is a homomorphism \(h : \mathcal{A} \to \mathcal{B} \).

Definition 2. Let \(\mathcal{M} \) be a class of models. A model \(\mathcal{M} \in \mathcal{M} \) is \(a \)-minimal for \(\mathcal{M} \) if whenever \(\mathcal{A} \in \mathcal{M} \) and \(\mathcal{A} \not\preceq \mathcal{M} \), we have \(\mathcal{A} \not\approx \mathcal{M} \). The definition of \(i \)-minimal is similar, using injective homomorphisms. (The modifier “\(a \)-” is to suggest “arbitrary.”)

Typically we are interested in the case when \(\mathcal{M} \) is the class of models of a theory \(T \).

One could imagine yet another notion of minimality, where the preorder on models is given by the submodel relation: a model \(\mathcal{A} \) of \(T \) is “submodel-minimal” for \(T \) precisely if no proper submodel of \(\mathcal{A} \) is a model of \(T \). But it is not hard to see that this condition is equivalent to \(i \)-minimal for \(T \), so we will use these characterizations interchangeably.

The notion of the core of a model is standard [HN92], [FKP05]; it is important for us because cores will give canonical representatives of \(\approx \) equivalence classes.

Core are defined in terms of retractions, as follows.

Definition 3. A retraction \(r : \mathcal{A} \to \mathcal{B} \) is a homomorphism such that there is a homomorphism \(e : \mathcal{B} \to \mathcal{A} \) with \(r \circ e = \text{id}_\mathcal{B} \).

A submodel \(\mathcal{C} \) of \(\mathcal{A} \) is a core of \(\mathcal{A} \) if there is a retraction \(r : \mathcal{A} \to \mathcal{C} \) but no retract \(r' : \mathcal{A} \to \mathcal{C}' \) for any proper submodel \(\mathcal{C}' \) of \(\mathcal{C} \).

A model \(\mathcal{C} \) is a core if it is a core of itself.

Definition 4 (PE formula, Geometric theory). A formula is positive-existential, or PE, if it is built from atomic formulas (including true and false) using \(\land, \lor, \forall, \exists \). A geometric sentence is one of the form

\[
\forall \vec{x}. \; \alpha(\vec{x}) \to \beta(\vec{x})
\]

where \(\alpha \) and \(\beta \) are positive-existential.

Theorem 5. The following are equivalent, for a formula \(\alpha(\vec{x}) \):

1. \(\alpha \) is preserved by homomorphism: if \(h : \mathcal{A} \to \mathcal{B} \) is a homomorphism, and \(\vec{a} \) is a vector of elements from \(\mathcal{A} \) such that \(\mathcal{A} \models \alpha[\vec{a}] \), then \(\mathcal{B} \models \alpha[h(\vec{a})] \).
2. \(\alpha \) is logically equivalent to a PE formula.
3. \(\alpha \) is equivalent, in the category \(\mathcal{M}_\Sigma \) of finite models, to a PE formula.

Proof. The equivalence of (1) and (2) is a classical result in model theory when considering arbitrary models. The equivalence of (1) and (3) is a deep result of Rossman [Ros08].
s = α(ρ), i.e. if s results from ρ by applying a substitution α to parameters in ρ.

Skeletons are fragmentary executions of the regular participants, which factor out adversary behavior. A skeleton \(K = (\text{nodes}, \leq, \text{non}, \text{unique}) \) consists of a finite set of regular nodes, a partial ordering on them, a set of values assumed non-originating, and a set of values assumed uniquely originating. These components are designed to code in the aspects of executions that we care about, namely the ordering, and what values are uncompromised (“non”) or freshly chosen (“unique”).

A skeleton \(K \) is an execution if it is realized. This means that the message transmissions in \(K \), when combined with possible adversary behavior based on the Dolev-Yao adversary model [DY83], suffice to explain every message received in \(K \).

Associated with each CPSA protocol \(\Pi \) is a first-order language \(L(\Pi) \) used to specify security goals [Gut14]. The language can be used to exchange information between CPSA and an SMT solver. These mechanisms are described in Section IV.

III. CONSTITUENT TOOLS

A. CPSA

The Cryptographic Protocol Shapes Analyzer [RG17] (CPSA) can be used to determine if a protocol achieves authentication and secrecy goals. CPSA will—given a protocol \(\Pi \) and a skeleton of interest \(K \)—generate all of the minimal, essentially different realized skeletons that are homomorphic images of \(K \). We call these minimal, essentially different skeletons shapes, and, although in general there could be infinitely many of them, frequently there are very few of them.

CPSA begins a run with a protocol description and an initial scenario \(K_0 \). The initial scenario is a partial description of executions of a protocol. If CPSA terminates, it characterizes all the executions of the protocol consistent with the initial scenario. For example, if it is assumed that one role of a protocol runs to completion, CPSA will determine what other roles must have executed.

Each skeleton \(K \) has a characteristic sentence \(\sigma_K \) such that, for all \(K' \), \(h : K \rightarrow K' \) (for some homomorphism \(h \)) iff \(K' \models \sigma_K \).

Homomorphisms play an essential role in CPSA. At each step in the algorithm, an unrealized skeleton \(K \) is replaced by a set of skeletons \(\{K_1, \ldots, K_n\} \), called a cohort, by solving an authentication test [GT02]. The skeletons \(\{K_1, \ldots, K_n\} \) form an \(a \)-set of support for the realized skeletons that are homomorphic images of \(K \). That is, if there is an execution (or “realized skeleton”) \(K_r \) such that \(h : K \rightarrow K_r \), then there exists some homomorphism \(h' : K_1 \rightarrow K_r \) such that \(h = h' \circ h \). This ensures that CPSA produces a complete description of all of the executions of a protocol described by the initial scenario.

For an initial scenario \(K_0 \), CPSA produces a set of realized skeletons \(\{K_1, \ldots, K_n\} \) and homomorphisms \(h_i : K_0 \rightarrow K_i \). These are built up by a succession of cohort steps; thus, they remain an \(a \)-set of support for the realized skeletons that are homomorphic images of \(K_0 \). The set \(h_i : K_0 \rightarrow K_i \)—called the shapes of this scenario—are a compact way of describing all of the executions compatible with the initial scenario.

By Lemma 8, if a geometric sentence \(\sigma \) holds in each shape, then \(\sigma \) holds in every realized skeleton that is an image of \(K_0 \).

There is a key geometric sentence that can be extracted from the results of a run of CPSA. A Shape Analysis Sentence (SAS) [Ram12] encodes everything that has been learned about the protocol from a CPSA analysis starting with a given initial scenario. It holds in every realized skeleton of the protocol. A SAS is used to import the results of a CPSA analysis into the SMT solver.

The antecedent of a SAS is a conjunction of atomic formulas that specify the initial scenario \(K_0 \). The universally quantified variables are the ones that occur in the antecedent. The conclusion is a disjunction of formulas, one for each shape. The \(i \)th disjunct is an existentially quantified conjunction of atomic formulas that describes the mapping \(h_i \) and the additions to the antecedent required to specify shape \(K_i \).

B. Razor

Razor is a general-purpose model-finder: it takes as input an arbitrary first-order theory \(T \) and attempts to find finite models of \(T \) (CPSA can be viewed as a domain-specific model-finder, working over various theories of strand spaces).

Razor finds models by (i) preprocessing the input theory as described below, (ii) using an off-the-shelf SMT solver, currently Z3, and (iii) postprocessing the results of the solver’s output to fulfill certain goals: return minimal models by default, allowing the user to explore and augment models, and computing a set-of-support of models for \(T \). Razor can be used in REPL mode or batch mode; only the latter is used as part of LPA (refer to [SDD15] for a fuller description of Razor’s REPL mode).

Once the SMT solver has determined that a theory \(T \) is satisfiable, and computed—internally—a model for \(T \), the application must extract the model from the solver. But the API mandated by the SMT-Lib Standard (v.2.6) [BST+10] for doing this is quite restricted. The model can be inspected only through certain commands returning the solver’s internal representation of values of terms.

This is inconvenient for us, especially since the solver might create only a partial model internally.

To address this, we first ensure that the language we use to communicate with the solver has enough ground terms at each sort to name all elements of a model, by adding fresh constants. Then we can query the solver for the values of the functions and predicates, and build a “basic” model representation

\[
\begin{align*}
equations & c_i = c_j \\
equations & f \mathcal{E} = c \\
facts & R \vec{c}
\end{align*}
\]
where the c_i range over the fresh constants. Using standard techniques we then construct from these equations a convergent (terminating and confluent) ground rewrite system, which facilitates working with the models.

IV. LPA

This section shows how to use CPSA and Razor to analyze cryptographic protocols in context. Our architecture for LPA is displayed in Figure 1. An analysis begins with a CPSA protocol Π and an initial theory T_0. The initial theory contains a specification of the trust policy and a description of the initial scenario of the protocol as a collection of sentences in $L^+(\Pi)$, an extension of $L(\Pi)$.

The program prot2smt2 uses protocol Π to generate a set of axioms T_{Π}. These axioms allow Razor to produce models from which skeletons can be extracted. For example, an axiom about the transitivity of node orderings allows Razor to compute the partial ordering of the nodes. Other axioms ensure that a uniquely originating value is received only after it is transmitted and that the double inverse of each asymmetric key is equal to itself.

The initial theory is appended to T_{Π} to form the first theory T_1 to be analyzed by Razor. A skeleton is extracted from each model. If the skeleton is realized, the model describes the impact of the trust policy on complete executions of the protocol. If the skeleton is not realized, it is used as the initial scenario for CPSA. The results of CPSA is turned into a SAS (shape analysis sentence, cf Section III-A) and added to the current theory for further analysis. The process is repeated until all of the extracted skeletons are realized.

A. Analyzing the Door Simple Example Protocol

Imagine there is a door with a badge reader, and a person with a badge. The door has opened. We want to know what else must have happened.

To begin this analysis, we must know how the person’s badge was used to authenticate. Assume participants practice the protocol Π in Figure 2, introduced in the Introduction. In this protocol, a person begins by generating a fresh symmetric key, signing it, and then encrypting the result using the door’s public key. If the door accepts the first message, it responds by freshly generating a token and uses the symmetric key to encrypt it. If the door receives the token back unencrypted, the door concludes the person that generated the key is at the door and opens.

The initial theory specifies the trust axiom and the fact that the door is open. To assert the door is open, one asserts there is a strand that is a full length instance of the door role. We then have a model that characterizes an unrealized skeleton, and we would like to use CPSA to find out what else must have happened. The shape produced by CPSA is displayed in Figure 3.

The shape shows the lack of mutual authentication built into this flawed protocol. To open the door, a person can use an arbitrary compromised key for the door. That is, without the trust axiom, the answer to the “what else happened” question is that the person holding private key P^{-1} swiped with their friends. The program prot2smt2 uses protocol Π to generate a set of axioms T_{Π}. These axioms allow Razor to produce models from which skeletons can be extracted. For example, an axiom about the transitivity of node orderings allows Razor to compute the partial ordering of the nodes. Other axioms ensure that a uniquely originating value is received only after it is transmitted and that the double inverse of each asymmetric key is equal to itself.

The initial theory is appended to T_{Π} to form the first theory T_1 to be analyzed by Razor. A skeleton is extracted from each model. If the skeleton is realized, the model describes the impact of the trust policy on complete executions of the protocol. If the skeleton is not realized, it is used as the initial scenario for CPSA. The results of CPSA is turned into a SAS (shape analysis sentence, cf Section III-A) and added to the current theory for further analysis. The process is repeated until all of the extracted skeletons are realized.

A. Analyzing the Door Simple Example Protocol

Imagine there is a door with a badge reader, and a person with a badge. The door has opened. We want to know what else must have happened.

To begin this analysis, we must know how the person’s badge was used to authenticate. Assume participants practice the protocol Π in Figure 2, introduced in the Introduction. In this protocol, a person begins by generating a fresh symmetric key, signing it, and then encrypting the result using the door’s public key. If the door accepts the first message, it responds by freshly generating a token and uses the symmetric key to encrypt it. If the door receives the token back unencrypted, the door concludes the person that generated the key is at the door and opens.

The initial theory specifies the trust axiom and the fact that the door is open. To assert the door is open, one asserts there is a strand that is a full length instance of the door role. We further assert that the person’s private key is uncompromised. The trust axiom will be explained later.

Recall the diagram in Figure 1 to visualize the analysis process. After appending the initial theory to the protocol axioms T_{Π}, Razor finds model M_0. As expected, model M_0 specifies a full length door strand in which the person’s private key is uncompromised and other facts such as the fact that double inverse of the model’s asymmetric keys are equal to itself.

At this stage, we have a model that characterizes an unrealized skeleton, and we would like to use CPSA to find out what else must have happened. The shape produced by CPSA is displayed in Figure 3.

The shape shows the lack of mutual authentication built into this flawed protocol. To open the door, a person can use an arbitrary compromised key for the door. That is, without the trust axiom, the answer to the “what else happened” question is that the person holding private key P^{-1} swiped with their friends.
badge, but the key used to identify the door may have been compromised, and an adversary may have completed the rest of the protocol.

Consider the case in which the door is well known to the owner of the badge. For example, suppose the badge is issued by the institution that owns the door and is tamper proof. In that case, the person knows to initiate the DoorSEP protocol (swipe their badge) only when in front of a door with the correct key. The trust axiom in the initial theory codifies this policy. It states that if a person with an uncompromised key initiates the protocol, the door key used is uncompromised.

The next step in the analysis makes use of the trust axiom. The result of the CPSA analysis is transformed into a SAS. The antecedent specifies the initial scenario described by the first model. The consequence specifies what else must be added to make the initial scenario into the complete execution shown in Figure 3.

When the SAS is added to the current theory, Razor finds one model M_1. The skeleton extracted from this model is very similar to the shape in Figure 3 with one crucial difference: the key D' is uncompromised. Razor applied the trust axiom. The skeleton extracted from M_1 is unrealized, so CPSA can make a contribution. It finds a SAS that extends the length of the person strand to full length and equates D and D'. The addition of this SAS produces model M_2 that characterizes a realized skeleton with full agreement between the door and person strands. Because the skeleton is realized, CPSA has nothing more to contribute and the analysis terminates.

V. Minimality, Cores, and Set-of-Support

In this section we explore the question which models should we compute and show to the user of a model-finding tool? Our proposal, motivated by Lemma 8 and implemented by LPA, is: compute a set-of-support for the input theory comprised of minimal models. As we have observed there are two natural notions of minimality; we point out some theoretical differences between them. Most importantly, we present algorithms for computing minimal models and sets-of-support: these involve programming against the functionality of SMT solvers.

A. Comparing i-minimal and a-minimal

One way to think about a-minimality of a model M is that if any atomic fact of M is removed, the resulting model would no longer be a model of the theory at hand. In particular, since equality is an atomic predicate, if two terms denote—unnecessarily—the same model-element, this is a failure of a-minimality.

Neither of i-minimality or a-minimality implies the other.

Example 9.

- Let T be the single sentence $\exists x. P(x) \land \exists x. Q(x)$, and let A have one element a with $A \models P[a] \land Q[a]$.
 Then A is i-minimal but not a-minimal: the model B with two elements a_1 and a_2 such that $B \models A[a_1] \land B[a_2]$ is strictly below A in the \preceq preorder. (B is a-minimal for T.)

- Let T be $\exists x. P(x)$ and let A have two elements a_1 and a_2 with $A \models P[a_1]$ and $A \models P[a_2]$. Then A is a-minimal but is not i-minimal: the induced model determined by a_1 is a model of T.

However, an a-minimal model which is a core will be i-minimal.

Lemma 10. If A is a-minimal for T and is a core, then A is i-minimal for T.

Proof. Suppose B is a model of T and $j : B \to A$ is injective. Since A is a-minimal, there is a homomorphism $h : A \to B$. The composition $j \circ h$ is an endomorphism of A. Since A is a core this map is injective, so h is injective, and $A \cong B$.

We should observe that for a given theory there might be no finite a-minimal models at all. An example is the theory with one unary function and no axioms. The initial (hence unique minimal) model of this theory is the natural numbers. Another way to put this is: the \preceq preorder is not well-founded in general.

On the other hand, we will typically add axioms to a theory to ensure that there is an upper bound on the size of its models. In such a case there will be only finitely many models of T, and the \preceq preorder will be well-founded. This observation is the key to the termination of many of the algorithms in this section.

Lemma 11. Let T be a theory with only finitely many models. Then the \preceq and \preceq^i preorders on models of T are well-founded.

Proof. Suppose for the sake of contradiction that we have an infinite descending chain of strict homomorphisms:

$$\ldots \preceq M_2 \preceq M_1 \preceq M_0$$

Then we have $M_{i+k} \preceq M_i$ for any $k \geq 0$. Since T has finitely many models, we eventually get i and $k \geq 0$ with M_{i+k+1} isomorphic to M_i. So $M_{i+k+1} \preceq M_{i+1}$. But that implies $M_i \preceq M_{i+1}$, a contradiction.

The same argument applies to \preceq^i as well.

There will always be a-minimal models for theories T that are bounded in this way.

B. Minimal Models for protocol analysis

When model-finding is used for protocol analysis, specifically when reasoning about an authentication goal, minimality with respect to arbitrary homomorphisms is of particular interest. Consider, for example, the analysis of the authentication properties of DoorSEP. The model A corresponding to the failure of authentication described in the Introduction is one in which there are keys for two different doors D and D' involved in the protocol run. The model B which would arise from identifying D and D' would still represent a protocol execution (indeed, the hoped-for behavior of the protocol). But A is strictly below this B in the \preceq ordering, and it is A that gives insight in to the possibility of the man-in-the-middle attack (in the absence of the trust axiom, of course).
C. Computing Minimal Models and Set-of-Support

We present the following algorithms, each of which relies on the primitive operation of asking an SMT solver for a single finite model of a given theory. Recall that an SMTLib-compliant solver need not return any particular model for a satisfiable theory, and that repeated requests to a solver for the same theory will typically return the same model.

Fix a theory \(T \).

- iMinimize: given model \(A \models T \), compute an i-minimal model \(M \models T \) with \(M \not\preceq_i A \).
- aMinimize: given model \(A \models T \), compute an a-minimal model \(M \models T \) with \(M \not\preceq A \).
- computeCore: given model \(A \), compute the core of \(A \).
- SetOfSupport (resp. iSetOfSupport): compute a stream of models comprising a (resp. injective) set of support for theory \(T \).

\(aHomTo \) (resp. \(iHomTo \)): given model \(A \models T \), compute a sentence \(homTo_A \) defining the models \(P \models T \) such that there is a (resp. injective) homomorphism \(h : P \to A \).

\(aHomFrom \) (resp. \(iHomFrom \)): given model \(A \models T \), compute a sentence \(homFrom_A \) defining the models \(P \models T \) such that there is a (resp. injective) homomorphism \(h : A \to P \).

The algorithms \(a\text{Minimize} \) and \(a\text{HomTo} \) each rely on the sentences \(homTo_A \) and \(homFrom_A \). Since the latter of these in particular is subtle, we first present the other algorithms in terms of these, then develop \(a\text{HomTo} \) and \(a\text{HomFrom} \).

D. i-Minimization

The following procedure was originally developed for use in the Alumimum tool [NSD13a].

For this algorithm we use the notation \(\text{flip}_P \) to denote

\[
\land \neg \left\{ \alpha \mid \alpha \text{ is an atomic sentence}, P \models \neg \alpha \right\} \\
\lor \neg \left\{ \beta \mid \beta \text{ is an atomic sentence}, P \models \beta \right\}
\]

Note in particular that if \(c \) and \(c' \) are constants naming distinct elements of a model \(P \), then \(c \neq c' \) is one of the conjuncts of \(\text{flip}_P \).

Algorithm 12 (i-Minimize).

input: theory \(T \) and model \(A \models T \)
output: model \(P \models T \) such that \(N \) is i-minimal for \(T \) and \(P \preceq_i A \)
initialize: set \(P \) to be \(A \)
while \(T' \models T \cup \{ \text{flip}_P \} \) is satisfiable
set \(P \) to be a model of \(T' \)
return \(P \)

Lemma 13. Algorithm 12 is correct: if \(A \) is a finite model of \(T \) then Algorithm 12 terminates on \(A \), and the output \(P \) is an i-minimal model of \(T \) with \(P \preceq_i A \).

Proof. Each iteration goes down in the \(\preceq_i \) ordering, thus termination. To show that the result is i-minimal for \(T \), it suffices to argue that the result is a minimal \(T \)-submodel of the input, under the submodel ordering. But this is clear from the definition of the sentences \(\text{flip} \).

E. a-Minimization

Computing a-minimal models is harder. If we bound the size of the domain(s) of our models then a-minimal models exist: the \(\preceq \) preorder is well-founded, so the set of minimal elements with respect to this order is non-empty. The question is, how to compute a-minimal models?

The idea is that, given a model \(A \), we can use the sentences \(homTo_A \) and \(homFrom_A \) to iterate the process of constructing a model that is strictly below \(A \) in the \(\preceq \) ordering.

Algorithm 14 (a-Minimize).

input: theory \(T \) and model \(A \models T \)
output: model \(P \models T \) such that \(P \) is a-minimal for \(T \) and \(N \preceq A \)
initialize: set \(P \) to be \(A \)
while \(T' \models T \cup \{ \text{homTo}_P \} \cup \{ \neg \text{homFrom}_P \} \) is satisfiable
set \(P \) to be a model of \(T' \)
return \(P \)

Lemma 15. Algorithm 14 is correct: if \(A \) is a finite model of \(T \) then Algorithm 14 terminates on \(A \), and the output \(P \) is an a-minimal model of \(T \) with \(P \preceq A \).

Proof. Each iteration constructs a model lower in the \(\preceq \) ordering; termination follows from well-foundedness of the \(\preceq \) ordering.

E. Computing Cores

Cores are interesting for us because—when the input theory \(T \) is geometric—they give a way to build models that are both a-minimal and i-minimal.

Testing whether a model is a core is NP-complete [HN92]. So computing cores is presumably expensive, from a worst-case complexity perspective. But it is not difficult, using an SMT solver, to write a program that behaves well in practice. The key point is the well-known observation that a model \(C \) has no proper retracts if and only if it has no proper endomorphisms.

Definition 16. If \(A \) is a finite model for signature \(\Sigma \), the sentence \(\text{endo}_A \) over the signature \(\Sigma_h \) that extends \(\Sigma \) by adding a new function symbol \(h_s : S \to S \) at each sort \(S \), is the conjunction of

- the diagram of \(A \),
- the sentence expressing “\(h \) is a homomorphism”, and
- the sentence expressing “\(h \) is not injective.”

Algorithm 17 (ComputeCore).

input: model \(A \) over signature \(\Sigma \)
output: a core \(P \) of \(A \)
initialize: Set \(P \) to be \(A \)
while \(\text{endo}_P \) is satisfiable
let \(\mathbb{P}' \) be a model of endomorphism \(\text{endom} \);
let \(\mathbb{P}_0 \) be the image of \(\text{endom} \) in \(\mathbb{P}' \);
let \(\mathbb{P} \) be the reduct of \(\mathbb{P}_0 \) to the original signature \(\Sigma \).
return \(\mathbb{P} \)

Lemma 18. Algorithm 17 computes a core of its input.

Proof. The algorithm terminates because the size of the model \(\mathbb{P} \) decreases at each iteration. The resulting model is a core, since it has no proper endomorphisms.

G. Set of Support

We take the ability to generate a set-of-support for the class of all models of a theory \(T \) to be a natural notion of “completeness” in model-finding. Lemma 8 makes a precise claim of completeness with respect to reasoning about geometric consequences of \(T \).

Computing sets-of-support is another application of the homFrom technique. Given theory \(T \) and model \(\mathbb{A} \), if we construct the theory \(T' = T \cup \{\neg\text{homFrom}_{\mathbb{A}}\} \) then calls to the SMT solver on theory \(T' \) are guaranteed to return models of \(T \) outside the hom-cone of \(\mathbb{A} \) if any exist. So a set-of-support for \(T \) can be generated by iterating this process.

Completeness of this strategy does not require that the models \(\mathbb{A} \) we work with are minimal. But if we do work with minimal models there will be fewer iterations. We give SetOfSupport here, for iSetOfSupport simply use \(i\)-minimal models and the \(i\text{homFrom}_{\mathbb{A}} \) sentence.

It should be noted that if a class \(C \) is a set-of-support for a theory \(T \) with respect to homomorphisms then \(C \) is a set-of-support for \(T \) with respect to \(\alpha \)-homomorphisms; this is immediate from the definitions.

Of course, there will be typically many more models comprising an \(i \)-set of support. However, it is true that if there is a finite \(C \) which is a set-of-support for a theory \(T \) with respect to \(\alpha \)-homomorphisms then there is a finite \(C' \) set-of-support for \(T \) with respect to \(\alpha \)-homomorphisms; this is immediate from the definitions.

Algorithm 19 (SetOfSupport).

input: theory \(T \) and profile \(\text{prf} \)
output: a stream \(\mathbb{M}_1, \mathbb{M}_2, \ldots \) of minimal models of \(T \) such that for any \(\text{prf} \)-model \(\mathbb{P} |\models T \), there is some \(i \) such that \(\mathbb{M}_i \not\models \mathbb{P} \).

initialize: set theory \(T^* \) to be \(T \)
while \(T^* \) is satisfiable
let \(\mathbb{M} \) be an \(\alpha \)-minimal model of \(T^* \)
output \(\mathbb{M} \)
set \(T^* \) to be \(\neg\text{homFrom}_{\mathbb{M}} \)

H. Hom-To

This is straightforward “solver programming”. Given model \(\mathbb{A} \), we want to characterize those \(\mathbb{P} \) such that there is a homomorphism \(h : \mathbb{P} \rightarrow \mathbb{A} \), by constructing a sentence \(\text{homTo}_{\mathbb{A}} \) axiomatizing such models.

Algorithm 20 (HomTo).

input: model \(\mathbb{A} \) over signature \(\Sigma \)
output: sentence \(\text{homTo}_{\mathbb{A}} \) in an expanded signature \(\Sigma^+ \), such that for any model \(\mathbb{P} |\models \Sigma, \mathbb{P} \not\models \mathbb{A} \) iff there is an expansion \(\mathbb{P}^+ \) of \(\mathbb{P} \) to \(\Sigma^+ \) with \(\mathbb{P}^+ |\models \text{homTo}_{\mathbb{M}} \).

define \(\Sigma^+ \) to be the extension of \(\Sigma \) obtained by
adding a set of fresh constants in one-to-one correspondence with the elements of the domain of \(\mathbb{A} \)
adding a function symbol \(h_S : S \rightarrow S \) at each sort \(S \)

define \(\text{homTo}_{\mathbb{A}} \) as the conjunction of the following sentences, one for each function symbol \(f \) and predicate \(R \) in \(\Sigma \).

\[
\forall x, y, f(x, y) = y \implies \bigvee \{ (h\bar{x} = \bar{e}' \land y = \bar{e}') | \mathbb{A} |\models f\bar{e} = \bar{e}' \}
\]

\[
\forall x, R(x) = true \implies \bigvee \{ (h\bar{x} = \bar{e} | R\bar{e} = true) \}
\]

For \(i\text{HomTo} \), simply add a sentence to say that \(h \) is injective.

Lemma 21. Suppose \(\mathbb{A} \) and \(\mathbb{B} \) are \(\Sigma \) models. There is a \(\Sigma \)-homomorphism \(h : \mathbb{B} \rightarrow \mathbb{A} \) iff there is a model \(\mathbb{B}^+ |\models \text{homTo}_{\mathbb{A}} \) such that \(\mathbb{B} \) is the reduct of \(\Sigma \) of \(\mathbb{B}^+ \).

Proof. Suppose \(\mathbb{B} \) is the reduction of \(\mathbb{B}^+ |\models \text{homTo}_{\mathbb{A}} \). The interpretation of \(h \) in \(\mathbb{B}^+ \) defines a function from \(|\mathbb{B}| \) to \(|\mathbb{A}| \). We want to show \(h \) is actually a \(\Sigma_\mathbb{A} \) hom. But that’s just what \(\text{homTo}_{\mathbb{A}} \) does.

Suppose \(\mathbb{B} |\models \Sigma \) and there is a homomorphism \(h : \mathbb{B} \rightarrow \mathbb{A} \). We want to show that there is an expansion \(\mathbb{B}^+ \) of \(\mathbb{B} \) satisfying \(\mathbb{B} |\models \text{homTo}_{\mathbb{A}} \). The actual homomorphism \(h \) determines the interpretation in \(\mathbb{B}^+ \) of the symbol \(h \) and the interpretation of the new constants \(\bar{e}' \). And since \(h \) is a homomorphism, the clauses in \(\text{homTo}_{\mathbb{A}} \) are satisfied.

I. Hom-From

Our eventual goal is: given a model \(\mathbb{A} \), find a formula to capture \text{not being in the hom-cone of} \(\mathbb{A} \).

This is more interesting than the \(\alpha \text{HomTo} \) problem, because we are going to \text{negate} the sentence we build, to express hom-cone-avoidance. Since universal quantifiers can be bottlenecks in SMT-solving, we want to minimize the number of existential quantifiers we use here.

The ideal outcome would be to construct an existential sentence capturing the complement of the hom cone of \(\mathbb{A} \). Equivalently we might look for a structure \(\mathbb{D} \) such that for any \(X, X \not\subseteq \mathbb{D} \) iff \(\mathbb{A} \not\subseteq X \). This is called “homomorphism duality” in the literature [EPTT17]. Such a structure doesn’t always exist; and even when it does, it can be exponentially large in the size of \(\mathbb{A} \) [EPTT17]. So we turn to heuristic methods.

Our strategy is to construct a sentence guaranteed to characterize models in the hom-cone of \(\mathbb{M} \), then refine this sentence to eliminate (some) quantifiers.
We start with the \(C \)-rules of the standard model representation for \(\mathcal{A} \) as described in Section [1]. By replacing the Razor-defined constants by existentially-quantified variables we arrive at a sentence \(\text{rep}_{\mathcal{A}} \), which is a positive-existential sentence (without disjunctions).

By the fact that homomorphisms preserve positive existential formulas and the fact that the equations of \(\text{rep}_{\mathcal{A}} \) completely describe the functions and predicates true of \(\mathcal{A} \) we have:

Lemma 22. Let \(\mathcal{A} \) and \(\mathcal{B} \) be \(\Sigma \) models. Then \(\mathcal{A} \not\leq \mathcal{B} \) if and only if \(\mathcal{B} \not\models \text{rep}_{\mathcal{A}} \).

The trouble with \(\text{rep}_{\mathcal{A}} \) is that it has as many existential quantifiers in \(\text{rep}_{\mathcal{A}} \) as there are domain elements. If we were to take \(\text{homFrom}_{\mathcal{A}} \) to be \(\text{rep}_{\mathcal{A}} \), simply negating this would lead to a sentence inconvenient for the SMT solver. We can compress the representation, though. This will lead to a nicer representation sentence, which we will take as \(\text{homFrom}_{mM} \).

Algorithm 23 (HomFrom).

input: model \(\mathcal{A} \) over signature \(\Sigma \)

output: sentence \(\text{homFrom}_{\mathcal{A}} \) over signature \(\Sigma \), such that for any model \(\mathcal{B} \models \Sigma, \mathcal{A} \not\leq \mathcal{B} \) if and only if \(\mathcal{B} \not\models \text{homFrom}_{\mathcal{A}} \).

comment: sentence \(\text{homFrom}_{\mathcal{A}} \) is designed to use as few existential quantifiers as possible, in a “best-effort” sense.

initialize: Set sentence \(\text{homFrom}_{\mathcal{A}} \) to be \(\text{rep}_{\mathcal{A}} \), the standard model representation sentence for \(\mathcal{A} \).

while there is a conjunct in the body of \(\text{homFrom}_{\mathcal{A}} \) of the form

\[
\forall y_1, \ldots, y_n, f(t_1, \ldots, t_n) = x
\]

such that \(x \) does not occur in any of the \(t_i \),

replace all occurrences of \(x \) in \(\text{homFrom}_{\mathcal{A}} \) by \(f(t_1, \ldots, t_n) \). Erase the resulting trivial equation \(f(t_1, \ldots, t_n) = f(t_1, \ldots, t_n) \) and erase the \((\exists x) \) quantifier in front.

For \(\text{HomFrom} \), first enrich \(\text{rep}_{\mathcal{A}} \) to say that each of the fresh constants naming elements of \(\mathcal{A} \) is distinct. The rest of the development goes through as described.

Lemma 24. For any model \(\mathcal{B} \models \Sigma, \mathcal{A} \not\leq \mathcal{B} \) if and only if \(\mathcal{B} \not\models \text{homFrom}_{\mathcal{A}} \). Similarly for \(\text{iHomFrom}_{\mathcal{A}} \) and \(\not\leq \).

Proof. By Lemma 22, the assertion is true at the initialization step. So it suffices to observe that each transformation of \(\text{homFrom}_{\mathcal{A}} \) yields a logically equivalent sentence.

We may write \(\text{homFrom}_{\mathcal{A}} \) as

\[
\exists x_1 \ldots, x_n, f(t_1, \ldots, t_n) = x \land \beta(x, \bar{y})
\]

so that the transformed sentence is

\[
\exists y_1 \ldots, y_n, \beta(x := f(t_1, \ldots, t_n))(\bar{y})
\]

Suppose \(\mathcal{P} \) satisfies the first sentence with environment \(\eta := \{a \mapsto \bar{a}, \bar{y} \mapsto \bar{b}\} \). Then \(\mathcal{P} \) satisfies the second sentence with \(\eta' := \bar{y} \mapsto \bar{b} \), since \(\mathcal{P} \models f(t_1, \ldots, t_n) = x \) under \(\eta \).

Suppose \(\mathcal{P} \) satisfies the second sentence with environment \(\delta := \bar{y} \mapsto \bar{b} \). Then \(\mathcal{P} \) satisfies the first sentence with \(\delta' := x \mapsto f(\delta t_1, \ldots, \delta t_n), \bar{y} \mapsto \bar{b} \) (this is a suitable environment because \(x \) does not occur in \(f(t_1, \ldots, t_n) \)).

The order in which we do these rules matters. Smaller formulas result if we process nodes as follows. Construct a graph in which the nodes are the variables occurring in the set of equations, and in which, if \(f x_1 \ldots x_n = x \) is a rule, then there is an edge from each \(x_1 \) to \(x \). Then process the nodes according to the preorder given by this graph.

Example 25. Start with

\[
\sigma \equiv \exists x_0 x_1 x_2 . f x_0 = x_2 \land f x_1 = x_0 \land f x_2 = x_1 \land c = x_2
\]

Making the graph as defined above, we treat the variables in the order \(x_2, x_1, x_0 \). We then derive, in order:

\[
\exists x_0 x_1 . f x_0 = c \land f x_1 = x_0 \land f c = x_1
\]

\[
\exists x_0 . f x_0 = c \land f c = x_0
\]

\[
fffc = c
\]

The sentence \(fffc = c \) is a much more efficient model representation then the original sentence \(\sigma \), and an SMT solver will work much more happily with its negation than with \(\neg \sigma \).

J. Section Summary

We can summarize the work in this section as follows.

1) \(i \)-minimal models for a theory \(T \) always exist; there may be no finite \(a \)-minimal models for a given theory.

2) \(a \)-minimal models are better suited to protocol analysis since they do not make unnecessary identifications between terms.

3) \(i \)-minimal models are easier to compute than \(a \)-minimal models.

4) If \(T \) is a geometric theory, and \(M \) is an \(a \)-minimal model and a core, then \(M \) is \(i \)-minimal (Lemma [10]).

5) If a class \(C \) is a set-of-support for a theory \(T \) with respect to \(i \)-homomorphisms then \(C \) is a set-of-support for \(T \) with respect to \(a \)-homomorphisms.

6) If there is a finite \(C \) which is a set-of-support for a theory \(T \) with respect to \(a \)-homomorphisms then there is a finite \(C' \) set-of-support for \(T \) with respect to \(i \)-homomorphisms.

VI. Conclusions and Future Work

In this paper, we have developed a method for analyzing systems with cryptographic protocols in the context of first-order theories such as trust assumptions, and presented an analysis of a specific example, the DoorSEP protocol.

We have described an implementation of these methods as the Logical Protocol Analysis (LPA) system. LPA is a coordination between a general-purpose model-finder, Razor, and a cryptographic protocol-specific tool, CPSA. We have shown how to share labor between Razor and CPSA so that the latter can apply its authentication test solving methods, while Razor is handling the remainder of the axiomatic theory of the protocol together with some non-protocol axioms.
The project explored the comparative virtues of minimality with respect to injective homomorphisms versus arbitrary homomorphisms, and developed algorithms for finding minimal models and computing a set-of-support of models for a theory.

Unfortunately, as the size of a protocol grows, so does the size of its theory, and especially its number of universally quantified variables. SMT solvers struggle with performance in the presence of a significant number of universal quantifiers. In future work, we plan to reorganize the software architecture as well as the selection of logical theories to deliver to the components. This motivates an architecture in which only subtheories are delivered to Z3, preferably governing smaller parts of the domain.

REFERENCES

