
Statistical Model Checking of Guessing and Timing
Attacks on Distance-bounding Protocols

Musab A. Alturki∗, Max Kanovich†‡, Tajana Ban Kirigin§, Vivek Nigam¶††, Andre Scedrov‖‡ and Carolyn Talcott∗∗
∗ King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

† University College London, London, UK
‡ National Research University Higher School of Economics, Moscow, Russia

§University of Rijeka, Department of Mathematics, Croatia
¶Federal University of Paraı́ba, João Pessoa, Brazil
‖University of Pennsylvania, Philadelphia, PA, USA

∗∗SRI International, Menlo Park, CA, USA
††fortiss, Munich, Germany

Abstract—Distance-bounding (DB) protocols were proposed to
thwart relay attacks on proximity-based access control systems.
In a DB protocol, the verifier computes an upper bound on the
distance to the prover by measuring the time needed for a signal
to travel to the prover and back. DB protocols are, however,
vulnerable to distance fraud, in which a dishonest prover is
able to manipulate the distance bound computed by an honest
verifier. Despite their conceptual simplicity, devising a formal
characterization of DB protocols and distance fraud attacks that
is amenable to automated formal analysis is non-trivial, primarily
because of their real-time and probabilistic nature. In this work,
we present a framework, based on rewriting logic, for formally
analyzing different forms of distance-fraud, including recently
identified timing attacks. We introduce a generic, real-time and
probabilistic model of DB protocols and use it to (mechanically)
verify false-acceptance and false-rejection probabilities under
various settings and attacker models through statistical model
checking with MAUDE and PVESTA. Using this framework,
we first accurately confirm known results and then define and
quantitatively evaluate new guessing-ahead attack strategies that
would otherwise be difficult to analyze manually.

Keywords: Distance-bounding protocols, Distance fraud, Proba-
bilistic rewriting, Statistical model checking, MAUDE

I. INTRODUCTION

Proximity-based access is a typical security requirement in
many real-world cyber-physical systems, e.g., smart-card gate-
access control systems. Proximity-based access, however, is
well-known to be vulnerable to relay (or Mafia fraud) attacks,
in which an attacker relays messages between a verifier (e.g.,
a card reader) and a prover (e.g., an NFC tag), maliciously
extending the effective range of communication. To protect
against relay attacks, distance-bounding (DB) protocols have
been introduced [1], [2]. In a DB protocol, the verifier
computes an upper bound on the distance to the prover by
measuring the time needed for a signal to travel to the prover
and back. Since a signal’s velocity cannot exceed the speed
of light, an upper bound on the distance to the prover can be
computed. The round-trip time is measured through a rapid
bit exchange, in which the verifier sends a challenge bit to the
prover and the prover responds as quickly as possible with

the corresponding response bit. Since relaying challenges and
responses during this phase introduces relatively significant
delays, an attacker’s ability to mount a relay attack is severely
limited.

DB protocols are, however, susceptible to Distance Fraud,
in which a dishonest prover is able to manipulate the distance
bound computed by an honest verifier to make himself appear
closer than he actually is, causing the verifier to falsely accept
the prover. Distance fraud attacks are timing attacks that are
mounted without colluding with any external entity, which
renders them particularly dangerous. One category of attacks
that can lead to distance fraud is guessing attacks, in which
the attacker attempts to correctly guess the response to the
verifier’s challenge [1]. Guessing can potentially be used to
send out a response in advance (before the challenge arrives)
so that the measured round-trip time is reduced. A second
category of distance fraud that has been recently identified
is the in-between-ticks attack [3], which exploits the compu-
tational limitations of a verifier and the differences between
the physical time and the discrete time of the verifier’s clock.
Both attack categories build on how sensitive DB protocols are
to timing of events, since the slightest timing manipulations
can result in significant errors in computing the distance. It
is important to note that both categories of attacks apply
to the rapid bit exchange phase of almost all DB protocols,
including those of the Brands and Chaum [1] and the Hancke
and Kuhn [2] families of protocols.

Although guessing attacks, in particular, were identified
when the first DB protocol was proposed [1], little has been
done since then to investigate formally and systematically their
different strategies and countermeasures. Appropriately timing
guessed responses and using different guessing strategies can
significantly affect the chances of successfully mounting a
guessing attack. Moreover, as is typical of manual analysis, the
analytical models developed by hand of the recently identified
in-between-ticks attacks [3] had to rely on some simplifying
assumptions to make the analysis tractable. Furthermore, these
models are necessarily high-level, abstracting away many

operational details of the protocol and the threat model that
could potentially affect the probability of an attack. Manually
investigating various attack strategies while taking into account
relevant details can be too labor-intensive and is susceptible
to human error.

Despite their conceptual simplicity, devising a formal char-
acterization of DB protocols and distance fraud attacks that
is amenable to automated formal analysis is non-trivial, pri-
marily because of their real-time and probabilistic nature. To
systematically and formally analyze timing attacks on DB
protocols, an expressive logical formalism is needed in which
general and faithful models of these protocols capturing a
variety of possible behaviors can be developed. Furthermore,
the models need to be both timed and probabilistic, so that ran-
domized behaviors, environment uncertainties (such as noise)
and timing of events can formally be described and analyzed.
Additionally, to automate this analysis, the models must be
executable, enabling quick prototyping and experimentation
with different designs and configurations. Executability is
particularly important as DB protocols are notorious for being
hard to implement in practice. Finally, the formalism in which
these models are developed needs to support efficient formal
analysis of quantitative properties, including probabilities, to
reason about resilience against distance fraud.

In this work, we present a framework that satisfies these re-
quirements for formally analyzing different forms of distance-
fraud attacks on DB protocols and their countermeasures.
The framework is based on probabilisitic rewrite theories [4]
enabling a formal yet natural representation of DB protocols
and attacker behaviors. Using MAUDE [5] and PVeStA [6],
statistical model checking of quantitative properties of a DB
protocol model can be automatically performed. This method-
ology provides an efficient and automatic means of verifying
complex systems without having to make simplifying assump-
tions that are usually needed for full probabilistic analysis to
be tractable. Furthermore, the framework is quite versatile,
allowing the estimation of false-acceptance and false-rejection
probabilities under various settings and attacker models. It
provides an effective means for quantitatively evaluating the
resilience of different DB protocol designs against various
forms of distance fraud, a process that would be too difficult
to handle manually. We first show how the framework is
used to accurately and mechanically confirm known results
about simple guessing and in-between-ticks attacks. We then
define new guessing-ahead attack strategies that have not been
thoroughly investigated before, and then evaluate them with
and without noise. The analysis enabled by our framework
provides deeper insights on how attack strategies compare
against each other in realistic settings and how these timing
attacks are best thwarted. Moreover, it generally demonstrates
how quantitative evaluation based on formal models of DB
protocols can be immensely useful.

The rest of the paper is organized as follows. In Section II,
we describe the Hancke-Kuhn protocol, as a representative
DB protocol, along with distance fraud attacks. Section III
introduces in some detail our rewriting model of DB protocols.

Then, in Section IV, we define the properties to be analyzed
and discuss the statistical model checking analysis results. This
is followed by an overview of related work in Section V. The
paper concludes with a summary and a discussion of future
work in Section VI.

II. DISTANCE-BOUNDING PROTOCOLS

The goal of a distance-bounding protocol is to ensure
access to some resource to valid provers that are within a
specified distance bound, and, at the same time, reject access
to provers that are located outside of the distance bound
perimeter. There are typically three phases of a DB protocol,
an initialization or a setup phase, during which nonces and/or
commitments are calculated and/or exchanged, followed by
a distance measurement phase that establishes the physical
distance, and a finalizing phase used to check commitments,
i.e., confirm identification. The distance measurement phase
is the essential part of any DB protocol. Both guessing and
in-between-ticks attacks, as the main focus of our analysis, are
due to failures in the distance measurement phase.

A. The Hancke-Kuhn Protocol

As a DB protocol, the Hancke-Kuhn protocol [2] aims to
ensure that the prover, P , is in the vicinity of the verifier, V .
This protocol assumes that the prover and the verifier share a
long term secret key, K, and a public hash function, h.

In the initial (setup) phase of the protocol the verifier
and the prover generate nonces NV and NP which are
used to calculate a sequence of 2n bits using K and h:
R0

1, . . . , R
0
n||R1

1, . . . , R
1
n, R

j
i ∈ {0, 1}.

The setup phase of Hancke-Kuhn protocol is followed by
a series of n single bit exchanges, defined by the following
procedure: To a random challenge bit Ci sent by the verifier
in the ith round, the prover instantly replies with either R0

i ,
in case Ci = 0, or R1

i , in case Ci = 1. At the same time, the
prover discards the corresponding other bit, R1

i or R0
i . This

way, the prover reveals only half of all the bits derived in the
initial phase. For each round, the verifier marks the time when
a challenge bit is sent, and the time the response is received.

In the last phase of the protocol, the verifier computes his
distance from the prover and checks that the responses are
correct. The verifier grants access to the prover if all time
tests for bit exchanges are successful, i.e., do not exceed
the predefined distance bound, and if all n bits are correctly
exchanged. Keeping in mind potential errors, due to e.g., noise,
the verifier’s decision can be parametrised so that the access
is granted if the time-test is satisfied in a number of rounds,
e.g., in a simple majority of rounds, and if only a number
of response bits, k out of n, are correct. Different acceptance
criteria are further explored when we describe the rewriting
model of DB protocols in Section III.

B. Distance Fraud Attacks

Guessing Attacks. The responder involved in the distance
measurement phase of a DB protocol can be an attacker, who
does not share the relevant secrets, including the secret key K,

with the verifier, as well as a dishonest prover, having access
to the shared secrets. An attacker with no access to the shared
secrets may try to successfully complete a protocol session by
randomly guessing the correct bit responses to the challenge
bits received. A dishonest prover may also use guessing to try
to appear closer than he actually is. He does so by guessing
challenge bits and sending response bits ahead of time, before
receiving the challenge bits. This affects the measured time
difference, and hence the relative distance calculated by the
verifier. Furthermore, as he knows the 2n bit sequence used
in the protocol session, the dishonest prover may perform
educated guessing: before receiving a challenge bit Ci, he may
randomly choose between potential response bits R0

i and R1
i .

Moreover, in the case when R0
i = R1

i , the correct response is
a priori known to the prover.

In-Between-Ticks Attack. Another type of attack that ex-
ploits the distance measurement phase of a DB protocol is the
In-Between-Ticks attack identified in [3]. It does not involve
guessing of the response bits, and can appear even when the
prover is honest and adversary is not present. This attack is
a consequence of the foundational difference between real-
time in the physical world and time management by discrete
time processors that are used as verifiers. Namely, such a
discrete time verifier performs instructions and measures time
following his clock-cycle rate and performance limitations.
This can result in discrepancy between the actual and the
observable time intervals, i.e., between actual time when the
bits are sent and received, on one side, and the recorded time
of sending and receiving bits, on the other. For more details on
this type of attack, including its probability analysis, see [3].

III. DB PROTOCOLS AS TIMED PROBABILISITIC REWRITE
THEORIES

Formal verification of resilience of a DB protocol against
guessing and timing attacks requires having an expressive
and executable formal model of the protocol and the attacker
behaviors. Rewriting logic [7], and its probabilistic exten-
sions [8], [4], provide a capable underlying formalism for this
purpose. Furthermore, using MAUDE [5], a high-performance
rewriting logic engine, models can be simulated to generate
random sample executions that can be used to statistically
model-check probabilistic properties of the protocol.

A. Rewrite Theories and MAUDE

A rewrite theory R formally describes a concurrent system
including its static structure and dynamic behavior. It is a
tuple (Σ, E∪A,R) consisting of: (1) a membership equational
logic (MEL) [9] signature Σ that declares the kinds, sorts and
operators to be used in the specification; (2) a set E of Σ-
sentences, which are universally quantified Horn clauses with
atoms that are either equations (t = t′) or memberships (t : s);
(3) a set A of equational axioms, such as commutativity,
associativity and/or identity axioms; and (4) a set R of rewrite
rules t −→ t′ if C specifying the computational behavior of
the system. (See [10] for a detailed account of generalized
rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories
with probabilistic rules [8], [4]. Assuming −→x and −→y are
disjoint, a probabilistic rewrite rule has the following form:

(∀−→x ,−→y) r : t(−→x) −→ t′(−→x ,−→y) if C(−→x)

with probability −→y := π(−→x)

A probabilistic rule introduces on its right-hand-side term new
variables −→y , the values of which depend on a probability
distribution function π parametrized by θ(−→x), where θ is a
matching substitution satisfying the condition C. A canonical
example is the probabilistic rule specifying a battery-operated
clock [5]:

clock(t, c) −→ if B then clock(t+ 1, c− c/1000.0)

else broken

with probability B := Bernoulli(c/1000.0)

As the clock clock(t, c) ticks (t is the current time and c is
the remaining battery charge), its battery charge decreases,
and its chances of transitioning into a broken state increase
(controlled by the outcome B of a Bernoulli trial). Prob-
abilistic rewrite theories unify many different probabilistic
models and can express systems involving both probabilistic
and nondeterministic features. A more detailed account of
probabilistic rewrite theories can be found in [8].

Probabilistic rewrite theories, specified as system modules
in MAUDE [5], can be simulated by sampling from probability
distributions. This is achieved using MAUDE’s pseudo-random
number generator function random(s), with s a seed, and
a constant counter that rewrites to the next natural number
using an internal strategy. Using PVESTA [6], randomized
simulations generated in this fashion can be used to statisti-
cally model check quantitative properties of the system. These
properties are specified in a rich, quantitative temporal logic,
called Quantitative Temporal Expressions (QUATEX) [4]. In
QUATEX, real-valued state and path functions are used in-
stead of boolean state and path predicates to quantitatively
specify properties about probabilistic models. QUATEX sup-
ports parameterized recursive function declarations, a standard
conditional construct, and a next modal operator ©, allowing
for an expressive language for real-valued temporal properties
(Example QUATEX expressions appear in Section IV). Given
a QUATEX path expression and a MAUDE module specifying
a probabilistic rewrite theory, statistical quantitative analysis
is performed by estimating the expected value of the path
expression against computation paths obtained by Monte Carlo
simulations. More details can be found in [4].

B. A Generic Model of DB Protocols

We introduce a model of DB protocols as a probabilistic
rewrite theory Rdb = (Σdb , Edb ∪ Adb , Rdb). Since our aim
is to be able to formally model and analyze timing and
guessing attacks, for which the rapid bit exchange phase is
the most relevant phase of a DB protocol, the other two
phases (the setup and verification phases) are only abstractly
specified. This keeps the model generic, enabling reasoning

about guessing and timing attacks in different DB protocols.
Furthermore, the model is heavily parametrized to capture
different attack behaviors and countermeasures, further adding
to its generic design. Moreover, by utilizing different facilities
provided by its underlying formalism, the model is both
probabilistic, specifying randomized behaviors and environ-
ment uncertainties, and real-time, capturing time clocks and
message transmission delays.

Due to space limitation, we omit some of the details
here. The complete specification is available online at https:
//bitbucket.org/malturki/dbp/.

C. Protocol State

The structure of the model, specified by the MEL sub-
theory (Σdb , Edb ∪Adb) of Rdb , is based on a representation
of actors in rewriting logic, which builds on its object-based
modeling facilities. In this model, the state of the protocol is
a configuration consisting of a multiset of actor objects and
messages. Objects communicate asynchronously by message
passing. An object is a term of the form <name: O | AS >,
with O the actor object’s unique name and AS its set of
attributes, constructed by an associative and commutative
comma (_,_) operator. Each attribute is a name-value pair of
the form attr : value. A message destined for object O
with payload C is represented by a term of the form O <- C,
where the payload C is a term of the sort Content.

1) Objects: Two fundamental objects in our model of a
DB protocol are the verifier object and the prover object.
The verifier object, with actor name v, maintains in its state
information about the following aspects of the protocol:

Current status. The verifier object maintains a status
attribute (of sort Status) indicating its current execution
step in the protocol. The attribute may take on one of eight
possible status values: pending and initialized (for the
setup phase), ready, sending, sent, receiving and
received (for the bit-exchange phase), and completed
(for the verification phase). Furthermore, the verifier object
records the number of rounds remaining in the current session
of the protocol in the attribute round.

Challenge-response. The verifier maintains the two bit
strings that are used during the rapid bit exchange phase of
the DB protocol using two attributes list0 and list1. Bit
strings of sort BitList are constructed using an associate
empty juxtaposition operator , with identity element nilCB.
The sort Bit, which is declared a subsort of BitList,
defines a bit as a wrapped 0 or 1 of the form b(0) and b(1)
respectively. The verifier also maintains the values of both the
selected challenge bit and the received response bit for the
current round in the attributes challenge and response,
respectively.

Round-trip time. To measure the time needed for a
challenge-response round to complete, the verifier object main-
tains two attributes: mtime-sent, the measured time value
for when the challenge was sent, and mtime-recv, the
measured time value for when the corresponding response was
received. The difference between these two values gives the

measured round-trip time, and hence the measured distance.
Furthermore, to enable modeling absence of in-between-ticks
attacks, we also include two attributes for recording the
actual time values for sending a challenge and receiving the
corresponding response: atime-sent and atime-recv,
respectively. The difference gives the actual round-trip time.
While the measured time is what a realistic verifier having
limited processing capabilities would compute, the actual
time is computable by an abstract verifier with an extremely
powerful and precise processor that is not vulnerable to the
in-between-ticks attack (see [13]). All time values are of the
sort Float to model a dense time domain.

Acceptance and rejection. The decision of acceptance or
rejection of a prover in a run of the protocol depends on the
acceptance criteria used, which may in turn depend on the
measured round-trip time, the correctness of the responses or
a combination of those. As we intend for the model to be
generic enough to accommodate different acceptance criteria,
the decision of acceptance or rejection is not recorded by the
verifier object. Instead, the verifier maintains two counters
needed for deciding acceptance, which are: (1) the number
of rounds the response’s measured round-trip time was within
the bound (mtbound-cnt), and (2) the number of rounds
the response was correct (mbit-cnt). The desired acceptance
criteria can later be defined as part of the quantitative property
to be evaluated based on the values of these counters (see
Section IV).

The prover object (with actor name p) is a much simpler ob-
ject maintaining a status attribute (which can be pending
or ready) and the attributes list0 and list1 having the
two bit strings used by the protocol.

2) The Scheduler: In addition to objects and messages,
the protocol state configuration includes a scheduler, which is
responsible for managing time and the scheduling of message
delivery. The scheduler is a term of the form {G | L}, with
G the current global clock value of the configuration and L a
time-ordered list (of sort ScheduleList) of scheduled mes-
sages, where each such message (of sort ScheduleElem) is
of the form [T,M], representing a message M scheduled for
processing at time T. As time advances, scheduled messages
in L are delivered (in time-order) to their target objects,
and newly produced messages by objects are appropriately
scheduled into L.

The scheduler is a fundamental component as it serves
several purposes. First, it provides a simple mechanism for
avoiding unquantified nondeterminism, which is a necessary
requirement for the soundness of statistical analysis. The
scheduler is used to enforce a strict ordering on message
delivery so that at most one message is ready to be consumed
at any given moment in time. Additionally, the scheduler
enables a simple and elegant solution for managing the global
time and the effects of time lapse on the configuration. Finally,
the scheduler enables more efficient simulation and analysis
by allowing us to specify the granularity of a Monte Carlo
simulation of the model (see [11] for further details).

It is important to note that the model uses dense time

(represented by real numbers) to model physical timing of
events. Moreover, the (implicit) discrete clock of the verifier
object is assumed to always be in sync with the dense physical
time of the configuration. In other words, assuming that both
physical time and the verifier’s clock begin at 0, discrete clock
ticks will occur exactly at the positive-integer-valued instants
of time. This is to have a model that is faithful to the protocol’s
description.

D. Model Parameters

To support the analysis of different attack scenarios and
countermeasures, the model is designed to be parametric in
a number of variables that can be adjusted as needed for the
analysis task at hand. The parameters are as follows:

Protocol parameters. Security parameters of the protocol
include the number of rounds of rapid bit exchange, main-
tained by ROUNDS, and the protocol’s distance upper bound
(measured in time delay), given by MAXRTT. Furthermore,
three more parameters capture time delays pertaining to ac-
tions made by the verifier: X, the time delay to send out a
challenge, and Y and Z, the time delays to record timestamps
of a challenge sent and a response received, respectively. Time
delays can be non-negative real values or random variables
with certain probability distributions. Finally, noise levels in
the communication medium are captured by the noise bias
parameter, NOISE ∈ [0, 1], which is the probability of a bit
being destroyed while in transit due to noise. Note that noise is
(random) disturbance of signals that turns useful information
(bits) into distorted signals that carry no useful information.
Therefore, unlike Hancke and Kuhn [2], where noise was
assumed to simply flip bits, which is rather unrealistic, we
model a noise-scrambled signal as a constant operator bN
(which is not of the sort Bit). Once a bit turns into bN due
to noise, it cannot be recovered.

Threat model. The in-between-ticks vulnerability can be
enabled by setting the Boolean flag IBT?, in which case the
verifier does not have access to the actual physical time. In
contrast, when IBT? is false, the verifier can use physical
time to record the actual timestamps of a challenge sent or a
response received, and hence the absence of the vulnerability.
Furthermore, the behavior of the prover is defined by the
parameter PTYPE, which can take one of three values: 0 for
a legitimate prover (no guessing), 1 for a dishonest prover
that has access to the protocol session’s bit strings (educated
guessing), and 2 for an attacker that may not have access to
the protocol session’s bit strings (random guessing). In the
cases of a dishonest prover (when PTYPE > 0), whether the
prover is able to mount a guess-ahead attack is determined
by the Boolean flag GAHEAD?, and in this case, the param-
eter GATD specifies how much sooner the attacker/dishonest
prover is sending out his premature responses to the verifier.
Finally, an upper bound on the (actual) distance between the
verifier and the prover is determined by the sum MAXRTT+H,
where H is the distance differential, which can in principle
have a value in the range (−MAXRTT,∞). While an attacker
will have a positive value for H (representing being outside

the verifier’s bound), a legitimate prover is modeled by having
H ≤ 0.

Acceptance threshold. Two parameters define acceptance
threshold levels for a run of the protocol, one for each ac-
ceptance criterion. The parameters are: (1) MIN-MTR, which
is the minimum number of successful rounds based on the
measured round-trip time, and (2) MIN-MBR, based on the
correctness of the response bits. Values may range from
0 up to ROUNDS (which represents the most restrictive
acceptance condition requiring all rounds to be successful).
Of course, simple majority and large majority can be defined
as functions on ROUNDS, and final acceptance can be based
on a combination of these parameters (e.g., a large majority
for MIN-MTR and a simple majority for MIN-MBR).

We note that using these parameters, different models can
be obtained as special instances. For example, the simple
model of the Hancke-Kuhn DB Protocol is obtained sim-
ply by assuming absence of the in-between-ticks vulnera-
bility (IBT? = false), an attacker guessing based on
the shared bit sequences (PTYPE = 1), no guess-ahead
attacks (GAHEAD? = false), a positive number of rounds
(ROUNDS > 1), acceptance based on both response correct-
ness and measured distance (with MIN-MBR = MIN-MTR =
ROUNDS), and, finally, no noise (NOISE = 0).

E. Protocol Behavior

The behaviors of the verifier and the prover in the protocol
are specified by, possibly conditional and probabilistic, rewrite
rules Rdb in Rdb. There are ten, semantically rich rewrite rules
in Rdb in total (of which six rules are probabilistic). Due to
space limitations, we only highlight below the main transitions
showing simplified versions of some representative rules (the
full specification is available at https://bitbucket.org/malturki/
dbp/). In what follows, we assume the following meta-variable
declarations: iR, xR and N of sort Nat; B0, B1, cB and cP
of sort Bit; L0 and L1 of sort BList; tG, tS, tR, tS
of sort Float. We use AS for AttributeSet and SL for
ScheduleList.

Initiating a round. The beginning of a round is triggered by
the verifier object receiving a beginRound message, while
in the ready state.

rl [BeginRound] :
<name: v | status: ready, round: iR,
atime-sent: tS, mtime-sent: tS’,
atime-recv: tR, mtime-recv: tR’,
challenge: cB, AS >

(v <- beginRound) { tG | SL }
=> <name: v | status: sending, round: p(iR),

atime-sent: (floor(tG) + 1.0 + X),
mtime-sent: 0.0, atime-recv: 0.0,
mtime-recv: 0.0,
challenge: b(if sampleBerWithP(0.5)

then 0 else 1 fi), AS >
mytick(insert({ tG | SL },
[floor(tG) + 1.0, (v <- sendChallenge)])) .

In addition to consuming the message, the rule decrements
the number of remaining rounds and resets to zero any stored

time value from the previous round, except the atime-sent,
which is set to the time value when the challenge will
actually be sent. This value is given by the expression
floor(tG) + 1.0 + X, in which floor(tG) + 1.0
is the time value when the next discrete clock tick happens
and X is the random variable for the delay associated with
sending out the challenge. Furthermore, the verifier prepares
the challenge bit to be used for this round by randomly select-
ing either the bit 0 or 1 (using an unbiased Bernoulli trial).
Finally, the verifier schedules a self-addressed message v <-
sendChallenge to send out the challenge in the next clock
cycle (self-addressed messages are commonly used in actor-
based systems to schedule internal events [12]). The operator
mytick implements an internal mechanism for preparing the
next message in the scheduler’s queue.

Sending a challenge. Upon receiving this message, the
verifier changes its status to sending and circularly shifts
the bit strings so that the bit-pair for the current round is now
at the back of the lists, preparing the bit strings for the next
round1:

rl [Challenge] :
<name: v | status: sending, list0: (B0 L0),
list1: (B1 L1), atime-sent: tS,
challenge: cB, AS >

(v <- sendChallenge) { tG | SL }
=> <name: v | status: sent, list0: (L0 B0),

list1: (L1 B1), atime-sent: tS,
challenge: cB, AS >

mytick(insert(insert({ tG | SL } ,
[floor(tG) + 1.0, (v <- recordTime)]),
[tS + XDELAY, (p <- challenge(cB))])) .

Additionally, the verifier schedules two messages: (1) a self-
addressed message v <- recordTime scheduled to be
delivered at the next discrete clock tick for the verifier to
timestamp the sending of the challenge, and (2) a challenge
message addressed to the prover and scheduled for delivery
with a delay XDELAY (the transmission delay computed as
half the sum MAXRTT+H) beyond the time tS, which is the
(recorded) actual time for sending the challenge. The challenge
message payload carries the challenge bit cB previously
selected by the verifier.

Recording the timestamp. When the message v <-
recordTime arrives, the verifier records the timestamp tG
+ Y, where tG is the current time value (as given by the
scheduler), and Y is the random variable associated with
recording a timestamp for sending the challenge. There are
no new messages scheduled.

Responding to the challenge. When the prover receives
the challenge from the verifier, the prover first shifts circularly
its stored lists, so that the lists (B0 L0) and (B1 L1) are
rewritten into (L0 B0) and (L1 B1). This is to synchronize
with the verifier’s state and prepare for the next round. The
prover then schedules up to two responses, depending on

1We note that in the Hancke-Kuhn protocol, unused bits are discarded, but
since we are not modeling other types of attacks, e.g. attacks with accelerating
clock rates of the prover, this representation works well for our purposes.

which round is currently being executed and the prover’s type.
There are generally four distinguishable cases:

1) The protocol run consists of only one round of bit ex-
change (ROUNDS is 1) or the prover is not attempting
to guess-ahead responses (GAHEAD? is false). In
these cases, the prover simply schedules a ‘standard’
response to the challenge received to be delivered after
a delay given by the transmission delay XDELAY.

2) The bit-exchange is multi-round with the current round
being the first (so the number of remaining rounds
is ROUNDS - 1), and the prover is attempting to
guess-ahead responses. In this case, the prover schedules
two responses: (1) a standard response to the challenge
received delayed by XDELAY, and (2) a guess-ahead
response in anticipation of the next challenge (the second
challenge) to be received later. The latter response is
delayed by (3.0 * XDELAY) - GATD, which is the
amount of time the prover anticipates the verifier to
expect the next response, minus the guess-ahead differ-
ential given by GATD.

3) The bit-exchange is multi-round with the current round
not being the first or the last round, and the prover is
attempting to guess-ahead responses. In this case, the
prover does not respond to the received challenge (as
it had already responded with a guess in the previous
round). Instead, the prover schedules only a guess-ahead
response for the next challenge.

4) The bit-exchange is multi-round with the current round
being the last (and the prover is guessing-ahead re-
sponses). In this case, the prover does not schedule any
response, since all the responses needed have already
been scheduled before.

The payload of the response message is computed taking into
account the value of the challenge bit received, the type of the
prover, the current and next bit pairs in the two bit strings,
and the noise level. To compute the appropriate payload, two
operators are (algebraically) defined: detBit and gssBit.
The former operator determines the response bit based on the
challenge received cB and the current bit pair B0 and B1 if
the prover is not guessing responses. Otherwise, if the prover
is attempting to guess responses, the operator uses gssBit
to compute the response.

op detBit : Bit Nat Bit Bit -> Bit .
eq detBit(cB, iG, B0, B1)
= if iG == 0 then --- No guessing

if cB == b(0) then B0 else B1 fi
else --- Guessing

gssBit(iG, B0, B1)
fi .

The operator gssBit randomly selects between B0 and B1
(for educated guessing) or between 0 and 1 (for random
guessing) as the guessed response.

op gssBit : Nat Bit Bit -> Bit .
eq gssBit(iG, B0, B1)
= if iG == 1 then --- Educated guessing

if sampleBerWithP(0.5) then B0 else B1 fi

else --- Random guessing
b(if sampleBerWithP(0.5) then 0 else 1 fi)

fi .

We note that in the cases of computing a guessed-ahead
response, the next-in-line bit pairs given by head(L0) and
head(L1) are the ones used instead of the current bit pair.
Furthermore, in any case, if noise succeeds (based on the
outcome of a coin toss with bias given by NOISE), the
response is simply turned into the illegible signal bN.

Receiving the response. When the prover’s response mes-
sage arrives, and the verifier is in the receiving state
(implying that the verifier is expecting a response), the verifier
changes its status to received, records the actual time the
response was received (which is the current time value given
by the scheduler), records the response bit, and schedules a
self-addressed message to be delivered by the next discrete
clock tick with a time delay given by Z (the random delay
associated with recording the timestamp of the response). If
the prover’s response message arrives while the verifier is not
expecting a response (indicated by a status field value different
from receiving), which can only happen if the prover is
mounting a guess-ahead attack, the verifier detects the attack
and immediately aborts the protocol session (the status is set
to aborted and the remaining rounds counter is set to 0).

Recording the timestamp. In this last step of a bit-
exchange round, the verifier records its measured timestamp
of receiving the response and updates its counters mbit-cnt
and mtbound-cnt appropriately.

IV. MODEL CHECKING TIMING ATTACKS

Two fundamental security properties of a DB protocol
are false acceptance and false rejection probabilities. False
acceptance occurs when an honest or a dishonest prover
outside the allowed perimeter or an attacker is granted access
to the protected resource by the (honest) verifier, signaling a
successful attack. False rejection, on the other hand, happens
when an honest prover is unrightfully denied access to the
resource by the (honest) verifier, despite being close enough
to the verifier.

To formally analyze false acceptance and false rejection
using the rewriting model of Rdb , we first express acceptance
and rejection in a DB protocol as temporal formulas in
QUATEX. The acceptance formula has the following form:

accepted(t) = if time() > t then hasSatisfiedThreshold()

else © accepted(t) fi ;

eval E[accepted(t0)]

The parameter t is the time limit beyond which protocol execu-
tion is halted. In Rdb , the limit (given by the actual parameter
t0) is set so that the DB protocol is guaranteed to execute all
the way to completion (or until the verifier aborts execution).
accepted(t) is a recursively defined path expression that uses
two state functions: (1) time(), which evaluates to the time
value of the current state of the protocol (given by the sched-
uler object), and (2) hasSatisfiedThreshold(), which evaluates

to 1.0 if the current state of the verifier object indicates
that the minimum acceptance threshold has been met, and
0.0 otherwise. Therefore, given an execution path, the path
expression accepted(t) evaluates to hasSatisfiedThreshold()
in the current state if the protocol run is complete; otherwise, it
returns the result of evaluating itself in the next state, denoted
by the next-state temporal operator ©. The probability of
acceptance can be approximated by estimating the expected
value of the formula over random runs of the protocol, denoted
by the query eval E[accepted(t0)]. Different acceptance cri-
teria, namely measured-time acceptance versus bit-correctness
acceptance, give rise to different versions of the formula
accepted(t).

The rejection formula rejected(t) is the dual of the accep-
tance formula and its definition is similar. A statistical ap-
proximation of the rejection probability is similarly computed
using the query eval E[rejected(t0)].

We have used our model given by Rdb to statistically model
check false acceptance and false rejection formulas under
various settings and assumptions using the statistical model
checking tool PVESTA. In the analysis presented below, we
assume a 99% confidence interval with size at most 0.02. We
also fix MAXRTT in Rdb to 4.0 time units (similar to [3],
[13]) and assume a uniform distribution for the verifier’s delays
X, Y and Z.

A. Simple Guessing Attacks

Simple guessing targets acceptance based on correctness of
responses. Resilience to simple guessing attacks is a good
basic measure of a protocol’s resilience to more sophisticated
attacks. As mentioned before, there are two possible guessing
strategies: educated guessing (denoted by GS1) and random
guessing (denoted by GS2). In GS1, the probability of false-
acceptance in a single round is 0.75 [2], while for GS2, the
probability is only 0.5, which is the optimal false acceptance
probability of a DB protocol. To reduce the probability of
false-acceptance, the bit-exchange phase is normally run in n
rounds, so that for GS1 and GS2, the probabilities are reduced
to 0.75n and 0.5n, respectively. These results are confirmed
by our model for single-round and multi-round runs of the
protocol, as the plot in Figure 1(a) shows.

In the presence of noise, to which ultra-wide band com-
munication channels commonly targeted for DB applications
are very susceptible, a legitimate prover may be denied access
causing false rejections. To investigate the effects of noise,
we estimate the probability of false rejection assuming three
levels of noise: low (a 5% chance of a bit being destroyed
due to noise), moderate (25%) and high (50%). Figure 1(b)
plots the estimated probabilities against the number of rounds
used. As noise levels increase, the probability of false rejection
increases significantly, especially for larger numbers of rounds.
Figure 1 demonstrates that reducing false acceptance and false
rejections are two conflicting requirements when deciding the
number of rounds to be used with noisy channels.

One way to reduce such large false rejection rates is to
loosen the acceptance condition so that a prover is accepted

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

GS1
GS2

(a) False acceptance with guessing

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

No Noise
Low (5%)
Moderate (25%)
High (50%)

(b) False rejection due to noise

Fig. 1. False acceptance and false rejection based on bit correctness

whenever he succeeds in at least k < n rounds (set by the
parameter MIN-MBR), where n is the number of rounds.
We investigate two acceptance thresholds: the simple majority
(SM), where 2k ≥ n, and large majority (LM), where
3k ≥ 2n. Figure 2(a) plots false acceptance probabilities as-
suming a GS1 attacker, while Figure 2(b) plots false rejection
probabilities assuming an honest prover, all at low (5%) and
high (50%) noise levels (the zero-noise cases in Figure 2(a)
are shown for comparison only).

We first point out the wavy lines, which are characteristic
of SM and LM data points and show up in all charts involving
SM and LM measurements. This phenomenon is due to the
fact that the minimum threshold values for SM and LM
acceptance may represent percentages higher than 50% and
67%, respectively, of the total number of rounds, affecting
false acceptance and false rejection. For example, in SM,
when ROUNDS is 5, the minimum threshold is 3 rounds,
representing a 60% acceptance requirement and resulting in a
lower false acceptance rate. As the number of rounds increase,
however, this phenomenon diminishes as the computed thresh-
olds converge to their target percentages.

More importantly, we observe from Figure 2(a) that noise

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

SM - 0%
LM - 0%
SM - 5%
LM - 5%
SM - 50%
LM - 50%

(a) False acceptance (assuming GS1)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

SM - 5%
LM - 5%
SM - 50%
LM - 50%

(b) False rejection

Fig. 2. False acceptance and false rejection for simple and large majority

does not help simple guessing attacks. In fact, the higher the
noise, the less effective the attacks are. Indeed, for an attack
round to be successful, the prover must make the correct
guess and noise will have to fail. The effect of noise is
especially prominent when noise is high for large values of
ROUNDS, where false acceptance is almost zero for both SM
and LM. We also note that for low noise at 5% (and similarly
at 0%), false acceptance probabilities are quite high, in the
range 0.55 − 1.0. Although this may seem counter-intuitive
at first thought, it should be expected since the acceptance
requirements of SM and LM (50% and 67%, respectively)
are lower than the success probability of a GS1 prover,
which is 75%. Nevertheless, LM performs consistently better
than SM in reducing false acceptance across all noise levels.
Unfortunately, this comes at the price of increased probability
of denying access to legitimate users, as can be seen by
comparing the plots in Figure 2a and 2b. SM, however, seems
to provide the best compromise for very high levels of noise.

B. In-between-ticks Attacks

The in-between-ticks vulnerability requires that the verifier
operates on a discrete clock and that the verifier does not

0 0.1 0.2 0.3 0.4 0.5
0.4

0.45

0.5

0.55

0.6

h

Pr
ob

ab
ili

ty

Fixed h
Theorem bound

(a) 0 < h ≤ 0.5

0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

h

Pr
ob

ab
ili

ty

Fixed h
Theorem bound

(b) 0.5 < h < 1

Fig. 3. Probability of a breach in the (single-round) DB protocol for different
values of h. The dashed lines denote the probability when h is random.

have access to the actual physical timestamps of messages sent
or received (IBT? is set to true). Through this vulnerability,
an attacker targets acceptance based on the round-trip time
(distance) measured by the verifier. To increase his chances
of acceptance, the attacker needs to be close enough (but
not necessarily too close) to the upper bound stipulated by
the protocol (given as MAXRTT in the model). This distance
differential is given by h (the parameter H in the model). We
note, as mentioned before, that this vulnerability can appear
with an honest prover and in the absence of an adversary.

We confirm false acceptance probabilities shown in Theo-
rem 4.3 of [3]. The theorem states that the attacker only needs
to be within half-a-clock tick from the bound (so 0 < h ≤ 0.5)
to succeed with probability 0.5. Moreover, as the attacker
moves away from the bound with 0.5 < h < 1, the probability
of mounting an attack linearly decreases as h increases until
it becomes zero for h ≥ 1. Figure 3 plots false acceptance
based on the round-trip time measured by the verifier against
the bounds given by Theorem 4.3 of [3], using different
values of h ranging from 0 to 1. As the chart shows, the
estimated probabilities match very closely those given by the

theorem. It is worth noting that the analytical models and
machinery used for proving this theorem in [3] are non-trivial
and achieving such precise estimations mechanically from our
model highlights the effectiveness of the framework.

Next, we investigate repeating the bit-exchange round as an
attack mitigation measure. The simple majority (SM) and large
majority (LM) acceptance thresholds are defined as above.
In [13], it was shown that SM has no positive or negative
effect on false acceptance when 0 < h ≤ 0.5 but can be
effective for 0.5 < h < 1.0 especially as the number of
rounds n increases (Theorem IV.7 in [13]). On the other hand,
LM decreases false acceptance significantly as the number of
rounds n increases for any positive h (Theorem IV.8 in [13]).
These results can be confirmed by our model while gaining
a deeper understanding of how these different thresholds
compare. Figure 4(a) plots the probability of false acceptance
using both acceptance thresholds when the protocol is run
for different values of n. For comparison, we also include
the most restrictive ‘All’ acceptance threshold requiring all
rounds to pass the bound test successfully. Figure 4(a) shows
that, for SM, false acceptance remains close to its single-round
value (0.5) as n increases, while LM reduces false acceptance
considerably. For 0.5 < h < 1.0 (not shown in the chart), both
acceptance thresholds help mitigate the attack, with LM being
more effective at lower values of n (nearly as effective as the
‘All’ strategy).

Effectiveness against the in-between-ticks attack is one
important aspect of a mitigation measure. Another equally
important aspect is false rejection. We investigate the perfor-
mance of these mitigation strategies using the same parameter
values used in our analysis of false acceptance above, except
now h is negative, representing a legitimate prover within the
protocol’s bound. Figure 4(b) plots false rejection probabilities
for different values of n when 0 > h ≥ −0.5. As n increases,
the rejection rate of ‘All’ increases rapidly all the way to 1.0
while that of SM and LM steadily decreases. Moreover, SM
seems to maintain the best false rejection rates across all n
with some noticeable margin. For −0.5 > h > −1.0 (not
shown), false rejection is not an issue as all strategies had
zero false rejection probabilities.

C. Guessing-ahead Attacks

Guessing-ahead attacks target acceptance based on both cor-
rectness of the response bits and the calculated time bounds.
Consequently, they represent more complicated scenarios than
the ones explored earlier in this section. In what follows,
we attempt to tame this complexity by assuming that the in-
between-ticks vulnerability is not present (IBT? = false), and
thus, the verifier’s time tests are based on the actual physical
time (we leave investigating guessing-ahead in the presence
of the in-between-ticks vulnerability to future work). It is
important to note here that, even with this assumption, the
verifier still operates on a discrete clock.

While guessing ahead, the prover needs to maintain syn-
chrony with the verifier’s pace of sending out challenges to
minimize the chances of being detected. This is important

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Rounds

Pr
ob

ab
ili

ty

SM
LM
All

(a) False acceptance with 0 < h ≤ 0.5

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Rounds

Pr
ob

ab
ili

ty

SM
LM
All

(b) False rejection with −0.5 < h ≤ 0

Fig. 4. False acceptance and rejection in the multi-round DB protocol

since an unsolicited response is a witness for a guessing-ahead
attempt and is used by the verifier to immediately abort the
protocol session. To synchronize with the verifier, the prover
carefully times a premature response ri+1 (for round i+ 1) in
relation to the challenge ci of the preceding round i. Therefore,
in an n-round protocol run, the last n−1 responses can all be
sent out prematurely. The first-round response is not guessed
ahead as the prover uses the first challenge to initiate the
attack. The diagram in Figure 5 illustrates a possible sequence
of challenge-response exchanges with guessing ahead.

In the simplistic, and rather unrealistic, case that a verifier’s
processing delay between receiving a response and sending
out the next-round challenge is fixed, say d, an attacker
can simply add this delay d to his guess-ahead window to
ensure that the attack goes undetected. Even if d is initially
unknown, the attacker may use the first two rounds to learn
d and then take it into account in subsequent rounds, since
it is fixed. However, in reality, d is not fixed as it depends
on the verifier’s state when the response is received along
with the (unpredictable) verifier’s hardware delays associated
with time-stamping and sending messages. Variability of d is
captured to some extent in our rewriting model by having the

Verifier Prover
c1

r1

c2 r2

c3

r3

c4 r4

send c1

recv c1
send r1

recv r1

send c2

recv c2

send r2

recv r2

send c3

recv c3

send r3

recv r3

send c4

recv c4

send r4

recv r4

Fig. 5. A challenge-response sequence involving a guessing-ahead prover. The
dashed horizontal lines mark the verifier’s discrete clock cycle boundaries, and
the vertical bars on the left highlight the verifier’s (variable) processing delay.

verifier’s actions governed by a discrete clock and by modeling
the (bounded) random time delay X for sending out challenges.
In general, randomizing d across rounds can potentially serve
as a countermeasure for guess-ahead attacks [1]. It would
therefore be of interest to analyze guessing-ahead attacks in
the presence of such randomized verifier behavior.

While the distance bound for a DB protocol is usually
public knowledge (given as part of the specification of the
protocol), the exact location of the verifier may not necessarily
be known. This means that a prover attempting a guess-ahead
attack may not know exactly what his distance h from the
bound is, although he may still be aware of the verifier’s
approximate location. Therefore, we define the following
guess-ahead strategies and consider them in our analysis:

1) The prescient strategy (PRh), which represents a prover
who knows the verifier’s exact location (and hence h)
and, therefore, responds exactly 2h time units sooner
than the anticipated time of receiving the challenge. It
models a strong attacker and serves as a benchmark for
the other attack strategies’ performance.

2) The conservative strategy (CNh), representing a prover
who is uncertain about the exact location of the verifier
and who aims to minimize the probability of the attack
being detected. In this strategy, the guess-ahead time
is chosen uniformly at random from [h, 2h]. A variation
of this strategy, denoted CN, draws its guess-ahead time
from the window [T/4, T/2], where T is the verifier’s
clock cycle period. CN can be used if the uncertainty
about the verifiers’ location is very high, and yet the
prover needs to be conservative in timing the attack.

3) The aggressive strategy (AGh), uses more aggres-
sive guess-ahead timing (chosen uniformly from

[3h/2, 5h/2]), hoping to increase his chances of meeting
the time bound requirement while risking being detected.
As above, the variant AG, in which the guess-ahead time
is drawn from [T/2, T], models an aggressive strategy
with unknown h.

We consider these three strategies (and their variants) in our
analysis. We show below the results of the most interesting
cases, where we have a capable attacker (GS1) who is fairly
close to the distance bound (0 < h ≤ 0.5) and a somewhat
cautious verifier using the large majority for both bit correct-
ness and time tests with a typical level of noise (5%). Other
possibilities can also be analyzed but they are not expected to
yield new or interesting results.

Figure 6(a) plots the probability of a successful attack using
these attack strategies for different rounds. We first observe
that knowing something about h can significantly increase an
attacker’s chances of success. The prescient strategy PRh can
achieve success probabilities ranging from 40% to 60%, even
at high round counts (and in the presence of noise!). Even
if the exact value of h is unknown, the strategy AGh can
achieve 30% to 40% success, which is still quite high, and it
outperforms the conservative strategy CNh. However, knowing
very little about the location of the verifier severely limits
the effectiveness of the attack (CN and AG). Furthermore, in
this case, following an aggressive strategy (AG) is counter-
productive.

There are four ways in which a guessing-ahead round may
fail: (1) the response bit is incorrect, (2) the response arrives
too late, (3) the response gets destroyed by noise, or (4)
the response arrives too early (the attack is detected). We
have looked into the first three already. It would therefore
be insightful to investigate round failures due to the attack
being detected by the verifier. Figure 6(b) plots the attack
detection probability for the different attack strategies. While
PRh and CNh are never detected by the verifier, the attack
detection rates for the other strategies increase with the number
of rounds, with the blindly aggressive strategy AG being the
worst performer. AGh, however, maintains a detection rate
that is comparable to the much more conservative strategy
CN, despite being much more effective than CN (as Fig-
ure 6(a) shows). By knowing approximately where the verifier
is located, an aggressive guessing-ahead strategy can be quite
effective.

V. RELATED WORK

A formal model of physical security protocols that extends
the Dolev-Yao model with dense time, network topology,
and node location is presented in [14], [15]. The model is
formalized in Isabelle/HOL and used to verify distance bound-
ing protocols where the concrete message theory includes
exclusive-or. In [16] the model is used for additional protocols
including formally analyzing ranging, distance bounding, and
secure time synchronization.

In [17], the Dolev-Yao algebraic method for protocol anal-
ysis is refined by a probabilistic model of guessing, needed to
analyze protocols that mix weak cryptography with physical

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

PRh

CNh

CN
AGh

AG

(a) False acceptance

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob

ab
ili

ty

PRh

CNh

CN
AGh

AG

(b) Attack detection rate

Fig. 6. False acceptance and attack detection with guessing-ahead (GS1) and
low noise

properties of nonstandard communication channels. The model
is used to develop a precise security proof for a proximity
authentication protocol, due to Hancke and Kuhn.

Attacks that can be found by models of cyber-physical
security protocols using dense time, but not when using dis-
crete time are presented in [3]. This is illustrated with the in-
between-ticks, which can be carried out on most DB protocols.
A probabilistic analysis of the attack is also presented.

A unified framework is introduced in [18] that aims to
improve analysis and design of DB protocols. The framework
characterizes different attacks, adversary/prover capabilities
and strategies. It introduces notions of black-box and white-
box models, and the relation between the different attacks with
respect to these models. The framework is demonstrated with
a detailed analysis of the Munilla-Peinado DB protocol. The
framework is not formalized and analysis is carried out by
hand.

An exhaustive classification for attacks on DB protocols
is defined in [19] that includes a new attack called Distance
Hijacking Attack. Countermeasures for several attacks are
proposed. The formal framework of [14], [15] is extended

to support reasoning about overshadowing attacks and the
resulting framework is used to prove the absence of attacks
after the proposed countermeasures are applied. However, all
considered attacks are caused by failures in the authentica-
tion phase of DB protocols, not by failures of the distance
measurement phase of DB protocols that we consider in our
analysis here.

The approach followed in this work, which is based on
rewriting logic and MAUDE, has been used before to for-
mally verify quantitative properties of probabilistic systems,
including analysis of resilience against DoS attacks [11],
[20], analysis and redesign of wireless sensor networks [21],
evaluation of design alternatives of distributed transaction
systems [22], among several others.

VI. CONCLUSION

We presented a framework based on rewriting logic through
which DB protocols can be faithfully specified and analyzed.
The framework is characterized by being both expressive
and generic, capturing the probabilistic, real-time interactions
of various instances of a DB protocol. Using MAUDE and
PVESTA, probabilistic properties of false acceptance and
false-rejection under different settings and attacker models
were mechanically verified through statistical model checking.
Verification confirmed very precisely some known results (for
which complex manual proofs had to be developed) and en-
abled the evaluation of other settings (such as noisy channels)
and attacker strategies (including guessing-ahead strategies)
that are not easily manually analyzable.

There are several possible extensions for future research. As
guessing-ahead and in-between-ticks attacks are both forms of
timing attacks, an investigation of their interplay is needed:
Can an attacker amplify his chances of distance fraud by
mounting a combination of guessing and in-between-ticks at-
tacks? If so, what strategies would be most effective and under
what assumptions? Moreover, what countermeasures are most
effective in preventing combinations of both attacks and how
do they affect the protocol’s false-rejection rate? These and
other properties, such as considering probability distributions
for the verifier’s delays X, Y and Z other than the uniform
distribution, can quickly become too complex for manual
analysis, but they can still be formally and automatically
verified using statistical model checking. Another direction for
future research is to extend our model and framework to allow
investigating other kinds of attacks on DB protocols that may
involve parties other than the verifier and the prover, such
as distance hijacking attacks. A third direction is to develop
suitable probabilistic extensions to timed multiset rewriting in
which DB protocols (and other probabilistic timed systems)
can be specified and probabilistically analyzed.

ACKNOWLEDGMENT

Alturki is partially supported by KFUPM through his sab-
batical project SL161003. Ban Kirigin is supported in part
by the Croatian Science Foundation under the project UIP-
05-2017-9219. Scedrov is partially supported by ONR. The

participation of Kanovich and Scedrov in the preparation
of this article was partially within the framework of the
Basic Research Program at the National Research University
Higher School of Economics (HSE) and supported within the
framework of a subsidy by the Russian Academic Excellence
Project ‘5-100’. Talcott is partly supported by ONR grant
N00014-15-1-2202 and NRL grant N0017317-1-G002.

REFERENCES

[1] S. Brands and D. Chaum, “Distance-bounding protocols,” in Advances
in Cryptology — EUROCRYPT ’93: Workshop on the Theory and
Application of Cryptographic Techniques Lofthus, Norway, May 23–27,
1993 Proceedings, T. Helleseth, Ed. Berlin, Heidelberg: Springer, 1994,
pp. 344–359.

[2] G. P. Hancke and M. G. Kuhn, “An RFID distance bounding protocol,”
in First International Conference on Security and Privacy for Emerging
Areas in Communications Networks (SECURECOMM’05), Sept 2005,
pp. 67–73.

[3] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott,
“Time, computational complexity, and probability in the analysis
of distance-bounding protocols,” Journal of Computer Security,
vol. 25, no. 6, pp. 585–630, 2017. [Online]. Available: https:
//doi.org/10.3233/JCS-0560

[4] G. Agha, J. Meseguer, and K. Sen, “PMaude: Rewrite-based specifi-
cation language for probabilistic object systems,” Electronic Notes in
Theoretical Computer Science, vol. 153, no. 2, pp. 213–239, 2006.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude - A High-Performance Logical Framework,
ser. Lecture Notes in Computer Science. Secaucus, NJ, USA: Springer-
Verlag, 2007, vol. 4350.

[6] M. A. Alturki and J. Meseguer, “PVeStA: A parallel statistical model
checking and quantitative analysis tool,” in Algebra and Coalgebra in
Computer Science, ser. Lecture Notes in Computer Science, A. Corra-
dini, B. Klin, and C. Cı̂rstea, Eds. Springer Berlin / Heidelberg, 2011,
vol. 6859, pp. 386–392.

[7] J. Meseguer, “Conditional rewriting logic as a unified model of concur-
rency,” Theor. Comput. Sci., vol. 96, no. 1, pp. 73–155, 1992.

[8] K. Sen, N. Kumar, J. Meseguer, and G. Agha, “Probabilistic rewrite
theories: Unifying models, logics and tools,” University of Illinois at
Urbana Champaign, Tech. Rep. UIUCDCS-R-2003-2347, May 2003.

[9] J. Meseguer, “Membership algebra as a logical framework for equational
specification,” in Proc. WADT’97, ser. Lecture Notes in Computer
Science, F. Parisi-Presicce, Ed., vol. 1376. Springer, 1998, pp. 18–
61.

[10] R. Bruni and J. Meseguer, “Semantic foundations for generalized rewrite
theories,” Theor. Comput. Sci., vol. 360, no. 1-3, pp. 386–414, 2006.

[11] G. Agha, C. A. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen,
and P. Thati, “Formal modeling and analysis of DoS using probabilistic
rewrite theories,” in International Workshop on Foundations of Computer
Security (FCS’05). Chicago, IL: IEEE, June 2005.

[12] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge, MA, USA: MIT Press, 1986.

[13] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott,
“Can we mitigate the attacks on distance-bounding protocols by using
challenge-response rounds repeatedly?” in Workshop on Foundations of
Computer Security, June 2016.

[14] D. Basin, S. Capkun, P. Schaller, and B. Schmidt, “Let’s get physi-
cal: Models and methods for real-world security protocols,” in Theo-
rem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–22.

[15] P. Schaller, B. Schmidt, D. Basin, and S. Capkun, “Modeling and ver-
ifying physical properties of security protocols for wireless networks,”
in 2009 22nd IEEE Computer Security Foundations Symposium, July
2009, pp. 109–123.

[16] D. Basin, S. Capkun, P. Schaller, and B. Schmidt, “Formal reasoning
about physical properties of security protocols,” ACM Transactions on
Information and System Security, vol. 14, no. 2, 2011.

[17] D. Pavlovic and C. Meadows, “Bayesian authentication: Quantifying
security of the Hancke-Kuhn protocol,” Electronic Notes in Theoretical
Computer Science, vol. 265, no. Supplement C, pp. 97 – 122, 2010,
proceedings of the 26th Conference on the Mathematical Foundations
of Programming Semantics (MFPS 2010). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066110000861

[18] G. Avoine, M. A. Bingöl, S. Kardaş, C. Lauradoux, and B. Martin,
“A framework for analyzing RFID distance bounding protocols,” J.
Comput. Secur., vol. 19, no. 2, pp. 289–317, Apr. 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1971859.1971864

[19] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun, “Distance
hijacking attacks on distance bounding protocols,” in 2012 IEEE Sym-
posium on Security and Privacy, May 2012, pp. 113–127.

[20] M. Alturki, J. Meseguer, and C. A. Gunter, “Probabilistic modeling and
analysis of DoS protection for the ASV protocol,” Electron. Notes Theor.
Comput. Sci., vol. 234, pp. 3–18, 2009.

[21] M. Katelman, J. Meseguer, and J. Hou, “Redesign of the LMST
wireless sensor protocol through formal modeling and statistical model
checking,” in Proc. of FMOODS ’08, ser. Lecture Notes in Computer
Science, vol. 5051. Berlin, Heidelberg: Springer, 2008, pp. 150–169.

[22] S. Liu, P. C. Ölveczky, J. Ganhotra, I. Gupta, and J. Meseguer,
“Exploring design alternatives for RAMP transactions through statistical
model checking,” in Formal Methods and Software Engineering: 19th
International Conference on Formal Engineering Methods, ICFEM
2017, Xi’an, China, November 13-17, 2017, Proceedings, Z. Duan and
L. Ong, Eds. Cham: Springer International Publishing, 2017, pp. 298–
314.

