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Abstract
Large real-world graph (a.k.a network, relational) data are omnipresent, in online

media, businesses, science, and the government. Analysis of these massive graphs is
crucial, in order to extract descriptive and predictive knowledge with many commer-
cial, medical, and environmental applications. In addition to its general structure,
knowing what stands out, i.e. anomalous or novel, in the data is often at least, or
even more important and interesting.

In this thesis, we build novel algorithms and tools for mining and modeling
large-scale graphs, with a focus on: (1) Graph pattern mining: we discover sur-
prising patterns that hold across diverse real-world graphs, such as the “fortification
effect” (e.g. the more donors a candidate has, the super-linearly more money s/he
will raise), dynamics of connected components over time, and power-laws in human
communications, (2) Graph modeling: we build generative mathematical models,
such as the RTG model based on “random typing” that successfully mimics a long
list of properties that real graphs exhibit, (3) Graph anomaly detection: we develop a
suite of algorithms to spot abnormalities in various conditions; for (a) plain weighted
graphs, (b) binary and categorical attributed graphs, (c) time-evolving graphs, and
(d) sensemaking and visualization of anomalies.
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Chapter 1

Introduction

1.1 Motivation and Applications

In this thesis, our focus is mining patterns and anomalies in large, time-varying, real-world
graphs using scalable algorithms and tools. Graphs provide a powerful machinery for modeling
many types of relations for both natural and human-made structures in physical, biological, and
social systems. As a result, graph data has become ubiquitous –Internet, social networks, food
web, protein networks and many more. These real-world graphs have posed a wealth of fascinat-
ing research questions and high-impact applications. For example, on-line social networks have
been generating billions of dollars of revenues; anomaly detection in terrorism networks as well
as computer networks is vital for national security; blogs have become an important medium
of spreading information and ideas on World Wide Web; brains networks and gene regulatory
networks can help us understand how our brains and cells work.

Graphs also serve as powerful tools for solving real-world problems. In other words, many
problems of practical interest can be represented as natural problems on graphs. In history, the
well-known “Seven Bridges of Koenigsberg” problem is the first real-world problem that was
solved by the study of graphs. Introduced by Leonhard Euler in 1735, the problem asks for
a walk through the city that would cross each bridge once and only once. Representing land
as nodes and bridges as edges, Euler reformulated and analyzed the problem in abstract terms,
laying the foundations of graph theory.

Since Euler, researchers have cast a tremendous number of real-world problems in diverse do-
mains as graph problems. For example, graphs are widely used in sociology as a way to explore
the spread of information or diseases among individuals. In biology graphs are used to represent
regions of species and their migration paths to study breeding patterns. Graph-centric methods
are also useful for the study of molecules in chemistry, with applications like chemical similar-
ity and largest common substructure search. Other applications include community detection,
peer recommendation, ad targeting, hijack and phishing detection, etc. In summary, graphs have
proven to be a convenient abstraction to reason about numerous problems, and graph algorithms
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are at the heart of various problems in many diverse fields.

As graphs are among the most ubiquitous models for real-world data, they rapidly grow in size
as more and more data become available. In 1735, the graph that Euler studied had only four
nodes and seven edges. Today, social graphs like Facebook and Twitter, by astounding growth in
the past decade, have reached hundreds of millions of users around the world. The World Wide
Web contains at least nine billion pages. Through impressive technical advances, biologists are
gathering more and more genomic data at lower costs. These huge amounts of real-world data
present even higher impact opportunities. With this new phenomenon, one of the biggest chal-
lenges lies in interpreting the huge volume of data being generated and in extracting descriptive,
predictive, and commercially or medically useful information from it.

Under graph mining, our interests group into three interrelated topics:

1. Graph patterns: We focus on identifying regularities that hold across real-world graphs,
and understanding their formation and evolution. Such patterns prove to be useful for var-
ious data mining tasks such as (1) modeling; by providing intuition into the mechanisms
by which networks form and evolve, (2) summarization; by providing a compact represen-
tation, (3) forecasting; by representing continuing trends, and (4) anomaly detection; by
revealing data instances that deviate significantly from the observed trends.

2. Graph generators: We focus on developing generative models that produce synthetic
graphs that can mimic real graphs. Generators are useful in providing a laboratory en-
vironment for generating synthetic graphs with certain size and characteristics, especially
for simulation studies.

3. Anomaly detection: Our goal is to build models that capture the norms in graph data and
later to exploit these models to detect and characterize anomalies and events that signifi-
cantly deviate from normal behavior. This is a crucial task, with numerous applications in
finance, security, health care, law enforcement, and so on.

Next, we give the thesis statement and an overview of how the thesis is organized. We also list
the problems we address and provide a summary of our contributions.

1.2 Thesis Statement and Overview

Real-world networks exhibit regularities, which then help reveal anomalies. More specif-
ically, in this thesis we investigate the regularities (patterns) in the formation, structure, and
evolution of real-world networks, develop generative models (generators) that explain and cap-
ture these regularities and that mimic real-world networks. We then build new methods to spot
irregularities (anomalies and events) in data, exploiting these regularities in addition to using
several novel graph mining and compression techniques.

Following the thesis statement, we organize the thesis into three parts. The outline is shown in
Table 1.1.
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Observations
Part I:
Graph
Patterns

• Chapter 3 Patterns in graph topology [Akoglu et al., 2008; Kang et al.,
2010a; Mcglohon et al., 2008]

• Chapter 4 Patterns in human communications [Akoglu et al., 2012a; Du
et al., 2009; Vaz de Melo et al., 2010].

Models
Part II:
Graph
Generators

• Chapter 6 Models of graph topology [Akoglu and Faloutsos, 2009;
Akoglu et al., 2008]

• Chapter 7 Models of human communications [Du et al., 2009].

Algorithms
Part III:
Anomaly
Detection

• Chapter 9 Anomalies in plain graphs [Akoglu et al., 2010].
• Chapters 10,11 Anomalies in attributed graphs [Akoglu et al., 2012b,c].
• Chapter 12 Events in time-evolving graphs [Akoglu and Faloutsos, 2010].
• Chapter 13 Sensemaking for graph anomalies [Akoglu et al., 2012d].

Table 1.1: Outline of thesis with references to chapters.

In the first part, Patterns of Networks, we focus on the structure and dynamics of real-world
graphs. We are interested in understanding how new nodes and edges arrive to the network and
the structure they generate at large, how they form components and how these components grow
and merge over time, and the regularities associated with weights on edges. Another focus of this
part is the study of human communications, where we analyze the social circles humans belong
to, how often they reciprocate, and their calling behavior. The questions we address are:

What are the typical patterns in the structure and dynamics of real-world networks from a
large collection of diverse domains (e.g. political campaign donations, computer network
traffic, online social network, large Web graph)? (Chapter 3)

What are the typical patterns in human communications? How large are our social circles?
How reciprocal are we, and what does it depend on? How long are our phone calls, and
how can we summarize them? (Chapter 4)

Impact

We are among the first to discover patterns in weighted graphs and in the connected components
of graphs.

• “Rebel probability” and oscillating/constant-size connected components: We discover
that the smaller connected components grow up to a certain size at which they merge
into the largest component (§3.1.3), and that newcomers rebel this largest component with
probability that drops exponentially with their degree (§3.1.5).
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• “Fortification effect” and other non-linear weighted-network patterns: Our findings
include the surprising law of fortification (§3.2.2), which formulates a power law relation
between edges and weights in real networks.

• Power-laws in human communications: We contribute the first model (§4.2.3) that suc-
cinctly captures the reciprocity behavior in human communications, and a new model (§4.3.2)
that summarizes call duration behavior of millions of humans. Both models consistently
provide the best fit to real data, among popular competitors (Pareto, Lognormal, Yule).

In the second part, Generative Models of Networks, we create models that produce synthetic
but realistic graphs. First, we develop models that mimic general real-world graphs. Second, we
focus particularly on human communication behavior and build a model to mimic this type of
behavior. The main questions of interest are:

How could we have a realistic generative model that will produce synthetic graphs that
look like real, i.e. graphs that obey all the patterns we know so far, as well as the newly
discovered ones for dynamic and weighted graphs? (Chapter 6)

How could we design a realistic and intuitive generative model that will naturally repro-
duce real human-to-human communication behavior? (Chapter 7)

Impact

We are among the first to propose a graph generator for weighted graphs that also captures all
other related properties.

• Realistic generative models for graphs: Our first model for general graphs, the Recursive
Tensor Model (§6.1), provably models certain graph laws and is the first to model bursty
traffic. Our later model, the Random Typing Graphs (RTG) (§6.2), unlike previous models,
mimics all eleven of the known properties of real-world graphs (see Table 2.2 for a list).
As such, RTG won the Best Knowledge Discovery Paper award in the Conference on
Principles and Practice of Knowledge Discovery (PKDD) 2009.

• Utility-driven model for human communications: We designed a realistic utility-driven
graph generator, the Pay-and-Call model (§7.1), for modeling human communication be-
havior. This agent-based model allows us to understand the local mechanisms that play
role in the formation of communication networks and to answer what-if scenarios.

In the last and third part, Anomaly Detection, we focus on the anomaly and event detection
problem. We exploit compression based techniques, model fitting, and graph mining techniques
to address the following problems: anomalous node detection in plain graphs, cluster and outlier
detection in attributed graphs, and event detection in time series of graphs. We also develop
visualization and sensemaking tools for the end user or analyst of the detected anomalies. The
list of problems under the anomaly detection setting are:

Given a large, weighted graph, how can we find anomalies? Which rules should be vio-
lated, before we label a node as an anomaly? (Chapter 9)
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Given a graph with node attributes, how can we find meaningful patterns such as clusters
of nodes and clusters of attributes, as well as bridges and outliers? (Chapter 10)

Given a database with categorical attributes, how can we find meaningful patterns that
succinctly describe the data and spot outliers? (Chapter 11)

At what points in time many of the nodes in a given time-varying graph change their
behavior significantly? Can we attribute the change to specific nodes, that is, can we
characterize which nodes change in behavior the most? (Chapter 12)

How can we use the network structure to summarize a set of (anomalous) nodes, by parti-
tioning them such that for each part we have a simple tour connecting the grouped nodes,
while nodes in different parts are not easily reachable? In other words, how can we sum-
marize the set of (anomalous) nodes for easy sensemaking? (Chapter 13)

Impact

We develop a collection of novel methods to detect anomalies in a graph under various settings:
for graphs for which we only know the graph structure, for richer graphs with attributes, and for
graphs changing over time. These methods serve as an ensemble that can be employed under
different or changing conditions.

• Automatic anomaly detection in plain graphs: We are among the first to detect outlier
nodes in graph data (§9.1), rather than in a collection of data points. As such, our ODD-
BALL won the Best Paper award in the Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD) 2010. It has been integrated into Carnegie Mellon’s Pegasus
Tera-Scale Graph Mining system, and is a main component of ADAMS (Anomaly Detec-
tion at Multi Scale) research initiative supported by DARPA.

• Parameter-free mining and clustering in attributed graphs: We introduced a novel
clustering model, called PICS (§10.1), to find groups of nodes in attributed graphs. PICS spots
bridge-nodes with connections across clusters and outlier-nodes that do not belong well to
any cluster. We also proposed a new approach, called COMPREX (§11.1), to identify
anomalies in attributed graphs, that exploits pattern-based compression. Compression has
been primarily used in communications theory and databases; our work is one of few to
explore compression for data mining tasks. This work and its extension to time-evolving
graphs led to two patents (filed with high-impact score) at IBM Research Labs.

• Automatic event detection and “attribution” in time-evolving graphs: We developed
an algorithm (§12.1) to quantify “change” for time-varying graphs that flags “events” at
which the change is significant. It also does “attribution”; to point out the specific nodes
that contribute most to the change. This work was developed for the Network Science
Collaborative Technology Alliance (NS-CTA) supported by the Army Research Labs.

We note that all of our methods (1) work for unlabeled and weighted graphs, and (2) operate
in a completely unsupervised fashion. Moreover we enable “model-driven anomaly charac-
terization”, that is, we provide the reasoning for flagged anomalies, as well as novel tools for
visualization and sensemaking (§13.1).
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Part I

Patterns of Networks
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Chapter 2

Preliminaries

2.1 Introduction

What do real-world networks look like on a global scale? What are the typical patterns in the
structure and dynamics of networks at large? For example, how do nodes join a network and
form edges over time? After an edge forms, what are the patterns associated with the weights on
the edges? How do the different connected components of a network form and evolve? What are
the typical patterns in human communications?

In this part, we begin to answer these questions by studying many networks from diverse do-
mains. The idea is to analyze topological and dynamical features of these networks such as the
diameter, connected components, edge weights, etc. and how they correlate with each other and
evolve over time.

There has been extensive work focusing on static snapshots of unweighted graphs, where fasci-
nating properties have been discovered, the most striking ones being the “small-world” phe-
nomenon [Watts and Strogatz, 1998] (also known as “six degrees of separation” [Milgram,
1967]) and the power law degree distributions [Barabasi and Albert, 1999; Faloutsos et al., 1999].
Time-evolving graphs have attracted attention only recently, where even more fascinating prop-
erties have been discovered, like shrinking diameters, and the so-called densification power law
[Leskovec et al., 2005b].

One central topic of this part is the study of some of the most important properties apparent
in networks, with a particular emphasis on dynamic networks, as well as some of the newer
findings with respect to weighted networks. Most analyses in previous work focused on the
“giant connected component” (GCC), either explicitly or implicitly, and moreover it ignored
multiple links between nodes or weights on edges. Here we shift our focus to the components
that are of moderate size but “disconnected” from the GCC of the graph, which we will refer to
as the “next-largest connected components” (NLCCs). In particular, we study the dynamics of
how these components form and merge. We also study edge weights, particularly how weighted
edges are added over time and their correlation with other structural properties.
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Another main theme of this part is the study of human communication networks. Most previ-
ous work in network science and social network analysis focus on node level degree distribu-
tions [Broder et al., 2000; Faloutsos et al., 1999; Leskovec et al., 2007b], communities [Nuss-
baum et al., 2010; Satuluri and Parthasarathy, 2009; Tantipathananandh et al., 2007], and triadic
relations, such as clustering coefficients and triangle closures [Granovetter, 1973]. Here we build
on triadic relations and study social circles people belong to in human-to-human networks, like
phone call, text and instant messaging networks. We also study dyadic relations; specifically the
reciprocity relations among individuals and the associated bivariate distributions. Furthermore,
we find new patterns with respect to call durations of mobile phone users.

The questions of interest are:

• How do networks behave over time? Does the structure vary as the network grows? In what
fashion do new entities enter a network? Does the network retain certain graph properties
as it grows and evolves? Does the graph undergo a “phase transition”, in which its behavior
suddenly changes?

• How do the next-largest connected components change over time? One might argue that
they grow, as new nodes are being added; and their size would probably remain a fixed
fraction of the size of the GCC. Someone else might counter-argue that they shrink, and
they eventually get absorbed into the GCC. What is happening, in real graphs?

• What distributions and patterns do weighted graphs maintain? How does the distribution
of weights change over time– do we also observe a densification of weights as well as
single-edges? How does the distribution of weights relate to the degree distribution? Is the
edge weight related to the popularity of its adjacent nodes? Is the addition of weight bursty
over time, or is it uniform?

• What patterns should we expect in a network of human-to-human interactions? How large
are our social circles on average? If someone has many contacts, does that indicate popu-
larity? How long are the phone calls of mobile phone users? What are the chances of a call
to end, given its current duration? What is the best way to summarize the calling behavior
of a user? What are typical reciprocity relations between individuals? What is reciprocity
correlated in the network?

Answering these questions is important to understand how natural graphs form and evolve, and
to (a) spot anomalous graphs and sub-graphs; (b) answer questions about entities in a network
and what-if scenarios; and (c) develop understanding on human communication behavior.

Let’s elaborate on each of the above applications: (a) Spotting anomalies is vital for determining
abuse or fault in social and computer networks, such as unwanted calls and faulty equipment
in communication networks, link-spamming in a web graph, fraudulent reputation building in
e-auction systems [Pandit et al., 2007], detection of dwindling/abnormal social sub-groups in a
social-networking site like Yahoo-360 (360.yahoo.com), Facebook (www.facebook.com)
and LinkedIn (www.linkedin.com), network intrusion [Lazarevic et al., 2003]. (b) Analyz-
ing network properties is also useful for identifying authorities and search algorithms [Borodin
et al., 2005; Chakrabarti et al., 1999; Kumar et al., 2006], for discovering the “network value”
of customers for using viral marketing [Richardson and Domingos, 2002], or to improve recom-
mendation systems [Bell et al., 2007]. What-if scenarios are vital for extrapolation, provisioning
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and algorithm design: For example if we expect that the number of links will double within
the next year, we should provision for the appropriate hardware and infrastructure to store and
process the upcoming queries. (c) Human behavior models provide insight on natural human
behavior at individual level (e.g. evidence shows that reciprocal relationships are highly proba-
ble to persist in the future [Cesar A. Hidalgo, 2008]) as well as on global behavior at network
scale (propagation of viruses in computer networks or spreading information and ideas in social
networks clearly depend on the presence of mutual links in the network).

The following two chapters in this part are based on work as cited below.

• Chapter 3 Patterns in graph topology
[Akoglu et al., 2008; Kang et al., 2010a; Mcglohon et al., 2008]

• Chapter 4 Patterns in human communications
[Akoglu et al., 2012a; Du et al., 2009; Vaz de Melo et al., 2010].

Before delving into the study of real graph patterns, we next establish the terms and definitions
we use in the rest of this part, present related work, and introduce the datasets we studied.

2.2 Definitions

In this section we provide basic definitions and terms we use. A full list of symbols is listed in
Table 2.1.

Networks as Graphs

A network is typically represented by a graph. Throughout the thesis we use network and graph
interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges E: G = (V,E).
We represent the sizes of V and E as |V | and |E|. A graph may be directed or undirected–
for instance, a phone call may be from one party to another, and will have a directed edge, or a
mutual friendship may be represented as an undirected edge.

Graphs may also be weighted, where there may be multiple edges occurring between two nodes
(e.g. repeated phone calls) or specific edge weights (e.g. monetary amounts for transactions). In
a weighted graph G, let ei,j be the edge between node i and node j. We shall refer to these two
nodes as the “neighboring nodes” or “incident nodes” of edge ei,j . Let wi,j be the weight on edge
ei,j . The total weight wi of node i is defined as the sum of weights of all its incident edges, that
is wi =

∑di
k=1wi,k, where di denotes its degree. As we show later, there is a relation between a

given edge weight wi,j and the weights of its neighboring nodes wi and wj .

Finally, graphs may be unipartite or multipartite. Most social networks one thinks of are unipartite–
people in a group, papers in a citation network, etc. However, there may also be multi-partite
graphs– that is, there are multiple classes of nodes and edges that are only drawn between nodes
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Symbol Description
G Graph representation of datasets
V Set of nodes for graph G
E Set of edges for graph G
N Number of nodes, or |V|
E Number of edges, or |E|
ei,j Edge between node i and node j
wi,j Weight on edge ei,j
wi Weight of node i (sum of weights of incident edges)
A 0-1 Adjacency matrix of the unweighted graph
Aw Real-value adjacency matrix of the weighted graph
ai,j Entry in matrix A
λ1 Principal eigenvalue of unweighted graph
λ1,w Principal eigenvalue of weighted graph

Table 2.1: Table of symbols used in notation.

of different classes. Bipartite graphs, like the IMDB movie-actor graph, consist of disjoint sets
of nodes V1 and V2, say, for authors and movies, with no edges among nodes of same type.

We can also represent a network with an adjacency matrix A, where nodes are in rows and
columns, and numbers in the matrix indicate the existence of edges. For unweighted graphs, all
entries are 0 or 1; for weighted graphs the adjacency matrix contains the values of the weights.
Figure 2.1 shows examples of graphs and their adjacency matrices.

We next introduce other important concepts we use in analyzing these graphs.

Components and Cliques

We refer to a connected component in a graph as a set of nodes and edges where there exists a
path between any two nodes in the set (For directed graphs, this translates to a weakly connected
component whereas a strongly connected component requires a directed path between its pairs
of nodes). We find that in real graphs over time, a giant connected component (GCC) forms.
However, it is also of interest to study the smaller components– when do they choose to join the
GCC, what size do they reach before doing so, and what does the distribution of component sizes
look like? We provide answers to these questions in Chapter 3.

Given a subgraph Gi of G, if ∀u, v ∈ V Gi, ∃(u, v) ∈ EG, then Gi is called a complete subgraph
or a clique of G. Furthermore, if there is no other subgraph Gj that is also a clique of G with
V Gj ⊃ V Gi, Gi is called a maximal clique of G. In Chapter 4, we treat the maximal cliques in
a graph as social circles, and study their properties in human communication networks.
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n1	  

n2	  

n3	  

n4	  

m1	  

m2	  

m3	  

B1	   B2	   B3	   B4	  

B1	   0	   1	   0	   0	  

B2	   1	   0	   0	   0	  

B3	   0	   0	   0	   0	  

B4	   1	   2	   3	   0	  

n1	   n2	   n3	   n4	  

m1	   1	   0	   1	   0	  

m2	   1	   0	   0	   0	  

m3	   0	   1	   0	   1	  

Figure 2.1: Illustrations of example graphs. On the left is a unipartite, directed, weighted graph
and the corresponding adjacency matrix. On the right is an undirected, bipartite
graph and the corresponding adjacency matrix.

Diameter and Effective Diameter

For a given (static) graph, its diameter is defined as the maximum distance between any two
nodes, where distance is the minimum number of hops (i.e., edges that must be traversed) on the
path from one node to another, ignoring directionality and edge-weights.

Since the diameter is defined as the maximum-length shortest path between all possible pairs, it
can easily be hijacked by long chains. Therefore, often the effective diameter is used as a more
robust metric, which is the 90-percentile of the pairwise distances among all reachable pairs of
nodes. In other words, the effective diameter is the minimum number of hops in which some
fraction (usually 90%) of all connected node pairs can be reached [Siganos et al., 2006].

Calculating the diameter of a graph is O(N2). Therefore, we choose to estimate the graph diam-
eter by sampling nodes from the giant component. For s = {1, 2, ..., S}, we choose two nodes at
random and calculate the distance (using breadth-first search). We then choose to record the 90
percentile value of distances, so we take the .9S largest recorded value. The distance operation
is O(dk), where d is the graph diameter and k the maximum degree of any node– on average
this is a much smaller cost. Intuitively, the diameter represents how much of a “small world” the
graph is– how quickly one can get from one “end” of the graph to another [Tauro et al., 2001].
Alternative methods to sampling would include ANF [Palmer et al., 2002].
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Radius and Effective Radius

While the diameter is defined over an entire graph, radius is defined for a particular node in the
graph. Specifically, for a given node, its radius is defined as the maximum of all its distances to
other nodes in the graph. Similar to effective diameter as described before, its effective radius is
the 90-percentile of these distances.

Heavy-tailed Distributions

While the Gaussian distribution is common in nature, there are many cases where the probability
of events far to the right of the mean is significantly higher than in Gaussians. In the Internet,
for example, most routers have a very low degree (perhaps “home” routers), while a few routers
have extremely high degree (perhaps the “core” routers of the Internet backbone) [Faloutsos
et al., 1999] Heavy-tailed distributions attempt to model this. They are known as “heavy-tailed”
because, while traditional exponential distributions have bounded variance (large deviations from
the mean become nearly impossible), p(x) decays polynomially quickly instead of exponentially
as x→∞, creating a “fat tail” for extreme values on the PDF plot.

One of the more well-known heavy-tailed distributions is the power law distribution. Two vari-
ables x and y are related by a power law when:

y(x) = Ax−γ (2.1)

where A and γ are positive constants –γ is often called the power law exponent.

A random variable is distributed according to a power law when the probability density function
(pdf) is given by:

p(x) = Ax−γ, γ > 1, x ≥ xmin (2.2)

The extra γ > 1 requirement ensures that p(x) can be normalized. Power laws with γ < 1 rarely
occur in nature, if ever [Newman, 2005].

Skewed distributions, such as power laws, occur very often in real-world graphs, as we will
discuss. Figures 2.2(a) and 2.2(b) show two examples of power laws.

While power laws appear in a large number of graphs, deviations from a pure power law are also
observed. Two most common deviations are exponential cutoffs and lognormals.

Sometimes, the distribution looks like a power law over the lower range of values along the x-
axis, but decays very fast for higher values. Often, this decay is exponential, and this is usually
called an exponential cutoff:

y(x = k) ∝ e−k/κk−γ (2.3)

where e−k/κ is the exponential cutoff term and k−γ is the power law term.

Similar distributions were studied by [Bi et al., 2001], who found that a discrete truncated log-
normal (called the Discrete Gaussian Exponential or “DGX” by the authors) gives a very good
fit. A lognormal is a distribution whose logarithm is a Gaussian; it looks like a truncated parabola
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Figure 2.2: Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of
75, 888 people and 508, 960 edges [Richardson and Domingos, 2001]). Both follow
power-laws. In contrast, plot (c) shows the out-degree distribution of a Clickstream
graph (a bipartite graph of users and the websites they surf [Montgomery and Falout-
sos, 2001]), which deviates from the power-law pattern.

in log-log scales. The DGX distribution has been used to fit the degree distribution of a bipartite
“clickstream” graph linking websites and users (see Figure 2.2(c)).

Methods for fitting heavy-tailed distributions are described in [Clauset et al., 2009; Newman,
2005].

Burstiness and Entropy Plots

Human activity, including edge additions in graphs, is often bursty. If the traffic is self-similar,
then we can measure the burstiness, using the intrinsic, or fractal dimension of the cloud of
timestamps of edge-additions (or weight-additions). Let ∆W (t) be the total weight of edges that
were added during the t-th interval, e.g., the total network flow on day t, among all the machines
we are observing.

Among the many methods that measure self-similarity (Hurst exponent, etc. [Schroeder, 1991]),
we choose the entropy plot [Wang et al., 2002], which plots the entropy H(r) versus the reso-
lution r. The resolution is the scale, that is, at resolution r, we divide our time interval into 2r

equal sub-intervals, sum the weight-additions ∆W (t) in each sub-interval k (k = 1 . . . 2r), nor-
malize into fractions pk (= ∆W (t)/Wtotal), and compute the Shannon entropy of the sequence
pk: H(r) = −∑k pk log2 pk. If the plot H(r) is linear in some range of resolutions, the cor-
responding time sequence is said to be fractal in that range, and the slope of the plot is defined
as the intrinsic (or fractal) dimension D of the time sequence. Notice that a uniform weight-
addition distribution yields D=1; a lower value of D corresponds to a more bursty time sequence
like a Cantor dust [Schroeder, 1991], with a single burst having the lowest D=0: the intrinsic
dimension of a point. Also note that the “b-model” [Wang et al., 2002], a variation of the 80-20
model, generates such self-similar traffic.
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2.3 Related Work

For the purpose of organization, we divide related work into those applying to the study of graph
structure and dynamics and to the study of human communications.

2.3.1 Previous patterns in structure and dynamics

Properties of real-world graphs observed to date can be summarized under a “2-by-2” grid struc-
ture: those on static graphs (structural patterns) and those on dynamic graphs (temporal patterns),
each of which can further be subdivided into two –unweighted and weighted patterns.

An overview of all known real-world graph properties, including the newer ones that we will
describe in this thesis, is given in Table 2.2. The patterns highlighted in bold are introduced
in this thesis in Chapter 3. As one can notice, our focus is mostly on weighted graphs and
dynamic properties. In this section, we present previously discovered patterns; namely patterns
in degree distributions, diameter, triangles, eigenvalues, community structure, and graph density.
We describe those in detail next.

Unweighted Weighted

St
at

ic

SU-1 Heavy-tailed degree distribution
SU-2 Small diameter
SU-3 Triangle Power Law (TPL)
SU-4 Eigenvalue power law (EPL)
SU-5 Community structure
SU-6 Chain-like NLCCs

SW-1 Edge Weights Power Law (EWPL)
SW-2 Snapshot Power Law (SPL)

D
yn

am
ic

DU-1 Shrinking diameter
DU-2 Densification Power Law (DPL)
DU-3 Diameter plot and Gelling point
DU-4 Constant/Oscillating NLCCs
DU-5 Stable fractal dimension of CCs
DU-6 ‘Rebel’ prob. to NLCCs
DU-7 Principal eigenvalue over time

DW-1 Weight Power Law (WPL)
DW-2 Bursty weight additions
DW-3 Weighted principal eig. over time

Table 2.2: Summary of real graph properties. Patterns in bold face are introduced in this thesis.
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SU-1: Heavy-tailed Degree Distribution

The degree distribution of many real graphs obey a power law of the form f(d) ∝ d−α, with the
exponent α > 0, and f(d) being the fraction of nodes with degree d. Such power-law relations
as well as many more have been reported in [Chakrabarti et al., 2004b; Faloutsos et al., 1999;
Kleinberg et al., 1999; Newman, 2005]. Intuitively, power-law-like distributions for degrees state
that there are many low degree nodes, whereas only a few high degree nodes (also referred to as
“hubs”) exist in real graphs.

SU-2: Small Diameter

One of the most striking patterns that real-world graphs have is a small diameter, which is also
known as the “small-world phenomenon” or the “six degrees of separation”. Intuitively, the
diameter represents how much of a “small world” the graph is– how quickly one can get from
one “end” of the graph to another.

Many real graphs were found to exhibit surprisingly small diameters– for example, 19 for the
Web [Albert et al., 1999], and the well-known number 6 in social networks [Barabasi, 2003].
Most recently [Kang et al., 2010b] showed that even a billion-node Yahoo! Web graph has
diameter only 7.6.

SU-3: Triangle Power Law (TPL)

The number of triangles ∆ and the number of nodes that participate in ∆ number of triangles
follow a power-law in the form of f(∆) ∝ ∆σ, with the exponent σ < 0 [Tsourakakis, 2008].
The TPL intuitively states that while many nodes have only a few triangles in their local neigh-
borhoods, a few nodes participate in many number of triangles with their neighbors. The local
number of triangles is also related to the clustering coefficient of graphs.

SU-4: Spectral properties and Eigenvalue Power Law (EPL)

There have been several studies on spectral properties of power-law graphs. [Siganos et al., 2003]
examined the spectrum of the adjacency matrix of the AS Internet topology and reported that
the 20 or so largest eigenvalues of the Internet graph are power-law distributed with exponent
between .45 and .5. [Mihail and Papadimitriou, 2002] later provided an explanation for the
“Eigenvalue Power Law”, showing that it is a consequence of the “Degree Power Law”.

[Farkas et al., 2001] studied the numerical and analytical properties of the adjacency matrices
of complex networks and reported surprising results on the spectra of adjacency matrices cor-
responding to several models of real-world graphs. Moreover, [Lu and Vu., 2003] analyzed the
eigenvalues of random graphs for which the number of nodes of degree d follow a power law and
reported bounds on the first and second eigenvalues of such graphs for certain parameters.
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SU-5: Community Structure

Real-world graphs are found to exhibit a modular structure, with nodes forming groups, and
possibly groups within groups [Flake et al., 2002; Girvan and Newman, 2002; Schwartz and
Wood, 1992]. In a modular graph, the nodes form communities where groups of nodes in the
same community are tighter connected to each other than to those nodes outside the community.
Quantitative measures for such a structure include modularity [Girvan and Newman, 2002] and
conductance [Andersen et al., 2006].

DU-1: Shrinking Diameter

[Leskovec et al., 2005b] showed that not only is the diameter of real graphs small, but it also
shrinks and then stabilizes over time. This pattern can be attributed to the “gelling point” and the
“densification” in real graphs both of which are described in the following sections. Briefly, at
the “gelling point” many small disconnected components merge and form the largest connected
component in the graph. This can be thought as the ‘coalescence’ of the graph at which point
the diameter ‘spikes’. Afterwards, with the addition of new edges the graph ‘densifies’ and the
diameter keeps shrinking until it reaches an equilibrium.

DU-2: Densification Power Law (DPL)

Time-evolving graphs follow the “Densification Power Law” with the equation E(t) ∝ N(t)β ,
at all time ticks t [Leskovec et al., 2005b], where β is the densification exponent, and E(t) and
N(t) are the number of edges and nodes at time t, respectively.

Real graphs studied are shown to obey the DPL, with exponents between 1.03 and 1.7. The
power-law exponent being greater than 1 indicates a super-linearity between the number of nodes
and the number of edges in real graphs. That is, it implies that for example when the number of
nodes N in a graph doubles, the number of edges E more than doubles– hence the densification.
It also explains away the shrinking diameter phenomenon described earlier.

2.3.2 Previous studies on human communications

There has been previous work on studying human-to-human communication networks in order to
understand various aspects of human behavior. [Onnela et al., 2007a] and [Onnela et al., 2007b]
built a network from mobile phone calls records and, from it, they make a detailed analysis of its
network properties. They identified relationships between node weights and network topology,
finding that the weak ties are commonly responsible for linking communities, thus having a high
betweenness centrality or low link overlap. Moreover, [Hidalgo and Rodriguez-Sickert, 2008]
verified that the persistence of an edge is highly correlated to its reciprocity and to the topological
overlap. It is also common to analyze the networks from mobile companies in order to improve
their services. For instance, [Cortes et al., 2001; Hill and Nagle, 2009] proposed a framework
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and data structures for identifying fraudulent consumers on telecommunication networks based
on their degree distribution and dynamics and, [Nanavati et al., 2006] proposed metrics that can
be employed by a business strategy planner involved in the telecom domain.

Another use for a mobile phone dataset is to study the individual attributes of the users. [Guo
et al., 2007] analyzed mobile phone calls that arrived in a mobile switch center in a GSM system
of Qingdao, China, and they found that the duration of the phone calls is best modeled by a
log-normal distribution. Later, [Seshadri et al., 2008] proposed the DPLN distribution to model
the distributions of the number of phone calls per customer, the total talk minutes per customer
and the distinct number of calling partners per customer. [Willkomm et al., 2008] studied the
duration of mobile calls arriving at a base station during different periods and also found that
they are neither exponentially nor log-normally distributed, possessing significant deviations that
make them hard to model. They verified that about 10% of calls have a duration of around 27
seconds, that correspond to calls which the called mobile users did not answer and the calls were
redirected to voice-mail.

2.4 Datasets

We studied several large real networks, described in detail in Table 2.3, in terms of size, weights,
and explanation of edges. Several of our graphs had no obvious weighting scheme: for example,
a single paper or patent will cite another only a single time. The graphs that did have weights
are also further divided into two schemes, multi-edges and edge-weights. In the edge-weights
scheme, there is an obvious weight on edges, such as dollar amounts in campaign donations, or
packet-counts in network traffic. For multi-edges, weights are added if there is more than one
interaction between two nodes. For instance, if a blog cites another blog at a given time, its
weight is 1. If it cites the blog again later, the weight becomes 2. In all the datasets, we assume
that edges are never deleted, because edge deletion never explicitly appeared.

The datasets are gathered from publicly available data. NIPS1, Arxiv and Patent [Leskovec et al.,
2005b] are academic paper or patent citation graphs with no weighting scheme. IMDB indicates
movie-actor information, where an edge occurs if an actor participates in a movie [Barabasi and
Albert, 1999]. Netflix is the dataset from the Netflix Prize competition2, with user-movie links
(we ignored the ratings); we also noticed that it only contained users with 100 or more ratings.
BlogNet and PostNet are two representations of the same data, hyperlinks between blog posts
[Leskovec et al., 2007b]. In PostNet nodes represent individual posts, while in BlogNet each
node represents a blog. Essentially, PostNet is a paper citation network while BlogNet is an
author citation network (which contains multi-edges).

Oregon is an autonomous systems network 3, which contains AS peering information inferred
from Oregon route-views BGP data. Enron contains email interactions at Enron collected from

1www.cs.toronto.edu/∼roweis/data.html
2www.netflixprize.com
3University of Oregon Route Views project, www.routeviews.org
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about 1998 to 2002 (made public by the Federal Energy Regulatory Commission during its in-
vestigation). NetTraffic records IP-source/IP-destination pairs, along with the number of packets
sent, per unit time. Auth-Conf, Key-Conf, and Auth-Key are all from DBLP 4, with the obvious
meanings. CampOrg and CampIndiv are bipartite graphs from U.S. Federal Election Commis-
sion. They record donations (dollar amounts) between organizations and political candidates,
and between individuals and organizations 5.

HEP-PH and HEP-TH contain Physics phenomenology and theory paper citations, respectively.
YahooWeb graph contains 1.4 billion Web pages and 6.6 billion links among them. It was crawled
by Yahoo-Altavista search engine in 2002. It contains around 31 million unique sites. The
top 3 sites with largest number of pages are http://metaquest.bc.edu/, http://www.cricket.org/,
http://www.nyu.edu/.

Datasets used to analyze patterns in human communications span several months of activity and
cover different types of communications including phone call, SMS (Short Message Service),
and IM (Instant Message). The edge weights denote the total count of phone calls, SMSs, and
IMs exchanged as well as total durations of calls aggregated in minutes. In particular, CALL
and SMS are the phone call and SMS interactions among the same anonymous individuals. The
dataset was collected over a period of six months, December 1, 2007 through May 31, 2008 in
a big city in Asia. Finally, Commun is another communications dataset among a different set of
individuals from another big city in Asia.

4dblp.uni-trier.de/xml/
5www.cs.cmu.edu/∼mmcgloho/fec/data/fec data.html
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Chapter 3

Patterns in network topology

PROBLEM STATEMENT: What are the typical patterns in the structure and dynamics of real-
world networks from a large collection of diverse domains (e.g. political campaign donations,
computer network traffic, online social network, large Web graph)?

In this chapter, we introduce several new patterns we found in real networks we studied. An
overview of all the existing as well as new patterns has been given in Table 2.2, the ones in bold-
face are our contributions. As one can notice, our major contributions include mainly dynamic
and weighted patterns. For the purposes of organization we will present them in two categories;
unweighted and weighted graph patterns.

3.1 Unweighted graph patterns

3.1.1 Pattern SU-6: Chain-like Next-Largest Connected Components (NL-
CCs)

We study the relations between the average effective radius and the order of connected compo-
nents. Recall that the effective radius of a node in a component is the 90-percentile of all the
distances from that node to other nodes in the component. The average effective radius (AER)
of a connected component is then the average of the effective radii in the component.

Figure 3.1 (a) shows the number of nodes and the AER of connected components in YahooWeb.
We first see that there are many components which form cliques (=AER close to 1), stars (=AER
close to 2), and chains(=AER proportional to the number of nodes). Since a component that
behaves like a clique seems suspicious, we looked at the top 4 largest clique-like components. It
turns out that they all belong to Germany; they have the same number of nodes (305), and seem
to be phishing sites from the same owner as the contents look similar, which existed several years
ago but non-existing any more.
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(a) AER vs. |V | (b) MER vs. AER

Figure 3.1: (a) Connected components map of the YahooWeb graph, showing the Average Ef-
fective Radius(AER) vs. number of nodes in each component. Each point corre-
sponds to a connected component. Notice the effective radius is bounded by the
maximum(by chains) and the minimum(by clique). (b) Maximum Effective Ra-
dius(MER) vs. Average Effective Radius(AER). Notice that small components be-
have like chains in terms of radius, and the giant connected component (GCC) is
very different from others due to the large MER compared to the AER.

Another observation is that the upper left boundary of Figure 3.1 (a) forms a near-line. Obviously,
these nodes came from chains since they have the maximum average effective radius. We can
prove that the boundary is a near-line since the average effective radius and the number of nodes
in chain graphs have the following near-linear relationship:

Lemma 1 (Small Radius of Chain Graph) The average effective radius of a chain graph with
n nodes is 0.6525n− 0.45.

Proof 1 We need to consider only the first n
2

nodes by the symmetry. Since the effective ra-
dius is the 90th-percentile, the ith nodes where 1 ≤ i ≤ 0.45n have the effective radius
(0.9n − i), and the last 0.05n nodes have radius 0.45n. Therefore, the average effective ra-
dius is

∑0.45n
i=1 (0.9n−i)+0.45n×0.05n

0.5n
= 0.6525n− 0.45.

Next, we look at the maximum effective radius versus the average effective radius of each com-
ponent in Figure 3.1 (b). We have the following observation.

Observation 3.1.1 (Chain-like Next-largest Connected Components) Next-largest connected
components have relatively small MER (Maximum Effective Radius) vs. AER (Average Effective
Radius) ratio. Only the giant connected component has the high ratio.

The reason of the high maximum radius vs. average effective radius ratio of the GCC can be
explained by the thick cores containing majority of nodes and several tendrils it has [Broder
et al., 2000]. The thick cores decrease the average effective radius, while the tendril increases the
maximum radius. On the contrary, NLCCs of the YahooWeb graph do not have enough number
of nodes to form thick cores which could have decreased the average effective radius. In terms
of MER vs. AER ratio, the NLCCs are similar to chain graphs.
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3.1.2 Pattern DU-3: Diameter Plot and “Gelling” Point

Studying the effective diameter of the graphs, we notice that there is often a point in time when
the diameter spikes. Before that point, the graph is more or less in an establishment period,
typically consisting of a collection of small, disconnected components. This “gelling point”
seems to also be the time where the GCC “takes off”. After the gelling point, the graph obeys the
expected rules, such as the densification power law; its diameter decreases or stabilizes; the giant
connected component keeps growing, absorbing the vast majority of the newcomer nodes.

Observation 3.1.2 (Gelling point) Real graphs exhibit a gelling point, at which the diameter
spikes and (several) disconnected components gel into a giant component.

We show diameter plots over time in Fig. 3.2 (a), Fig. 3.3 (a)s, and Fig. 3.4 (a)s. In most of these
graphs, both unipartite and bipartite, there are clear early gelling points. For example, in NIPS
the diameter spikes at t = 8 years, which is a reasonable time for an academic community to
gel. In some networks, we only see one side of the spike, due to data construction (the nature of
trace-routes in Oregon and NetTraffic) or massive network size (Patent).
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Figure 3.2: Properties of PostNet network. Notice that we experience an early gelling point at (a)
(diameter versus time), stabilization/oscillation of the NLCC sizes in (b) (size of 2nd
and 3rd CC, versus time). The vertical line marks the gelling point. Part (c) gives
N(t) vs E(t) in log-log scales - the good linear fit agrees with the Densification
Power Law. Part (d): component size (in log), vs time - the GCC is included, and it
clearly dominates the rest, after the gelling point.
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Figure 3.3: Properties of other unipartite networks. Diameter plot (left column), and NLCCs
over time (right); vertical line marks the gelling point. Datasets from top to bottom:
Patent, Arxiv, NIPS, BlogNet, NetTraffic. All datasets exhibit an early gelling point,
and stabilization of the NLCCs.
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Figure 3.4: Properties of bipartite networks. Diameter plot (left column), and NLCCs over time
(right), with vertical line marking the gelling point. Datasets from top to bottom:
IMDB, CampOrg, CampIndiv, Netflix. Again, all datasets exhibit an early gelling
point, and stabilization of the NLCCs. Netflix has strange behavior because it is
masked (see data description 2.4) and text.

24



3.1.3 Pattern DU-4: Constant/Oscillating NLCCs

How do the next-largest connected components evolve, especially after the gelling point? We
particularly study the second and the third largest connected components over time. We notice
that, after the gelling point, the sizes of these components oscillate over time. Further investiga-
tion shows that the oscillation may be explained as follows: new-comer nodes typically link to
the GCC; very few of the newcomers link to the 2nd (or 3rd) CC, helping them to grow slowly;
in very rare cases, a newcomer links both to an NLCC, as well as the GCC, thus leading to the
absorption of the NLCC into the GCC. It is exactly at these times that we have a drop in the size
of the 2nd CC: Note that edges are not removed, thus, what is reported as the size of the 2nd CC
is actually the size of yesterday’s 3rd CC, causing the apparent “oscillation”.

An unexpected (to us, at least) observation is that the largest size these components can get seems
to be a constant. This is counter-intuitive – based on random graph theory, we would expect the
size of the NLCCs to grow with increasing N [Bollobs, 2001]. Using scale-free arguments, we
would expect the NLCCs to have size that would be a (small, but constant) fraction of the size of
the GCC – to our surprise, this never happened, on any of the real graphs we analyzed. If some
underlying growth does exist, it was small enough to be impossible to observe throughout the
(often lengthy) time in our datasets.

Observation 3.1.3 (Constant/Oscillating NLCCs) After the gelling point, the secondary and
tertiary connected components remain of approximately constant size, with small oscillations.

We show full results for PostNet in Fig. 3.2, including the diameter plot (Fig. 3.2 (a)), sizes of the
NLCCs (Fig. 3.2 (b)), densification plot (Fig. 3.2 (c)), and the sizes of the three largest connected
components in log-linear scale, to observe how the GCC dominates the others (Fig. 3.2 (d)).
Results from other networks are similar, and are shown in condensed form for space (Fig. 3.3 for
unipartite graphs, and Fig. 3.4 for bipartite graphs).

The second columns of Fig. 3.3 and Fig. 3.4 show the NLCC sizes versus time. Notice that, after
the “gelling” point (marked with a vertical line), they all oscillate about constant value (different
for each network). The only extreme cases are datasets with unusually high connectivity. For
example, Netflix has very small NLCCs. This may be explained by the fact the dataset is masked,
omitting users with less than a hundred ratings (possibly to further protect the privacy of the
encrypted user-ids). Therefore, the graph has abnormally high connectivity. We note that Oregon
and NetTraffic have unusually high connectivity due to the nature of network traffic– it benefits
from having a single GCC, so NLCCs shrink to zero.

3.1.4 Pattern DU-5: Stable Fractal Dimension of Connected Components

Do next-largest connected components have the same structural properties as the giant connected
component? We study the homogeneity of components in large networks. The main questions of
interest are the followings: (a) How can we characterize the density of a connected component?
Can we have an intrinsic measure that is invariant to the growth of the connected component?
(b) Do connected components have same densities?
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For the study, we investigate the connected components of YahooWeb. The giant connected com-
ponent contains 690 million web pages, which is about 50% of the total pages. The second
and the third largest connected components contains 57,000 and 21,000 pages which is much
smaller than the giant connected component. Except the isolated(=one node) connected com-
ponents, there are 2.6 million connected components. Our goal is to find interesting patterns
on the so-many connected components of different sizes to better understand the evolution of
networks.

We first characterize the density of connected components. Many different definitions can be
given: the most intuitive one is arguably the ratio of the size (number of edges) and the order
(number of nodes) of the graph. However, [Leskovec et al., 2005b] states that there is a power-
law relationship between the size and the order of the whole graph, and the exponent remains
constant over time. Therefore, scaling it by log is more natural and thus we propose the Graph
Fractal Dimension (GFD) to characterize the “density” of a connected component.

Definition 1 (Graph Fractal Dimension) The graph fractal dimension GFD(C) of a connected
component C is the ratio of the size and the order in log scale. That is, GFD(C) = log|E(C)|

log|V (C)| .

For example, a clique will have GFD ≈ 2, because there are n2 − n edges for n nodes. A chain
will have GFD ≈ 1, because there are n − 1 edges for n nodes. Several graphs and their fractal
dimensions are shown in Figure 3.5.

(a) Chain: (b) Star: (c) Bipartite-Core: (d) Clique:
GFD 1.27 GFD 1.27 GFD 1.64 GFD 1.94

Figure 3.5: Graphs, adjacency matrices and their fractal dimensions. Notice that the GFD can
be used as a measure of density of graphs: chain or star graphs have smaller GFDs
while cliques have higher GFDs.

Graph Fractal Dimension

How are the graph fractal dimensions of connected components distributed? Do they share reg-
ularities? Figure 3.6 shows the graph fractal dimension of connected components in YahooWeb
graph. In Figure 3.6 (a), there exists various components with wide range of number of edges for
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(a) |E| vs. |V | (b) Avg. |E| vs. |V |

Figure 3.6: Homogeneity in the fractal dimension of components in YahooWeb. (a) Number of
edges vs. number of nodes. Each point corresponds to a connected component. (b)
Average number of edges of components (y-axis) with the corresponding number of
nodes (x-axis). Notice the fractal dimension of components fits in a line.

a fixed number of nodes, between the minimum (tree) and the maximum (clique). However, after
averaging the number of edges in Figure 3.6 (b), we observe the following striking pattern.

Observation 3.1.4 (Homogeneity of Components GFD) Graph fractal dimensions of connected
components in YahooWeb graph are constant on average.

This observation implies that on average, the connected components of the Web graph are self-
similar, regardless of the size of the network.

Graph Fractal Dimension over time

Here we broaden our focus to time-evolving graphs and study the dynamic aspects of the con-
nected components. The main questions is: Will the connected components grow with the same
rate? Will there be a change of growth rate around the gelling’ point where the diameter of the
graph starts to shrink?

To answer the above question, we look at the graph fractal dimension of top 3 largest connected
components over time in Figure 3.7 and summarize findings in the following observation.

Observation 3.1.5 (Evolution of Top 3 Connected Components) The giant connected compo-
nent and two next-largest connected components grow with the same rate. Their graph fractal
dimensions remain the same until a deviation point. The deviation point is close to the “gelling”
point where the diameter starts to shrink.

This observation is interesting, since it implies that some barriers between the nodes seem to
collapse after the gelling point, and the nodes in the network are connected with higher rate than
before the gelling point.
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(a) Patent: Top 3 CC (b) HEP-TH: Top 3 CC (c) HEP-PH: Top 3 CC

Figure 3.7: Growth of connected components in terms of the graph fractal dimension. Each
point represents the snapshot of a connected component over time. Notice that the
slope remains constant until a “deviation” point (the second vertical line) close to a
“gelling” point (the first vertical line), and starts to increase after that. The deviation
points are about one year after the gelling points.

3.1.5 Pattern DU-6: Exponential “Rebel” Probability to NLCCs

Given a newcomer to a network, what is the probability that it will be absorbed, or not absorbed
to the GCC? We call it as the “rebel” probability and give its relations to the degree of newcomers
and the portion of nodes in the NLCCs.

We first give the relationship of the rebel probability and the degree of newcomers in Figure 3.8.
In the figure, we see that the probability is linear to the degree in log-lin scale where the slope
decreases as the network grows. In addition, we show the relationship of the rebel probability
and the portion of nodes in the NLCC in Figure 3.9. From Figure 3.9, we see the probability
is linear to the portion of nodes in NLCC in log-log scale, and the slope increases as the degree
increases. Given these two observations, we give empirical rebel probability of newcomers as a
function of the degree(d) and the portion(s) of nodes in the NLCC in the following observation,
which we call the ERP (Exponential Rebel Probability) pattern.

Observation 3.1.6 (Exponential Rebel Probability (ERP)) Given the node portion s of NL-
CCs, the probability Prebel of a newcomer to be absorbed in NLCCs is exponential to the product
of a constant α, the degree d of the newcomer, and the log of the node portion s of NLCCs:

Prebel ∝ eαd(logs) (3.1)

3.1.6 Pattern DU-7: Principal Eigenvalue over time

How does the principal eigenvalue of a graph behave over time? The principal eigenvalue is
the largest eigenvalue associated with the adjacency matrix of the graph, and is also described
as a measure of overall connection strength of a connectivity matrix. It has also been shown
that the epidemic threshold in graphs depends only on this principal eigenvalue, and nothing
else [Prakash et al., 2010; Valler et al., 2011].
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Figure 3.8: P(Absorption to NLCCs) vs. Degree in log-lin scale. Notice the linear drop of the
probability as the degree increases.
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Figure 3.9: P(Absorption to NLCCs) vs. Portion of Nodes in NLCCs in log-log scale. Notice
that the slopes of curves increase as degree increases.

Plotting the largest (principal) eigenvalue of the 0-1 adjacency matrix of our datasets over time,
we notice that the principal eigenvalue grows following a power law with increasing number of
edges. This observation is true especially after the gelling point. As we discussed before, gelling
point is defined to be the point at which a giant connected component (GCC) appears in real-
world graphs– after this point, properties such as densification and shrinking diameter become
increasingly evident.

Observation 3.1.7 (λ1 Power Law (LPL)) In real graphs, the principal eigenvalue λ1(t) and
the number of edges E(t) over time follow a power law with exponent less than 0.5, especially
after the “gelling” point. That is,

λ1(t) ∝ E(t)α, α ≤ 0.5

We report the power law exponents in Fig. 3.10. Note that we fit the given lines after the gelling
point which is shown by a vertical line for each dataset. Notice that the slopes are less than 0.5,
with the exception of the CampOrg dataset, which has slope ≈ 0.53.

Given the theorem λmax(G) ≤
{

2
(
1− 1

N

)
E
} 1

2 for a connected, undirected graph G without
self-loops and multiple edges, with E edges and N nodes (see [Wilf, 1967] for proof), for large
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Figure 3.10: Illustration of the LPL (Observation 3.1.7). 1st largest (principal) eigenvalue λ1(t)
of the 0-1 adjacency matrix A versus number of edges E(t) over time. The vertical
lines indicate the gelling point.

N , s.t. 1
N
→ 0, we expect the power law exponent to be less than 0.5. By construction, there

are no multiple edges in our graphs (that is, we work with a binary adjacency matrix), and the
nodes do not have self-loops by nature. Finally, we claim that the graphs behave as a single
connected component after the gelling point at which point the GCC dominates other connected
components. The only slight exception to the power law, the CampOrg graph, always has many
number of disconnected components as well as a GCC. Thus, we conclude that our observation
follows early theory.

3.2 Weighted graph patterns

3.2.1 Pattern SW-1: Edge Weights Power Law (EWPL)

We observe that the weight of a given edge and weights of its neighboring two nodes are cor-
related. Our observation is similar to Newton’s Gravitational Law stating that the gravitational
force between two point masses is proportional to the product of the masses. Similarly, the
tendency of two nodes to interact often would be related to the “popularity” of both.

For each edge (i, j) at the final time step in the graph, we plot
√

(wi − wi,j) ∗ (wj − wi,j) versus
its weight wi,j as a single point. Notice that we did not include the weight of the edge itself
in the total weight of its incident nodes. Next, we fit a line to the median y-axis values after
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applying logarithmic binning on the x-axis and report the corresponding slopes for each dataset
in Fig. 3.11. Note that, we omit the points which represent edges to avoid the confusion due to
overplotting. Instead, we show the 75% and 25%-tile of the data with upper and lower vertical
bars, respectively.

Observation 3.2.1 (Edge Weights Power Law (EWPL)) Given a real-world graph G, ‘com-
munication’ defined as the weight of the link between two given nodes has a power law relation
with the weights of the nodes. In particular, given an edge ei,j with weight wi,j and its two
neighbor nodes i and j with weights wi and wj , respectively,

wi,j ∝
(√

(wi − wi,j) ∗ (wj − wi,j)
)γ

EWPL can be used in link prediction; that is, one can estimate the probable weight of a future link
between two nodes of the graph, given their weights. Moreover, edges with weights deviating
too much from the expected might be flagged for further consideration.
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Figure 3.11: Illustration of the EWPL (Observation 3.2.1). Given the weight of a particular edge
in the final snapshot of real graphs (x-axis), the multiplication of total weights(y-
axis) of the edges incident to two neighboring nodes follow a power law. A line
can be fit to the median values after logarithmic binning on the x-axis. Upper and
lower bars indicate 75% and 25% of the data, respectively.
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3.2.2 Pattern SW-2: Snapshot Power Law (SPL)

Is there any correlation between the in-degree and the in-weight, and between the out-degree and
the out-weight, for all the nodes of a graph, at a given time-stamp? If node i has out-degree outi,
what can we say about its out-weight outwi? We find that there is a “fortification effect” here,
i.e. superlinear growth, resulting in more power laws, both for out-degrees/out-weights as well
as for in-degrees/in-weights.

Specifically, at a given point in time, we plot the scatter-plot of the in/out weight versus the
in/out degree, for all the nodes in the graph, at a given time snapshot. An example of such a
plot is in Fig. 3.12 (a) and (b). Here, every point represents a node and the x and y coordinates
are its degree and total weight, respectively. To achieve a good fit, we bucketize the x axis with
logarithmic binning [Newman, 2005], and, for each bin, we compute the median y. We observe
that the median values of weights versus mid-points of the intervals follow a power law for all
datasets studied. Formally, the “Snapshot Power Law” is:

Observation 3.2.2 (Snapshot Power Law (SPL)) Consider the i-th node of a weighted graph,
at time t, and let outi, outwi be its out-degree and out-weight. Then

outwi ∝ outowi

where ow is the out-weight-exponent of the SPL. Similarly, for the in-degree, with in-weight-
exponent iw.

We studied the snapshot plots for several time-stamps (for brevity, we only report the slopes for
the final timestamp in Table 3.1 for all the datasets we studied). We observed that SPL exponents
of a graph over time remains almost constant. In Fig. 3.12 (a) and (b), the inset plots show how
the iw and ow exponent changes over time (years) for the CampOrg dataset, respectively. We
notice that iw and ow take values in the range [0.9-1.2] and [0.95-1.35], respectively:

Observation 3.2.3 (Persistence of Snapshot Power Law) The in- and out-exponents iw and
ow of the SPL remain about constant, over time.

Looking at Table 3.1, we observe that all SPL exponents are > 1, which imply a “fortification
effect” with super-linear growth. The only exception is the NetTraffic dataset. This is explained
because the number of nodes N has a limit that can not be exceeded (the total IP addresses at
the institution of observation) Until N reaches that point, the slopes are iw=1.19 and ow=1.27
(again, showing a “fortification effect”).

3.2.3 Pattern DW-1: Weight Power Law (WPL)

Let W (t) be the total weight up to time t (e.g., the grand total of all exchanged packets in a
network), E(t) the number of distinct edges up to time t, and Ed(t) the number of multi-edges
(the d subscript stands for duplicate edges), up to time t. Is there any correlation between the
total weight, the total number of edges and the total number of multi-edges in a graph, as they
change over time?
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(a) SPL (in-weight vs. in-degree) (b) SPL (out-weight vs. out-degree)
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Figure 3.12: Weight properties of CampOrg donations: SPL plots (a) and (b) have slopes
(power-law exponents)> 1 (“fortification effect”), that is, that the more campaigns
an organization supports, the superlinearly more money it donates, and similarly,
the more donations a candidate gets, the more average amount-per-donation is re-
ceived. Inset plots show the exponents iw and ow over time, which stay quite
stable; (c) shows all the power laws as well as the WPL; the entropy plot has slope
∼ 0.86 in (d), indicating bursty weight additions over time.

If every pair generated k packets, the relationships would be linear: if the count of pairs double,
the packet count would double, too. This is reasonable, but it doesn’t happen! In reality, the
packet count over-doubles, following the “WPL” below. In other words, we observe a “fortifica-
tion effect” here, too: more edges in the graph imply super-linearly higher total weight.

Observation 3.2.4 (Weight Power Law (WPL)) Let E(t), W (t) be the number of edges and
total weight of a graph, at time t. They, they follow a power law

W (t) = E(t)w

where w is the weight exponent. Power-laws also link the number of nodesN(t), and the number
of multi-edges Ed(t), to E(t), with exponents n and dupE, respectively.
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w nsrc ndst dupE iw ow fd
CampOrg 1.53 0.58 0.73 1.29 1.16 1.30 0.86
CampIndiv 1.36 0.53 0.92 1.14 1.05 1.48 0.87
NetTraffic 1.48 0.57 N/A 1.29 0.66 0.45 0.59
BlogNet 1.03 0.79 N/A N/A 1.01 1.10 0.96
Auth-Key 1.01 0.90 0.70 N/A 1.01 1.04 0.95
Auth-Conf 1.08 0.96 0.48 N/A 1.04 1.81 0.96
Key-Conf 1.22 0.85 0.54 N/A 1.26 2.14 0.95

Table 3.1: Power law exponents for all the weighted datasets we studied: The x-axis being the
number of non-duplicate edges E, w: WPL exponent, nsrc, ndst: WPL exponent for
source and destination nodes respectively (if the graph is unipartite, then nsrc is the
number of all nodes), dupE: exponent for multi-edges, iw, ow: SPL exponents for
indegree and outdegree of nodes, respectively. Exponents above 1 indicate fortifica-
tion/superlinear growth. Last column, fd: slope of the entropy plots, or information
fractal dimension. Lower fd means more burstiness.

The weight exponent w ranges from 1.01 to 1.5 for the real graphs we have studied. The highest
value corresponds to campaign donations: super-active organizations that support many cam-
paigns also tend to spend even more money per campaign than the less active organizations. For
bipartite graphs, we show the nsrc, ndst exponents for the source and destination nodes (which
also follow power laws: Nsrc(t) = E(t)nsrc and similarly for Ndst(t)).

Fig. 3.12 (c) shows the WPL for our example dataset CampOrg. Other datasets are shown in
Fig. 3.13. The plots are in log-log scales. We report the slopes in Table 3.1.

3.2.4 Pattern DW-2: Bursty/Self-similar weight additions

We tracked how much weight a graph puts on at each time interval and looking at the entropy
plots, we observed that the weight additions over time show self-similarity. For those weighted
graphs where the edge weight is defined as the number of recurrences of that edge, the slope
of the entropy plot was greater than 0.95, pointing out uniformity. On the other hand, for those
graphs where weight is not in terms of multiple edges but some other feature of the dataset such
as the amount of donations for the FEC dataset, we observed that weight additions are more
bursty, the slope being as low as 0.6 for the Network Traffic dataset.

Observation 3.2.5 (Bursty/self-similar weight additions) In all our graphs, the addition of
weight (∆W (t)) was self-similar, with fractal dimension ranging from ≈1 (smooth/uniform),
down to 0.6 (bursty).

Fig. 3.12 (d) shows the entropy plot for our example dataset CampOrg. Other datasets are shown
in Fig. 3.14. ∆W values over time are also shown in insets at the bottom right corner of each
figure. We report the information fractal dimensions (=slopes in entropy plots) in Table 3.1.
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Figure 3.13: Properties of weighted networks. Weight power laws: total weight W , number
of duplicate edges Ed, number of nodes N ; each versus number of non-duplicate
edges E. The slopes for weight W and multi-edges Ed are above 1, indicating
“fortification”.

3.2.5 Pattern DW-3: Weighted principal eigenvalue over time

Given that unweighted (0-1) graphs follow the λ1 Power Law, one may ask if there is a corre-
sponding law for weighted graphs. To this end, we also compute the largest eigenvalue λ1,w of
the weighted adjacency matrix Aw. The entries wi,j of Aw now represent the actual edge weight
between node i and j. We notice that λ1,w increases with increasing number of edges following
a power law with a higher exponent than that of its λ1 Power Law. We show the experimental
results in Fig. 3.15.

Observation 3.2.6 (λ1,w Power Law (LWPL)) Weighted real graphs exhibit a power law for
the largest eigenvalue of the weighted adjacency matrix λ1,w(t) and the number of edges E(t)
over time. That is,

λ1,w(t) ∝ E(t)β

In our experiments, the exponent β ranged from 0.5 to 1.6.
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CampIndiv NetTraffic BlogNet

Auth-Key Auth-Conf Key-Conf

Figure 3.14: Properties of weighted networks. Entropy plots for weight addition. Slope away
from 1 indicates burstiness (e.g., 0.59 for NetTraffic) The inset plots show the cor-
responding time sequence ∆W versus time. Notice how bursty NetTraffic looks.

CampOrg NetTraffic BlogNet

Auth-Key Auth-Conf Key-Conf

Figure 3.15: Illustration of the LWPL (Observation 3.2.6). 1st largest (principal) eigenvalue
λ1,w(t) of the weighted adjacency matrix Aw versus number of edges E(t) over
time. The vertical lines indicate the gelling point.
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3.3 Summary of contributions

The vast majority of previous work on the study of networks focused on static networks, with
findings such as heavy-tailed degree distributions and small diameter. In this chapter, we de-
scribed two novel aspects of this thesis in the study of real-world networks: (1) dynamic networks
and (2) weighted networks, with interesting new findings (see Table 2.2 for an overview).

More specifically, while previous work focused on the single giant connected component of
networks, we shifted our focus to the next-largest connected components and their formation
and evolution. We analyzed the structural properties of these smaller components such as their
intrinsic dimension, as well as their temporal properties such as how they grow and get merged
to the giant component over time. We further studied the behavior of the newcomer nodes and
formulated how their microscopic dynamics (“rebel” probability) explain the properties observed
on the macroscopic level (components oscillating around constant-size).

Moreover, we started the study of weighted networks where the recurrences of interactions (e.g.
multiple emails) or natural weights associated with interactions (e.g. dollar amount donations)
are taken into account. We analyzed the correlation of edge weights with other network proper-
ties as well as the additions of weights to the network over time.

In summary, our contributions described in this chapter are the following:

• Study of numerous real-world datasets: We studied numerous real-world networks from
many diverse domains including political campaign donations, computer network traffic,
blog citations, social and Web networks. We discovered several new patterns in dynamic
and weighted graphs.

• “Rebel probability” and other dynamic component patterns: We focused on the rarely-
studied next-largest connected components (NLCCs) and their dynamics. In particular, we
showed that (1) NLCCs look like chain graphs; (2) real graphs exhibit a “gelling” point at
which the small components merge and a giant connected component (GCC) emerges; (3)
after the gelling point, secondary and tertiary components cannot grow beyond a certain
size beyond which they get absorbed to the GCC; (4) graph fractal dimension of compo-
nents is stable over time; and (5) rebel probability —that a newcomer node will not join the
GCC— drops exponentially with its degree and increases linearly with the fraction-size of
NLCCs.

• “Fortification effect” and other weighted network patterns: We focused on the not-studied
weights on graph edges and their dynamics. In particular, we showed that (1) total weight
of a node and its degree follow power laws, and weight between two nodes follows a
gravitational-force-like relation with the total weights of those nodes; (2) total weight of a
graph grows superlinearly with number of its edges over time; (3) weight additions over
time are bursty; and (4) principal eigenvalues and number of edges of a graph follow a
power law relation over time.
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Chapter 4

Patterns in human communications

PROBLEM STATEMENT: What are the typical patterns in human communications? How large
are our social circles? How reciprocal are we, and what does it depend on? How long are our
phone calls, and how can we summarize their distribution?

In this chapter, we present our findings in millions of communication records, including phone
calls, short, and instant messages, of millions of users. In particular we study the social circles
(=maximal cliques) people belong to, their reciprocity behavior, as well as call durations.

4.1 Patterns in social circles

4.1.1 Motivation

What patterns should we expect in a network of human-to-human interactions? How can we spot
anomalies (e.g., tele-marketers, spammers)? Related applications are numerous and almost ev-
erywhere in people’s modern life. Online social networks, like Facebook (www.facebook.com)
and LinkedIn (www.linkedin.com), mimic publicly the telecommunication networks where
and what people communicate privately. Product recommendation systems, such as Amazon
(www.amazon.com) and Netflix (www.netflix.com), rely on a network of trust and col-
laboration. Computer networks have predictable relations regarding intrusion detection, security,
and virus propagation. It is important in all the above applications to spot anomalies and outliers.
Anomaly detection is tightly connected to patterns: if most of the nodes in our network closely
follow a pattern, then the few deviations that do exist are probably outliers.

In this section, we are investigating the following questions:

• When we isolate the cliques in a network, what patterns do they follow? How large are our
social circles on average? If someone has many contacts, does that indicate popularity?
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• What patterns do the edge weights follow, both in triangles and in general cliques? Specif-
ically, in a triangle, all three nodes are equivalent in topology, but is it normal if all three
weights are equal as well?

4.1.2 Data Description

The datasets analyzed are built from a large collection of records from several human commu-
nication services including voice, data, IM, SMS etc. Each record is represented as a triple
< IDi, IDj, T ime >, where < IDi > and < IDj > are generally referred to as the caller
and callee. During a particular time period, there can be multiple times for a pair of people to
communicate with each other, and the accumulated number of communication times between
IDi and IDj is defined as the edge weight between node i and j. We have the weighted graphs
extracted from the records of three types of services (S1, S2 and S3), referred to as GS1, GS2,
and GS3 respectively. Each type of service has on average about 1 million records, which were
collected by different geographic locations. Apart from this spatial diversity and the service type
variety, we also incorporate temporal diversity by collecting data for each type of service during
five consecutive time periods represented from T1 to T5, so GS1T1 is the graph of service type S1
in time period T1, and GS2T5 is the graph of service type S2 in time period T5 etc.

Notice that we only focus on the link between the caller and callee. It is important to know that
our work is only an aggregate statistical analysis, and therefore, we do not study any individual’s
behavior from any specific type of communication service. More importantly, any information
that could identify users is stripped to access. We only use the encrypted user id in this study,
and restrict our interest only in the statistical findings that are held within the networks.

We note that unlike some artificial social networks, such as the scientific collaboration network
which emerges as a one-mode projection of the bipartite graph between authors and papers,
the massive anonymized human communication networks are formed from the real-time direct
contact events of people. They can fully capture the underlying realistic social structures, and
lay a solid foundation for our upcoming work.

4.1.3 Patterns and Observations

We report three newly discovered patterns that our datasets seem to follow, and discuss the po-
tential ways in which they can be utilized. The first is Clique-Degree Power-Law (CDPL), corre-
lating the ith largest degree with the average number of maximal cliques, which seems to remain
rather stable over time so that we trust them to further detect outliers and spot anomalies. The
second is Clique Participation Law (CPL), which gives the distribution of the number of maxi-
mal cliques that each node participates in. Finally, the third comes Triangle Weight Law (TWL),
describing how the weights are distributed on the edges of triangles, based on which we could
further make predictions about the missing values of the edge weights in time-evolving weighted
networks.
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Clique-Degree Power-Law

As defined previously, ∀vi ∈ V G, di is the number of all the partners that vi has, and C(vi)
represents the set of all the maximal cliques that vi participates in. Is there any relationship
between di and |C(vi)| ? We can imagine that if a particular user has doubled his partners, it
tends to be easier for him to participate in doubled social circles as well. This kind of relationship
seems to be linear, and sounds reasonable. However, this is often not the case. For our real world
social networks, the number of social circles actually over-doubles by following a Clique-Degree
Power-Law.

Figure 4.1 plots the number of partners vs. the number of maximal cliques averaged over all the
nodes with that many of partners, from T1 to T5. The result is surprising because for any given
node, the clique-participation is super-linearly related to its degree. In addition, we notice that
the exponent takes values in the range [1.84, 1.88], [2.04, 2.21] and [1.41, 1.58] for GS1, GS2, and
GS3, which seems to be stable over time.

Observation 4.1.1 (Clique-Degree Power-Law (CDPL)) The number of maximal cliques that
a node participates in, is super-linearly related to its degree. Given di and Cdi

avg, they follow a
power-law :

Cdi
avg ∼ dαi (4.1)

where α is the exponent of CDPL, and remains about constant over time.

The direct application of CDPL is to spot outliers. In Figure 4.1, all of the detected anomalies
are marked by red circles. We can see that these points present a clear pattern which does not
conform to the established normal behavior. In other words, for these users the actual number
of the maximal cliques that they belong to is significantly distant from the one that they should
have according the number of their friends.

It is also interesting to notice that some outliers are stable and persistent, such as node vx and vy
from GS1T1 to GS1T3, while others are more casual and bursty, such as node vz in GS1T5, and the circled
outliers in GS3T5. Figure 4.2 shows the egocentric subgraphs centered with node vy and vz, which
are composed of the connections among their neighbors in T5. Clearly, for node vy, although
it has a large number of partners, it only belongs to few maximal cliques on the left upper part
of Figure 4.2 (a). As to node vz shown in Figure 4.2 (b), almost no connections exist among
its partners. Because any automatic customer service id is excluded from our communication
networks, the anomalous behavior of vy and vz makes them more like the tele-marketers. In fact,
there are more outliers in the last time period T5 than the others, especially in the network GS3T5 of
the third communication service. We guess it is probably because there is actually a big holiday
in T5, and the third communication service is the cheapest for broadcasting messages.

Clique Participation Law

Based on the discovered maximal cliques, we are able to study how people get involved into
them. Figure 4.3 shows the distribution of the number of maximal cliques that people actually
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Figure 4.1: Illustration of Clique-Degree Power-Law (Observation 4.1.1). Number of partners
vs. the average number of maximal cliques in GS1 ∼ GS3 (rows) from T1 to T5
(columns). All exponents are fitted withR2 > 0.95. Notice that CDPL is very stable
over time. Outliers are marked by red circles.
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y
z

(a) Centered with vertex vy (b) Centered with vertex vz

Figure 4.2: Detected typical outliers. Both vy and vz (in GS1T3 and GS1T5 from Figure 4.1) have too
many unrelated partners, resulting in a star-like subgraph.
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Figure 4.3: Illustration of Clique-Participation Law (Observation 4.1.2). PDF of #Maximal
Cliques in GS1T1 ∼ GS3T1. The rest graphs behave similarly.

participate in. That is, in graph G, it plots the correlation between the number of maximal cliques
(x-axis) and the PDF of nodes (y-axis) that get involved in that many of maximal cliques. We
observe that there exists a power-law followed by this kind of relationship, which is called Clique
Participation Law.

Observation 4.1.2 (Clique Participation Law (CPL)) For a given number of maximal cliques,
say nclique, and the set Vclique = {vi|vi ∈ V (G), |C(vi)| = nclique}, we have

nclique ∼ |Vclique|cp (4.2)

where cp is the clique participation exponent of CPL, and keeps about constant over time.

T1 T2 T3 T4 T5
GS1 -1.78 -1.74 -1.76 -1.70 -1.68
GS2 -1.63 -1.56 -1.52 -1.56 -1.54
GS3 -3.21 -3.50 -3.46 -3.50 -3.01

Table 4.1: Power-Law exponents of CPL in GS1 ∼ GS3 from T1 to T5. Notice the stability.
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According to the above discussion, for most people in real world social networks, they are often
involved in a small number of maximal cliques (or social circles). Only a few of them are really
“social butterflies” that can actively span many social circles simultaneously. In Figure 4.3, we
report the results from GS1 ∼ GS3 only in T1 for brevity, because in Table 4.1 we observe that
CPL is rather stable over time, leading to similar plots in the rest.

Actually, the CPL pattern could be potentially applied to help the operators to make better de-
signed family plans. Because we have a model of the distribution of user behavior to form
close-knit groups, we can propose better pricing strategies that charge users differently accord-
ing to the size of their social circles. For example, in most cases people only belong to one or two
cliques, which may be formed by their families or best friends. We can design specific billing
plans which are favorable to the communications among members of the same clique who are
also the customers of the same operator. Even if our friends are the customers of other operators,
we may still like to invite them to join us, because we know that it will be good for all of us. As
a result, this could implicitly improve the loyalty of the current users, and may further help to
increase the rate at which new customers sign up the plans. Moreover, we can also reward a few
loyal users who span multiple social groups, because they might help to achieve a quick market
promotion by introducing new products and services to their friends.

Triangle Weight Law

According to the clique definition, each node in a clique has connections with all the other nodes.
Although it is very intuitive that all these nodes are equivalent in topology, will this also mean that
they could have equally close relationships? In our communication networks, the edge weightwij
gives the total number of contact times between i and j, which is an important indicator to show
how intimately they could relate to each other. Since that triangle is the base case of a clique,
given any triangle {i, j, k}, will wij , wik, and wjk hold approximately equal values because of
the structure equivalence between i, j, and k? Although this intuitive conjecture seems to make
sense, we have made very unexpected and striking discoveries in the real social networks, which
are described as follows.

Observation 4.1.3 (Triangle Weight Law (TWL)) For any triangle, let MaxWeight, MidWeight,
and MinWeight denote the maximum, medium, and the minimum edge weight respectively. In all
our graphs, they follow three power-laws:

MaxWeight ∼MidWeightα (4.3)
MaxWeight ∼MinWeightβ (4.4)
MidWeight ∼MinWeightγ (4.5)

where α, β, and γ are the power-law exponents which remain constant in weighted time-evolving
communication networks.

As a result, for the given triangle {i, j, k}, rather than being approximately equal, wij , wik and
wjk are significantly different from each other. Figure 4.4 gives the results from the networks
GS1 ∼ GS3 in the same time period T1. To achieve a good fit, we bucketize the x-axis with
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Figure 4.4: Illustration of Triangle Weight Law (Observation 4.1.3). Minimum, medium, and
maximum weights in all 3 pairs are plotted in logarithmic scales. Least square fits
all have R2 > 0.95 in GS1T1 ∼ GS3T1.

logarithmic binning [Newman, 2005], and for each bin, we compute the average value of y. The
dotted line means the value of x equals to the value of y.

Moreover, Figure 4.5 shows the three exponents of TWL in GS1 ∼ GS3 from T1 to T5. Notice
that α, β, and γ of these graphs take values in the range [0.5,0.7], [0.4,0.6], and [0.7,0.8], which
seem persistent and stable.

In practical situations, due to missing data we can only have partial network information to
analyze. For example, in Figure 4.6, given the weighted egocentric subgraph that link e23 belongs
to, what can we say about the missing w23? While the link prediction tries to predict between
which unconnected nodes a link will form next, our problem here concerns how to estimate the
value of an edge weight, because we already know there is a link between node 2 and 3. We
formulate this problem as the weight prediction problem, which not only is important to fill and
complete the missing values, but also is useful for discovering anomalous links– if the actual
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Figure 4.5: Persistence of Triangle Weight Law. Exponent α, β, and γ (red, blue, green) in
GS1 ∼ GS3 remain about constant from T1 to T5.

value of w23 is significantly different from the predicted value, it would be highly unusual.
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Figure 4.6: Weight Prediction Problem.
What can we say about w23?

Based on the above discussion, TWL can help us to
solve the weight prediction problem. Formally, given
eij ∈ EG, let 4 denote the set of all the edges (ex-
cluding eij itself) of the triangles that eij belongs to.
∀ek ∈ 4, w(ek) denotes the weight of ek. The mini-
mum and maximum values of w(ek) are represented as
4min and 4max accordingly. On one hand, if wij <
4min or wij > 4max, the numerical relationship be-
tween wij and the weights on the other two edges is
determined, so we can use either equation (4) and (5)
or (3) and (4) to estimate wij directly. On the other,
if wij ∈ [4min,4max], wij might be the minimum in

one triangle, while might be the maximum in another triangle. Thus, for ∀ek ∈ 4, we define
φ(eij ,ek)(x) to represent one of the three equations (3) ∼ (5) based on the particular numerical
relationship that eij and ek could hold. The return value of φ(eij ,ek)(x) is the estimated weight
for edge ek given the possible value x of wij . Here, we assume that all edge weights are positive
integers. Let wmin be the minimum estimated value of wij when wij < 4min, and wmax be the
maximum estimated value of wij when wij > 4max. Then the optimal value of wij is:

ŵij = argmin
∑

ek∈4

(w(ek)− φ(eij ,ek)(x)) (4.6)

where x ∈ [wmin, wmax]. We evaluate this approach in GS1 ∼ GS3 by comparing ŵij with wij
for each edge in T1, T3 and T5. Due to the persistence of TWL we set α = 1.5, β = 2.2, and
γ = 1.2 for GS1; α = 1.3, β = 1.7, and γ = 1.4 for GS2; α = 1.4, β = 2.1, and γ = 1.3 for GS3.
Let ε = |ŵij − wij| denote the prediction error. The the average prediction accuracy of ε = 0
(the exact prediction) and ε = 1 is around 0.21 and 0.32 accordingly. One problem of this simple
method is that it can not predict wij , if the edge eij does not belong to any triangle. To solve this
problem, and further improve the prediction accuracy is an area of future work.
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4.2 Patterns in reciprocity

4.2.1 Motivation

One of the important aspects in human relations is the reciprocity, a.k.a. mutuality. Reciprocity
can be defined as the tendency towards forming mutual connections with one another by returning
similar acts, such as email and phone calls. In a highly reciprocal relationship both parties share
equal interest in keeping up their relationship, while in a relationship with low reciprocity, one
person is much more active than the other.

It is important to understand the factors that play role in the formation of reciprocity as there
exists evidence that reciprocal relationships are highly probable to persist in the future [Cesar
A. Hidalgo, 2008]. Also, [Nguyen et al., 2010] shows that reciprocity related behaviors provide
good features for ranking and classification based methods for trust prediction. Reciprocity
plays other important roles in social and communication networks. For example, if the network
supports a propagation process, such as spreading of viruses in email networks or spreading of
information and ideas in social networks, then the presence of mutual links clearly speeds up
the propagation. Non-existence of reciprocal links can also reveal unwanted calls and emails in
spam detection.

Despite its importance, reciprocity has remained an under-explored dynamic in networks. Most
work in network science and social network analysis focus on node level degree distributions [Broder
et al., 2000; Faloutsos et al., 1999; Leskovec et al., 2007b], communities [Nussbaum et al., 2010;
Satuluri and Parthasarathy, 2009; Tantipathananandh et al., 2007], and triadic relations, such
as clustering coefficients and triangle closures [Granovetter, 1973]. The study of dyadic re-
lations [Xiang et al., 2010] and the related bivariate distributions they introduce is, however,
mostly overlooked, and thus is the focus of this section.

The motivation behind our work is grouped into two topics:

M1. Modeling bivariate distributions in real data

Two vital components of understanding data at hand are studying the simple distributions in it and
visualizing it [Yang et al., 2008]. The study of reciprocity introduces bivariate distributions, such
as the distribution Pr(wij, wji) of edge weights on mutual edges, where association between two
quantitative variables needs to be explored. A vast majority of existing work focus on univariate
distributions in real data such as power-laws [Clauset et al., 2009], log-normals [Bi et al., 2001],
and most recently DPLNs [Seshadri et al., 2008]. The study of multivariate distributions in real
data, however, has very limited focus.

In addition, visualization of multivariate data in 2D is hard and often misleading due to issues
regarding over-plotting. More importantly, mere visualization does not provide a compact data
representation as opposed to data modeling. Summarization via aggregate functions such as the
average or the median loses a lot of information and is also not representative, especially for
skewed distributions as found in real data.
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Models, on the other hand, provide compact data representations by capturing the patterns in the
data, and are ideal tools for applications such as data compression and anomaly detection.

M2. A weighted approach to reciprocity

Traditional work [Garlaschelli and Loffredo, 2004] usually study reciprocity on directed, un-
weighted networks as a global feature which is quantified as the ratio of the number of mutual
links pointing in both directions to the total number of links. Defining reciprocity in such an
unweighted fashion, however, prevents understanding the degree of reciprocity between mutual
dyads. In a weighted network, even though two nodes might have mutual links between them, the
skewness and the magnitude of the weights associated with these links would contain more infor-
mation about how much reciprocity is really there between these nodes. For example, in a phone
call network the reciprocity between a mutual dyad where the parties make 80%-20% of their
calls respectively is certainly different than that of a mutual dyad with 50%-50% share of their
calls. In short, edge weights are crucial to study reciprocity as a property of each dyad rather than
as a global feature of the entire network and give more insight into the level of mutuality.

In this work, we analyze phone call and SMS records of 1.87 million mobile phone users from
a large city collected over six months. The data consists of over half a billion phone calls and
more than 60 million SMSs exchanged. Our contributions are:

1. We observe similar bivariate distributions Pr(wij, wji) of mutual edge weights in the com-
munication networks we study. We propose the Triple Power Law (3PL) function to model
this observed pattern and show that 3PL fits the real data with millions of points very well.
We statistically demonstrate that 3PL provides better fits than the well-known Bivariate
Pareto and Bivariate Yule distributions. We also use 3PL to spot anomalies, such as a pair
of users with low mutuality where one of the parties makes 99% of the calls during the
entire working hours, non-stop.

2. We use weighted measures of reciprocity in order to quantify the degree of reciprocal rela-
tions and study the correlations between reciprocity and local topological features among
user pairs. Our results suggest that mutual users with larger local network overlap and
higher degree similarity exhibit greater reciprocity.

To the best of our knowledge, this is one of the few work on modeling bivariate distributions in
real data as well as one of the few work that takes a weighted approach to study the strength of
reciprocity.

4.2.2 Data Description

In this work, we study anonymous mobile communication records of millions of users collected
over a period of six months, December 1, 2007 through May 31, 2008. The data set contains
both phone call and SMS interactions.

From the whole six months’ of activity, we build three networks, CALL-N, CALL-D, and SMS,
in which nodes represent users and directed edges represent phone call and SMS interactions
between these users. CALL-N is a who-calls-whom network with edge weights denoting (1)
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Network N E WN WD(min.) Network N E WSMS

CALL 1,87M 49,50M 483,7M 915x106 SMS 1,87M 8,80M 60,5M
CALL (m) 1,75M 41,84M 468,7M 885x106 SMS (m) 0,58M 2,10M 46,6M

Table 4.2: Data statistics. The number of nodesN , the number of directed edgesE, and the total
weight W in the mutual (m) and non-mutual CALL and SMS networks.

total number of phone calls, CALL-D is the same who-calls-whom network with edge weights
denoting (2) total duration of phone calls (aggregated in minutes), and SMS is a who-texts-whom
network with edge weights denoting (3) total number of SMSs. Table 4.2 gives the data statistics.
Global unweighted reciprocity is r=0.84 for CALL, and r=0.24 for SMS.

When only mutual edges are considered, notice that the SMS network shrinks considerably (with
only about one forth of the edges E remaining), whereas CALL networks remain almost intact.
The drop in the total weight W , on the other hand, is small for all three networks. This shows
that the majority of SMS interactions are lop-sided, however the lop-sided interactions constitute
only a small fraction of the total volume.

4.2.3 Patterns and Proposed 3PL Model

Given a network of users with mutual, weighted edges between them, say CALL-N, and given
two users i and j in the network, is there a relation between the number of calls imakes to j (wij)
and the number of calls j makes to i (wji)? In this section, we want to understand the association
between the weights on the reciprocal edges in human communication networks and study their
distribution Pr(wij, wji) across mutual dyads. Since we study the pair-wise joint distribution,
the order of the weights do not matter. Thus, to ease notation, we will denote the smaller of
these weights as nST (for weight from Silent-to-Talkative) and the larger as nTS , and will study
Pr(nST , nTS).

Figure 4.7 (top-row) shows the weights nTS versus nST for all the reciprocal edges in (from left
to right) CALL-N, CALL-D, and SMS. Each dot in the plots corresponds to a pair of mutual
edges. Since there could be several pairs with the same (nST , nTS) weights, the regular scatter
plot of the reciprocal edge weights would result in over-plotting. Therefore, in order to make the
densities of the regions clear, we show the heatmap of the scatter plots where colors represent
the magnitude of volume (red means high volume and blue means low volume).

In Figure 4.7, we observe that most of the points are concentrated (1) around the origin and (2)
along the diagonal for all three networks. Concentration around the origin, for example in CALL-
N, suggests that the vast majority of people make only a few phone calls with nST , nTS < 10, and
much fewer people make many phone calls, which points to skewness. In addition, concentration
along the diagonal indicates that mutual people call each other mostly in a balanced fashion with
nST ≈ nTS . Notice that similar arguments hold for CALL-D and SMS.

Even though heatmaps reveal similar patterns in all the three networks, mere visualization does
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(a) CALL-N (b) CALL-D (c) SMS

Figure 4.7: (top-row) Scatter plot heatmaps: total weight nST (Silent to Talkative) vs the re-
verse, nTS , in log scales. Visualization by scatter plots suffers from over-plotting.
Heatmaps color-code dense regions but do not have compact representations or for-
mulas. Figures are best viewed in color; red points represent denser regions. The
counts are in log2 scale. (bottom-row) Aggregation by average: summarization and
data aggregation, e.g. averaging, loses a lot of information.

not provide compact representations for our data. One way to go around this issue is to do
data summarization. For example, Figure 4.7(bottom-row) shows how nTS changes with nST on
average. The least square fit of the data points in log-log scales then provides a mathematical
representation of the data. Data summarization by means of an aggregate function such as the
average, however, loses a lot of information about the actual distribution. For instance in our
example, the slope of the least square fit in CALL-N is close to 1, which suggests that nTS is
equal to nST on average, and does not provide any information for the deviations. This issue
arises mostly because aggregation by the average is not a good representative, especially for
skewed distributions.

To further inspect the correlation between the mutual edge weights, we show the distribution of
weight ratios nTS

nST
in Figure 4.8 for (a) CALL-N, (b) CALL-D, and (c) SMS. We observe that the

distributions follow “layers” of power-laws in all three plots. By fitting least square lines to the
top three so-called layers of points in log-log scales, we notice that the power-law fits have similar
exponents with shifted intercepts –many 1, 2, 3, . . . ratios; fewer 1.5, 2.5, 3.5, . . .; even fewer
1.33, 1.66, 2.33, . . .; and so on. This confirms our visual observation in Figure 4.7 that a similar
pattern in the distribution of mutual edge weights holds for all three human communication
networks we study.
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Figure 4.8: Distribution of the ratio of weights on reciprocal edges nTS
nST

follows “layers” of
power-laws with similar exponents for all three types of weights (a) number of
phone-calls WN , (b) duration of phone-calls WD, and (c) number of SMSs WSMS .

Given our observation that the distribution of reciprocal edge weights (nST , nTS) follows a simi-
lar pattern across all three networks, how can we model the observed distributions? Since neither
visualization nor aggregation qualify for compact data representation, we propose to formulate
the distributions with the following bivariate functional form Pr(nST , nTS), which we call the
Triple Power-Law (3PL) function.

Proposed Model 1 (Triple Power-Law (3PL)) In human communication networks, the distri-
bution Pr(nST , nTS) of mutual edge weights nST and nTS (nST being the smaller) follows a
Triple Power-Law in the following form

Pr(nST , nTS;α, β, γ) ∝ n−αSTn
−β
TS(nTS − nST + 1)−γ

Z(α, β, γ)
, α > 0, β > 0, γ > 0, and

nTS ≥ nST > 0, Z(α, β, γ) =
∑M

nST=1

∑M
nTS=nST

n−αSTn
−β
TS(nTS − nST + 1)−γ.

where Z is the normalization constant and M is a very large integer.

Next we elaborate on the intuition behind the exponents α, β and γ.

Intuition behind the β exponent : 3PL is the 2D extension of the “rich-get-richer” phe-
nomenon; people who make many phone calls will continue making even more, and even longer
ones, leading to skewed, power-law-like distributions. The β exponent is the skewness of the
main component, the number nTS of phone-calls from ’talkative’ to ’silent’. High β means more
skewed distribution; β=0 is roughly uniform distribution. As we show in Figure 4.7, there are
many people who make only a few (and short) phone calls and only a few people who make many
(and long) phone calls. Visually, the vast majority of people who make only a few phone calls are
represented with the high density (dark red) regions around the origin in all three networks.
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Intuition behind the α exponent : Similarly, this indicates the skewness for nST , the number
of silent-to-talkative phone-calls. High value of α means high skewness, while α close to zero
means uniformity. Notice that α ≈ 0 for our real phone-call datasets (see Figure 4.9).

Intuition behind the γ exponent : It captures the skewness in asymmetry. High γ means that
large asymmetries are improbable. This is the case in all our real datasets. For example, in addi-
tion to the origin in Figure 4.7(a), the regions along the diagonal also have high densities. These
regions correspond to mutual pairs with about equal interaction in both directions. This suggests
that humans tend to reciprocate their communications. 3PL also captures this observation; notice
that the probability is higher for nTS close to nST and drops for larger inequality (nTS −nST ) as
a power-law with exponent γ.

4.2.4 Comparison of 3PL to Competing Models

In order to strengthen our case for the 3PL, we would like to rule out several plausible competing
distributions if possible. We cannot, however, compare the 3PL fit of our data with fits to every
competing distribution, of which there are an infinite number. The reason is, it will always
be possible to find a distribution that fits the data better than the 3PL if we define a family of
functions with a sufficiently large number of parameters.

In this section, we compare our model with two well-known parametric distributions for skewed
bivariate data from statistics, the Bivariate Pareto [Kotz et al., 2000] and the Bivariate Yule [Xekalaki,
1986]. Their functional forms are given as two alternative competitor models as follows.

Competitor Model 1 (Bivariate Pareto)

fX1,X2(x1, x2) = k(k + 1)(ab)k+1(ax1 + bx2 + ab)−k−2, x1, x2, a, b, k > 0.

Competitor Model 2 (Bivariate Yule)

fX1,X2(x1, x2) =
ρ(2)(x1 + x2)!

(ρ+ 1)(x1+x2+2)

, x1, x2, ρ > 0;α(β) = Γ(α + β)/Γ(α), α > 0, β ∈ R.

We use maximum likelihood estimation to fit the parameters of each model for each of our three
networks. In Figure 4.9, we report the best-fit parameters as well as the corresponding data log
likelihood scores (the higher, the better). Notice that for CALL-N and CALL-D the 3PL achieves
higher data likelihood than both Bivariate Pareto and Bivariate Yule. On the other hand, for
SMS, the data likelihood scores of all three models are about the same; with Bivariate Pareto
giving a slightly higher score.

The simple sign of the difference between the log likelihoods (log likelihood ratio R), however,
does not on its own show conclusively that one distribution is better than the other as it is subject
to statistical fluctuation. If its true value over many independent data sets drawn from the same
distribution is close to zero, then the fluctuations can easily change its sign and thus the results
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of the comparison cannot be trusted. In order to make a firm judgement in favor of 3PL, we need
to show that the difference between the log likelihoods is sufficiently large and that it could not
be the result of a chance fluctuation. To do so, we need to know the standard deviation σ on R,
which we estimate from our data using the method proposed in [Vuong, 1989].

In Figure 4.9, we report the normalized log likelihood ratio denoted by z = R/
√

2nσ, where
n is the total number of data points (number of mutual edge pairs in our case). A positive
z value indicates that the 3PL model is truly favored over the alternative. We also show the
corresponding p-value, p = erfc(z), where erfc is the complementary Gaussian error function. It
gives an estimate of the probability that we measured a given value of R when the true value of
R is close to zero (and thus cannot be trusted). Therefore, a small p value shows that the value
ofR is unlikely to be a chance result and its sign can be trusted.

CALL-N CALL-D SMS
Triple Power Law (3PL)

α 1e-06 1e-06 0.8120
β 2.0703 1.8670 1.5896
γ 0.8204 0.9650 0.3005
Loglikelihood -7.55e+07 -8.88e+07 -5.41e+06

Bivariate Pareto
k 0.7407 0.7657 0.7862
a 0.2119 0.5723 0.7097
b 10e+05 1.25e+04 0.7553
Loglikelihood -7.77e+07 -9.26e+07 -5.39e+06
z 803.73 975.75 -41.06
p 0 0 0

Bivariate Yule
ρ 1.11e-16 5.55e-17 1e-06
Loglikelihood -8.59e+07 -10.00e+07 -5.41e+06
z 2.14e+03 1.93e+03 1.49
p 0 0 0.03

Figure 4.9: Maximum likelihood parameters estimated for
3PL, Bivariate Pareto and the Bivariate Yule and
data log-likelihoods obtained with the best-fit pa-
rameters. We also give the normalized log likeli-
hood ratios z and the corresponding p-values. A
positive (and large) z value indicates that 3PL is
favored over the alternative. A small p-value con-
firms the significance of the result. Notice that 3PL
provides significantly better fits to CALL and is
as good as its competitors for SMS.

Notice that the magnitude of z for
CALL-N and CALL-D is quite large,
which makes the p-value zero and
shows that 3PL is a significantly
better fit for those data sets. On
the other hand, z is relatively much
smaller for SMS, therefore we con-
clude that 3PL provides as good of
a fit as its competitors for this data
set. Note that the number of mutual
edge pairs n in SMS (≈1 million)
is much smaller compared to that of
the call networks (≈21 million) (Ta-
ble 4.2). It is worth emphasizing
that difference, because the bivari-
ate pattern of reciprocity might re-
veal itself better in larger data sets,
and it would be interesting to see
whether 3PL provides a better fit for
SMS when more data samples be-
come available.

To this end, we also computed the
Kolmogorov-Smirnov (KS) statistic,
which is given as

maxx1,x2|Fn(x1, x2)− F̂ (x1, x2)|

in which Fn is the empirical joint
cumulative distribution function (CDF)
of our data, and F̂ is that from an
estimated model. Unlike in one di-
mension, there is not a closed form
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for its distribution under the null, but we can find it by simulation. (note that with bivariate
data, the joint cumulative distribution function is F (x1, x2) = Prob(X1 ≤ x1, X2 ≤ x2)). In
Table 4.3 we report the KS statistic of all three models for all of our three data sets. Notice that
3PL provides the smallest distance to the empirical distribution for all our call data sets under
the KS test.

CALL-N CALL-D SMS
Triple Power Law 0.0189 0.0810 0.0716
Bivariate Pareto 0.720 0.1147 0.0113
Bivariate Yule 0.2605 0.1661 0.0818

Table 4.3: Kolmogorov-Smirnov statistic; the maximum absolute difference between the joint
empirical CDF computed from our data and the joint CDF estimated from three dif-
ferent models. The smaller values indicate a better fit to real data.

Next, we would like to demonstrate also visually that 3PL provides a better fit to the real data
than its competitors. To this end, having estimated the model parameters for all three models,
we generated synthetic data sets with the same number of samples as in each of our networks.
We show the corresponding plots for CALL-N in Figure 4.10 (a) for real data, and synthetic data
generated by (b) 3PL, (c) Bivariate Pareto, and (d) Bivariate Yule. We notice that the simulated
data distribution from 3PL looks more realistic than its two competitors. Similar results for
CALL-D and SMS are omitted for brevity.
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(a) CALL-N (real data) (b) 3PL (synt.) (c) Biv. Pareto (synt.) (d) Biv. Yule (synt.)

Figure 4.10: Contour-maps for the scatter plot nTS versus nST in CALL-N (a) for real data, and
synthetic data simulated from (b) 3PL, (c) Bivariate Pareto and (d) Bivariate Yule
functions using the best-fit parameters. Notice that synthetic data generated by 3PL
looks more similar to the real data than its competitors also visually. Counts are in
log2 scale. Figures are best viewed in color.

Goodness of Fit

The likelihood ratio test is used to compare two models to determine which one provides a
better fit to a given data. However, as we mentioned in the previous section, it cannot directly
show when both competing models are poor fits to the data; it can only tell which is the least

53



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
i

F
(u

i)

 

 

Empirical CDF
Uniform CDF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
i

F
(u

i)

 

 

Empirical CDF
Uniform CDF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
i

F
(u

i)

 

 

Empirical CDF
Uniform CDF

(a) CALL-N (b) CALL-D (c) SMS

Figure 4.11: Distribution of ûi = F̂ (x1,i, x2,i) for all data points i according to cumulative
distribution function (CDF) F̂ estimated from our 3PL model. An approximately
uniform distribution of ûi shows that 3PL provides a good fit to real data.

bad. Therefore, in addition to showing that 3PL provides a better (or as good) fit than its two
competitors, we also need to demonstrate that it indeed provides a good fit itself.

A general class of tests for goodness of fit work by transforming the data points (x1,i, x2,i) ac-
cording to a cumulative distribution function (CDF) F as ui = F (x1,i, x2,i) for ∀i, 1 ≤ i ≤ n.
One can show that if F is the correct CDF for the data, ui should be uniformly distributed (deriva-
tion follows from basic probability theory). That is, if the CDF F̂ estimated from our model is
approximately correct, the empirical CDF of the ûi = F̂ (x1,i, x2,i) should be approximately a
straight line from (0, 0) to (1, 1).

For each of our three data sets, we generate synthetic data drawn from our 3PL function with
the corresponding estimated best-fit parameters. Then, we compute ûi = F̂ (x1,i, x2,i) for all the
data points in each of the data sets, where F̂ is the estimated CDF from each synthetic data.
In Figure 4.11, we show the CDF of ûi as well as the CDF for a perfect uniform distribution.
Notice that the distribution of ûi is almost uniform for CALL-N and CALL-D, and quite close to
the uniform for SMS. This corroborates our case that our model provides a good approximate to
the correct CDF of our data sets, and thus indeed provides a good fit.

4.2.5 3PL at Work

There exist at least three levels at which we can make use of parametric statistical models for
real data: (1) as data summary: compact mathematical representation, data reduction; (2) as
simulators: generative tools for synthetic data; (3) in anomaly detection: probability density
estimation.

In Figure 4.12 (a), we show top 100 pairs in CALL-D with lowest 3PL likelihood (marked with
triangles). Figure 4.12 (b) shows the local neighborhood of one of the pairs, say A and B (marked
with circles in (a)). We notice low mutuality; A initiated 99% of the calls in return to less than
2 hours total duration of calls B made. Further inspection revealed constant daily activity by A,
including weekends, with about 7 hours call duration per day on average, starting at around 9am
in the morning until around 5-8pm in the evening. It is also surprising that all these calls are
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addressed to the same contact, B. While for privacy reasons, we cannot fully tell the scenario
behind this behavior, this proves to be an interesting case for the service operator to further look
into. Other interesting anomalous observations are omitted for brevity.
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Figure 4.12: (a) Least likely 100 points by 3PL (shown
with triangles). (b) Local neighborhood
of one mutual pair detected as an outlier
(marked with circles). Edge thickness is pro-
portional to edge weight.

In CALL-N, one of the outliers we found
is a mutual pair of users, say A and B,
where A initiated more than 2600 calls in
reply to 45 calls only. As it looks sus-
picious, we examined the spread of these
calls over the course of six months for a
sanity check. To our surprise, we found
out that for two consecutive months, A
called B 40 to 60 times every single day,
constantly. About 90% of these calls
lasted less than 10 minutes, and more
than 50% took less than 2 minutes. In ad-
dition, all the calls lasted strictly less than
1 hour (see Figure 4.13). This shows that
a vast majority of the many calls between
this pair were quite short.
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Figure 4.13: Distribution of the duration of over 2600
calls detected as an anomaly in CALL-N.
Notice that a majority of the calls took less
than 10 minutes.

One scenario for this situation could be
that there exists a specific package from
the mobile service offering a constant
rate for all the calls that takes 10 min-
utes or less. And thus for longer calls the
parties had to hang up and initiated an-
other call, which would result in exces-
sive number of phone calls as observed.
Another scenario could be the case of
faulty equipment dropping calls quite fre-
quently and thus making the parties re-
dial. Anyhow, we believe that the high
non-reciprocity as well as the large num-
ber of calls initiated presents an interest-
ing case for the service operator to further
look into.

4.2.6 Reciprocity and Local Network Topology

Given that person i calls person j wij times and person j calls person i wji times, what is the
degree of reciprocity between them? In this section, we discuss several weighted metrics that
quantify reciprocity between a given mutual pair. Later, we study the relationship between reci-
procity among mutual pairs and their topological similarity.
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date |time |duration date |time |duration
01-DEC|9:0:54 |1h 3’ 03-DEC|9:1:24 |1h 55’
01-DEC|10:4:57 |1h 11’ 03-DEC|11:36:55|1h 42’
01-DEC|11:44:44|1h 31’ 03-DEC|13:19:39|2h 49’
01-DEC|13:31:20|20’ 03-DEC|16:9:6 |44’
01-DEC|15:7:49 |1h 20’
01-DEC|18:10:6 |35’ 04-DEC|9:7:57 |8h 12’
01-DEC|19:3:40 |10’
01-DEC|19:18:45|8’ 10-DEC|9:38:58 |4h 3’

10-DEC|13:42:55|50’
02-DEC|9:9:1 |2h 8’ 10-DEC|14:36:1 |1h 56’
02-DEC|11:41:8 |3h 16’ 10-DEC|18:44:41|2h 5’
02-DEC|14:59:44|2h 31’
02-DEC|17:47:25|1h 11’ 22-DEC|9:20:25 |2h 40’
02-DEC|20:24:15|9’ 22-DEC|12:36:15|2h 9’

22-DEC|14:45:44|1h 7’

Figure 4.14: Spread of calls by days for the anomaly detected in CALL-D. Notice that the calls
are made during the entire duration of working hours.

Weighted reciprocity metrics

Three metrics we considered in this work to quantify the “similarity” or “balance” of weights wij
and wji are (1) Ratio r =

min(wij ,wji)

max(wij ,wji)
∈ [0, 1], (2) Coherence c =

2
√
wijwji

(wij+wji)
∈ [0, 1] (geometric

mean divided by the arithmetic mean of the edge weights), and (3)Entropy e = −pij log2(pij)−
pji log2(pji) ∈ [0, 1], where pij =

wij
(wij+wji)

and pji = 1− pij . All these metrics are equal to 0 for
the (non-mutual) pairs where one of the edge weights is 0, and equal to 1 when the edge weights
are equal. Although these metrics are good at capturing the balance of the edge weights, they
fail to capture the volume of the weights. For example, human would score (wji=100, wij=100)
higher than (wji=1, wij=1), whereas all the metrics above would treat them as equal.

Therefore, we propose to multiply these metrics by the logarithm of the total weight, such that
the reciprocity score consists of both a “balance” as well as a “volume” term. In the rest of this
section, we use the weighted ratio rw =

min(wij ,wji)

max(wij ,wji)
log(wij + wji) as the reciprocity measure in

our experiments. The results are similar for the other weighted metrics, cw and ew.

Reciprocity and Network Overlap

Here, we want to understand whether there is a relation between the local network overlap (local
density) and reciprocity between mutual pairs. Local network overlap of two nodes is simply the
number of common neighbors they have in the network.

In Figure 4.15, we show the cumulative distribution of reciprocity separately for different ranges
of overlap. The figures suggest that people with more common contacts tend to exhibit higher
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reciprocity, both in their SMS and phone call interactions.
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Figure 4.15: Complementary cumulative distribution of reciprocity for different ranges of local
network overlap (number of Common Neighbors). Notice that the more the number
of common contacts, the higher the reciprocity.

Reciprocity and Degree Similarity

Figure 4.16: Average reciprocity among dyads with de-
grees (di, dj) in CALL-N. Notice that reci-
procity is higher among pairs with similar
degrees (number of contacts). Red color rep-
resent higher average reciprocity. Figure is
best viewed in color.

Next, we investigate the relation between
the degree similarity (degree assortativ-
ity) and reciprocity. In Figure 4.16, we
show the heatmap for the average reci-
procity among pairs with respective de-
grees di and dj for CALL-N (similar fig-
ures for other networks are omitted for
brevity). The heatmap plot suggests that
two people with more similar number of
contacts exhibit larger reciprocity; notice
the increase in reciprocity with increas-
ing dj for fixed di (from bottom to diag-
onal, towards degree similarity) and then
the drop from diagonal to the right, to-
wards degree dissimilarity.

Discussion

Our observations suggest that people who have many common contacts as well as similar number
of contacts exhibit higher reciprocity, i.e., they play equally active roles in maintaining their
relationship. In this discussion, we put these findings into context and relate them to the network
topology at large.

Assume that our networks consist of hubs and communities. Communities would represent
tightly connected groups of people (e.g., social circle of friends), and hubs would represent the
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“connector” nodes that are linked from several different communities (e.g. call centers, pizza
shops, etc.). Intuitively, the reciprocity is higher among friends in the same social circle, that is
within communities, and much lower between a hub node and its neighbors.

We believe that our results confirm this hubs and communities structure assumption. The reason
is that, communities are clique-like structures where the nodes in the clique are about the same
degree and share many common neighbors. In contrast, hubs exhibit star-like structures; they
share much fewer common neighbors and have much lower degree similarity with their neigh-
bors. Therefore, the existence of a hubs and communities structure in our networks is a sufficient
condition that would give us our observed results.

We reached these conclusions by studying dyadic relations only. It would be interesting to con-
duct a similar study at the communities level and see how reciprocity changes between different
communities. We conjecture that similar results would hold, due to the communities-within-
communities structure also observed in real networks [Chakrabarti et al., 2004b; Girvan and
Newman, 2002].

4.3 Patterns in call durations

4.3.1 Motivation

In the study of phone calls databases [Onnela et al., 2007b; Seshadri et al., 2008; Willkomm et al.,
2008], a common technique to ease the analysis of the data is the summarization of the phone
calls records into aggregated attributes [Hill et al., 2007], such as the aggregate calls duration or
the total number of phone calls. By doing that, the size of the database can be reduced by orders
of magnitudes, allowing the execution of most well known data mining algorithms in a feasible
time. However, we believe that such representation veils relevant temporal information inherent
in a user or in a relationship between two people. When all the information about the phone calls
records of a user is aggregated into single summarized attributes, we do not know anymore how
often this user calls or for how long he talks per phone call. One may suggest, for instance, to
use descriptive statistics such as mean and variance to describe the duration of the user’s phone
calls, but it is well known that the distribution of these values is highly skewed [Willkomm et al.,
2008], what invalidate the use of such statistics.

In this work, we tackle the following problem. Given a very large amount of phone records, what
is the best way to summarize the calling behavior of a user? In order to answer this question,
we examine phone call records obtained from the network of a large mobile operator of a large
city. More specifically, we analyze the duration of hundreds of million calls and we propose the
Truncated Lazy Contractor (TLAC ) model to describe how long are the durations of the phone
calls of a single user. Thus, the TLAC models the Calls Duration Distribution (CDD) of a user
and is parsimonious, having only two parameters, the efficiency coefficient ρ and the weakness
coefficient β. We show that the TLAC model was the best alternative to model the CDD of the
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users of our dataset, mainly because it has a heavier tail and head than the log-normal distribution,
that is the most commonly used distribution to model CDDs [Guo et al., 2007].

We also suggest the use of the TLAC parameters as a better way to summarize the calls duration
behavior of a user. We propose the MetaDist to model the population of users that have a deter-
mined calls duration behavior. The MetaDist is the meta-distribution of the ρi and βi parameters
of each user i’s CDD and, when its isocontours are visualized, its shape is surprisingly simi-
lar to a bivariate Gaussian distribution. This fascinating regularity, observed in a significantly
noisy data, makes the MetaDist a potential distribution to be explored in the direction of better
understanding the call behavior of mobile users.

In summary, the main contributions of this work are:

• The proposal of the TLAC model to represent the individual phone calls durations of mo-
bile customers;

• The MetaDist to model the group call behavior of the mobile phone users;
• The use of the MetaDist and the Focal Point to describe the collective temporal evolution

of large groups of customers;

As an additional contribution, we show the usefulness of the TLAC model. We show that it
can spot anomalies and it can succinctly verify correlations (or lack thereof) between the TLAC
parameters of the users and their total number of phone calls, aggregate duration and distinct
patterns. We also emphasize that the TLAC model can be used to generate synthetic datasets and
to significantly summarize a very large number of phone calls records.

4.3.2 Patterns and Proposed TLAC Model

In this work, we analyze mobile phone records of millions of mobile phone users in our CALL
dataset (see Table 4.2), during four months. In this period, about half a billion phone calls were
registered and, for each phone call, we have information about the duration of the phone call, the
date and time it occurred and encrypted values that represent the source and the destination of
the call, that may be mobile or not. When not stated otherwise, the results shown in this work
refer to the phone call records of the first month of our dataset. The results for the other 3 months
are explicitly mentioned in the next section.

Problem Definition

The Call Duration Distribution (CDD) is the distribution of the call duration per user in a period
of time, that in our case, is one month. In the literature, there is no consensus about what well
known distribution should be used to model the CDD. There are researchers that claim that the
PDD should be modeled by a log-normal distribution [Guo et al., 2007] and others that it should
be modeled by the exponential distribution [Tejinder S. Randhawa, 2003]. Thus, in this section,
we tackle the following problem:
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Problem 1 CDD FITTING. Given d1, d2, ..., dni durations of ni phone calls made by a user i in
a month, find the most suitable distribution for them and report its parameters.

As we mentioned before, there is no consensus about what well known distribution should be
used to model the CDD, i.e., for some cases the log-normal fits well and for others, the expo-
nential is the most appropriate distribution. Thus, finding another specific random distributions
that could provide good fittings to a particular group of CDDs would just add another variable to
Problem 1, without solving it. Therefore, we propose that the distribution that solves Problem 1
should necessarily obey to the following requirements:

• R1: Intuitively explain the intrinsic reasons behind the calls duration;

• R2: Provide good reliable fits for the great majority of the users.

In the following sections, we present a solution for Problem 1 and tackle Requirement R1 by
presenting the TLAC model, which is an intuitive model to represent CDDs. Then, we tackle
Requirement R2 by showing the goodness of fit of the TLAC model for our dataset.

TLAC Model

Given these constraints, we start solving Problem 1 by explaining the evolution of the calls
duration by a survival analysis perspective. We consider that all the calls c1, c2, ..., cC made by a
user in a month are individuals which are alive while they are active. When a phone call cj starts,
its initial lifetime lj = 1 and, as time goes by, lj progressively increments until the call is over. It
is obvious that the final lifetime of every cj would be its duration dj .

In the survival analysis literature, an interesting survival model that can intuitively explain the
lifetime, i.e. duration, of the phone calls is the log-logistic distribution. And besides its use
in survival analysis [Bennett, 1983; Lawless and Lawless, 1982; Mahmood, 2000], there are
examples in the literature of the use of the log-logistic distribution to model the distribution
of wealth [Fisk, 1961], flood frequency analysis[M.I. Ahmad and Werritty, 1988] and software
reliability[Gokhale and Trivedi, 1998]. All of these examples present a modified version of the
well known “rich gets richer” phenomenon. First, for a variable to be “rich”, it has to face several
risks of “dying” but, if it survives, it is more likely to get “richer” at every time. We propose that
the same occurs for phone calls durations. After the initial risks of hanging up the call, e.g.,
wrong number calls, voice mail calls and short message calls such as “I am busy, talk to you
later” or “I am here. Where are you?” type of calls, the call tends to get longer at every time.
As an example, the lung cancer survival analysis case [Bennett, 1983] parallels our environment
if we substitute endurance to disease with propensity to talk: a patient/customer that has stayed
alive/talking so far, will remain such, for more time, i.e., the longer is the duration of the call so
far, the more the parties are enjoying the conversation and the more the call will survive.

Thus, to solve Problem 1, we propose the Truncated Lazy Contractor (TLAC ) model, that
is a truncated version of the log-logistic distribution, since it not contains the interval [0, 1).
Firstly we show, in Figure 4.17-a, the Probability Density Function (PDF) of the TLAC , the
log-normal and exponential distributions, in order to emphasize the main differences between
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these models. The parameters were chosen accordingly to a median call duration of 2 minutes
for all distributions. The TLAC and log-normal distributions are very similar, but the TLAC
is less concentrated in the median than the log-normal, i.e., it has power law increase ratios in
its head and in its tail. We believe that this is another indication that the TLAC is suitable to
model the users’ CDD, since as it was verified by [Willkomm et al., 2008], CDDs have semi-
heavy” tails. The basic formulas for the log-logistic distribution and, consequently, for the TLAC
, are [Lawless and Lawless, 1982]:

PDFTLAC(x) =
exp(z(1 + σ)− µ)

(σ(1 + ez))2

CDFTLAC(x) =
1

1 + exp(− (ln(x)−µ)
σ

)

z = (ln(x)− µ)/σ

where µ is the location parameter and σ the shape parameter.

(a) PDF (b) Odds Ratio

Figure 4.17: Comparison of shapes of log-normal, exponential and TLAC distributions.

Moreover, in finite sparse data that spans for several orders of magnitude, that is the case of
CDDs when they are measured in seconds, it is very difficult to visualize the PDFs, since the
distribution is considerably noisy at its tail. One option is to smooth the data by reducing its
magnitude by aggregating data into buckets, with the cost of lost of information. Another option
is to move away from the PDF and analyze the cumulative distributions, i.e., cumulative density
function (CDF) and complementary cumulative density function (CCDF) [Clauset et al., 2009].
These distributions veil the sparsity of the data and also the possible irregularities that may occur
for any particular reason. However, by using the CDF (CCDF) you end up losing the information
in the tail (head) of the distribution. In order to escape from this drawbacks, we propose the use
of the Odds Ratio (OR) function, that is a cumulative function where we can clearly see the
distribution behavior either in the head and in the tail. This OR(t) function is commonly used in
the survival analysis and it measures the ratio between the number of individuals that have not
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survived by time t and the ones that survived. Its formula is given by:

OR(t) =
CDFTLAC(t)

1− CDFTLAC(t)
(4.7)

Therefore, in Figure 4.17-b, we plot the OR function for the TLAC , the log-normal and ex-
ponential distributions. The OR function of the exponential distribution is a power law until t
reaches the median, and then it grows exponentially. On the other hand, the OR function of the
log-normal grows slowly in the head and then fast in the tail. Finally, the OR function for the
TLAC is the most interesting one. When plotted in log-log scales, is a straight line, i.e., it is a
power law. Thus, as shown in [Bennett, 1983], the OR(t) function can be summarized by the
following linear regression model:

ln(OR(t)) = ρ ln(t) + β (4.8)
OR(t) = eβtρ (4.9)

In our context, Equation 4.8 means that the ratio between the number of calls that will die by
time t and the ones that will survive grows with a power of ρ. Moreover, given that the median
t̂ of the CDD is given when OR(t) = 1 and OR(t) < 1 when t < t̂, the probability of a call
to end grows with t when t < t̂ and then decrease forever. We call this phenomenon the “lazy
contractor” effect, which represents the time a lazy contractor takes to complete a job. If the job
is easier and does require less effort than the ordinary regular job, he finishes it fast. However,
for jobs that are harder and that demand more work than the ordinary regular job, the contractor
also gets more lazier and takes even more time to complete it, i.e., the longer a job is taking to be
completed, the longer it will take. The ρ and the β are the parameters of the TLAC model, with
ρ = 1/σ.

We conclude this section and, therefore, the first part of the solution to Problem 1, by explaining
the intuition behind the parameters of the TLAC model. The parameter ρ is the efficiency coeffi-
cient, which measures how efficient is the contractor. The higher the ρ, the more efficient is the
contractor and the faster he will complete the job. On the other hand, the location parameter β is
the weakness coefficient, which gives the duration t̂ of the typical regular job a contractor with
a determined efficiency coefficient ρ can take without being lazy, where t̂ = exp(−β/ρ). This
means that the lower the β, the harder are the jobs that the contractor is used to handle.

Goodness of Fit

In this section, we tackle the second requirement of Problem 1 by showing the goodness of fit
of our TLAC model. First, we show in Figure 4.18-a, the PDF of the CDD for a high talkative
user, with 3091 calls, and with the values put in buckets of 5 seconds to ease the visualization.
We also show the best fittings using Maximum Likelihood Estimation (MLE) for the exponential
and the log-normal distributions and also for our proposed TLAC model. Visually, it is clear that
the best fittings are the ones from the log-normal distribution and the TLAC distribution, with the
exponential distribution not being able to explain either the head and the tail of the CDD.

62



However, by examining the OR plot in Figure 4.18-b, we clearly see the the TLAC model provide
the best fitting for the real data. As verified for the exponential distribution in the PDF, in the
OR case, the log-normal also could not explain either the head and the tail of the CDD. We also
point out that we can see relevant differences between the TLAC model and the real data only
for the first call durations, that happen because these regions represent only a very small fraction
of the data. The results showed in Figure 4.18 once more validate our proposal that the TLAC is
a good model for CDDs.

(a) PDF (b) Odds Ratio

Figure 4.18: Comparison of models for the distribution of the phone calls duration of a high
talkative user, with 3091 calls. TLAC in red, log-normal in green and exponential
in black. Visually, for the PDF both the TLAC and the log-normal distribution
provide good fits to the CDD but, for the OR, the TLAC clearly provide the best fit.

Given our initial analysis, we may state that the TLAC seems to be a good fit for the CDDs and
also serve as an intuitive explanation for how the durations of the calls are generated. However,
in order to conclude our answer for Problem 1, we must verify its generality power and also
compare it to the log-normal and exponential generality power as well. Thus, we verify which
one of the distributions can better fit the CDD of all the users of our dataset that have n > 30
phone calls. We calculated, for every user, the best fit according to the MLE for the TLAC , the
log-normal and exponential distributions and we performed a Kolmogorov-Smirnov goodness of
fit test [Massey, 1951], with 5% of significance level, to verify if the user’s CDD is either one
of these distributions. From now on, every time we mention that a distribution was correctly
fitted, we are implying that we succesfully performed a Kolmogorov-Smirnov goodness of fit
test.

In Figure 4.19, we show the percentage of CDDs that could be fitted by a log-normal, a TLAC and
an exponential distribution. As we can see, the TLAC distribution can explain the highest fraction
of the CDDs and the exponential distribution, the lowest. We observe that the TLAC distribution
correctly fit almost 100% of the CDDs for users with n < 1000. From this point, the quality of
the fittings starts to decay, but significantly later than the log-normal distribution. We emphasize
that the great majority of users have n < 1000, what indicates that some of these talkative users’
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CDD are probably driven by non natural activities, such as spams, telemarketing or other strong
commercial-driven intents. This result, allied to the fact that the TLAC distribution could model
more than 96% of the users, make it reasonable to answer Problem 1 claiming that the TLAC
distribution is the standard model for CDDs in our dataset.

Figure 4.19: Percentage of users’ CDDs that were correctly fitted vs. the user’s number of calls
c. The TLAC distribution is the one that provided better fittings for the whole
population of customers with c > 30. It correctly fitted more than 96% of the
users, only significantly failing to fit users with c > 103, probably spammers,
telemarketers or other non-normal behavior user.

Finally, we further explore Problem 1 by looking at the OR of the talkative users that were not
correctly fitted by the TLAC model. In Figure 4.20, we show the OR for three of these users
and, as we observe, even these customers have a visually good fitting to the TLAC model. These
results corroborate even more with the generality power of TLAC . Despite the fact that the
irregularities of these customers’ CDDs unable them to be correctly fitted by the TLAC model,
it is clear that the TLAC can represent their CDDs significantly well.

(a) (b) (c)

Figure 4.20: Odds ratio of 3 talkative customers that were not correctly fitted by TLAC .
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4.3.3 TLAC Over Time

We know it is trivial to visualize the distribution of users with a determined summarized attribute,
such as number of phone calls per month or aggregate calls duration. However, if we want to
visualize the distribution and evolution of a temporal feature of the user such as his CDD, things
start to get more complicated. Thus, in this section, we tackle the following problem:

Problem 2 EVOLUTION. Given the ρi and βi parameters of N customers (i = 1, 2..., N), de-
scribe how they collectively evolve over time.

We propose two approaches to solve Problem 2. In the next two sections, we describe the
MetaDist solution and the Focal Point approach, respectively.

Group Behavior and Meta-Fitting

Since we know that the great majority of users’ CDD can be modeled by the TLAC model, in
order to solve Problem 2, we need to figure out how each user i is distributed according to their
parameters ρi and βi of the TLAC model. If the meta-distribution of the parameters ρi and βi is
well defined, then we can model the collective call behavior of the users and see its evolution over
time. From now on, we will call the meta-distribution of the parameters ρi and βi the MetaDist
distribution.

In Figure 4.21-a, we show the scatter plot of the parameters ρi and βi of the CDD of each user i for
the first month of our dataset. We can not observe any latent pattern due to the overplotting but,
however, we can spot outliers. Moreover, by plotting the ρi and βi parameters using isocontours,
as shown in Figure 4.21-b, we automatically smooth the visualization by disconsidering low
populated regions. While darker colors mean a higher concentration of pairs ρi and βi, white
color mean that there are no users with CDDs with these values of ρi and βi.

(a) Rough scatter plot (b) Isocontours of the real data (c) Bivariate Gaussian fitting.

Figure 4.21: Scatter plot of the parameters ρi and βi of the CDD of each user i for the first month
of our dataset. In (a) we can not see any particular pattern, but we can spot outliers.
By plotting the isocontours (b), we can observe how well a bivariate Gaussian (c)
fits the real distribution of the ρi and βi of the CDDs (’meta-fitting’)
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Surprisingly, we observe that the isocontours of Figure 4.21-b are very similar to the ones of
a bivariate Gaussian. In order to verify this, we extracted from the MetaDist distribution the
means P and B of the parameters ρi and βi, respectively, and also the covariance matrix Σ. We
use these values to generate the isocontours of a bivariate Gaussian distribution and we plotted it
in Figure 4.21-c. We observe that the isocontours of the generated bivariate Gaussian distribution
are similar to the ones from the MetaDist distribution, which indicates that both distributions are
also similar. Thus, we conjecture that a bivariate Gaussian distribution fits the real distribution
of ρ and βs, making the MetaDist a good model to represent the population of users with a
determined calls duration behavior.

Given that the MetaDist is a good model for the group behavior of the customers in our dataset,
we can now visualize and measure how they evolve over time. In Figure 4.22 we show the
evolution of the MetaDist over the four months of our dataset. The first observation we can make
is that the bivariate Gaussian shape stands well during the whole analyzed period, what validates
the robustness of the MetaDist . Moreover, a primary view indicates that the meta-parameters
also have not changed significantly over the months. This can be confirmed by the first 5 rows
of Table 4.4, which describes the value of the meta-parameters P , B and Σ(σ2

ρi
, σ2

βi
, cov(ρi, βi))

for the four analyzed months. This indicates that the phone company already reached a stable
state before its customers concerning its prices, plans and services. In fact, the only noticeable
difference occurs between the first month and the others. We observe that the meta-parameters of
the first month have a slightly higher variance than the others, what indicates that this is probably
an atypical month for the residents of the country in which our phone records were collected.
But in spite of that, in general, the meta-parameters do not change through time. Then, we can
state the following observation:

Observation 4.3.1 TYPICAL BEHAVIOR. The typical human behavior is to have a efficiency
coefficient ρ ≈ 1.59 and a weakness coefficient β ≈ −6.25. Thus, the median duration for a
typical mobile phone user is 51 seconds and the mode is 20 seconds.

(a) Month 1 (b) Month 2. (c) Month 3 (d) Month 4.

Figure 4.22: Evolution of the MetaDist over the four months of our dataset. Note that the col-
lective behavior of the customers is practically stable over time.

Focal Point

An interesting observation we can derive from the MetaDist showed in Figure 4.21 is that there
exists a significant negative correlation between the parameters ρi and βi. This negative correla-
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tion, more precisely of−0.86, lead us to the fact that the OR lines, i.e., the TLAC odds ratio plots
of the customers of our dataset, when plotted together, should cross over a determined region. In
order to verify this, we plotted in Figure 4.23-a the OR lines for some customers of our dataset.
As we can observe, it appears that these lines are all crossing in the same region, when the dura-
tion is approximately 20 seconds and the odds ratio approximately 0.1. Then, in Figure 4.23-b,
we plotted together the OR lines of 20, 000 randomly picked customers and derived from them
the isocontours to show the most populated areas. As we can observe, there is a highly populated
point when the duration is 17 seconds and the OR is 0.15. By analyzing the whole month dataset,
we verified that more than 50% of the users have OR lines that cross this point. From now on,
we call this point the Focal Point .

(a) Direct plot. (b) Isocontours of the plot.

Figure 4.23: The TLAC lines of several customers plotted together. We can observe that,
given the negative correlation of the parameters ρi and βi, that the lines tend to
cross in one point (a). We plot the isocontours of the lines together and approxi-
mately 50% of the customers have TLAC lines that pass on the high density point
(duration=17s, OR=0.15) (b).

Formally, the Focal Point is a point on the OR plot with two coordinates: a coordinate FPduration
in the duration axis and a coordinate FPOR in the OR axis. When a set of customers have their
OR plots crossing at a Focal Point with coordinates (FPduration, FPOR), it means that for all
these customers the FPOR

1+FPOR
th percentile of their CDD is on FPduration seconds. Thus, in the

2 bottom lines of Table 4.4, we describe the Focal Point coordinates for the four months of
our analysis and, surprisingly, the Focal Point is stationary. Thus, we can make the following
observation:

Observation 4.3.2 UNIVERSAL PERCENTILE. The vast majority of mobile phone users has
the same 10th percentile, that is on 17 seconds.

Observation 4.3.2 suggests that one of the risks for a call to end acts in the same way for everyone.
We conjecture that, given the 17 seconds durations, this is the risk of a call to reach the voice
mail of the destination’s mobile phone, i.e., the callee could not answer the call. The duration of
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this call involves listening to the voice mail record and leaving a message, what is coherent with
the 17 seconds mark. It would be interesting to empirically verify the percentage of phone calls
that reaches the voice mail and compare with the Focal Point result.

- 1st month 2nd month 3rd month 4th month
P 1.59 1.58 1.59 1.59
B -6.16 -6.28 -6.32 -6.30
σ2
ρi

0.095 0.086 0.084 0.083
σ2
βi

1.24 0.98 0.95 0.94
cov(ρi, βi) -0.30 -0.24 -0.24 -0.23
FPduration(s) 17 17 17 17

FPOR 0.15 0.12 0.11 0.11

Table 4.4: Evolution of the meta-parameters (rows 1-5) and the Focal Point (rows 6-7) during
the four months of our dataset.

4.3.4 TLAC at Work

In the previous section, we showed the collective behavior of millions of mobile phone users
is stationary over time. We described two approaches to do that, one based on the MetaDist
and the other based on the Focal Point . The initial conclusions of both approaches are same.
First, the collective behavior of our dataset is stable, i.e., it does not change significantly over
time. Second, we could see a slight difference between the first month and the others, indicating
that this month is an atypical month in the year. We believe that these two approaches can
succinctly and accurately aid the mobile phone companies to monitor the collective behavior of
their customers over time.

Moreover, since we could successfully model more than 96% of the CDDs as a TLAC , a natural
application of our models would be for anomaly detection and user classification. A mobile
phone user that does not have a CDD that can be explained by the TLAC distribution is a potential
user to be observed, since he has a distinct call behavior from the majority of the other users. To
illustrate this, we show in Figure 4.24 a talkative node with a CDD that can not be modeled by
a TLAC distribution. We observe that this node, indeed, has an atypical behavior, with his CDD
having a noisy behavior from 10 to 100 seconds and also an impressive number of phone calls
with duration around 1 hour (or 5 × 700 seconds). Moreover, another way to spot outliers is
to check which users have a significant distance from the main cluster of the MetaDist . As we
showed in Figure 4.21-a, this can be easily done even visually.

Another application that emerges naturally for our models is the summarization of data. By
modeling the users’ CDD into TLAC distributions, we are able to summarize, for each user i,
hundreds or thousands of phone calls into just two values, the parameters ρi and βi of the TLAC
model. In our specific case, we could summarize over 0.1TB of phone calls data into less than
80MB of data. In this way, it is completely feasible to analyze several months, or even years

68



Figure 4.24: Outlier whose CDD can not be modeled by the TLAC distribution.

of temporal phone calls data and verify how the behavior of the users is evolving through time.
Also, all the proposed models in this work can be directly applied on the design of generators
that produce synthetic data, allowing researchers that do not have access to real data to generate
their own.

4.3.5 Discussion

Generality of TLAC

As we mentioned earlier, one of the major strengths of the TLAC model is its generalization
power. We showed that even for distributions that oscillate between log-normal and log-logistic,
or that have irregular spikes that unable them to be correctly fitted by TLAC , TLAC can represent
them significantly well. Besides this, the simplicity of the TLAC model allow us to directly
understand its form when its parameters are changed and verify its boundaries. For instance, in
the case of the CDD, eβ gives the odds ratio when duration is 1 second. Thus, when eβ > 1,
most of the calls have a lower duration than 1 second, which makes the CDD converges to a
power law, i.e., the initial spike is truncated. Moreover, as α → 0, the odds ratio tends to be the
constant eβ , what causes the variance to be infinity. By observing Figure 4.25 and concerning
human calling behavior, we conjecture that β is upper bounded by 1 and ρ is lower bounded by
0.5. These values are coherent with the global intuition on human calling behavior.

Additional Correlations

Given that the vast majority of users’ CDDs can be represented by the TLAC model, it would
be interesting if we could predict their parameters ρi and βi based on one of their summarized
attributes. One could imagine that a user that makes a large number of phone calls per month
might have a distinct CDD than a user that makes only a few. Moreover, we could also think
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(a) CDF for ρ (b) CCDF for β

Figure 4.25: Cumulative distributions for ρ and β. We can observe that ρ is lower bounded
by 0.5 and β is upper bounded by 1. These values are coherent with the global
intuition on human calling behavior.

that a user that has many friends and talk to them by the phone regularly may also have a distinct
CDD from a user that only talks to his family on the phone. In Figures 4.26 and 4.27, we show,
respectively, the isocontours of the behavior of the ρi and βi parameters for users with different
values of number of phone calls ni, aggregate duration wi and number of partners pi, i.e., the
distinct number of persons that the user called in a month. With the exception made for the
ρi against wi, we observe that the variance decreases as the value of the summarized attribute
increases. This suggests that the CDD of high or long talkative users, as well as users with many
partners, is easier to predict. Moreover, as we can observe in the figures and also in Table 4.5,
there is no significant correlation between the TLAC parameters and the summarized attributes
of the users. Thus, we make the following observation:

Observation 4.3.3 INVARIANT BEHAVIOR. The ρi and βi parameters of user i behave as in-
variant with respect to (a) number of phone calls ni, (b) aggregate duration wi and (c) number
of partners pi.

Attribute Correlation with ρ Correlation with β
number of phone calls 0.14 -0.18

aggregate duration -0.21 0.01
number of partners 0.18 -0.18

Table 4.5: Correlations between summarized attributes and ρ and β.

Finally, since there is no significant correlation between the users’ CDD parameters ρi and βi
with their summarized attributes, we emphasize that these parameters should be considered when
characterizing user behavior in phone call networks. Moreover, besides characterizing individ-
ual customers, the TLAC model can also be directly applied to the relationship between users,
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(a) number of phone calls (b) aggregate duration (c) number of friends

Figure 4.26: Isocontours of the users’ CDD efficiency coefficient ρ and their summarized at-
tributes.

(a) number of phone calls (b) aggregate duration (c) number of friends

Figure 4.27: Isocontours of the users’ CDD weakness coefficient β and their summarized at-
tributes.

analyzing how two persons call each other. One could use, for instance, the ρ parameter as the
weight of the edges of the social network generated from phone call records.
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4.4 Summary of contributions

In this chapter we presented our work on the analysis of billions of human communication (phone
call, SMS, and instant message) records of millions of users over months’ of activity. Our re-
search questions focus on understanding human communication patterns. This body of work can
be grouped into three main tracks: (1) study of social circles; (2) study of reciprocal relations;
and (3) study of call durations.

In particular, our main contributions are summarized as the following:

• Social circles and related patterns: We studied the maximal cliques in our communication
networks and discovered new power-law-like patterns. More specifically, we found that
the number of maximal cliques a node participates in follows a power-law relation with its
degree; this translates to “popularity” growing superlinearly with the number of contacts.
Related to degree distribution, thus, there exist many nodes which belong to only a few
cliques while there are only a few nodes that belong to many cliques. We also found that
the weights on the edges of triangles follow power-laws. Moreover, the discovered patterns
are stable and persistent over time.

• Reciprocity and 3PL model: We found that joint distribution Pr(wij, wji) of the weights
on mutual edges follow a bivariate pattern for all three types of weights; number of phone
calls, duration of phone calls and number of SMSs. We proposed the Triple Power Law
(3PL) function to model this distribution. Our goodness of fit tests showed that 3PL pro-
vides better fits than two other well-known bivariate distributions for skewed data, the
Bivariate Pareto and the Bivariate Yule.
In addition, we took a weighted approach to quantify the degree of reciprocity. We ob-
served that reciprocity is higher (1) for mutual pairs with larger local network overlap,
that is, for people with more common friends; and (2) for mutual pairs with larger degree-
similarity, that is, for people with similar number of contacts.

• Call durations and TLAC model: We proposed the TLAC distribution, which fits very
well the vast majority of individual phone call durations, much better than log-normal and
exponential. We introduced MetaDist which shows that the collection of TLAC parameters
follow a striking bivariate Gaussian; MetaDist also remains the same over time, with very
small fluctuations.
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Part II

Generative Models of Networks
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Chapter 5

Preliminaries

5.1 Introduction

How can we build a model that would generate graphs that look like real data? The goal here is
to develop a graph generation scheme such that the output graph obeys as many of the patterns
observed in real-world graphs as possible.

As we discussed in previous chapters, many fascinating properties of real-world graphs have been
discovered, such as small and shrinking diameter [Albert et al., 1999; Leskovec et al., 2005b],
as well as numerous power-laws [Akoglu et al., 2008; Chakrabarti et al., 2004b; Faloutsos et al.,
1999; Kleinberg et al., 1999; Leskovec et al., 2005b; Mcglohon et al., 2008; Newman, 2005;
Siganos et al., 2003; Tsourakakis, 2008]. As a result of such interesting patterns being discov-
ered, and for many other reasons which we will discuss next, how to find a model that would
produce synthetic but realistic graphs is a natural question to ask. There are several applications
and advantages of modeling real-world graphs:

• Simulation studies: if we want to run tests for, say a spam detection algorithm, and want to
observe how the algorithm behaves on graphs with different sizes and structural properties,
we can use graph generators to produce such graphs by changing the parameters. This is
also true when it is difficult to collect any kind of real data.

• Sampling/Extrapolation: we can generate a smaller graph for example for visualization
purposes or in case the original graph is too big to run tests on it; or conversely to generate
a larger graph for instance to make future prediction and answer what-if questions.

• Summarization/Compression: model parameters can be used to summarize and compress
a given graph as well as to measure similarity to other graphs.

• Motivation to understand pattern generating processes: graph generators give intuition
and shed light upon what kind of processes can (or cannot) yield the emergence of certain
patterns. Moreover, modeling addresses the question of what patterns real networks exhibit
that needs to be matched and provides motivation to figure out such properties.

Ideally, a desired graph generator should be:
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1. realistic: it would produce graphs that obey all the discovered “laws” of real-world graphs
with appropriate values.

2. simple: it would be easy to understand and it would intuitively lead to the emergence of
macroscopic patterns.

3. parsimonious: it would require only a few number of parameters.
4. flexible: it would be able to generate the cross-product of weighted/unweighted, directed

/undirected and unipartite/bipartite graphs.
5. fast: the generation process would ideally take linear time with respect to the number of

edges in the output graph.

Earlier work on real-world networks focused on static snapshots and their structural properties.
As a result, earlier graph generators that try to mimic real graphs are limited to capturing only
these structural properties. Even then, those generators focus on modeling a single property
of networks, and fail to mimic others. For example, the ‘small-world’ model [Watts and Stro-
gatz, 1998] tries to capture the ‘small diameter’ phenomenon, or the ‘preferential attachment’
model [Barabasi and Albert, 1999] seeks to generate skewed degree distributions.

In the first chapter of this part, we focus on building generators, capturing dynamic and weighted,
as well as static structural properties. We first introduce the Recursive Tensor Model (RTM) that
generates weighted, time-evolving graphs. RTM is a generalization of Kronecker graph genera-
tors [Leskovec et al., 2005a] to the time-evolving setting. While it is mathematically tractable, it
comes with some disadvantages of Kronecker models; namely, multinomial/lognormal (instead
of power-law) distributions and fixed number of nodes (see related work 5.2 for details). Next,
we introduce the Random Typing Graphs (RTG) that uses a process of ‘random typing’, to gen-
erate source and destination node identifiers. It overcomes the two shortcomings of RTM and it
meets all the above desired properties. In fact, we show that it can generate graphs that obey all
eleven patterns that real graphs were observed to typically exhibit to date.

In the second chapter of this part, we focus on building a generator, capturing human communi-
cation patterns. We introduce the Pay and Call (PaC) model, which is a utility-driven generator
that models the way in which humans decide when and whom to contact. Our guiding principle
is that humans balance a trade-off between the cost of the communication (in time and money),
and its benefit (in valuable information and emotional support).

The following two chapters in this part are based on work as cited below.

• Chapter 6 Models of graph topology [Akoglu and Faloutsos, 2009; Akoglu et al., 2008]

• Chapter 7 Model of human communications [Du et al., 2009].

5.2 Related Work

Modeling real-world graphs successfully is an elusive task. A vast majority of earlier graph
generators have focused on modeling a small number of common properties, but fail to mimic
others. The very first generative model was proposed by Erdos & Renyi [Erdos and Renyi, 1960].

75



The model begins with a fixed number of nodes, and adds edges, where any pair of nodes has the
same and independent probability of being linked by an edge. While it has some interesting prov-
able properties, it fails to produce a number of realistic properties, most notably the heavy-tailed
degree distribution. Another striking generator is the ‘preferential attachment’ model [Barabasi
and Albert, 1999], where at each time step nodes are added and ‘prefer’ to link to high-degree
nodes. This in turn leads to small diameter and heavy-tailed degree distributions; however, this
and related models lack the shrinking diameter property. There exists a group of other gen-
erators such as the ‘small-world’ [Watts and Strogatz, 1998], ‘winners don’t take all’ [Pennock
et al., 2002], ‘forest fire’ [Leskovec et al., 2005b], and ‘butterfly’ [Mcglohon et al., 2008] models.
In addition, recursive models using Kronecker multiplication have proved useful for generating
self-similar properties of graphs [Leskovec et al., 2005a]. [Chakrabarti and Faloutsos, 2006]
provides a detailed survey on graph generators. In general, these methods are limited in trying
to model some static graph property while neglecting others as well as dynamic properties or
cannot be generalized to produce weighted graphs.

Kronecker graph generators [Leskovec et al., 2005a] are successful in the sense that they match
several of the properties of real graphs and they have proved useful for generating self-similar
properties of graphs. However, they have two disadvantages: The first is that they generate
multinomial/lognormal distributions for their degree and eigenvalue distribution, instead of a
power-law one. The second disadvantage is that it is not easy to grow the graph incrementally:
They have a fixed, predetermined number of nodes (say, Nk, where N is the number of nodes of
the generator graph, and k is the number of iterations); where adding more edges than expected
does not create additional nodes.

Random dot product graphs [Kraetzl M., 2005; Young and Scheinerman, 2007] assign each ver-
tex a random vector in some d-dimensional space and an edge is put between two vertexes with
probability equal to the dot product of the endpoints. This model does not generate weighted
graphs and by definition only produces undirected graphs. It also seems to require the computa-
tion of the dot product for each pair of nodes which takes quadratic time.

A different family of models, often referred to as games of network formation and that are mainly
from the fields of economics and game theory, are utility-based. In such models, there exist
agents that try to optimize a predefined utility function and the network structure takes shape from
their collective strategic behavior. [Laoutaris et al., 2008] proposes a network formation game,
where links have costs and lengths, and players have preference weights on the other players,
to study the properties of pure Nash equilibria [Nash, 1951] in different settings. [Albers et al.,
2006], [Demaine et al., 2009], and [Fabrikant et al., 2003] study a similar game where players
do not have fixed budgets and the cost function is defined in terms of the sum of the number of
edges. [Even-Dar et al., 2007] proposes a network creation game where nodes act as buyers and
sellers such that the resulting graphs are bipartite. This class of models, however, is usually hard
to analyze.

In this body of work, in contrast to previous work, we explicitly focus on generators for time-
evolving as well as weighted graphs. Moreover, our models are often mathematically tractable.
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Chapter 6

Models of network topology

PROBLEM STATEMENT: How could we have a realistic generative model that will produce
synthetic graphs that look like real, i.e. graphs that obey all the patterns we know so far, as well
as the newly discovered ones for dynamic and weighted graphs?

In this chapter, we present two generative models: (1) Recursive Tensor Model, which uses
Kronecker tensor product to produce time-evolving weighted graphs, and (2) Random Typing
Graphs, based on a simple random typing procedure that mimics human behavior well.

6.1 RTM: Recursive Tensor Model

The high level idea behind our Recursive Tensor Model is to use recursion, in conjunction with
tensors (n-dimensional extension of matrices). Recursion and self-similarity naturally leads to
modular network behavior (“communities-within-communities”), power laws [Leskovec et al.,
2005a], as well as bursty traffic [Wang et al., 2002]. Earlier work used self-similarity to generate
static snapshots of unweighted graphs [Chakrabarti et al., 2004b]. Here, we show how to build a
generator that will also match dynamic and weighted properties.

The main idea is to use recursion not only on the adjacency matrix, but also on the time di-
mension. Specifically, we start with a small tensor I that has 3 sides (‘modes’): (a) senders
(b) recipients and (c) time. We call the graph represented by a tensor a ‘t-graph’ that evolves
over time (see Fig. 6.1 (a-b)). Then, we recursively substitute every cell (i, j, t) of the original
tensor I, with a copy of itself, and multiply it with the value ai,j,t (see Fig. 6.1 (c) for illustration
and Definition 2 for full details). Thanks to the self-similarity of the construct, we expect the
resulting tensor to have all the properties we want.

First, we give the details of the construction. Secondly, we provide proofs to show that our model
will generate graphs with desired properties. Finally, we give our experimental results.
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(a) (4× 4× 3) tensor T → t-slices

(b) corresponding t-graph over time (c) Kronecker product of T by itself

Figure 6.1: (a) An example for the initial tensor T of size (4 × 4 × 3). The ‘t-slices’ represent
the changes on the adjacency matrix at every other time step. (b) The corresponding
graph represented by the tensor in part (a). It changes according to the ‘t-slices’ over
time. (c) Kronecker product of T by itself produces a self-similar tensor.

6.1.1 Model Description

Throughout this section, we use the following conventions: uppercase bold letters for matrices,
lowercase bold letters for vectors, lowercase letters for scalars, and calligraphic uppercase letters
for tensors. A list of symbols used is listed in Table 6.1.

Symbol Description
A,B, C Tensors used to illustrate recursive tensor product
ai,j,k Entry of a tensor
I Initial tensor in RTM model
GA t-graph (time-evolving graph) represented by tensor A
Dt tth slice of final tensor D in RTM
st Total weight of Dt

et Number of edges of Dt

WD Total weight of a tensor D, or
∑

t st
sD,r Temporal profile of D at resolution r
pD,r Normalized temporal profile of D at resolution r

Table 6.1: Table of symbols used in RTM notation.

For the construction, we choose an initial (N × N × τ) tensor I with nonzero cells (i, j, t)
indicating an edge from node i to node j at time tick t. We initialize the cells so that the initial
t-graph(t- for time-evolving) GI represented by I looks like a miniature real-world graph. We
provide details for how to initialize I in Section 5.3.

Note that RTM works for both directed and bipartite t-graphs. A bipartite t-graph can be repre-
sented by an (N×M×τ) tensor. For simplicity, we focus on unipartite graphs in our work.
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We propose to use Recursive Tensor Multiplication to produce a time-evolving graph. Our
method extends Kronecker product 1 of two matrices by adding a third ‘mode’. Kronecker prod-
uct of two matrices is defined as follows: Given two matrices A and B of sizes (N ×M) and
(N ′ × M ′), respectively, the Kronecker product of A and B, namely matrix C of dimension
(N ∗N ′)× (M ∗M ′) is given by

C = A⊗ B =




a1,1B a1,2B . . . a1,MB
a2,1B a2,2B . . . a2,MB

...
... . . . ...

aN,1B aN,2B . . . aN,MB




Definition 2 (Recursive Tensor Multiplication) Given two tensorsA of size (N×M×τ) andB
of size (N ′×M ′×τ ′), Recursive Tensor Multiplication C ofA andB is obtained by replacing each
cell ai,j,t of tensorA with ai,j,t∗B. The resulting tensor C is of size (N ∗N ′)×(M ∗M ′)×(τ ∗τ ′)
such that

c((i−1)∗N+i′),((j−1)∗M+j′),((k−1)∗τ+k′) = ai,j,k ∗ bi′,j′,k′ .

An example of the Recursive Tensor Multiplication of a (3 × 3 × 3) tensor by itself is given in
Fig. 6.1 (c).

To generate a growing graph over time, we get the ‘Recursive Tensor Multiplication’ of the initial
(N ×N × τ) tensor I by itself k times as:

Ik = D = I ©t I ©t . . . ©t I︸ ︷︷ ︸
k times

and then we take the final tensor D to represent our data. The data spans τ k number of time
ticks with Nk nodes. At every time step t (t = {1, 2, ..., τ k}), we get the t-slice (see Definition 3
below) Dt of D, and for each nonzero cell ai,j of Dt, we add an edge between node i and node j
with weight ai,j . If the edge already exists, we increase the weightwi,j by the same amount.

Initializing I

In order to take advantage of the self-similarity property of our construct, we want the initial
graph GI to be a realistic graph itself. Basically, one can use any graph generator in the literature
that is known to produce realistic graphs [Erdos and Renyi, 1960; Leskovec et al., 2005b; Watts
and Strogatz, 1998] to generate GI .
To our knowledge, RTM is the first weighted graph generator; thus we also take weights into
consideration as follows. We force the initial graph to obey the WPL at all time ticks. That is,
when a link occurs between two nodes, we put weight on the edge, so that number of edges E(t)
and total weight W (t) over time follow a power law, with a user-specified exponent α.

1Unfortunately, Kronecker product C of two matrices A and B is also called Kronecker Tensor multiplication,
despite A, B, C are matrices. To disambiguate, we use the name RTM where A, B, C are in fact tensors.
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Having given the details of the construction, next we give proofs for the characteristics that RTM
will generate. Before that, we define the terms we use throughout the proofs.

Definition 3 (t-slice of a tensor T ) Given a tensor T of size (N × M × τ), t-slice of T is a
matrix Tt such that

Tt ≡ T (i, j, t), ∀i,∀j, 1 ≤ i ≤ N, 1 ≤ j ≤M

Definition 4 ((Normalized) temporal (t-) profile of T ) Given a tensor T of size (N ×M × τ),
let st denote the total weight of its t-slice. Then, the t-profile of T is a (1× τ) vector, such that

sT ,0 ≡ (s1, s2, . . . , sτ )

Total weight WT of T can be written as
∑τ

t=1 st. Then, normalized t-profile of T is a (1 × τ)
vector, such that

pT ,0 ≡ (
s1
WT

,
s2
WT

, . . . ,
sτ
WT

)

6.1.2 Theorems and Proofs

Recursive Tensor graphs can be shown to exhibit several real-world graph properties. In partic-
ular, if we choose the initial graph to be a miniature of a real graph, after recursive iterations
of RTM, the resulting graph will follow similar properties as of the initial graph due to self-
similarity of the construction.

Theorem 1 (Self-similar and Bursty Edge/Weight Additions) Let edge/weight additions for
I with pI,0 be self-similar and bursty for which the slope of the entropy plot is

slope = H(pI,0) = −
τ∑

i=1

pI,0(i)log2(pI,0(i)),

After k iterations of RTM, edge/weight arrivals over time for D are also self-similar and bursty.
The slope of the entropy plot over all aggregation levels r of D is equal to

slope = H(pD,r) = H(pI,0), ∀r

where H(pD,r) is the slope of the entropy plot at aggregation level r. Furthermore, the slope
does not change with the value of k, that is, burstiness is independent of scale.

Proof We will prove for weight additions and similar arguments apply for edge additions.
After k iterations of RTM, total weight of D becomes

WD = W k
I = (s1 + s2 + . . .+ sτ )

k

At aggregation level (resolution) 1, we group slices by τ k−1 into τ groups. Then, WD can be
written as

WD = s1 ∗W k−1
I + s2 ∗W k−1

I + . . .+ sτ ∗W k−1
I
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Then for 1 ≤ t ≤ τ ,

pD,1(t) =
st ∗W k−1

I
W k
I

=
st
WI

= pI,0(t)

At aggregation level 2, we group slices by τ k−2 into τ 2 groups. Then,

WD = s1 ∗ (s1 ∗W k−2
I + s2 ∗W k−2

I + . . .+ sτ ∗W k−2
I )

+ s2 ∗ (s1 ∗W k−2
I + s2 ∗W k−2

I + . . .+ sτ ∗W k−2
I )

+ . . .

+ sτ ∗ (s1 ∗W k−2
I + s2 ∗W k−2

I + . . .+ sτ ∗W k−2
I )

For any slice i at level 1 and t at level 2, 1 ≤ t ≤ τ 2,

pD,2(t) =
si ∗ st ∗W k−2

I

si ∗W k−1
I

=
st
WI

= pI,0(t)

Finally, at aggregation level k, we group slices by τ 0 into τ k groups as

WD = (s1)
k−1 ∗ (s1 + s2 + . . .+ sτ )

+ (s1)
k−2 ∗ s2 ∗ (s1 + s2 + . . .+ sτ )

+ . . .

+ (sτ )
k−1 ∗ (s1 + s2 + . . .+ sτ )

For all combinations of (k− 1) slices at levels from 1 to (k− 1), let cj denote the corresponding
coefficients, 1 ≤ j ≤ τ k−1, and for any slice t at level k, 1 ≤ t ≤ τ k

pD,k(t) =
cj ∗ st
cj ∗WI

=
st
WI

= pI,0(t)

We showed that normalized t-profile, pD,r, of D remains the same at all aggregation levels r and
is equal to that of the initial tensor I. So, we conclude that bias of burstiness for D is the same
as that of I for all values of k, since H(pD,r) would not change for ∀r.

As an example, starting with a (10 × 10 × 2) I, where pI,0(1) : pI,0(2) = 0.175 : 0.825; after
k = 3 iterations, the slope of the entropy plot is obtained to be 0.669, which is equal to

H(pI,0) = .175 ∗ log2(.175) + .825 ∗ log2(.825)

See Fig. 6.3 (c).

Theorem 2 (Weight Power Law (WPL)) If the initial graph GI exhibits the WPL at all time
ticks, that is, number of edges E(t) and total weight W (t) over time follow a power law with
exponent α, GD shows the same property at time ticks 1, τ 1, τ 2, . . . , τ k with exactly the same
exponent α.
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Proof We are given the condition that GI follows the WPL at all time ticks, that is,

eα1 = s1, (e1 + e2)
α = (s1 + s2), . . . , (

τ∑

t=1

et)
α = (

τ∑

1

st).

After k iterations of RTM, the resulting graph has Ek = (
∑τ

t=1 et)
k edges and W k

I = (
∑τ

t=1 st)
k

total weight. At t = τ k,

Eα = WI ⇒ (Eα)k = W k
I ⇒ (Ek)α = W k

I

At aggregation level 1, Ek can be written as,

Ek = e1 ∗ Ek−1 + e2 ∗ Ek−1 + . . .+ eτ ∗ Ek−1

Same argument holds for W k
I . So, at t = τ k−1, number of edges is (e1 ∗ Ek−1) and total weight

is (s1 ∗W k−1
I ). And,

(e1 ∗ Ek−1)α = (e1)
α ∗ (Eα)k−1 = s1 ∗W k−1

I

In general, at every aggregation level r, at t = τ r, the graph follows the WPL as

(er1 ∗ Ek−r)α = (eα1 )r ∗ (Eα)k−r = sr1 ∗W k−r
I

We observe that when we interpolate total weight W (t) versus number of edges E(t) at all time
ticks t ∈ {1, 2, . . . , τ k} for the final graph GD, the resulting exponent remains very close to α. In
Fig. 6.3 (b), the user-specified WPL exponent is 1.5, which is equal to the slope when points at
t = {1, 2, 4, 8} are used to fit a line (k = 3). When all points are used, the slope is 1.47.

6.1.3 Model Validation and Analysis

Having created the initial tensor, we take the Recursive Tensor Multiplication of I by itself k
times. The final tensor D is a (Nk ×Nk × τ k) tensor spanning τ k time ticks. At every time tick
t, we take the t-slice Dt of D. Next, we simply introduce an edge from node i to node j with
weight ai,j for every nonzero entry of Dt. If node i or node j did not exist, we introduce new
node(s). If both existed, we only increase the edge weight by ai,j .

We did several experiments for different values of N , τ and k. Our model produced realistic
graphs for a wide range of parameters, the results being independent of the number of iterations
k. In fact, k can be chosen as large as the size of the graph that one needs to generate.

As a comparison with real-world data, we give the plots showing reported laws for BlogNet
in Fig. 6.2. The plots our model generated for N = 10, τ = 2 and k = 3 are shown in
Fig. 6.3. In particular, we show (a) the Densification Power Law (DPL); (b) the Weight Power
Law (WPL); (c) bursty weight additions; (d) the λ1 Power Law (LPL), (e) the λ1,w Power Law
and finally, (f) the Edge Weight Power Law (EWPL). See Table 2.2 and Chapter 3 for details on
these laws. Other desired characteristics such as small and shrinking diameter, the gelling point
and the Degree Power Law for degree distribution of nodes are also matched, but omitted here
for brevity.
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Figure 6.2: Plots showing related laws that real-world graphs obey for BlogNet. First row shows
previous laws while second row shows observations of this work.
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Figure 6.3: Plots showing related laws our RTM generator produced. Notice that they are very
similar in all the listed properties to those of BlogNet.
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6.2 RTG: Random Typing Graphs

Zipf introduced probably the earliest power law [Zipf, 1932], stating that, in many natural lan-
guages, the rank r and the frequency fr of vocabulary words follow a power-law fr ∝ 1/r.
[Mandelbrot, 1953] argued that Zipf‘s law is the result of optimizing the average amount of in-
formation per unit transmission cost. [Miller, 1957] showed that a random process also leads to
Zipf-like power laws. He suggested the following experiment: “A monkey types randomly on a
keyboard with k characters and a space bar. A space is hit with probability q; all other charac-
ters are hit with equal probability, (1−q)

k
. A space is used to separate words”. The distribution

of the resulting words of this random typing process follow a power-law. Conrad and Mitzen-
macher [Conrad and Mitzenmacher, 2004] showed that this relation still holds when the keys are
hit with unequal probability.

Our RTG model generalizes the above model of natural human behavior, using “random typing”.
We build the model in three steps, incrementally. In the next two steps, we introduce the base
version of the proposed model to give an insight. However, as will become clear, it has two
shortcomings. In particular, the base model does not capture (1) homophily, the tendency to
associate and bond with similar others- people tend to be acquainted with others similar in age,
class, geographical area, etc. and (2) community structure, the existence of groups of nodes that
are more densely connected internally than with the rest of the graph.

6.2.1 Initial RTG with Independent Equiprobable keys

As in Miller’s experimental setting, we propose each unique word typed by the monkey to rep-
resent a node in the output graph (one can think of each unique word as the label of the corre-
sponding node). To form links between nodes, we mark the sequence of words as ‘source’ and
‘destination’, alternatingly. That is, we divide the sequence of words into groups of two and link
the first node to the second node in each pair. If two nodes are already linked, the weight of the
edge is simply increased by 1. Therefore, if W words are typed, the total weight of the output
graph is W/2. See Figure 6.4 for an example illustration. Intuitively, random typing introduces
new nodes to the graph as more words are typed, because the possibility of generating longer
words increases with increasing number of words typed.

Due to its simple structure, this model is very easy to implement and is indeed mathematically
tractable. If W words are typed on a keyboard with k keys and a space bar, the probability p of
hitting a key being the same for all keys and the probability of hitting the space bar being denoted
as q=(1− kp):

Lemma 2 The expected number of nodes N in the output graph G of the RTG-IE model is

N ∝ W−logpk.

Proof Given the number of words W , we want to find the expected number of nodes N that
the RTG-IE graph consists of. This question can be reformulated as follows: ”Given W words
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Time Source Destination Weight

T1 ab a 1

T2 bba ab 1

T3 b ab 1

T4 a b 1

T5 ab a 1…   …        …    …   

a b S

a ab b SS

p q
p

p p qq

q

p p

p
p

ab a bba ab b ab a b ab a

Figure 6.4: Illustration of the RTG-IE. Upper left: how words are (recursively) generated on a
keyboard with two equiprobable keys, ‘a’ and ‘b’, and a space bar; lower left: a
keyboard is used to randomly type words, separated by the space character; upper
right: how words are organized in pairs to create source and destination nodes in
the graph over time; lower right: the output graph; each node label corresponds to a
unique word, while labels on edges denote weights.

typed by a monkey on a keyboard with k keys and a space bar, what is the size of the vocabulary
V ?” The number of unique words V is basically equal to the number of nodes N in the output
graph.

Let w denote a single word generated by the defined random process. Then, w can recursively be
written as follows: “w : ciw|S”, where ci is the character that corresponds to key i, 1 ≤ i ≤ k,
and S is the space character. So, V as a function of model parameters can be formulated as:

V (W ) = V (c1,Wp) + V (c2,Wp) + . . .+ V (ck,Wp) + V (S)

= k ∗ V (Wp) + V (S) = k ∗ V (Wp) +
{ 1, 1− (1− q)W

0, (1− q)W

where q denotes the probability of hitting the space bar, i.e. q = 1 − kp. Given the fact that W
is often large, and (1− q) < 1, it is almost always the case that w=S is generated; but since this
adds only a constant factor, we can ignore it in the rest of the computation. That is,

V (W ) ≈ k ∗ V (Wp) = k ∗ (k ∗ V (Wp2)) = kn ∗ V (1)

where n = logp(1/W ) = −logpW . By definition, when W=1, that is, in case only one word is
generated, the vocabulary size is 1, i.e. V(1)=1. Therefore,

V (W ) = N ∝ kn = k−logpW = W−logpk.
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Figure 6.5: (a) Rank vs count of vocabulary words typed randomly on a keyboard with k
equiprobable keys (with probability p) and a space bar (with probability q), follow a
power law with exponent α = logkp. Approximately, the area under the curve gives
the total number of words typed. (b) The relationship between number of edges E
and total weight W behaves like a power-law (k=2, p=0.4).

The above proof shown using recursion is in agreement with the early result of [Miller, 1957],
who showed that in the monkey-typing experiment with k equiprobable keys (with probability
p) and a space bar (with probability q), the rank-frequency distribution of words follow a power
law. In particular,

f(r) ∝ r−1+logk(1−q)−1 = rlogkp.

In this case, the number of ranks corresponds to the number of unique words, that is, the vocab-
ulary size V . And, the sum of the counts of occurrences of all words in the vocabulary should
give W , the number of words typed. The total count can be approximated by the area under the
curve on the rank-count plot. See Figure 6.5 (a). Next, we give a second proof of Lemma 2 using
Miller’s result.

Proof 2 Let α = logkp and C(r) denote the number of times that the word with rank r is typed.
Then, C(r) = crα, where C(r)min = C(V ) = cV α and the constant c = C(V )V −α. Then we
can write W as

W = C(V )V −α

(
V∑

r=1

rα

)
≈ C(V )V −α

(∫ V

r=1

rαdr

)
= C(V )V −α

(
rα+1

α + 1

∣∣∣
V

r=1

)

= C(V )V −α
(

1

−α− 1
− 1

(−α− 1)V −α−1

)
≈ c′V −α.

where c′ = C(V )
−α−1 , where α < −1 and C(V ) is very small (usually 1). Therefore,

V = N ∝ W− 1
α = W−logpk.
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Lemma 3 The expected number of edges E in the output graph G of the RTG-IE model is

E ≈ W−logpk ∗ (1 + c′logW ), for c′ =
q−logpk

−logp > 0.

Proof Given the number of words W , we want to find the expected number of edges E that the
RTG-IE graph consists of. The number of edges E is the same as the unique number of pairs of
words. We can think of a pair of words as a single word e, the generation of which is stopped
after the second hit to the space bar. So, e always contains a single space character. Recursively,
“e : cie|Sw”, where “w : ciw|S”. So, E can be formulated as:

E(W ) = k ∗ E(Wp) + V (Wq) (6.1)

V (Wq) = k ∗ V (Wqp) +
{ 1, 1− (1− q)Wq

0, (1− q)Wq (6.2)

From Lemma 2, Equation (6.2) can be approximately written as V (Wq) = (Wq)−logpk. Then,
Equ.(1) becomes E(W ) = k ∗ E(Wp) + cWα, where c = q−logpk and α = −logpk. Given that
E(W=1)=1, we can solve the recursion as follows:

E(W ) ≈ k ∗ (k ∗ E(Wp2) + c(Wp)α) + cWα

= k ∗ (k ∗ (k ∗ V (Wp3) + c(Wp2)α) + c(Wp)α) + cWα

= kn ∗ V (1) + kn−1 ∗ c(Wpn−1) + kn−2 ∗ c(Wpn−2)α + . . .+ cWα

= kn ∗ V (1) + cWα((kpα)n−1 + (kpα)n−2 + . . .+ 1)

where n = logp(1/W ) = −logpW . Since kpα = kp−logpk = 1,

E(W ) ≈ kn ∗ V (1) + n ∗ cWα = k−logpW + c
−log 1

W

−logp W
−logpk = W−logpk(1 + c′logW )

where c′ = c
−logp = q−logpk

−logp > 0.

The above function of E in terms of W and other model parameters looks like a power-law for a
wide range of W . See Figure 6.5 (b).

Lemma 4 The in(out)-degree dn of a node in the output graph G of the RTG-IE model is power
law related to its total in(out)-weight Wn, that is,

Wn ∝ d−logkpn

with expected exponent −logkp > 1.
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Proof We will show thatWn ∝ d−logkpn for out-edges, and a similar argument holds for in-edges.
Given that the experiment is repeatedW times, letWn denote the number of times a unique word
is typed as a source. Each such unique word corresponds to a node in the final graph and Wn is
basically its out-weight, since the node appears as a source node. Then, the out-degree dn of a
node is simply the number of unique words typed as a destination. From Lemma 2,

Wn ∝ d−logkpn , for − logkp > 1.

Even though most of the properties listed at the beginning of this section are matched, there
are two problems with this model: (1) the degree distribution follows a power-law only for
small degrees and then shows multinomial characteristics (see Figure 6.6 (top)), and (2) it does
not generate homophily and community structure, because it is possible for every node to get
connected to every other node, rather than to ‘similar’ nodes in the graph.

6.2.2 Initial RTG with Independent Un-equiprobable keys

We can spread the degrees so that nodes with the same-length but otherwise distinct labels would
have different degrees by making keys have unequal probabilities. This procedure introduces
smoothing in the distribution of degrees, which remedies the first problem introduced by the
RTG-IE model. In addition, thanks to [Conrad and Mitzenmacher, 2004], we are still guaranteed
to obtain the desired power-law characteristics as before (see Figure 6.6 (bottom)).

6.2.3 Proposed RTG: Model Description

What the previous model fails to capture is the homophily and community structure. In a real
network, we would expect nodes to get connected to similar nodes (homophily), and form groups
and possibly groups within groups (modular structure). In our model, for example on a keyboard
with two keys ‘a’ and ‘b’, we would like nodes with many ‘a’s in their labels to be connected
to similar nodes, as opposed to nodes labeled with many ‘b’s. However, in both RTG-IE and
RTG-IU it is possible for every node to connect to every other node. In fact, this yields a tightly
connected core of nodes with rather short labels.

Our proposal to fix this is to envision a two-dimensional keyboard that generates source and
destination labels in one shot, as shown in Figure 6.7. The previous model generates a word for
source, and, completely independently, another word for destination. In the example with two
keys, we can envision this process as picking one of the nine keys in Figure 6.7 (a), using the
independence assumption: the probability for each key is the product of the probability of the
corresponding row times the probability of the corresponding column: pl for letter l, and q for
space (‘S’). After a key is selected, its row character is appended to the source label, and the
column character to the destination label. This process repeats recursively as in Figure 6.7 (b),
until the space character is hit on the first dimension in which case the source label is terminated
and also on the second dimension in which case the destination label is terminated.
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Figure 6.6: Top row: Results of RTG-IE (k = 5, p = 0.16, W = 1M ). The problem with
this model is that in(out)-degrees form multinomial clusters (left). This is because
nodes with labels of the same length are expected to have the same degree. This
can be observed on the rank-frequency plot (right) where we see many words with
the same frequency. Notice the ‘staircase effect’. Bottom row: Results of RTG-
IU (k = 5, p = [0.03, 0.05, 0.1, 0.22, 0.30], W = 1M ). Unequal probabilities
introduce smoothing on the frequency of words that are of the same length (right).
As a result, degree distribution follows a power-law with expected heavy tails (left).

In order to model homophily and communities, rather than assigning cross-product probabilities
to keys on the 2-d keyboard, we introduce an imbalance factor β, which will decrease the chance
of a-to-b edges, and increase the chance for a-to-a and b-to-b edges, as shown in Figure 6.7
(c). Thus, for the example that we have, the formulas for the probabilities of the nine keys
become:

prob(a, b) = prob(b, a) = papbβ , prob(a, a) = pa − (prob(a, b) + prob(a, S)),
prob(S, a) = prob(a, S) = qpaβ , prob(b, b) = pb − (prob(b, a) + prob(b, S)),
prob(S, b) = prob(b, S) = qpbβ , prob(S, S) = q − (prob(S, a) + prob(S, b)).

By boosting the probabilities of the diagonal keys and down-rating the probabilities of the off-
diagonal keys, we are guaranteed that nodes with similar labels will have higher chance to get
connected. The pseudo-code of the generator is given in Algorithm 1.
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Figure 6.7: The RTG model: random typing on a 2-d keyboard, generating edges (source-
destination pairs). See Algorithm 1. (a) an example 2-d keyboard (nine keys),
hitting a key generates the row(column) character for source(destination), shaded
keys terminate source and/or destination words. (b) illustrates recursive nature. (c)
the imbalance factor β favors diagonal keys and leads to homophily.

Algorithm 1: RTG Model
Input: number of keys k, probability q to hit ‘space’, #iterations W , imbalance factor β
Output: edge-list L for output graph G

1 Initialize (k + 1)-by-(k + 1) matrix P with cross-product probabilities
2 // in order to ensure homophily and community structure
3 Multiply off-diagonal probabilities by β, 0 < β < 1
4 Boost diagonal probabilities s.t. sum of row (column) probabilities remain the same.
5 Initialize edge list L
6 foreach 1 to W do
7 L1, L2← SelectNodeLabels (P, k)
8 Append L1, L2 to L

Next,we describe how we handle time so that edge/weight additions are bursty and self-similar.
We also discuss the generalizations of the model in order to produce all types of uni/bipartite,
(un)weighted, and (un)directed graphs.

Burstiness and Self-similarity

Most real-world traffic as well as edge/weight additions to real-world graphs have been found
to be self-similar and bursty [Crovella and Bestavros, 1996; Gomez and Santonja, 1998; Gribble
et al., 1998]. Therefore, in this section we give a brief overview of how to aggregate time so that
edge and weight additions, that is ∆E and ∆W, are bursty and self-similar.

Notice that when we link two nodes at each step, we add 1 to the total weight W . So, if every
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Procedure SelectNodeLabels(P , k)
Input: Probability matrix P , number of keys k
Output: Source label L1 and destination label L2

1 Initialize L1 and L2 to empty string
2 while not terminated L1 and not terminated L2 do
3 Draw key (i, j) with probability P (i, j)
4 if i ≤ k, j ≤ k then
5 Append character ‘i’ to L1 and ‘j’ to L2 if not terminated

6 else if i ≤ k, j=k + 1 then
7 Append character ‘i’ to L1 if not terminated
8 Terminate L2

9 else if i=k + 1, j ≤ k then
10 Append character ‘j’ to L2 if not terminated
11 Terminate L1

12 else
13 Terminate L1 and L2

14 return L1 and L2

step is represented as a single time-tick, the weight additions are uniform. However, to generate
bursty traffic, we need to have a bias factor b> 0.5, such that b-fraction of the additions happen
in one half and the remaining in the other half. We use the b-model [Wang et al., 2002], which
generates such self-similar and bursty traffic. Specifically, starting with a uniform interval, we
recursively subdivide weight additions to each half, quarter, and so on, according to the bias b.
To create randomness, at each step we randomly swap the order of fractions b and (1− b).

Generalizations

We can easily generalize RTG to model all type of graphs. To generate undirected graphs, we
can simply assume edges from source to destination to be undirected as the formation of source
and destination labels is the same and symmetric. For unweighted graphs, we can simply ignore
duplicate edges, that is, edges that connect already linked nodes. Finally, for bipartite graphs,
we can use two different sets of keys such that on the 2-d keyboard, source dimension contains
keys from the first set, and the destination dimension from the other set. This assures source and
destination labels to be completely different, as desired.

6.2.4 Model Validation and Analysis

The question we wish to answer here is how well RTG is able to model real-world graphs. The
datasets we used are:
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BlogNet: a social network of blogs based on citations (undirected, unipartite and unweighted
with N=27, 726; E=126, 227; over 80 time ticks).

CampOrg: the U.S. electoral campaign donations network from organizations to candidates (di-
rected, bipartite and weighted with N=23, 191; E=877, 721; and W=4, 383, 105, 580 over 29
time ticks). Weights on edges indicate donated dollar amounts.

In order to evaluate community structure, we use the modularity measure in [Newman and Gir-
van, 2004]. Figure 13.5 (left) shows that modularity increases with smaller imbalance factor β.
Without any imbalance, β=1, modularity is as low as 0.35, which indicates that no significant
modularity exists. In Figure 13.5 (right), we also show the running time of RTG with respect to
the number of duplicate edges (that is, number of iterations W ). Notice the linear growth with
increasing W .
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Figure 6.8: (left) Modularity score vs. imbalance factor β, modularity increases with decreas-
ing β. For β=1, the score is very low indicating no significant modularity. (right)
Computation time vs. number of iterations W, time grows linearly with W.

In Figures 6.9 and 6.10, we show the related patterns for BlogNet and CampOrg as well as
synthetic results, respectively. In order to model these networks, we ran experiments for different
parameter values k, q, W , and β. Here, we show the closest results that RTG generated, though
fitting the parameters is a challenging future direction. We observe that RTG is able to match the
long wish-list of static and dynamic properties we presented earlier for the two real graphs.
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(a) diameter (b) components (c) degrees (d) TPL

(e) DPL (f) entropy ∆E (g) λ1PL (h) EPL

(a) diameter (b) components (c) degrees (d) TPL

(e) DPL (f) entropy ∆E (g) λ1PL (h) EPL

Figure 6.9: Top two rows: properties of BlogNet: (a) small and shrinking diameter; (b) largest 3
connected components; (c) degree distribution; (d) triangles ∆ vs number of nodes
with ∆ triangles; (e) densification; (f) bursty edge additions; (g) largest 3 eigenvalues
wrtE; (h) rank spectrum of the adjacency matrix. Bottom two rows: results of RTG.
Notice the similar qualitative behavior for all eight laws. See Table 2.2 and Chapter 3
for details on these laws.

93



(a) diameter (b) components (c) degree distr. (d) SPL

(e) D(W)PL (f) entropy ∆W(E) (g) λ1PL (h) EPL

(a) diameter (b) components (c) degree distr. (d) SPL

(e) D(W)PL (f) entropy ∆W(E) (g) λ1PL (h) EPL

Figure 6.10: Top two rows: properties of CampOrg; as opposed to BlogNet, CampOrg is
weighted. So, different from above we show: (d) node weight vs in(inset:
out)degree; (e) total weight vs number of edges(inset); (f) bursty weight addi-
tions(inset); Bottom two rows: results of RTG. Notice the similar qualitative be-
havior for all nine laws. See Table 2.2 and Chapter 3 for details on these laws.
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6.3 Summary of contributions

In this chapter, we focused on the problem of how to build a generative model that could pro-
duce realistic-looking synthetic networks. We presented two graph generators, namely RTM and
RTG1, that mimic topological properties of real-world networks. Compared to previous work on
graph generators, these models are two of the first models that capture the dynamic and weighted
properties, in addition to static unweighted properties, that real networks exhibit.

Our first model Recursive Tensor Model (RTM) is a simple, recursive generator based on Kro-
necker tensor multiplication. We rigorously proved that RTM produces several desired charac-
teristics, such as bursty weight additions. We also experimentally validated that it mimics a long
list of the laws described in previous chapters. On the other hand, RTM has some shortcomings.
In particular, it requires a fixed, predetermined number of nodes as initial input. The number
of nodes in the final output graph grows as powers of this initial number over iterations due
to the nature of the Kronecker product. In other words, new nodes joining the network do not
emerge naturally. A second issue with RTM is that it generates multinomial/lognormal (instead
of power-law) distributions.

Our second model Random Typing Graphs (RTG) is based on a simple ‘random typing’ proce-
dure which is shown to mimic natural behavior very well. The random typing involves hitting
keys on a keyboard randomly and generating words, i.e. node labels, separated with space char-
acters. This model overcomes the issues associated with RTM as discussed above. In particular,
setting the probabilities of keys being hit unequally ensures that it generates power-laws. In ad-
dition, the nodes arrive to the network naturally over time– longer typing generates new words
seamlessly. More importantly, it meets all the five desirable properties given in the introduction.
Particularly, the RTG model is

1. realistic; generating graphs that obey all eleven properties that real graphs obey –no other
generator has been shown to achieve that,

2. simple and intuitive; yet it generates the emergent, macroscopic patterns that we see in
real-world graphs,

3. parsimonious; requiring only a handful of parameters,
4. flexible; capable of generating weighted/unweighted, directed/undirected, and unipartite/

bipartite graphs, and any combination of the above, and
5. fast; being linear on the number of iterations (on par with the number of duplicate edges

in the output graph).

1Source code of our algorithm can be found at www.cs.cmu.edu/̃ lakoglu/#code
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Chapter 7

Models of human communications

PROBLEM STATEMENT: How could we design a realistic and intuitive generative model that
will naturally reproduce real human-to-human communication behavior?

In this chapter, we introduce a novel generator to model the way which humans decide when
and whom to contact. We argue that such a model should be utility driven, as opposed to earlier
models (preferential attachment [Barabasi and Albert, 1999], forest-fire [Leskovec et al., 2005b],
butterfly [Mcglohon et al., 2008], etc.) which are mainly randomness-guided generators. Our
guiding principle is that humans balance a trade-off between the cost of the communication (in
time and money), and its benefit (in valuable information and emotional support).

7.1 PaC: Pay and Call Model

Every communication, such as phone-call, SMS, and e-mail, has a cost in terms of money, time,
and equipment. On the other hand, it has a benefit, otherwise humans would not do it. The
benefits can be psychological and emotional (talking to friends makes us happy), or monetary
(stock tip), or desirable in other ways. For ease of presentation, we refer to the benefit as if it is
measured by emotional dollars. The point of this thought experiment is to set up a utility-driven
model for the social contacts of humans, which should be more realistic and more informative
than the ones using randomness.

Therefore, we assume that people are rational agents, which means telemarketers are excluded
from the model, and we design our generator to guide the behavior of each agent according to
a well-defined utility function. Ideally, the fundamental macro-phenomena of a social network
should then emerge from the simple local behavior of each agent/human.
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7.1.1 Model Description

Following the above discussion, we now present our utility-driven model PaC as a Pay and Call
game. Assume a setting where a set A of n distinct agents create links to one another through
phone calls. In every round of the game, each agent’s strategy is to choose among other peers to
whom he will make calls and build links. Links are undirected. Once agent ai ∈ A calls aj ∈ A,
there will be a link between them. The total number of phone-calls that ai and aj give to each
other is treated as the weight on the undirected link between them. The PaC model essentially
includes the following four ingredients:

• It adopts the agent-based modeling approach. Each agent has a friendliness value, an
exponential lifetime, a certain amount of capital, and the expected payoffs from talking to
strangers.

• The goal of each agent is to invest his limited capital into phone-calls and maximize the
potential payoffs from each conversation.

• The per-minute gain of a conversation will be gradually saturated, and finally both of the
callers and callees will lose interest, and stop the conversation.

• Each agent ai can ask his partners for recommendations. Every partner recommends the
profitable agents from his own partners, so ai benefits from talking to the most profitable
agent within the recommendations.

Friendliness and Exponential Lifetime

Each agent has a friendliness value Fi ∈ (0, 1) to show his personality. Fi approaching to 1
means the agent is very open and friendly, and Fi close to 0 means he is very shy and introverted.
ai has a probability Pl, uniformly chosen from 0 to 1, to stay in the game, and has the probability
1− Pl to leave the game, so that we can simulate the mixture of different ages in a real scenario.
Once an old agent leaves, all his links will be removed, and a new agent replaces his position
with the friendliness and Pl initialized to new values.

Utility-Driven Phone-Calls and Saturation

An agent’s payoffs are the difference between the benefits and costs. The benefits are defined
based on the following considerations. Two open agents usually can benefit emotionally from
a happy conversation. When an open agent meets a shy agent, they may benefit less from their
conversation. Finally, two shy agents might gain little in the end. In addition, after two agents
have been talking for a while, they may gradually lose interest, and gain less emotionally as time
goes by. For agent ai and aj , they can achieve

√
Fi × Fj × αm−1 emotional dollars per minute

from a conversation, where α ∈ (0, 1) is called the saturation factor to represent the loss of
interest, and m is the number of minutes for which they have been talking.

For an m-minutes long conversation, the total benefits are defined as
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benefits =
√
Fi × Fj ×

∑
(1 + α + α2 + ...+ αm−1)

=
√
Fi × Fj ×

1− αm
1− α (7.1)

The costs are the expenses of phone-calls, which include Cini and Cpm. Cini is the cost to
initiate a phone-call, and Cpm is the per-minute fee. The total costs for an m-minutes call will be
Cini +m× Cpm, so our utility function is defined as

payoffs = benefits− Cini −m× Cpm (7.2)

and each agent starts and maintains a conversation until the payoffs as given by Equation 7.2
reach the maximum value or the agent has used all his money.

Expected Payoffs on Strangers

At first, each agent is given an initial capital which is enough to make one call only. Since none
of the agents have ever talked before, agent ai first uniformly calls a stranger aj , and keeps the
conversation until either the payoffs by Equation 7.2 begin to decrease or s/he spends all his
money in the call (ai.capital ≤ 0). When the call is finished, ai and aj will achieve the payoffs
Pj from the conversation. A link is built between ai and aj with weight 1, and ai will remember
the payoffs Pj earned by talking to aj . Because aj was first a stranger to ai before they met, ai
also updates his expected payoffs from talking to strangers as

Sexp =

∑
Pj

1 + S
(7.3)

where S is the total number of times talking to strangers, and Pi is the payoffs achieved at each
time. Sexp is initialized to 0 in the beginning. In each round of the game, agent ai is only allowed
to call aj for one time. If ai still has some money left (note that the payoffs earned in the current
round can only be used in the next round), he will continue to interact with other strangers.

Recommendations

Once agent ai has some partners, he will first prioritize his partners according to the remembered
payoffs, and talk to them respectively. If the payoffs of the currently chosen partner is less than
ai’s expected payoffs from strangers (Sexp ≥ 0), ai will stop talking to partners and choose to
call strangers again. He first asks his partners for recommendations. Every partner will tell ai
how much money he actually earned by talking to his own partners last time. ai can then pick
the most profitable agent out of the partners of his partners. If all the recommended agents are
already his partners, ai will uniformly choose a stranger from the rest.
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In summary, the PaC model is formulated as pseudo-code in Algorithm 2.

Algorithm 2: PaC Model
Input: Cini, Cpm, α

1 foreach ai ∈ A do
2 if ai stays with probability ai.Pl and ai.capital ≥ Cini + Cpm then
3 if N(ai) = ∅ then
4 Talk2Strangers(ai)
5 else
6 Talk2Partners(ai)

7 if ai quits with probability 1− ai.Pl then
8 Replace ai with a newly born agent

Procedure Talk2Strangers(ai)
Input: current agent ai

1 total← 0
2 if N(ai) 6= ∅ and ai finds the most profitable agent he never talked to from the

recommendations then
3 aj ← the most profitable agent
4 else
5 aj ←GetRandom(A)
6 while ai.capital ≥ Cini + Cpm and ai.Sexp ≥ 0 do
7 maximize payoffs with constraint ai.capital ≥ 0 by Equation 7.2
8 add aj to N(ai), add ai to N(aj)
9 aj.capital← aj.capital + payoffs

10 total← total + payoffs
11 update ai.Sexp and aj.Sexp by Equation 7.3

12 ai.capital← ai.capital + total

Procedure Talk2Partners(ai)
Input: current agent ai

1 total← 0
2 prioritize N(ai) according to the descending order of the remembered payoffs
3 for k ← 1 to |N(ai)| do
4 Pk ← ai’s remembered payoffs from ak
5 if Pk ≥ ai.Sexp then
6 maximize payoffs with constraint ai.capital ≥ 0 by Equation 7.2
7 increase the weight on the link between ai and ak by 1
8 aj.capital← aj.capital + payoffs
9 total← total + payoffs

10 else
11 Talk2Strangers(ai)
12 break

13 if ai.capital ≤ 0 then break

14 ai.capital← ai.capital + total
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7.1.2 Model Validation and Analysis

Our goal here is to show that our model is able to generate degree, weight and clique distributions
that mimic a real graph like our communication networks. Notice that we only want to show
qualitative match of the properties. Exact fitting is outside the scope of this work. We decided
to test our model with respect to all the usual patterns, and specifically the degree distribution,
weight distribution, as well as the snapshot power law. We also want to qualitatively check
against our new clique-related patterns, the CDPL, CPL, and the TWL. We simulated the model
35 times for 100,000 nodes, with Cini = 0.1, Cpm = 0.4 and α = 0.9. For each agent ai, Fi and
Pl are randomly chosen from 0 to 1.

Figure 7.1 shows the results of these checkpoints. The top rows are for the actual graph GS1T1, and
the bottom rows are for a synthetic graph, generated by our PaC model. In all cases, notice that
PaC gives skewed distributions that are remarkably close to the real ones. For example, except
for the giant connected component which is an isolated point distant from the rest, the size
distribution of the connected-components conforms to a power-law. The exponents take values
within the range observed in real world networks with a least-square fit of R2 > 0.95.

From earlier research [Mitzenmacher, 2003; Reed, 2001], we understand how heavy-tailed dis-
tributions such as power-law, lognormal and DPLN could arise for the degree distribution and
the node weight distribution. According to [Mitzenmacher, 2003], lognormal distributions can
be naturally generated by multiplicative processes: For a biological example, at each step j, an
organism may grow or shrink by a certain percentage according to a random variable Fj . If
Xj denotes the current size of the organism, Xj = FjXj−1 where Fj is independent of Xj−1.
Consider lnXj = lnX0 +

∑j
k=1 lnFk. If Fk, 1 ≤ k ≤ j, are independent lognormal distribu-

tions, then Xj is always lognormal. If Fk are not lognormal, but are independent and identically
distributed with finite mean and variance, by Central Limit Theorem,

∑j
k=1 lnFk converges to a

normal distribution, andXj will asymptotically approach a lognormal distribution. IfXj is lower
bounded by a minimum value, then the distribution will become a power-law. If we sample the
series from X0 to Xj by a geometrically distributed random time k, we will have a geomet-
ric mixture of lognormal distributions. This will turn out to be a DPLN distribution with two
power-laws at both tails.

Following the PowerTrack method in [Reed, 2001], we empirically analyze the generative pro-
cess of our PaC model by taking two snapshots GTi and GTj at time step Ti and Tj with j− i ≥ 1.
Among the common agents between GTi and GTj , we calculate the ratio XTj/XTi , where Xt

represents either the degree or the weight for each node. In Figure 7.2, the distributions of the
ratio for both of the degree and weight appear to be parabolic in logarithmic scales. This pro-
vides good evidence that a lognormal multiplicative process similar to that described in [Mitzen-
macher, 2003] is involved in the temporal evolution of our model.

Another important issue is that we also need to test the independence between partners and their
ratios, and the same for the calls. Here, the correlation coefficients, which are necessary but
not sufficient for independence [Reed, 2001], are very small: −0.02 and −0.04 for partners and
calls respectively. Finally, in each round of the game, every agent has the probability Pl to stay

100



10
0

10
1

10
210

−5

10
0

#Partners

P
D

F

GS1
T1

10
0

10
2

10
410

−5

10
0

#Calls
P

D
F

GS1
T1

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Component Size

P
D

F

GS1
T1

slope= −3.40

(a) PDF of #Partners (b) PDF of #Calls (c) PDF of components (d) SPL

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Maximal Cliques

P
D

F

GS1
T1

slope = −1.78

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

#Partners

A
ve

ra
ge

 #
M

ax
im

al
 C

liq
ue

s

GS1
T1

slope=1.87

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

MidWeight
M

ax
W

ei
gh

t

GS1
T1

slope=0.61

(e) CPL (f) CDPL (g) TWL

10
0

10
1

10
210

−5

10
0

#Partners

P
D

F

Synthetic

10
0

10
2

10
410

−5

10
0

#Calls

P
D

F

Synthetic

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Component Szie

P
D

F

Synthetic

slope= −2.72

(a) PDF of #Partners (b) PDF of #Calls (c) PDF of components (d) SPL

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Maximal Cliques

P
D

F

Synthetic

slope = −2.33

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

#Partners

A
ve

ra
ge

 #
M

ax
im

al
 C

liq
ue

s

Synthetic

slope=1.35

10
0

10
1

10
2

10
0

10
1

10
2

MidWeight

M
ax

W
ei

gh
t

Synthetic

slope=0.55

(e) CPL (f) CDPL (g) TWL

Figure 7.1: Qualitative comparison between the real graph (top two rows) and our synthetic
graph (bottom two rows). PaC gives skewed distributions like the real ones.
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Figure 7.2: The ratio of partners (left), and calls (right) between two different snapshots of PaC
follow the lognormal distribution. The parabolic line is fitted in red.

or leave the game, which essentially leads to a geometric lifetime. Therefore, although we do
not explicitly assume any prior distribution about the ratio (the File Model in [Mitzenmacher,
2003] explicitly assumes a lognormal distribution for Fk), the PaC model can still mimic the
DPLN degree distribution and the node weight distribution which are identical with the real
communication networks.

By comparing with the existing graph generators, we see that many models like the preferential-
attachment guided models usually ignore the weight information, and only generate the giant
connected component. In contrast, our model is able to reproduce the networks that have not
only the patterns holding in un-weighted networks, but also the patterns followed by the weighted
communication networks.

7.2 Summary of contributions

Many preferential-attachment [Barabasi and Albert, 1999] guided models assume that a newly-
added node is more likely to be linked to the most popular node of the current graph. However, in
real world scenarios, incoming nodes are typically unaware of such global structural knowledge
of the network. Moreover, most earlier generators dictate that nodes will choose contacts at
random; in contrast, we argue that people choose contacts to maximize some utility.

In this work we designed an intuitive graph generator, called PaC, for modeling human com-
munication behavior. In this model, each node (a) uses only local information, and (b) uses no
randomness, but instead tries to maximize a well-defined utility function. The major advantage
of PaC over older generators is that it can answer what if scenarios. For example, if the connec-
tion price of each phone-call goes up, will this decrease the average number of friendship edges,
what about a change in the price-per-minute, what if there is a flat rate, and so on. Based on
the utility function of PaC, we can explore what the impact of these settings would be on the
structure and evolution of the network.
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Part III

Anomaly Detection
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Chapter 8

Preliminaries

8.1 Introduction

Given a large real-world graph, possibly with weighted edges and attributed nodes, which nodes
should we consider as “strange”? What are the time points at which the graph structure changes
significantly? Applications of such settings abound: For example, in network intrusion detection,
we have computers sending packets to each other, and we want to know which nodes misbehave
(e.g., spammers, port-scanners). In a who-calls-whom network [Seshadri et al., 2008], strange
behavior may indicate defecting customers, or telemarketers, or even faulty equipment dropping
connections too often. In a social network, like Facebook and LinkedIn, again we want to spot
users whose behavior deviates from the usual behavior [Leskovec et al., 2008], such as people
adding friends indiscriminately, in “popularity contests”.

The list of applications continues: Anomalous behavior could signify irregularities, like credit
card fraud, calling card fraud, campaign donation irregularities, accounting inefficiencies or fraud
[Bay et al., 2006], extremely cross-disciplinary authors in an author-paper graph [Sun et al.,
2005], suspicious cargo shipments [Eberle and Holder, 2006], electronic auction fraud [Chau
et al., 2006; Pandit et al., 2007], and many others. In addition to revealing suspicious, illegal
and/or dangerous behavior, anomaly detection is useful for spotting rare events, as well as for
the thankless, but absolutely vital task of data cleansing [Chen et al., 2005; Dasu and Johnson,
2003]. Moreover, anomaly detection is intimately related with the pattern and law discovery:
unless the majority of our nodes closely obey a pattern (say, a power law), only then can we
confidently consider as outliers the few nodes that deviate [Broder et al., 2000].

Most existing anomaly and outlier detection algorithms focus on clouds of multi-dimensional
points, and similarly most algorithms for change and event detection are designed for traditional
time series data. Our main contribution in this part of the thesis is to develop such methods for
graph data. We tackle the above problem in various settings; for graphs possibly with weighted
edges, attributed nodes, and for graphs changing over time. Furthermore, we make our detection
techniques accessible to human analysts, by providing means for sensemaking.
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In Chapter 9, we focus on the problem of spotting strange nodes in plain graphs, with weighted
edges. We refer to a graph for which we only know its structure, that is the nodes and the links
among them, as a plain graph. We start with answering questions such as: what features should
we extract to characterize each node?, what patterns and laws do the nodes obey? Based on those
patterns we observe, we develop ODDBALL, a scalable, un-supervised method for anomalous
node detection. The main idea is to focus on the local neighborhood (the egonet), that is, a
sphere, or a ball (hence the name ODDBALL) around each node. We show that egonets obey
some surprising patterns, which gives us confidence to declare as outliers the ones that deviate.
We apply ODDBALL1 to numerous real graphs (DBLP, political donations, etc.) and we show
that it indeed spots nodes that a human would agree are strange and/or extreme.

In Chapter 10 and 11, we address the problem of finding clusters and outliers in attributed graphs.
We refer to a graph in which the nodes are associated with a set of attributes (or features) as an
attributed graph. We consider both binary and categorical attributes in those two chapters, re-
spectively. First we introduce PICS 1, to find cohesive groups of nodes which have similar
connectivity patterns as well as attribute coherence. Second we introduce COMPREX, for iden-
tifying anomalies using pattern-based compression. The main idea behind these work is to build
a compression model that describes the norm of the data succinctly, and subsequently flag those
points that are dissimilar to the norm—those with high compression cost—as anomalies.

In Chapter 12, we look at the problem of detecting change-points in a time-varying graph at
which many nodes deviate from their normal ‘behavior’. In a nut-shell, the main idea of our
method is as follows. We first extract time sequences of several network features for all nodes
in the graph. Then, we derive a ‘behavior’ vector for the nodes over consecutive time windows
and compare each one to a summary of previous ‘behavior’ vectors. We flag a time window
as anomalous and report that an event has occurred if its ‘behavior’ is found to be significantly
different than its past.

In Chapter 13, we develop a novel method for sensemaking for graph anomalies. The methods
like ODDBALL, PICS, and COMPREX we introduce in earlier chapters help us find anomalous
nodes in a given graph. Our new method, called DOT2DOT 1, helps us to understand how these
nodes are correlated within the graph and thus to further summarize the anomalies. In particular,
it groups the flagged anomalous nodes into groups where the nodes in the same group are ‘close’
to each other in the graph while nodes across groups are ‘sufficiently’ far apart. For the ‘close-by’
nodes in the same group, DOT2DOT finds a small candidate graph around them for visualization
and it highlights good connection pathways among them. The main idea is to build a compression
framework and employ information-theoretic ideas to select the best set of connection subgraphs
that would yield the minimum compression cost for the given subset of nodes in the graph.

All the proposed methods are designed to work in an unsupervised fashion. That is, they do not
assume that there exist any labeled anomalous data to learn from. Furthermore, the algorithms
are developed so that their running time scale linearly with respect to the input graph size, as well
as they operate parameter-free, i.e. require no user-specified parameters (similarity thresholds,
number of clusters, etc.).

1Source code of ODDBALL, PICS, and DOT2DOT are at www.cs.cmu.edu/̃ lakoglu/#code
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8.2 Definitions

In this section, we introduce basic terminology and present the Minimum Description Length
(MDL) principle. MDL serves as the main model selection principle we use for our methods in
this part of the thesis.

Egonets of a Graph

Borrowing terminology from social network analysis (SNA), an “ego” is an individual node. A
graph has as many egos as it has nodes. Egos can be people, groups, organizations, or whole
societies, depending on what the nodes of the graph represent.

The “k-step neighborhood” of node i is the collection of node i, all its k-step-away nodes, and all
the connections among all of these nodes – formally, this is the “induced subgraph”. In SNA, the
1-step neighborhood of a node is specifically known as its “egonet”. It contains the “ego” (center
of interest) and all the nodes (neighbors) and edges directly around the ego. Formally,

Definition 5 (k-step neighborhood) Given a graph G, node i in G, and a non-negative integer k,
let N(i,k) = {j ∈ V (G) : d(i, j) ≤ k} denote the k-step away neighbors of node i, where d(i, j)
is defined as the minimum path length from node i to node j in G. Then, the k-step neighborhood
of node i, denoted as G(i,k)(V,E), is defined as the induced subgraph, where V (G(i,k)) = N(i,k)

and E(G(i,k)) = {(i, j) ∈ E(G) : i, j ∈ N(i,k)}.

Minimum Description Length principle

The Minimum Description Length (MDL) principle [Grünwald, 2007] is a practical version of
Kolmogorov Complexity [Li and Vitányi, 1993], and can be regarded as a model selection crite-
rion based on lossless compression principles. Both embrace the slogan Induction by Compres-
sion. For MDL, this can be roughly described as follows:

Given a set of models, or hypotheses,H, the best model H ∈ H is the one that minimizes

L(H) + L(D | H) ,

in which L(H) is the length in bits of the description ofH , and L(D | H) is the length of the data
when encoded with modelH . That is, the MDL-optimal model for a database D encodes D most
succinctly among all possible models; it provides the best possible lossless compression.

MDL provides us a systematic approach for selecting the model that best balances the complexity
of the model and its fit to the data. While models that are overly complex may provide an
arbitrarily good fit to the data and thus have lowL(D | H), they overfit the data, and are penalized
with a relatively high L(H). Overly simple models, on the other hand, have very low L(H), but
as they fail to identify important structure in D, their corresponding L(D | H) tends to be
relatively high. As such, the MDL-optimal model provides the best balance between model
complexity and goodness of fit.
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The above definition is called two-part MDL, or crude MDL—as opposed to refined MDL, where
model and data are encoded together [Grünwald, 2007]. We use two-part MDL because we are
specifically interested in the model. Further, although refined MDL has stronger theoretical
foundations, it cannot be computed except for some special cases. Note that MDL requires the
compression to be lossless in order to allow for fair comparison between different H ∈ H.

To use MDL, we have to define what our models H are, how a H ∈ H describes the data at
hand, and how we encode this all in bits. For example in the following chapters, we will use
block-encoding or code-table encoding as our models. Note that in MDL we are only concerned
with code lengths, not actual code words.

8.3 Related Work

Related work of this part include outlier detection in clouds of multi-dimensional data points,
anomaly detection in graph data, event detection in time-series data, data summarization, graph
clustering, and connection subgraphs, which we discuss in the given order next.

Outlier Detection in Multi-dimensional Data

Outlier detection has attracted wide interest, being a difficult problem, despite its apparent sim-
plicity. Even the definition of the outlier is hard to give: For instance, [Hawkins, 1980] defines an
outlier as “an observation that deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism.” Similar, but not identical, definitions have been
given by others: [Barnett and Lewis, 1994], states that an outlier is one that appears to deviate
markedly from the other members of the sample in which it occurs. [Johnson and Wichern,
1998]. defines an outlier to be an observation in a data set that appears to be inconsistent with the
remainder of that set of data. These definitions are formalized by [Knorr and Ng, 1998]:

Definition 6 (DB(pct,dmin)) An object p in a data set D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance dmin from p. That is, the cardinality
of the set {q ∈ D|d(p, q) > dmin} is greater than pct% of the size of D, where d(p, q) denotes
the distance between object q and object p in D.

Outlier detection methods form two classes, parametric and non-parametric. The former class
includes statistical methods that assume there exists a standard underlying distribution of the
observations that fit the data [Barnett and Lewis, 1994; Hawkins, 1980]. and those observa-
tions that deviate from the model assumptions are flagged to be outliers. These methods exhibit
problems for high dimensional data sets and for settings where the underlying data distribution
is unknown [Papadimitriou et al., 2003]. The latter class includes distance-based and density-
based data mining methods. These methods typically define as an outlier the (n-D) point that is
too far away from the rest, and thus lives in a low-density area [Knorr and Ng, 1998]. Typical
methods include LOF [Breunig et al., 2000b], LOCI [Papadimitriou et al., 2003], and recently
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LSOD [Wang et al., 2011]. These methods not only flag a point as an outlier but they also give
outlierness scores; thus, they can sort the points according to their “strangeness”.

Many other density-based methods that perform well in detecting outliers in very large datasets
of high dimension are proposed in [Aggarwal and Yu, 2001; Arning et al., 1996; Chaudhary et al.,
2002; Guha et al., 2001; Kaufman and Rousseeuw, 1990; Ng and Han, 1994; Zhang et al., 1996].
Feature bagging [Lazarevic and Kumar, 2005] also proves to be useful to tackle high dimen-
sionality, where features are randomly grouped into multiple sets of different sizes and outlier
detection algorithms are performed on each different set after which the scores are combined.
Finally, most clustering algorithms [Guha et al., 2001; Kaufman and Rousseeuw, 1990; Ng and
Han, 1994; Zhang et al., 1996] reveal outliers as a by-product.

While most work on outlier detection has focused on numerical datasets, there also exist some
work on unsupervised anomaly detection in categorical data. [Bronstein et al., 2001] learns
a structure and the parameters of a Bayesian network, and use the log-likelihood values as the
anomalousness score of each record. [Das and Schneider, 2007; Wong et al., 2003] address the
problem of finding anomaly patterns. They build a Bayes net that represents the baseline distri-
bution, and then score all one and two component rules with unusual proportions compared to the
baseline, with the aim of detecting rules that summarize significant patterns of anomalies. [Smets
and Vreeken, 2011] takes a pattern-based compression approach and employs KRIMP [Siebes
et al., 2006] as its compressor for anomaly detection.

For a comprehensive survey on outlier detection techniques, see [Chandola et al., 2009].

Anomaly Detection in Graph Data

Compared to outlier detection, anomaly detection in graph-based data has only recently gained
attention. Current work in this area can be divided into two areas, discovering anomalies in static
snapshots of graphs and in time series of graphs. Spotting anomalies in time-evolving graphs,
which we include in the next sub-section, largely focuses on detecting anomalous points in time
during the evolution of a graph by using different graph editing distances.

[Noble and Cook, 2003] detect anomalous sub-graphs using variants of the Minimum Description
Length principle. [Eberle and Holder, 2007] also use the MDL principle as well as other prob-
abilistic measures to detect several types of anomalies (e.g. unexpected/missing nodes/edges).
[Liu et al., 2005] detect non-crashing bugs in software using frequent execution flow graphs
combined with classification. They extend this work, using graph properties such as connect-
edness and clustering coefficient to show that normal graphs and intentionally altered graphs
significantly differ in such properties [Eberle and Holder, 2006]. [Chakrabarti, 2004] uses MDL
to spot outlier edges that lie across clusters. [Gao et al., 2010] spots anomalous nodes that do
not well belong to the community they reside, which they call community outliers. [Sun et al.,
2005] use proximity and random walks, to assess the normality of nodes in bipartite graphs. Out-
Rank [Ghoting et al., 2004] and LOADED [Moonesinghe and Tan, 2008] use similarity graphs
of objects to detect outliers. [J. Shetty, 2005] use an entropy-based approach, flagging important
nodes that increase the entropy of a graph when they are removed.
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Event Detection in Time-series Data

Anomaly detection has been studied widely in many settings such as ‘anomalous point detec-
tion’ on clouds of multi-dimensional points, spatio-temporal ‘anomalous pattern detection’, and
‘graph anomaly detection’, with many motivating applications such as network intrusion detec-
tion [Sequeira and Zaki, 2002], detection of medical insurance claim fraud, credit card fraud,
electronic auction fraud [Bolton and David, 2002; Chau et al., 2006], fault detection in engineer-
ing systems [Fujimaki et al., 2005] as well as many others.

Another class of anomaly detection methods can be grouped under ‘change-point detection’
on a sequence of time series of data, which address the problem of spotting points in time at
which properties of the time-series data change significantly [Basseville and Nikiforov, 1993;
Brodsky and Darkhovsky, 1993; Gustafsson, 2000; Kawahara et al., 2007; Kifer et al., 2004;
Yamanishi and ichi Takeuchi, 2002]. This problem is also referred as event detection [Guralnik
and Srivastava, 1999].

Although the change-point detection problem has been actively studied in the statistics and the
data mining communities over the last several decades, there has been much less focus on change-
point detection particularly in graph data. [Idé and Kashima, 2004] developed an eigen-vector
based algorithm to detect faults in multi-tier Web-based systems represented as a time sequence
of graphs. Another set of research [Bunke and Shearer, 1998; Shoubridge et al., 2002] derives
distance functions between a pair of graphs, compute distances between consecutive graphs in
a given sequence, and finally apply traditional anomaly detection methods on the time series of
distance values. [Sun et al., 2007] propose a parameter-free algorithm to discover communities
in streams of graph and flag points in time as discontinuity points when the community structure
changes significantly.

Data Description and Summarization

Our COMPREX method describes data using sets of patterns, so research on pattern set mining
is related. KRIMP algorithm by [Siebes et al., 2006; Vreeken et al., 2011] employs the MDL
principle [Grünwald, 2007] to define the best set of patterns as those patterns that compress the
data best. KRIMP heuristically approximates the optimal pattern set by considering a collection
of itemsets in a fixed order, greedily selecting itemsets that contribute to better compression. The
code tables it discovers have been shown to characterize the data distribution very well, providing
highly competitive performance on a variety of data mining tasks [Smets and Vreeken, 2011;
Vreeken et al., 2011].

The PACK algorithm [Tatti and Vreeken, 2008] also follows a bottom-up MDL approach, us-
ing a decision tree per attribute to encode binary data 0/1 symmetrically. By translating these
trees into downward-closed families of itemsets, patterns can be extracted. Although good com-
pression results are obtained, by the downward-closed requirement typically large groups of
itemsets are returned. Further examples of pattern set mining methods that describe data include
Tiling [Geerts et al., 2004], Noisy Tiling [Kontonasios and De Bie, 2010], and Boolean ma-
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trix factorization [Miettinen et al., 2008]. As these do not define a probability (or code length)
distribution for individual rows, it is not trivial to apply them for anomaly detection. Attribute
clustering [Mampaey and Vreeken, 2010] provides a high-level summarization of the data, where
the authors employ MDL to find the optimal grouping of binary attributes. These groups are de-
scribed using crude code tables, consisting of all attribute-value combinations in the data.

Graph Clustering

Graph partitioning has been well studied in the literature. The top-performing methods include
METIS [Karypis and Kumar, 1998] and spectral clustering [Ng et al., 2001]. However, these
as well as many other graph partitioning methods [Andersen et al., 2006; Flake et al., 2000;
Girvan and Newman, 2002] work with the connectivity structure of the graph and cannot be
directly for attributed graphs. More importantly, they require the number of partitions and a
measure of imbalance between any two partitions as input. These are usually hard for the user
to specify, especially for large graphs, and require experimentation to get good results. For
example, spectral partitioning requires the choice from several measures such as ratio cut [Chan
et al., 1993], normalized cut [Shi and Malik, 2000], or min-max cut [Ding et al., 2001].

The idea of using (lossy) compression for graph clustering is introduced in [Dhillon et al., 2003].
The information-theoretic co-clustering algorithm simultaneously clusters rows and the columns
of a normalized contingency table which is treated as a two-dimensional joint probability distri-
bution. The algorithm, however, requires the number of row and column clusters as input.

In terms of parameter-free graph clustering algorithms, Autopart [Chakrabarti, 2004] and cross-
associations [Chakrabarti et al., 2004a], and their extension to time-evolving [Sun et al., 2007]
and k-partite graphs [He et al., 2009] are the most representative. These methods use the mini-
mum description length (MDL) principle [Grünwald, 2007] to automatically choose the number
of clusters. However, they do not apply to attributed graphs as they operate on the adjacency
matrix of the graph, and consider only the connectivity structure of the graph.

Compared to the wide range of work on graph clustering, there has been much less focus on
clustering attributed graphs. [Hanisch et al., 2002] transforms the graph and the attributes to a
combined distance metric and then applies flat clustering. This and other similar methods [Tian
et al., 2008] achieve homogeneity of attributes for the nodes in the same cluster, however they
tend to yield low intra-cluster connectivity. [Zhou et al., 2009, 2010] transforms the attributes to
additional nodes in the graph, where original nodes are linked to attribute nodes that they exhibit.
Again, all these methods require the number of clusters to be exclusively specified.

Recently, [Günnemann et al., 2010; Moser et al., 2009] propose methods to extract cohesive
subgraphs from an attributed graph rather than partitioning the entire graph. The subgraphs
exhibit high density and homogeneity in a subset of their attributes. In these methods other types
of parameters need to be set by the user; these include the subspace dimensionality and density
thresholds, as well as the minimum number of nodes in each cluster.

The spectral relational clustering algorithm [Long et al., 2006] performs collective factorization
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of related matrices for multi-type relational data clustering. Although the method is applicable to
graph data with attributes, the user intervention there is two-fold; besides the number of clusters
for each type of nodes, reasonable weights for different type of relations or attributes also need to
be specified. In addition, it is not easy to do spectral clustering on directed graphs with attributes
(there exists spectral clustering for plain directed graphs, although it is much more complicated
than those for un-directed graphs).

Connection Subgraphs and Visualization

Our DOT2DOT method finds connection subgraphs among top anomalous nodes for better char-
acterization and visualization. The connection subgraphs mining problem is introduced by [Falout-
sos et al., 2004]. As they formulated, a connection subgraph is a relatively small, connected sub-
graph that well captures the relationship (set of interesting paths) between two nodes in a given
graph. Later, [Ramakrishnan et al., 2005] and [Sevon and Eronen, 2008] extended [Faloutsos
et al., 2004] for querying labeled graphs in which nodes and edges belong to certain types or re-
lations. On similar lines, [Jin et al., 2007] and [Shahaf and Guestrin, 2010] propose techniques to
discover a coherent chain of evidence trails that connect two given concepts in text documents.
All these methods mentioned so far, however, are appropriate for only two query nodes; thus,
they do not generalize for more than two input nodes.

The Center-Piece Subgraph Problem introduced by [Tong and Faloutsos, 2006; Tong et al., 2007]
finds the most ‘centered’ node that has strong connections to most or all of the query nodes, and
keeps adding important paths from the center-piece node to active nodes until an upper bound on
the number of nodes in the output graph is reached. [Koren et al., 2006] introduce the Cycle-Free
Effective Conductance measure for graph proximity and propose methods to extract the subgraph
with at most a certain size which retains most of the proximity between query nodes. Proximity
and connection subgraphs are also exploited for graph visualization and summarization [Chau
et al., 2008, 2011; Jr. et al., 2006]. For a survey, see [Alsudairy et al., 2011].

Another set of related work focuses on expanding communities around a given set of seed
nodes [Andersen and Lang, 2006; Andersen et al., 2006; Riedy et al., 2011; Spielman and Teng,
2008]. These methods find a subgraph containing the seed nodes and differ in the specific graph
measure like its modularity, conductance, or clustering coefficient that they optimize.

We find it worth emphasizing that graph clustering [Flake et al., 2000; Girvan and Newman,
2002; Karypis and Kumar, 1998], although related, target a different problem. While their goal
is to cluster the whole graph, we try to partition and connect a small subset of nodes, making use
of the graph structure.

[Bhalotia et al., 2002] develop methods to find effective connection trees among keywords for
browsing and querying. While conceptually similar, our problem definition and formulation
have important differences, such as incorporating encoding length. [Leskovec et al., 2007a] use
features extracted from query connection subgraphs together with machine learning techniques
to predict quality of query results. The connection subgraph is composed of the induced subgraph
returned by the query where the its disconnected components are simply joined by shortest paths.
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[Guan et al., 2011] study a new measure called structural correlation to assess how strongly a set
of query nodes (e.g. nodes affected by an event) are correlated via the graph structure. Their
method provides a correlation score but not a connection subgraph. [Tong et al., 2010] finds the
top-k nodes with the highest ‘gateway-ness’ score with respect to a given source and target node
set, such that they collectively lie on most of the short paths from source nodes to target nodes.
Their goal, rather than to find strong connections between query nodes, is to find a set of nodes
that disconnect source and target nodes to the largest extent when removed from the graph.
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Chapter 9

Anomalies in Plain Graphs

PROBLEM STATEMENT: Given a large, weighted graph, how can we find anomalies? Which
rules should be violated, before we label a node as an anomaly?

Most anomaly detection algorithms focus on clouds of multi-dimensional points, as we described
in the survey section. Our goal, on the other hand, is to spot strange nodes in a graph, with
weighted edges. What patterns and laws do such graphs obey? What features should we extract
from each node? In this chapter, we answer all these questions and develop our ODDBALL

method. Main contributions of this work are:

1. Feature extraction: We propose to focus on neighborhoods, that is, a sphere, or a ball
(hence the name ODDBALL) around each node(the ego): that is, for each node, we consider
the induced subgraph of its neighboring nodes, which is referred to as the egonet. Out of
the huge number of numerical features one could extract from the egonet of a given node,
we give a carefully chosen list, with features that are both fast to compute, as well as
effective in revealing outliers.

2. Egonet patterns: We show that egonets obey some surprising patterns (like the Egonet
Density Power Law (EDPL), EWPL, ELWPL, and ERPL), which gives us confidence to
declare as outliers the ones that deviate. We support our observations by showing that the
ERPL yields the EWPL.

3. Scalable algorithm: Based on those patterns, we propose ODDBALL, a scalable, un-
supervised method for anomalous node detection.

4. Application on real data: We apply ODDBALL to numerous real graphs (DBLP, political
donations, and other domains) and we show that it indeed spots nodes that a human would
agree are strange and/or extreme.

Jumping ahead, the major types of anomalous nodes we can spot are as follows (see Fig.9.1 for
examples).

1. Near-cliques and stars: Detecting those nodes whose neighbors are very well connected
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(near-cliques) or not connected (stars) turn out to be “strange”: in most social networks,
friends of friends are often friends, but either extreme (clique/star) is suspicious.

2. Heavy vicinities: If person i has contacted n distinct people in a who-calls-whom network,
we would expect that the number of phonecalls (weight) would be proportional to n (say,
3xn or 5xn). Extreme total weight would be suspicious, indicating, e.g., faulty equipment
that forces redialing.

3. Dominant heavy links: In the who-calls-whom scenario above, a very heavy single link in
the 1-step neighborhood of person i is also suspicious, indicating, e.g., a stalker that keeps
on calling only one of his/her contacts an excessive count of times.

(a) Near-star (b) Near-clique (c) Heavy vicinity (d) Dominant edge

Figure 9.1: Types of anomalies that ODDBALL detects. Top row: toy sketches of egonets
(ego shown in larger, red circle). Bottom row: actual anomalies spotted in real
datasets. (a) A near-star in PostNet: Instapundit, on Hurricane Katrina relief agen-
cies (instapundit.com/archives/025235.php): An extremely long post,
with many updates, and numerous links to diverse other posts about donations.
(b) A near-clique in PostNet: sizemore.co.uk, who often linked to its own
posts, as well as to its own posts in other blogs. (c) A heavy vicinity in PostNet:
blog.searchenginewatch.com/blog has abnormally high weight wrt the number of
edges in its egonet. (d) Dominant edge(s) in CampOrg: In FEC 2004, George W.
Bush received a huge donation from a single donor committee: Democratic National
Committee (̃ $87M ) (!) - in fact, this amount was spent against him; Next heaviest
link (̃ $25M ): from Republican National Committee.

Next we give the primary observations and the description of ODDBALL, show experimental
results, and list summary of contributions.
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9.1 ODDBALL: Method Description

The basic research questions we start with are: (a) what features should we use to characterize
a neighborhood? and (b) what does a ‘normal’ neighborhood look like? Both questions are
open-ended, but we give some answers below.

First, we need to choose the value of k steps to study neighborhoods (see Definition 5). Given
that real-world graphs have small diameter [Albert et al., 1999], we need to stay with small values
of k, and specifically, we recommend k = 1. We report our findings only for k = 1, because
using k > 1 does not provide any more intuitive or revealing information, while it has heavy
computational overhead, possibly intractable for very large graphs.

9.1.1 Feature Extraction

The first of our two inter-twined questions is which statistics/features to extract from each node
neighborhood. There is an infinite set of functions/features that we could use to characterize a
neighborhood (number of nodes, one or more eigenvalues, number of triangles, effective radius
of the central node, number of neighbors of degree 1, etc etc). Which of all should we use?

Intuitively, we want to select features that (a) are fast-to-compute and (b) will lead us to pat-
terns/laws that most nodes obey, except for a few anomalous nodes. We spend a lot of time
experimenting with about a dozen features, trying to see whether the nodes of real graphs obey
any patterns with respect to those features. The majority of features lead to no obvious patterns,
and thus we do not present them.

The trimmed-down set of features that are successful in spotting patterns, are the following:

1. Ni: number of neighbors (degree) of ego i,
2. Ei: number of edges in egonet i,
3. Wi: total weight of egonet i,
4. λw,i: principal eigenvalue of the weighted adjacency matrix of egonet i.
5. Si: number of singleton neighbors of ego i of degree 1.

The next question is how to look for outliers, in such an n-dimensional feature space, with one
point for each node of the graph. In our case, n = 4, but one might have more features depending
on the application and types of anomalies one wants to detect. A quick answer to this would be
to use traditional outlier detection methods for clouds of points using all the features.

In our setting, we can do better. As we show next, we group features into carefully chosen
pairs, where we show that there are patterns of normal behavior (typically, power-laws). We
flag those points that significantly deviate from the discovered patterns as anomalous. Among
the numerous pairs of features we studied, the successful pairs and the corresponding type of
anomaly are the following:

• E vs N : CliqueStar: detects near-cliques and stars
• W vs E: HeavyVicinity: detects many recurrences of interactions
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• λw vs W : DominantPair: detects single dominating heavy edge (strongly connected pair)
• S vs N : LoneStar: detects almost-isolated stars

9.1.2 Laws and Observations

The second of our research questions is what do normal neighborhoods look like. Thus, it is im-
portant to find patterns (“laws”) for neighborhoods of real graphs, and then report the deviations,
if any. In this work, we report some new, surprising patterns:

For a given graph G, node i ∈ V (G), and the egonet Gi of node i;

Observation 9.1.1 (EDPL: Egonet Density Power Law) the number of nodesNi and the num-
ber of edges Ei of Gi follow a power law.

Ei ∝ Nα
i , 1 ≤ α ≤ 2.

In our experiments the EDPL exponent α ranged from 1.10 to 1.66. Fig. 9.3 illustrates this
observation, for several of our datasets. Plots show Ei versus Ni for every node (green points);
the black circles are the median values for each bucket of points (separated by vertical dotted
lines) after applying logarithmic binning on the x-axis as in [Mcglohon et al., 2008]; the red line
is the least squares(LS) fit on the median points. The plots also show a blue line of slope 2, that
corresponds to cliques, and a black line of slope 1, that corresponds to stars. All the plots are in
log-log scales.

Observation 9.1.2 (EWPL: Egonet Weight Power Law) the total weight Wi and the number
of edges Ei of Gi follow a power law.

Wi ∝ Eβ
i , β ≥ 1.

Fig. 9.5 shows the EWPL for (only a subset of) our datasets (due to space limit). In our experi-
ments the EWPL exponent β ranged up to 1.29. Values of β > 1 indicate super-linear growth in
the total weight with respect to increasing total edge count in the egonet.

Observation 9.1.3 (ELWPL: Egonet λw Power Law) the principal eigenvalue λw,i of the weighted
adjacency matrix and the total weight Wi of Gi follow a power law.

λw,i ∝ W γ
i , 0.5 ≤ γ ≤ 1.

Fig. 9.6 shows the ELWPL for a subset of our datasets. In our experiments the ELWPL exponent
γ ranged from 0.53 to 0.98. γ=0.5 indicates uniform weight distribution whereas γ̃ 1 indicates
a dominant heavy edge in the egonet, in which case the weighted eigenvalue closely follows the
maximum edge weight. γ=1 if the egonet contains only one edge.

Observation 9.1.4 (ERPL: Egonet Rank Power Law) the rankRi,j and the weightWi,j of edge
j in Gi follow a power law.

Wi,j ∝ Rθ
i,j, θ ≤ 0.
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Figure 9.2: Weight Wi,j vs. Rank Ri,j for each edge j in the egonet of node i. Top three nodes
with the highest edge count in their egonet from BlogNet are shown. LS line is fit in
log-log scales pointing out a power-law relation (ERPL).

Here, Ri,j is the rank of edge j in the sorted list of edge weights. ERPL suggests that edge
weights in the egonet have a skewed distribution. This is intuitive; for example in a friendship
network, a person could have many not-so-close friends (light links), but only a few close friends
(heavy links). In Fig. 9.2 we show the ERPL for top three nodes with the highest number of
edges in their egonet from BlogNet – other datasets have similar results.

Next we show that if the ERPL holds, then the EWPL also holds. Given an egonet Gi, the total
weight Wi and the number of edges Ei of Gi, let Wi denote the ordered set of weights of the
edges, Wi,j denote the weight of edge j, and Ri,j denote the rank of weight Wi,j in setWi. Then,

Lemma 5 ERPL implies EWPL, that is: If Wi,j ∝ Rθ
i,j , θ ≤ 0, then

Wi ∝ Eβ
i

{ β = 1, if −1 ≤ θ ≤ 0
β > 1, if θ < −1

Proof

For brevity, we give the proof for θ < −1 – other cases are similar. If Wi,j = cRθ
i,j , then

Wmin = cEθ
i –the least heavy edge l with weight Wmin is ranked the last, i.e. Ri,l = Ei. Thus

we can write Wi as

Wi = WminE
−θ
i

(
Ei∑

j=1

jθ

)
≈ WminE

−θ
i

(∫ Ei

j=1

jθdj

)

= WminE
−θ
i

(
jθ+1

θ + 1

∣∣∣
Ei

j=1

)
= WminE

−θ
i

(
1

−θ − 1
− 1

(−θ − 1)E−θ−1i

)

For sufficiently large Ei and given θ < −1, the second term in parenthesis goes to 0. Therefore;
Wi ≈ c′E−θi , c′ = Wmin

−θ−1 . Since θ < −1, β > 1.
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9.1.3 Anomaly Detection

We can easily use the observations given in part 3.2 in anomaly detection since anomalous nodes
would behave away from the normal pattern. Let us define the y-value of a node i as yi and
similarly, let xi denote the x-value of node i for a particular feature pair f(x, y). Given the
power law equation y = Cxθ for f(x, y), we define the outlierness score of node i to be

out-line(i) =
max(yi, Cx

θ
i )

min(yi, Cxθi )
∗ log(|yi − Cxθi |+ 1)

Intuitively, the above measure is the “distance to fitting line”. Here we penalize each node with
both the number of times that yi deviates from its expected value Cxθi given xi, and with the
logarithm of the amount of deviation. This way, the minimum outlierness score becomes 0 –for
which the actual value yi is equal to the expected value Cxθi .

This simple and easy-to-compute method not only helps in detecting outliers, but also provides
a way to sort the nodes according to their outlierness scores. However, this method is prone to
miss some outliers and therefore could yield false negatives for the following reason: Assume
that there exist some points that are far away from the remaining points but that are still located
close to the fitting line. In our experiments with real data, we observe that this usually happens
for high values of x and y. For example, in Fig. 9.3(a), the points marked with left-triangles (C)
are almost on the fitting line even though they are far away from the rest of the points.

We want to flag both types of points as outliers, and thus we propose to combine our heuristic
with a density-based outlier detection technique. We used LOF [Breunig et al., 2000b], which
also assigns outlierness scores out-lof(i) to data points; but any other outlier detection method
would do, as long as it gives such a score. To obtain the final outlierness score of a data point
i, one might use several methods such as taking a linear function of both scores and ranking the
nodes according to the new score, or merging the two ranked lists of nodes, each sorted on a
different score. In our work, we simply used the sum of the two normalized(by dividing by the
maximum) scores, that is, out-score(i) = out-line(i)+out-lof(i).

9.2 Experimental Results

9.2.1 Structural Anomalies

CliqueStar and the LoneStar are used for finding structural anomalies. Here, we are interested
in the communities that neighbors of a node form. In particular, CliqueStar detects anomalies
having to do with near-cliques and near-stars and LoneStar catches those nodes whose egonet is
weakly connected to the rest of the graph: most of the neighbors being of degree 1, the egonet is
not only star-like, but also is almost isolated from the rest of the network.
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CliqueStar

Here, we are interested in the communities that neighbors of a node form. In particular, CliqueS-
tar detects anomalies having to do with near-cliques and near-stars. Using CliqueStar, we were
successful in detecting many anomalies over the unipartite datasets (although it is irrelevant for
bipartite graphs since by nature the egonet forms a “star”).

In social media data PostNet and BlogNet, we detected posts or blogs that had either all their
neighbors connected (cliques) or mostly disconnected (stars). We show some illustrative exam-
ples along with descriptions from PostNet in Fig. 9.1. See Fig.9.3a for the detected outliers on
the scatter-plot from the same dataset. In BlogNet(Fig.9.3b), the method detected several “link
blogs”, blogs devoted to posting links to a wide array of sources that do not always have sim-
ilar content. For instance mfisn.com links to tech blogs, politics stories, and flash cartoons.
dev.upian.com/hotlinks also links to a wide range of other posts each day.

In Enron(Fig.9.3c), the node with the highest outlier score turns out to be Kenneth Lay, who was
the CEO and is best known for his role in the Enron scandal in 2001. Our method reveals that
none of his over 1K contacts ever sent emails to each other. In Oregon (Fig.9.3d), the top outliers
are the three large ISPs (Verizon, Sprint and AT&T).

LoneStar

Some results of this method were similar to those of CliqueStar, but for different reason: here,
we look not simply at whether the neighbors connect to each other, but whether they connect
to the rest of the network at large. This gives important implicit information about the 2-step
neighborhood. Thus, we are looking for “isolated stars” or “hubs”.

In CampOrg, the most outlying Committee (Fig.9.4a) is the National Committee for an Effective
Congress, which donated to candidates who received money from nowhere else. This makes
intuitive sense as this committee claims to help “progressive” candidates1, that may have limited
support otherwise. On the other hand, Candidates (Fig.9.4b) reveals the top two competing
candidates, John F. Kerry and George W. Bush, who had several committees devoted exclusively
to their campaigns.

In CampIndiv, top outliers for Committees (Fig.9.4d) are Bush-Cheney ’04 Inc. and John Kerry
for President Inc. both of which raised money from a vast number of donors, most of whom did
not donate to anywhere else. Another interesting result here is that Kerry Victory 2004 received
money from donors who donated to other committees as well, but as we will see later, Kerry
Victory 2004 donated money only to a single candidate, John F. Kerry.

In Auth-Conf (Fig.9.4c), we see that top outliers include ICRA, ISCAS and SIGUCCS with their
authors publishing to no other conferences. This might be due to the fact that these conferences
are the only ones related to a particular research area. Winter Simulation Conference, another
anomaly here, happens to be a conference of a unique type.

1www.ncec.org
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Figure 9.3: Illustration of the Egonet Density Power Law (EDPL), and the corresponding
anomaly CliqueStar, with outliers marked with triangles. Edge count versus node
count (log-log scale); red line is the LS fit on the median values (black circles);
dashed black and blue lines have slopes 1 and 2 respectively, corresponding to stars,
and cliques. Top outlying points are enlarged. Most striking outlier: Ken Lay (CEO
of Enron), with a star-like neighborhood. See text for more discussion and Fig.9.1
for example illustration from PostNet.

In BlogNet (Fig.9.4e), the same “link blogs” as above are detected as “isolated stars”: most of
their neighbors are not only blogs that do not link to each other, but in fact are linked to nobody
else at all. There were similar points in PostNet, where the post has many links to otherwise
isolated posts. For example, one outlier is KBCafe2, a homepage to a piece of email software
linked several times by a single blog in different posts. See Fig.9.1 for further details.

In PostNet (Fig.9.4f), we also found points on the other extreme: posts that were unusually well-
connected. Looking further, we found that there were several feeds that claimed that the post
permalink was the actual blog home page– this boosted the degree to these so-called “posts”,
since whenever another post linked to the homepage of this blog, we registered it as linking to

2www.kbcafe.com/rmail.aspx
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(a) Com2Cand (b) Com2Cand (c) Auth2Conf

(d) Don2Com (e) BlogNet (f) PostNet

(g) Oregon (h) Enron

Figure 9.4: Illustration of the near-isolated star anomaly LoneStar. Plots show total number
of nodes of degree 1 in the egonet vs. degree of the ego for all nodes(in log-log
scale). Most striking anomalies are marked with triangles and labeled, with detailed
explanation in text. See Fig.9.1 for an example illustration from PostNet.

a single post. These outliers3 had many neighbors among political blogs which pointed to other
blogs, so they were unusually non-isolated. So, in this case, anomalous behavior signaled errors
in the feeds.

In Oregon (Fig.9.4g) and Enron (Fig.9.4h), top 3 detected points were the same as the ones
detected with CliqueStar. This is intuitive as nodes that form a near-star are expected to have
low degrees– indeed degree 1, making the star not only sparse but also isolated.

3www.warandpiece.com and www.liberaloasis.com
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9.2.2 Weight Anomalies

HeavyVicinity and the DominantPair are used for finding weight anomalies. Here, we are inter-
ested in the weights of edges in the egonets of nodes. In particular, HeavyVicinity detects anoma-
lies having to do with high weight neighborhoods and DominantPair catches those egonets in
which a particular edge weight dominates the others.

HeavyVicinity

HeavyVicinity detects nodes that have considerably high total edge weight compared to the num-
ber of edges in their egonet. In our datasets, HeavyVicinity detected “heavy egonets”, with
anomalies marked in Fig.9.5. In PostNet (Fig.9.5h), often anomalous posts were the ones that
linked to another post repeatedly 4 or were listed as the blog’s home page5.

In BlogNet (Fig.9.5g), we detected blogs that linked to just a few other sources, either a single
post or multiple posts from the same blog. Interesting anomalies are Automotive News Today6,
which linked 241 times to the GM blog7, but never to any other blog in our dataset. One political
blog 8 had 1816 total in- and out-links, to only 30 other blogs. On the other extreme, Bandelier9

had an abnormally high number of edges, but a low weight upon each. The blog had a single post
in the dataset, so it was naturally uncommon for blogs to link to that blog multiple times.

HeavyVicinity revealed interesting observations in bipartite graphs as well, spotting duplicates
and irregularities. In CampOrg (Fig.9.5a,b), we see that Democratic National Committee gave
away a lot of money compared to the number of candidates that it donated to. In addition, (John)
Kerry Victory 2004 donated a large amount to a single candidate, whereas Liberty Congressional
Political Action Committee donated a very small amount ($5) to a single candidate. Looking at
the Candidates plot for the same bipartite graph, we also flagged Aaron Russo, the lone recipient
of that PAC. (In fact, Aaron Russo is the founder of the Constitution Party which never ran any
candidates, and Russo shut it down after 18 months.)

In CampIndiv (Fig.9.5c,d), we see that Bush-Cheney ’04 Inc. received a lot of money from a
single donor. This is strange, as it was also listed as an anomaly in LoneStar, having many
degree 1 donors. Looking at the data, we notice that that committee is listed twice with two
different IDs.

On the other hand, we notice that the Kerry Committee received less money than would be
expected looking at the number of checks it received in total. Further analysis shows that most
of the edges in its egonet are of weight 0, showing that most of the donations to that committee
have actually been returned.

4leados.blogs.com/blog/2005/08/overview of cia.html
5blog.searchenginewatch.com/blog
6www.automotive-news-today.com
7fastlane.gmblogs.com
8nocapital.blogspot.com
9www.bandelier.com
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Figure 9.5: Illustration of the Egonet Weight Power Law (EWPL) and the weight-edge anomaly
HeavyVicinity. Plots show total weight vs. total count of edges in the egonet for all
nodes(in log-log scales). Detected outliers include Democratic National Committee
and John F. Kerry (in FEC campaign donations), and Averill M. Law in DBLP. See
text for more discussions, and Fig.9.1 for an illustrative example from PostNet.

In Auth-Conf (Fig.9.5e,f), Averill M. Law published 40 papers to the Winter Simulation Confer-
ence and nowhere else. This might be due to the fact that there exists no other conference that
would capture the interest of that author. In fact, under LoneStar, we saw that Winter Simulation
Conference was one of those conferences with most of its authors with degree 1, pointing to the
same possibility that it is a unique conference in a particular area.

Other interesting points are Wei Wang and Wei Li. Those authors have many papers, but they
publish them at as many distinct conferences, probably once or twice at each conference.
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Figure 9.6: Illustration of the Egonet λw Power Law (ELWPL) and dominant heavy link anomaly
DominantPair. Top anomalies are marked with triangles and labeled. See text for
details for each dataset and Fig.9.1 for an illustrative example from CampOrg.

DominantPair

DominantPair measures whether there is a single dominant heavy edge in the egonet. In other
words, this method detected “bursty” if not exclusive edges. In PostNet (Fig.9.6h) nodes such
as ThinkProgress’s post on a leak scandal 10 and A Freethinker’s Paradise post 11 linking several
times to the ThinkProgress post were both flagged. In BlogNet (Fig. 9.6g), we detected a Drudge

10www.thinkprogress.org/leak-scandal
11leados.blogs.com/blog/2005/08/overview of cia.html
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blogger 12, who had 298 links, all but 4 to another blogger in the same site 13. Nocapital also
appeared here, since it had around 300 links each to two other blogs.

In CampOrg (Fig.9.6a,b), Democratic National Committee is one of the top outliers. We would
guess that the single large amount of donation was made to John F. Kerry. Counterintuitively, we
see that that amount was spent for an opposing advertisement against George W. Bush.

In CampIndiv (Fig.9.6c,d), there exists points above the slope 1 line. Further inspection shows
that these points correspond to authorities having negative weighted edges due to returns. Points
below the fitting line, such as Dean For America on the Committees plot, correspond to authori-
ties with even weight distributions on the edges, without a specific dominant heavy link.

DominantPair flagged extremely focused authors (those publish heavily to one conference) in the
DBLP data, shown in Fig. 9.5(e,f). For instance, Toshio Fukuda has 115 papers in 17 conferences
(at the time of data collection), with more than half (87) of his papers in one particular conference
(ICRA). Alberto-Sangiovanni Vincentelli published 279 papers to 45 distinct conferences, with
76 of his papers in DAC. On the Conferences plot, Programming Languages and Their Definition
has 21 papers from 6 authors, with 16 papers by one particular author (Hans Bekic).

9.2.3 Scalability

Major computational cost of our method is in feature extraction. In particular, computing those
features, such as the total number of edges and total weight, for the egonets is the bottleneck as
one needs to find the induced 1-step neighborhood subgraphs for all nodes in the network.

The problem of finding the number of edges in the egonet of a given node can be reduced to
the problem of triangle counting. One straightforward listing method for local triangle counting
is the Node-Iterator algorithm. Node-Iterator considers each one of the N nodes and examines
which pairs of its neighbors are connected. Time complexity of the algorithm is O(Nd2max).
Approximate streaming algorithms for local triangle counting can be applied to reduce the time
complexity to O(E logN) with space complexity O(N) [Becchetti et al., 2008].

In our experiments, we use Eigen-Triangle, proposed in [Tsourakakis, 2008], which uses eigen-
values/vectors to approximate the number of paths of length three, i.e. local triangle counts,
without performing actual counting. We compare its performance to Node-Iterator, which gives
exact counts. To improve speed even more, we propose pruning low degree nodes. Notice that
removing degree-1 nodes has no effect on the number of triangles in the graph. We also try
removing degree-2 nodes; this would remove some triangles but hopefully would not change the
relative number of triangles across nodes drastically and still reveal similar outliers.

In Figure 9.7a, we show computation time for Node-Iterator (green), and for Eigen-Triangle
using 2(red), 10(blue), and 30(black) eigenvalues versus graph size in terms of number of edges
for Enron (E ≈ 180K). Solid(–), dashed(−−), and dotted(. . . ) lines are for no pruning, after

12drudge.com/user/rcade
13drudge.com/user/gzlives
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(a) (b)

Figure 9.7: (a) Computation time of computing egonet features vs. number of edges in Enron.
Effect of pruning degree-1 and degree-2 nodes on computation time of counting tri-
angles. Solid(–): no pruning, dashed(−−): pruning d ≤ 1, and dotted(. . . ): pruning
d ≤ 2 nodes. Computation time increases linearly with increasing number of edges,
whereas it decreases with pruning. (b) Time vs. accuracy. Effect of pruning on accu-
racy of finding top anomalies as in the original ranking before pruning. New rank-
ings are scored using Normalized Cumulative Discounted Gain. Pruning reduces
time for both Node-Iterator and Eigen-Triangle for different number of eigenvalues
while keeping accuracy at as high as˜1 and˜.9, respectively.

pruning d ≤ 1, and d ≤ 2 nodes, respectively. We empirically note that computation time
grows linearly with increasing graph size and also reduces with pruning. (Experiments ran on
a Pentium class workstation, with 16GB of RAM, running Linux Fedora Core. To account for
possible variability due to system state, each run is repeated 10 times and execution time results
are averaged. Error bars show the variance across repeated runs.)

Pruning low-degree nodes and using Eigen-Triangle reduces computation time, however, they
only provide approximate answers. In order to quantify their accuracy, we compare the rank
list of outliers returned by Node-Iterator to the rank list of outliers returned by each approxi-
mate method. To measure how rankings changed with approximation compared to the original
rankings, we use Normalized Discounted Cumulative Gain(NDCG) which is prevailingly used in
Information Retrieval for measuring the effectiveness of search engines. The premise of NDCG
is that highly ranked items in the original list appearing lower in the approximated list are penal-
ized logarithmically proportional to their positions in the approximated list.

Figure 9.7b shows time vs. NDCG scores for Eigen-Triangle using 2, 5, 10 and 30 eigenvalues,
and also Node-Iterator for top k anomalies. For brevity, we only show ranking scores for k=100.
*, +, and o symbols represent no pruning, pruning d ≤ 1, and d ≤ 2 nodes, respectively.
We notice that while reducing computation time, pruning low degree nodes as well as using
Eigen-Triangle keeps the accuracy at as high as ˜.9 for Eigen-Triangle(30), and above 0.55 for
Eigen-Triangle(2).

126



9.3 Summary of contributions

In this chapter, we introduced one of few work that focus on anomaly detection in graph data,
including weighted graphs. Our major contributions are summarized as the following:

• Proposing to work with “egonets”, that is, the induced sub-graph of the node of interest and
its neighbors; we give a small, carefully designed list of numerical features for egonets.

• Discovery of new patterns that egonets follow, such as patterns in density (Obs.9.1.1:
EDPL), weights (Obs.9.1.2: EWPL), principal eigenvalues (Obs.9.1.3: ELWPL), and ranks
(Obs.9.1.4: ERPL). Proof of Lemma 1, linking the ERPL to the EWPL.

• ODDBALL14, a fast, unsupervised method to detect abnormal nodes in weighted graphs.
Our method does not require any user-defined constants. It also assigns an “outlierness”
score to each node. Possible approximations in feature extraction provide speed-up, keep-
ing accuracy at as high as˜0.9.

• Experiments on real graphs of over 1 million nodes, where ODDBALL reveals nodes that
indeed have strange or extreme behavior.

Our future work will generalize ODDBALL to time-evolving graphs, where the challenge is to
find patterns that neighborhood sub-graphs follow, track the behavior of nodes, and to extract
features incrementally over time.

14Source code of ODDBALL: www.cs.cmu.edu/̃ lakoglu/#code
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Chapter 10

Anomalies in Binary-attributed Graphs

PROBLEM STATEMENT: Given a graph with node attributes, how can we find meaningful pat-
terns such as clusters of nodes and clusters of attributes, as well as bridges and outliers?

Real graphs often have nodes with attributes, in addition to connectivity information. For ex-
ample, social networks contain both the friendship relations as well as user attributes such as
interests and likes. Other examples include gene interaction networks with gene expression in-
formation, phone call networks with customer demographics. Both types of information can be
described by a graph in which nodes represent the objects, edges represent the relations between
them, and attribute vectors associated with the nodes represent their attributes. Such graph data
is often referred to as an attributed graph.

Given such an attributed graph how can we find meaningful patterns, clusters of nodes, clusters
of attributes, and anomalies? For example, consider the case of YouTube in which graph nodes
represent users and YouTube-group memberships represent attributes. Given the who-friends-
whom and who-belongs-to-which YouTube groups information, how can we summarize and
make sense out of it?

In this chapter, we introduce PICS for mining attributed graphs. Specifically, PICS finds cohe-
sive clusters of nodes that have similar connectivity patterns and exhibit high attribute homogene-
ity. PICS additionally groups the node attributes into attribute-clusters. These patterns further
help us to spot anomalies and bridges. A key characteristic of PICS is that it is parameter-free;
it can recover the number of necessary clusters without any user intervention. For example, our
algorithm automatically finds coherent user clusters and YouTube-group clusters as shown in
Figure 10.1. As a first observation, the algorithm automatically discovers clusters of users who
like the ‘anime’ genre and form a so-called ‘core and periphery’ pattern: the core consists of the
users in the bottom-right dark square of the blue square labeled as ‘2’; also notice that the anime
fans overwhelmingly belong to a coherent set of YouTube-groups (blue square labeled as ‘A2’).
As we show in Table 10.2, those groups include anime4ever, narutoholics, and crazyforanime.
More discussion on YouTube results is given in experiments, §10.2.2.
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Figure 10.1: PICS on YOUTUBE finds clusters of users with similar connectivity and attribute
coherence. Left: the adjacency matrix (users-to-users); right: the attribute matrix
(users-to-YouTubeGroups). Both matrices are carefully arranged by PICS, reveal-
ing patterns: e.g., the anime fans are heavily connected, and they focus on the same
YouTube-groups. See §10.2.2 for more discussion.

In a nut-shell, the contributions of this work are the following:

• Algorithm design: We introduce PICS, a novel clustering method to summarize graphs
with node attributes. In effect, it groups the nodes with similar connectivity patterns into
cohesive clusters that have high attribute homogeneity. Besides, it also clusters the at-
tributes into attribute-clusters.

• Automation: PICS does not require any user-specified input such as the number of clusters,
similarity functions or any sort of thresholds.

• Scalability: The run time of PICS grows linearly with total input graph and attribute size.

• Effectiveness: We evaluate our method on a diverse collection of real data sets with tens
of thousands of nodes and attributes. Our results show that PICS successfully recovers
cohesive node clusters, reveals the bridge and outlier nodes, and groups attributes into
meaningful clusters.

Next we highlight the main challenges associated with simply extending traditional clustering
algorithms to solve our problem, followed by method description and experiment results.
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Why not simple extensions?

E1 Represent the relations of the objects as additional attributes, and then perform flat cluster-
ing on this extended feature space. The challenges with this approach are two-fold: First, it
leads to a very large number of features and thus is faced with the curse of dimensionality
[Beyer et al., 1999]. Second, it yields two separate types of attributes where it is not clear
how to weigh those different sets for clustering.

E2 Represent the attributes of the objects as additional nodes in the graph, introduce new edges
from the original nodes to the attribute nodes they exhibit, and then perform graph clus-
tering on this extended graph. Again, there are two challenges with this approach: First,
the graph grows with new nodes and edges, which may be quite numerous. Additionally,
it is not clear how to do clustering in this heterogeneous graph which contains two types
of nodes and edges.

E3 Introduce edges between all pairs of nodes where edges are weighted by the existence
of connectivity and attribute similarity: This approach requires quadratic computation of
pair-wise similarities and is thus untractable for large graphs. It also requires a careful
choice of a similarity function.

In summary, clustering attributed graphs by applying traditional clustering approaches presents
several nontrivial challenges.

10.1 PICS: Method Description

10.1.1 Problem Description

In this work, we address the problem of finding cohesive clusters in an attributed graph. Specif-
ically, given a graph with n nodes and their binary connectivity information, where nodes are
associated with f binary attributes (interchangeably, features), our goal is to group the nodes
into k, and group the features into l disjoint clusters such that the nodes in the same cluster have
“similar connectivity” and also exhibit high “feature coherence” (interchangeably we also use
the term feature similarity). Informally, a set of nodes have “similar connectivity” if the set of
nodes in the graph they connect to “highly” overlap. Similarly, a set of nodes have high “feature
coherence” if the set of features they exhibit “highly” overlap.

Synthetic Graph Example

To elaborate on the terminology, we give an example in Figure 10.2. PICS detects 5 node-
clusters and 3 feature-clusters in this example graph. Notice that the nodes in the same cluster
agree on their features to a high extent, i.e. have high feature coherence; for example nodes in
node-cluster 1 exhibit features in feature-clusters 2 and 3, nodes in node-cluster 2 exhibit features
in feature-clusters 1 and 2, and so on. In addition, notice the nodes in the same cluster having
similar connections among themselves as well as to the rest of the graph. For example, nodes in
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node-cluster 2 (similarly node-cluster 3) are densely connected among themselves but scarcely
to the rest, nodes in node-cluster 4 are densely connected to nodes in node-cluster 5 (and vice
versa) and scarcely to the rest, and so on.

Note that the nodes in a cluster that PICS finds may not necessarily be densely connected among
themselves. In fact, the nodes in node-cluster 1 in the example graph are not connected to each
other at all! They, however, share the same set of features and still have similar connectivity to
the graph. Simply put, they are “familiar strangers”. Similarly, nodes in node-clusters 4 and 5
are not connected within the clusters but across each other, forming a “bipartite core”.

We would like to point out that while the traditional graph clustering algorithms would recover
node-clusters 2 and 3, PICS can find additional type of clusters such as familiar strangers and
bipartite cores, providing a richer analysis of a given graph. This derives from our more general
cluster definition of nodes with “similar”, rather than “dense”, connectivity.
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(a) Original A and F (b) PICS A and F

Figure 10.2: PICS on a synthetic dataset with n=900 nodes and f=180 features. Notice 5 node
and 3 feature clusters. Nodes in the same cluster exhibit high feature homogeneity
and have similar connectivity patterns. Note that similar connectivity does not only
imply but also includes dense connectivity; while node-clusters 2 and 3 are densely
connected within the clusters, node-clusters 1, 4, and 5 are not. See §10.1.1 for
more details.

10.1.2 Problem Formulation

The main questions that arise given the above problem definition are: How should we decide
the number of node and feature clusters, i.e., k and l, respectively? How can we assign the
nodes and the features to their “proper” clusters? How much overlap of the features is “high”
enough? We address these questions without making the users have to set any parameters such
as the number of clusters, feature similarity thresholds or make them have to choose from a large
collection of similarity functions. In fact, automation is exactly one of the main contributions of
our approach.
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Our starting point is data compression. Specifically, we want to compress two, inter-related ma-
trices simultaneously. The first matrix is the n× n binary connectivity matrix A, and the second
is the n× f binary feature matrix F (note that although we consider binary graphs in our work,
similar ideas can also be applied to weighted graphs). Our goal then is to compress (conceptually,
summarize) these matrices simultaneously by looking at partitions/clusters/groups (i.e. homo-
geneous, rectangular “blocks”) of both low and high densities. The reason for operating on the
matrices simultaneously is simply that the two matrices are inter-related: the node groups should
be homogeneous in both the connectivity matrix A as well as in the feature matrix F.

The natural question is, how many rectangular blocks should we have in each matrix A and F?
To compress these matrices efficiently, we need to have several highly homogeneous blocks. On
the other hand, having more clusters allows us to obtain more homogeneous blocks (at the very
extreme, we can have n×n+n×f blocks, each having perfect homogeneity of 0 or 1). The best
compression model should achieve a proper trade-off between these two factors of homogeneity
(data description complexity) and the number of blocks (model description complexity). To
achieve this goal we use the MDL principle [Grünwald, 2007], a model selection criterion based
on lossless compression principles –we design a cost criterion that we aim to minimize in which
costs are based on the number of bits required to transmit both the “summary” of the structure
(model) as well as each rectangular block (data) within the structure.

In our formulation, we address the hard-clustering problem in which each node (and each at-
tribute) is assigned to a single cluster. An interesting research direction is to generalize our
formulation for soft-clustering, where nodes could belong to multiple node-clusters.

Notation

Let k denote the desired number of disjoint node-clusters and let l denote the desired number
of disjoint feature-clusters. Let R : {1, 2, . . . , n} → {1, 2, . . . , k} and C : {1, 2, . . . , f} →
{1, 2, . . . , l} denote the assignments of nodes to node-clusters and features to feature-clusters,
respectively. We will refer to (R,C) as a mapping. To better understand a mapping, given the
node-clusters and feature-clusters, let us rearrange the rows and columns of the connectivity
matrix A such that all rows corresponding to node-cluster-1 are listed first, followed by rows in
node-cluster-2, and so on. We also rearrange the columns in the same fashion. Note that the row
and column arrangements for A will be the same. One can imagine that such a rearrangement
sub-divides the matrix A into k2 two-dimensional, rectangular blocks, which we will refer to as
BA
ij , i, j = 1, . . . , k.

Similarly, we can rearrange the rows of the feature matrix F such that all rows corresponding
to node-cluster-1 are listed first, followed by rows in node-cluster-2, and so on. One can realize
that the row arrangements of A and F matrices will be the same. In a manner different than for
A, we will rearrange the columns of the feature matrix F such that all columns corresponding to
feature-cluster-1 are listed first, followed by columns in feature-cluster-2, and so on. As a result,
we will obtain rectangular blocks denoted as BF

ij , i = 1, . . . , k and j = 1 . . . , l for F. Finally, let
the dimensions of BF

ij and BA
ij be (ri, cj) and (ri, rj), respectively.
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10.1.3 Objective Function Formulation

We now describe a two-part cost criterion for the (lossless) compression of the connectivity and
feature matrices A and F. The compression cost can be thought of as the total number of bits
required to transmit these matrices over a network channel. The first part is the model description
cost that consists of describing the mapping (R,C). The second part is the data description cost
that consists of encoding the sub-matrices (i.e., the “blocks”Bij), given the mapping. Intuitively,
a good choice of (R,C) would simultaneously compress A and F well, and as a result yield a
low total description cost.

Next, we describe those two parts in more detail and then give the total encoding cost (i.e. our
objective function).

Model Description Cost

This part consists of encoding the number of node and feature clusters as well as the correspond-
ing mapping.

• The number of nodes n and the number of features f (i.e., matrix dimensions) require
log? n + log? f bits, where log? is the universal code length for integers [Rissanen, 1983].
This term is independent of any particular mapping.

• The number of node and feature clusters (k, l) require log? k + log? l bits.
• The node and feature cluster assignments with arithmetic coding require nH(P )+fH(Q)

bits, where H denotes the Shannon entropy function, P is a multinomial random variable
with the probability pi = ri

n
and ri is the size of the i-th node cluster, 1 ≤ i ≤ k. Similarly,

Q is another multinomial random variable with the probability qj =
cj
f

and cj is the size of
the j-th feature cluster, 1 ≤ j ≤ l.

Data Description Cost

This part consists of encoding the matrix blocks.

• For each block BA
ij , i, j = 1, . . . , k and BF

ij , i = 1, . . . , k, j = 1, . . . , l, n1(Bij), that is the
number of 1s in the sub-matrix, requires log? n1(Bij) bits.

• Having encoded the summary information about the rectangular blocks, we next encode
the actual blocksBij . We can calculate the density Pij(1) of 1s inBij using the description
code above as Pij(1) = n1(Bij)/n(Bij), where n(Bij) = n1(Bij) + n0(Bij) = ricj for
F blocks (rirj for A blocks), and n1(Bij) and n0(Bij) are the number of 1s and 0s in
Bij , respectively. Then, the number of bits required to encode each block using arithmetic
coding is

E(Bij) = −n1(Bij) log2(Pij(1))− n0(Bij) log2(Pij(0)) = n(Bij)H(Pij(1)).
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Total Encoding Cost (Length in bits)

We can now write the total encoding cost of the connectivity and feature matrices A and F, with
respect to a particular mapping (R,C):

L(A,F;R,C) = log? n+ log? f + log? k + log? l −
k∑

i=1

ri log2(
ri
n

)−
l∑

j=1

cj log2(
cj
f

)

+
k∑

i=1

l∑

j=1

(
log? n1(B

F
ij) + E(BF

ij)

)
+

k∑

i=1

k∑

j=1

(
log? n1(B

A
ij) + E(BA

ij)

)
.

10.1.4 Proposed Algorithm

The total encoding cost L(A,F;R,C) can point out the best model with the minimum cost
among many. It does not, however, tell us how to find the best model. [Johnson et al., 2004]
show that column-reordering for a single matrix in order to reduce the total run length of the
matrix is NP-hard, with a reduction from the Hamiltonian path problem. Our objective function
is different, however, related in trying to reorder rows and columns to optimize block encod-
ing. Thus, we conjecture that our problem is also hard. As a result, we resort to a monotonic
iterative heuristic solution. Our experiments show that the proposed heuristic algorithm PICS
performs quite well in practice for the real data sets used. The pseudo-code1 of PICS is given in
Algorithm 1.

Algorithm 1: PICS Algorithm
Input: n×n link matrix A, n×f feature matrix F
Output: A heuristic solution towards minimizing total encoding L(A,F;R,C): number

of row and column groups (k∗, l∗), associated mapping (R∗, C∗)
1 Set k0=l0=1 as we start with a single node and feature cluster.
2 Set R0 := {1, 2, . . . , n} → {1, 1, . . . , 1}
3 Set C0 := {1, 2, . . . , f} → {1, 1, . . . , 1}
4 Let T denote the outer iteration index. Set T = 0.
5 while not converged do
6 CT+1, lT+1 := Split-FeatureGroup (F, CT , lT )
7 (RT+1, CT+1) := Shuffle (A, F, (RT , CT+1), (kT , lT+1))
8 RT+1, kT+1 := Split-NodeGroup (A, F, (RT+1, CT+1), (kT , lT+1))
9 (RT+1, CT+1) := Shuffle (A, F, (RT+1, CT+1), (kT+1, lT+1))

10 if L(A,F;RT+1, CT+1)≥L(A,F;RT , CT ) then
11 return (k∗, l∗)=(kT , lT ), (R∗, C∗)=(RT , CT )

12 else Set T = T + 1

1Source code of PICS: www.cs.cmu.edu/̃ lakoglu/#code
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PICS starts with a single node and a single feature cluster (Lines 1-3) and iterates between two
steps. At each iteration, it first tries to increase the number of feature clusters l by 1, by splitting
the feature cluster with the maximum entropy per feature into two clusters (Line 6). Then, it
shuffles the rows and columns of A and F such that the new ordering (mapping) yields a lower
total encoding cost for the current number of clusters (k, l) (Line 7). Next, it tries to increase the
number of node clusters k by 1, followed by another shuffle step (Lines 8 and 9, respectively).
The algorithm halts when the total cost can not be reduced any further.

The implementation details together with further explanation for the procedures Shuffle,
Split-FeatureGroup, and Split-NodeGroup follows.

‘Split’ procedures

Simply put, Split-FeatureGroup (similarly Split-NodeGroup) increases the number
of attribute (node) groups by 1 by first finding the attribute (node) group with the maximum
entropy per-column (row) (Line 1), and then moving those attributes (nodes) in that group whose
removal reduce the per-column (row) entropy to the new group (Lines 2-6). If no column (row)
can be moved, the procedures return the original mapping (Lines 7-8).

Procedure Split-FeatureGroup(F, CT , lT )
Input: n×f feature matrix F, CT , lT

Output: CT+1, lT+1

1 Split the column group g with the maximum entropy per-column using Equation (10.1)

g := arg max1≤j≤l
1

cj

( k∑

i=1

nF (Bij)H(P F
ij (1))

)
(10.1)

2 for each column y in column group g do
3 if removal of y from g decreases the per-column entropy of g as in Equ.(10.2)

1

cg − 1

k∑

i=1

nF (B
′

ig)H(P
′F
ig (1)) <

1

cg

k∑

i=1

nF (Big)H(P F
ig (1)) (10.2)

where B′ig denotes the Big without column y, then
4 Place y into the new group: CT+1

y = lT + 1

5 Update BF
ig ∀i, 1 ≤ i ≤ k.

6 else CT+1
y = CT

y = g

7 if size of new feature-group > 0 then lT+1 = lT + 1
8 else lT+1 = lT
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Procedure Split-NodeGroup(A, F, RT , CT , kT , lT )
Input: n×n connectivity matrix A, n×f feature matrix F, (RT , CT ), (kT , lT )
Output: RT+1, kT+1

1 Split the row group g with the maximum entropy per-row using Equation (10.3)
2 for each row x in row group g do
3 if removal of x from g decreases the per-row entropy of g as in Equ.(10.4) then
4 Place x into the new group: RT+1

x = kT + 1
5 Update BF

gj ∀j, 1 ≤ j ≤ l as well as BA
gj and BA

jg ∀j, 1 ≤ j ≤ k.

6 else RT+1
x = RT

x = g

7 if size of new node-group > 0 then kT+1 = kT + 1
8 else kT+1 = kT

‘Shuffle’ procedure

When the number of node or attribute groups changes, Shuffle finds a lower-cost mapping by
reassigning the nodes and attributes to the existing groups. It does so by first iterating over all the
rows (nodes) (Lines 4-13) and then the columns (attributes) (Lines 14-20), assigning each row
(column) to the node (attribute) group that minimizes its encoding cost (Lines 12 and 19, resp.).
It repeats the same process until the total cost cannot be reduced any further (Lines 21-22).

Equations

g := arg max1≤i≤k
1

ri

( l∑

j=1

nF (Bij)H(P F
ij (1)) +

k∑

j=1

nA(Bij)H(PA
ij (1)) +

k∑

j=1

nA(Bji)H(PA
ji (1))

)

(10.3)

1

rg − 1

( l∑

j=1

nF (B
′

gj)H(P
′F
gj (1)) +

k∑

j=1

(
nA(B

′

gj)H(P
′A
gj (1)) + nA(B

′

jg)H(P
′A
jg (1))

))

<
1

rg

( l∑

j=1

nF (Bgj)H(P F
gj(1)) +

k∑

j=1

(
nA(Bgj)H(PA

gj(1)) + nA(Bjg)H(PA
jg(1))

))
(10.4)

where B′gj denotes the Bgj without row x.

Rt+1
x := arg min1≤i≤k

{ l∑

j=1

1∑

u=0

nFu (xj) log
1

P F
ij (u)

(10.5)

+
k∑

j=1

1∑

u=0

(
nAu (xjr) log

1

PA
ji (u)

+ nAu (xjc) log
1

PA
ij (u)

)
+ dxx(logPA

iRtx
(1) + logPA

Rtxi
(1)− logPA

ii (1))

+(1− dxx)(logPA
iRtx

(0) + logPA
Rtxi

(0)− logPA
ii (0))

}
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Procedure Shuffle(A, F, RT , CT , kT , lT )
Input: n×n connectivity matrix A, n×f feature matrix F, (RT , CT ), (kT , lT )
Output: (RT+1, CT+1)

1 Let t denote the inner iteration index. Set t = T
2 Compute Bt

ij and P t
ij with respect to (Rt, Ct, kt, lt)

3 while not converged do
4 Shuffle rows: Fix column assignments Ct

5 for each row x do
6 Splice x in F into lt parts (each corresponding to one of the column groups in F)

Denote them as x1, . . . , xlt .
7 for each of these parts do
8 Compute the number of 1s and 0s, that is, nFu (xj), u = 0, 1 and j = 1, . . . , lt

9 Splice x in A and the corresponding column in A into kt parts. Denote them as
x1r, . . . , x

kt

r and x1c , . . . , x
kt

c , respectively.
10 for each of these parts do
11 Compute the number of 1s and 0s, that is, nAu (xjr) and nAu (xjc), u = 0, 1 and

j = 1, . . . , kt

12 Assign each row (i.e., node) x into the node group Rt+1
x that yields the minimum

encoding cost for x using Equation (10.5)
13 Re-compute Bt+1

ij and P t+1
ij with respect to (Rt+1, Ct, kt, lt)

14 Shuffle columns: Fix row assignments Rt+1 in A and F, (also fixes the column
assignment in A, so we operate only on F here)

15 for each column y do
16 Splice y in F into kt parts (each corresponding to one of the row groups in F)

Denote them as y1, . . . , ykt .
17 for each of these parts do
18 Compute the number of 1s and 0s, that is, nFu (yi), u = 0, 1 and i = 1, . . . , kt

19 Assign each column (i.e., feature) y to the feature group Ct+1
y that yields the minimum

encoding cost for y using Equation (10.6)
20 Recompute Bt+1

ij and P t+1
ij w.r.t. (Rt+1, Ct+1, kt, lt)

21 if there is no decrease in total cost then return (Rt, Ct)
22 else Set t = t+ 1

where first two lines respectively denote the cost of shifting row x in F, and the same row x and
its corresponding column in A to a new group i. Last two lines account for the double-counting
of cell dxx in A.

Ct+1
y := arg min1≤j≤l

{ k∑

i=1

1∑

u=0

nFu (xi) log
1

P F
ij (u)

}
(10.6)
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Figure 10.3: Step-by-step operation of PICS on the synthetic attributed graph in Figure 10.2.

Notice that the PICS algorithm employs a top-down approach in finding the clusterings, where
we start with a single node and a single attribute cluster and split into more clusters over itera-
tions. In light of this, an interesting future direction is to study a bottom-up approach; starting
with n node and f attribute clusters and merge into fewer clusters over iterations.

Synthetic Graph Example

In Figure 10.3, we show the step-by-step operation of PICS on the synthetic dataset in
Fig. 10.2. In Fig. 10.3(a), we see the output A and F after Split-FeatureGroup and
Shuffle (Steps 6 and 7) are executed on the original A and F shown in Fig. 10.2(a). Here,
Split-FeatureGroup increases the number of feature groups to 2, and then Shuffle re-
orders the rows and columns in both matrices. Next, Split-NodeGroup increases the number
of row groups to 2 (Step 8) and Shuffle reorders the rows and columns that yields a lower en-
coding cost (Step 9). This is also visually clear in Fig. 10.3(b). PICS repeats the same steps in
Fig. 10.3(c) and (d). Notice that Split-FeatureGroup cannot increase the number of fea-
ture groups above 3, and thus Shuffle is called only after Split-NodeGroup in Fig. 10.3(e)
and (f), after which Split-NodeGroup also stops finding new node groups for reduced cost
and the algorithm converges.

Convergence

The stopping criterion for Shuffle is satisfied if and only if the total encoding cost cannot be
reduced any further by the new ordering. Therefore, lines 7 and 9 in Algorithm 1 decreases the
objective criterion L(A,F;R,C). Since the objective criterion, i.e. the total encoding cost in
bits, has the lower bound zero and the number of node and feature clusters have respective upper
bounds n and f , the algorithm is guaranteed to converge.

138



Computational Complexity

The computationally most demanding component of PICS is the Shuffle procedure, which
takes as input the A and F matrices and the number of clusters (k, l), and finds a new ordering
of the rows and columns that gives a lower encoding cost. It achieves this goal by iterating
between two steps: (1) shuffling the columns in F, and (2) shuffling the rows in A and F,
simultaneously.

One iteration of step (1) above is O(n1(F ) ∗ l), where n1(F ) denotes the number of non-zeros
in F, as we access each column and compute its number of non-zeros and consider l possible
feature groups to place it into. Similarly, one iteration of step (2) is O((n1(F ) + 2n1(A)) ∗ k).
Therefore, the total complexity of Shuffle is O([2n1(A)k + n1(F )(k + l)] ∗ t), where t is the
total number of inner iterations for Shuffle.

PICS calls Shuffle two times at each outer iteration T (Lines 7 and 9 in Algorithm 1). T is
equal to max(k∗, l∗). Thus, the overall complexity of PICS is O(max(k∗, l∗) ∗ [2n1(A)k∗ +
n1(F )(k∗ + l∗)] ∗ t̂), where t̂ denotes the maximum number of inner iterations. Note that
PICS scales linearly with respect to the total number of non-zeros in A and F, the total number
of Shuffle iterations t̂ (typically t̂ � n1(A) + n1(F )), and quadratically with respect to the
number of clusters (k∗, l∗), where k∗ and l∗ are usually small.

10.2 Experimental Results

10.2.1 Datasets

In our experiments we studied six real-world datasets from various domains which we describe
next. A summary is given in Table 10.1. In each case we are able to use PICS to automatically
discover interesting node and attribute structures, with further investigation providing explana-
tions for their presence.

Dataset n f n1(A) + n1(F ) Connectivity and Attribute Description
YOUTUBE 77381 30087 994542 User friendships and group memberships
TWITTER 9654 10000 81770 User ‘mention’s and hashtag usages
CALL 94 7 391 Phone calls and affiliations
DEVICE 94 7 5233 Bluetooth device scans and affiliations
POLBOOKS 92 2 840 Book co-purchases and politic inclinations
POLBLOGS 1490 2 20580 Blog citations and political inclinations

Table 10.1: Dataset summary. n: number of nodes, f : number of features, n1(A) + n1(F ):
number of non-zeros (nnz), i.e. edges, in the connectivity matrix A plus the nnz in
the feature matrix F. See §10.2.1 for more details.

139



YOUTUBE data consists of users and YouTube-groups. The links represent user-user friend-
ships and node attributes are the group memberships of each user. The data is compiled by [Mis-
love et al., 2007] in 2007.

TWITTER graph contains early-adopter users, with links representing the who-mentioned-
whom interactions between them. The attributes are the hashtags (tokens starting with a #) that
the users used in their messages (Tweets).

The CALL and DEVICE graphs are constructed using the Reality Mining data sets provided by
the MIT Media Lab [Eagle et al., 2007]. The Reality Mining project was conducted in 2004-05
with 94 human subjects using mobile phones pre-installed with special software that recorded
data. CALL is built using the call logs, and represents the phone-call interactions between the
subjects. DEVICE is constructed using Bluetooth device scans; an edge from i to j indicates
person i’s device discovered person j’s device within five meters proximity. Subjects included 67
students (1st year grad, grad (not 1st year), 1st year undergrad, and undergrad (not 1st year)),
faculty, and staff working in the Media Lab, and 27 business students at the university’s Sloan
School of Management.

POLBOOKS is a graph of books about U.S. politics published during 2004 presidential elec-
tion [http://www-personal.umich.edu/˜mejn/netdata/]; an edge from i to j in-
dicates that book i was frequently co-purchased with book j by the same buyers. Similarly,
POLBLOGS is a directed graph of hyperlinks between web-blogs on U.S. politics, compiled
by [Adamic and Glance, 2005] in 2005. In both graphs, the nodes (books or blogs) are attributed
as being liberal or conservative.

The YOUTUBE and POLBOOKS graphs are undirected and the rest are directed.

10.2.2 Clusters, bridges, and outliers

Next, as for our real datasets no ground truth (if any) for “true” clustering exists, we provide
anecdotal and visual study.

YOUTUBE Dataset:

PICS finds node and feature clusters of various sizes in our largest dataset YOUTUBE, as
shown in Figure 10.1, § 1. In Table 10.2, we show example YouTube-groups in major feature
clusters; notice that these clusters can be human-labeled as ‘porn’, ‘music’, ‘anime’, and ‘special
interest’.

With respect to node clusters, PICS finds a very sparse group of ‘familiar strangers’ in cluster
‘1’ with high feature coherence but scarce connections to the rest of the graph. These users
belong to arbitrarily many and mostly same YouTube-groups labeled as ‘A1’, yet are not well-
connected among themselves. Node clusters in the blue square labeled as ‘2’ exhibit dense
connectivity among each other as well as high feature homogeneity as seen in the ‘anime’ groups
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labeled as ‘A2’. The node clusters in the blue square labeled as ‘4’ mostly belong to YouTube
groups associated with ‘porn and music’ labeled as ‘A4’. Notice that the nodes in each of these
clusters have quite similar connectivity to the graph. The node cluster ‘3’ contains nodes with
connections across many clusters, behaving like ‘bridges’. They also mostly belong to the same
YouTube-groups, labeled as ‘A3’. Finally, the small node clusters constitute the outliers, with
arbitrarily many connections across clusters. All in all, by using PICS we are able to understand
and summarize the YOUTUBE graph in a completely unsupervised fashion.

porn music anime interest
hotmodels poptastic anime4ever streetboarders
upskirt raphiphop narutoholics modelcooks
lesbokiss guitarsolos crazyforanime poetryandmusic
men4men metallovers animefreak1 mexicogrupero
gayestgay classicalmusic AnimeDaisuki bodypainting
bootyshake xtinaaguilera SailorMoon nflfans
sexysolo heavymetal Tsyukomi chelseafcfans

Table 10.2: Examples of YouTube-groups in feature clusters found by PICS. See Figure 10.1.

TWITTER Dataset:

Our Twitter dataset consists of directed edges (i, j) between users if i directs a message to j at
least three times. Attributes in our network are the hashtags used at least three times by a user.
In Figure 10.4, PICS finds a group of ‘casual users’ in node cluster ‘1’ with few connections
and few number of hastags used. Node cluster ‘2’ is the most prominent: this is a dense group
of users (mostly tech bloggers) all from Italy who extensively mention each other but do not
frequently message other users. They also use common and distinctive hashtags in Italian such
as ‘#terremoto’ and ‘#partigi’. The two clusters in blue square (labeled as ‘4’) are the so-called
‘heavy-hitters’ who use overwhelmingly many different hashtags (labeled as ‘A4’). PICS also
reveals a ‘core-periphery’ pattern within these users. The clusters in blue square labeled as ‘5’
form dense diagonal blocks with dense connections within. The smaller clusters also correspond
to the so-called ‘bridges’, with many connections across clusters. Notice that the bridge-nodes
are mostly mentioned by others but do not themselves mention others. Upon further inspection
of users in this group, we discover Jeffrey Zeldman, a well known author, as well as Jack Dorsey
and Ev Williams, the two founders of Twitter. We also observe that users in groups labeled as
‘3’ and ‘5’ have never used the hashtags in the rightmost feature cluster of Figure 10.4.

CALL Dataset:

PICS finds 3 major node clusters as shown in Figure 10.5. The first cluster corresponds to the
group of casual subjects who make phone calls to only a few people. The next two clusters,
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Figure 10.4: PICS on TWITTER finds a tight group of users from Italy and reveals groups
of casual users, heavy-hitters, and bridges. Left: user-mentions-user adjacency
matrix; right: users-to-hashtags feature matrix.

which are relatively densely connected, are a group of business and a group of grad students,
respectively.

With respect to outliers, notice a cluster of size 1, an outlier subject who does not belong to any
of the clusters. This subject, whose affiliation is not given in the dataset, does not make any
outgoing calls but receives calls from almost everyone, which is presumably a call service center
in the campus. Another outlier we can spot is a 1st year grad student who is in the same cluster
with the business students in cluster 2; he/she neither calls nor gets called by other grad students
but some business students.

With respect to bridges, we notice one grad student in cluster 3 who is in mutual contact with
two business students. Notice that none of the other subjects has phone call interactions with the
business students.

DEVICE Dataset:

In Figure 10.6, we observe 3 major dense clusters; clusters 1, 3 and 5. These three clusters involve
mostly the grad, business and undergrad students, respectively. The reason these clusters form
near-cliques, i.e. are almost fully connected, may be due to the Bluetooth scans occurring when
these groups of students sit in the same classroom all within five meters.

In this dataset, the sparser clusters are also of interest. For instance, cluster 2 is a group of
subjects whose devices seem to report far less scan results. This might be due to powered-off
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Figure 10.5: PICS on CALL. Notice 3 major node groups of casual users, business and grad
students, respectively as well as a group of size 1, receiving many calls, probably a
call service center.

devices or turned-off Bluetooth functionality.

In cluster 3 of business students, we also notice a column consisting of almost all zeros. This
corresponds to a subject whose device can scan other devices, but somehow it does not get
detected by others. This may be due to a malfunctioning device or missing data.

POLBOOKS Dataset:

The POLBOOKS dataset consists of liberal and conservative books which might be thought as
two major clusters. In Figure 10.7, PICS gives more information about the cluster structure by
finding 4 node clusters. The denser clusters (clusters 2 and 4) correspond to the “core” conserva-
tive and liberal books, respectively, which are often purchased together. Clusters 1 and 3 are then
the corresponding “peripheral” books. Table 10.3 gives a list of several books in each “core”.
Notice that the “core” books do seem to lie at the two extremes of the political spectrum.

In cluster 1, we also observe 3 bridging books, namely Bush at War, The Bushes: Portrait of a
Dynasty, and Rise of the Vulcans: The History of Bush’s War Cabinet, which are co-purchased
with both some liberal and conservative books. These books are human-labeled as conservative
although they seem to have more of a historical perspective. Notice that the bridge nodes reside
in the “periphery” rather than in the “core”.
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Figure 10.6: PICS on DEVICE finds 3 major dense node groups of grad, business and under-
grad students, respectively, as well as anomalies, probably missing data.
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Figure 10.7: PICS on POLBOOKS finds 4 node groups corresponding to “core” and “periph-
eral” liberal and conservative books, as well as several bridge-books, with historical
content and not extremely liberal or conservative.

POLBLOGS Dataset:

In Figure 10.8, we observe 7 major node clusters in POLBLOGS. The first and the largest cluster
contains liberal and conservative blogs which do not have many citations. Clusters 2-4 consist
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Liberal Conservative
–Lies and the Lying Liars Who Tell Them: A
Fair and Balanced Look at the Right

–Persecution: How Liberals Are Waging War
Against Christianity

–Big Lies: The Right-Wing Propaganda Ma-
chine and How It Distorts the Truth

–Deliver Us from Evil: Defeating Terrorism,
Despotism, and Liberalism

–The Lies of George W. Bush –Tales from the Left Coast
–Dude, Where’s My Country? –A National Party No More
–Worse Than Watergate: The Secret Presi-
dency of George W. Bush

–Bush Country: How George W. Bush Be-
came the First Great Leader of 21st Century

–Thieves in High Places: They’ve Stolen Our
Country and It’s Time to Take It Back

–Losing Bin Laden: How Bill Clinton’s Fail-
ures Unleashed Global Terror

Table 10.3: Examples of “core” liberal and conservative books.

of conservative and 5-7 consist of liberal blogs. Here, PICS seems to also reveal the “core” and
“periphery” structure for the political blogs. In particular, cluster 3 is a core conservative group
with a fanatic follower group (cluster 4), and a less fanatic follower group (cluster 2) of other
conservative blogs, which often cite the blogs in cluster 3. Examples to “core” conservative blogs
include rightwingnews.com, georgewbush.com, and conservativeeyes.blogspot.com. Similarly,
cluster 6 is a core liberal group with cluster 7 being its more fanatic, and cluster 5 being its less
fanatic follower group of other liberal blogs, with many citations to cluster 6. The blogs in the
liberal “core” include talkleft.com, liberaloasis.com, and democrats.org/blog.
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Figure 10.8: PICS on POLBLOGS. Notice the “core” conservative and liberal blogs (clusters
3 and 6), each with two sets of “peripheral” groups with many citations.
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Figure 10.9: Run time of PICS versus the total number of non-zeros (nnz) in A and F (averaged
over 10 runs, bars depict ± one standard deviation). The numbers in parentheses
denote the number of node and feature clusters (k∗, l∗) found. Notice that the run
time grows linearly w.r.t. total nnz.

10.2.3 Scalability

In § 22 we theoretically showed that the computational complexity of PICS is linear in the total
graph and attribute size. In this section, we also demonstrate the time complexity of PICS ex-
perimentally. Figure 13.5 shows the running time with respect to increasing total size for several
datasets we studied (the total size is the total number of non-zeros (nnz) in the A and F matrices).
Notice that the run time grows linearly with respect to the total nnz. (Recall that the run time also
depends on the number of clusters found, hence the slight dip for YOUTUBE at total size 950K
as fewer clusters (20 vs 23) are found.) Experiments were performed on a 4-CPU Intel 3.0GHz
Xeon server with 16GB RAM. All code was written in Matlab.
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10.3 Summary of contributions

In this chapter, we introduced PICS2, a parameter-free method that finds cohesive clusters and
hence helps us spot outliers in attributed graphs. The contributions of our work include:

• Algorithm design: We introduce a novel clustering model; PICS finds groups of nodes
in an attributed graph with (1) similar connectivity, and (2) attribute homogeneity. By
definition, clusters with similar connectivity include but are not limited to dense clusters.
It also groups the node attributes into meaningful clusters. The nodes deviating from the
discovered patterns correspond to bridge-nodes with connections across clusters or outlier-
nodes that do not belong well to any cluster.

• Parameter-free nature: PICS is fully automatic. It works without any user-specified input,
such as the number of clusters, choice of density or similarity functions and thresholds. To
the best of our knowledge, no other work has been proposed to mine attributed graphs in a
parameter-free fashion.

• Scalability: The run time of the proposed algorithms grows linearly with respect to the
total graph and attribute size.

• Effectiveness: We show that PICS discovers quality clusters, bridges and outliers in di-
verse real-world datasets including YouTube and Twitter.

There are a number of interesting future directions for PICS, such as extending the algorithms to
time-evolving attributed graphs by dynamically updating the mapping, and to more general cases
such as soft-clustering, where the node, and similarly attribute, clusters may overlap.

2Source code of PICS: www.cs.cmu.edu/̃ lakoglu/#code
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Chapter 11

Anomalies in Categoric-attributed Data

PROBLEM STATEMENT: Given a database with categorical attributes, how can we find mean-
ingful patterns that succinctly describe the data and spot outliers?

In this chapter, we address the problem of anomaly detection in multi-dimensional databases
using pattern-based compression. Compression-based techniques have been explored mostly in
communications theory, for reducing transmission cost and increased throughput as well as in the
field of databases, for reduced storage cost and increased query performance. Here, we improve
over recent work that identified compression as a natural tool for spotting anomalies [Smets and
Vreeken, 2011]. Simply put, we define the norm by the patterns that compress the data well.
Then, any data point that can not be compressed well is said not to comply with the norm, and
thus can be flagged as abnormal.

The heart of our method, which we call COMPREX, is to use a collection of dictionaries to
encode a given database. We exploit correlations between the features in the database, grouping
features with high information gain together, and build dictionaries (a.k.a. look-up tables or code
tables [Vreeken et al., 2011]) for each group of strongly interacting features.

Informally, these dictionaries capture the data distribution in terms of patterns; the more often a
pattern occurs, the shorter its encoded length. The goal is to find the optimal set of dictionaries,
those yield the minimal lossless compression, and then spot the tuples with long encoded lengths;
those described using relatively infrequent patterns.

Dictionary based compression for anomaly detection was first studied in [Smets and Vreeken,
2011], employing the KRIMP itemset-based compressor introduced by Siebes et al. [Siebes et al.,
2006; Vreeken et al., 2011]. Besides high performance, it allows for characterization: one can
easily inspect how tuples are encoded, and hence why one is deemed an anomaly. Where KRIMP

builds a single code table, we use multiple code tables to describe the data. As such, our method
can better exploit correlations between groups of features, as by doing away with uncorrelated
features it can locally assign codes more efficiently—leading to both better compression and
higher accuracy.
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Furthermore, unlike KRIMP, we build code tables directly. That is, instead of filtering very large
collections of pre-mined candidate patterns, we construct our code tables in a bottom-up fashion.
We iteratively join those feature groups by which most compression can be gained, having only
to consider patterns over the two groups. As such, COMPREX is much more efficient, with
running time growing only linearly with number of features and database size.

Most importantly, by not requiring the user to provide a collection of candidate itemsets, nor a
minimal support threshold, COMPREX is parameter free in both theory and practice. We employ
the Minimum Description Length (MDL) principle to automatically decide the number of feature
groups, which features to group, what patterns to include in the corresponding code tables, as
well as to point out anomalies. Most existing anomaly detection methods, on the other hand, have
several parameters, such as the choice of a similarity function, density or distance thresholds,
number of nearest neighbors, etc.

In a nutshell, we improve over the state of the art by encoding data using multiple code tables,
instead of one—allowing us to better grasp strongly interacting features. Moreover, we build our
models directly from data—avoiding the expensive step of mining and filtering large collections
of candidate patterns.

Experiments show that the resulting models obtain high performance in anomaly detection; im-
proving greatly over the state of the art for categorical data. It is more generally applicable,
though; even after discretization it matches the state of the art for numerical data, and correctly
identifies anomalies both in translated large graphs and image data.

11.1 COMPREX: Method Description

We first describe how dictionary-based compression works, where we introduce the preliminaries
and notation. Next, we present our method and the proposed algorithms.

11.1.1 Dictionary-based Compression

Notation and Preliminaries

In this work we consider categorical databases. A database D is a bag of n tuples over a set
of m categorical features F = {f1, . . . , fm}. Each feature f ∈ F has a domain dom(f) of
possible values {v1, v2, . . .}. The number of values v ∈ dom(f) is the arity of f , i.e. arity(f) =
|dom(f)| ∈ N .

The domains are distinct between features. That is, dom(fi)∩dom(fj) = ∅,∀i 6= j. The domain
of a feature set F ⊆ F is the Cartesian product of the domains of the individual features f ∈ F ,
i.e., dom(F ) =

∏
f∈F dom(f).
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A database D is simply a collection of n tuples, where each tuple t is a vector of length m
containing a value for each feature in F . As such, D can also be regarded as a n-by-m matrix,
where the possible values in a column i are determined by dom(fi).

An item is a feature-value pair (f = v), with f ⊆ F , and v ∈ dom(f). A itemset is then a pair
(F = v), for a set of features F ⊆ F , and v ∈ dom(F ) is a vector of length |F |. We typically
refer to an itemset as a pattern.

A tuple t is said to contain a pattern (F = v), denoted as p(F = v) ⊆ t (or p ⊆ t for short),
if for all features f ∈ F , tf = vf holds. The support of a pattern (F = v) is the number of
tuples in D that contain it: supp(F = v) = |{t ∈ D | (F = v) ⊆ t}|. Its frequency is then
freq(F = v) = supp(F = v)/|D|.
Finally, the entropy of a feature set F is defined as

H(F ) = −
∑

v∈dom(F )

freq(F = v) log freq(F = v) .

All logarithms are to base 2, and by convention, 0 log 0 = 0.

In this work we take a pattern based approach to encode a given database, which we explain in
detail next.

Data encoding

As models, we will use code tables. A code table is a simple two column table. The first
column contains patterns, which are ordered descending (1) first by length and (2) second by
support. The second column contains the code words code(p) corresponding to each pattern p.
An illustrative database with 6 tuples and an example code table for the database is illustrated in
Table 11.1.

Data Code Table

f1f2f3 p(F = v) code(p) usage(p) L(code(p))

a b x a b x 0 4 1 bit
a b x a c 10 2 2 bits
a b x x 110 1 3 bits
a b x y 111 1 3 bits
a c x
a c y

Table 11.1: An illustrative database D and an example code table CT for a set of three features,
F={f1, f2, f3}.

The code words in the second column of a code table CT are not important: their lengths are.
The length of a code word for a pattern depends on the database we want to compress. Intuitively,
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the more often a pattern occurs in the database, the shorter its code should be. The usage of a
pattern p ∈ CT is the number of tuples t ∈ D which contain p in their cover, i.e. have the code
of p in their encoding.

The encoding of a tuple t, given a CT , works as follows: the patterns in the first column are
scanned in their predefined order to find the first pattern p for which p ⊆ t. p is then said to be
used in the cover of t , and the corresponding code word for p in the second column becomes
part of the encoding of t. If t \ p 6= ∅, the encoding continues with t \ p until t is completely
covered, which yields a unique set of patterns that form the cover of t.

Given the usages of the patterns in a CT , we can compute the lengths of the code words for the
optimal prefix code [Grünwald, 2007]. The Shannon entropy gives the length for the optimal
prefix code for p as

L(code(p) | CT ) = − log
( usage(p)∑
p′∈CT

usage(p′)

)
.

The number of bits to encode a tuple t is simply the sum of the code lengths of the patterns in its
cover, that is,

L(t | CT ) =
∑

p∈cover(t)

L(code(p) | CT ).

The total length of the encoded database is then the sum of encoded data tuple lengths,

L(D | CT ) =
∑

t∈D

L(t | CT ).

Model encoding

To find the MDL-optimal compressor, we also need to determine the encoded size of the model,
the code table in our case. Clearly, the size of the second column in a given code table CT that
contains the prefix code words code(p) is trivial; it is simply the sum of their lengths. For the
size of the first column, we need to consider all the singleton items I contained in the patterns,
i.e., I =

⋃
f∈F dom(f).

For encoding the patterns in the left hand column we again use an optimal prefix code. We first
compute the frequency of their appearance in the first column, and then by Shannon entropy
calculate the optimal length of these codes. Specifically, the encoding of the first column in
a code table requires cH(P ) bits, where c is the total count of singleton items in the patterns
p ∈ CT , H(.) denotes the Shannon entropy function, and P is a multinomial random variable
with the probability pi = ri

c
in which ri is the number of occurrences of singleton item i ∈ I

in the first column (Note that for the actual items, one could add an ASCII table providing the
matching from the prefix codes to the original names. Since all such tables are over I, this only
adds an additive constant to the total cost). All in all,

L(CT ) =
∑

p∈CT

L(code(p) | CT ) +
∑

i∈I

−ri log(pi).

151



11.1.2 Compression with Sets of Code Tables: the Theory

In the previous section, we showed how to encode a database D using a single code table CT .
In fact, this is the approach introduced in [Siebes et al., 2006] to compress transaction databases,
employing frequent itemset mining to generate the candidate patterns for the code table. Here,
we do not regard transaction data, but regular relational data, where tuples are data points in
a multi-dimensional categorical feature space. In this space, some groups of features may be
highly correlated; and hence may be compressed well together.

As a result, we can improve by using multiple code tables, as we can then exploit correlations,
and build a separate CT for each highly correlated group of features. As such, using multiple,
that is a set of code tables, and mining these efficiently, are two of the main contributions of
our work. Next, we formally introduce the concept of feature partitioning, and give our problem
statement.

Definition 7 A feature partitioning P = {F1, . . . , Fk} of a set of features F is a grouping of F ,
for which (1) each partition contains one or more features: ∀Fi ∈ P : Fi 6= ∅, (2) all partitions
are pairwise disjoint: ∀i 6= j : Fi ∩ Fj = ∅, and (3) every feature belongs to a partition:⋃
Fi = F .

Formal Problem Statement 1 Given a set of n data tuples in D over a set of m features in
F , find a partitioning P : {F1, F2, . . . , Fk} of F and a set of associated code tables CT :
{CTF1 , CTF2 , . . . , CTFk}, such that the total compression cost in bits given below is minimized.

L(P , CT , D) = L(P) +
∑

F∈P

L(πF (D)|CTF ) +
∑

F∈P

L(CTF ) ,

in which πFi(D) denotes the projection of D on feature subspace Fi.

Note that the number of features m and the number of tuples n are fixed over all models we
consider for a D, and hence are a constant additive that we can safely ignore.

Partition encoding

The first term of L(P , CT , D) denotes the length of encoding the partitioning, which consists of
two parts; encoding (a) the number of partitions and (b) the features per partition.

(a) Encoding the number of partitions: First, we need to encode k, the number of partitions
and code tables. For this, we use the MDL-optimal encoding of an integer [Grünwald, 2007].
The cost for encoding an integer value k is L0(k) = log?(k) + log(c), with c =

∑
2− log(n) ≈

2.865064,, and log?(k) = log(k) + log log(k) + · · · sums over all positive terms. Note that as
log(c) is constant for all models, we ignore it.

(b) Encoding the features per partition: Then, for each feature we have to describe to which
partition it belongs. This we do using m log(k) bits.

In summary, L(P) = log?(k) +m log(k).
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Data encoding

The second term of L(P , CT , D) denotes the cost of encoding the data with the given set of code
tables. To do so, each tuple is partitioned according to P , and encoded using the optimal codes
in the corresponding code tables following the procedure described in §11.1.1.

Model encoding

The last term of L(P , CT , D) denotes the model cost, that is the total length of encoding the
code tables. Each code table is encoded following the procedure described in §11.1.1.

Note that the number of feature groups k is not a parameter of our method but rather is determined
by MDL. In particular, MDL ensures that we will not have two separate code tables for a pair of
highly correlated feature groups as it would yield lower data cost to encode them together. On
the other hand, combining feature groups may yield larger code tables, that is higher model cost,
which may not compensate for the savings from the data cost. In other words, we group features
for which the total encoding cost L(P , CT , D) is reduced. Basically, we employ MDL to guide
us both in finding which features to group, and in choosing the number of groups to have.

11.1.3 Mining Sets of Code Tables: the Algorithm

Having defined the cost function as L(P , CT , D), we need an algorithm to search for the best set
of code tables CT for the optimal vertical partitioning P of the data such that the total encoded
size L(P , CT , D) is minimized.

The search space for finding the best code table for a given set of features, yet alone for finding
the optimal partitioning of features, however, is quite large. Finding the optimal code table for
a set of |Fi| features involves finding all the possible patterns with different value combinations
up to length |Fi| and choosing a subset of those patterns that would yield the minimum total cost
on the database induced on Fi. Furthermore, the number of possible partitioning of a set of m
features is the well-known Bell number Bm.

While the search space is prohibitively large, it neither has a structure nor exhibits monotonicity
properties which could help us in pruning. As a result, we resort to heuristics. Our approach
builds the set of code tables in a greedy bottom-up, iterative fashion. We give the pseudo-code
as Algorithm 2, and explain it in more detail in the following.

COMPREX starts with a partitioning P in which each feature belongs to its own group (1), and
separate, elementary code tables CTi for each feature fi associated with the feature sets (2).

Definition 8 An elementary code table CT encodes a database D induced on a single feature
f ∈ F . The patterns p ∈ CT consist of all length-1 unique items v1, . . . , varity(f) in dom(f).
Finally, usage(p ∈ CT ) = freq(f = v).
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Typically, some features of the data will be more strongly correlated than others, e.g., the age of
a car and its fuel efficiency, or the weather temperature and flu outbreaks. In such cases, it will
be worthwhile to represent features for which the correlation is ‘high enough’ together within
one CT , as we can then exploit correlation to save bits.

More formally, we know from Information Theory that given two (sets of) random variables (in
our case feature groups) Fi and Fj , the average number of bits we can save when compressing
Fi and Fj together instead of separately, is known as their Information Gain. That is,

IG(Fi, Fj) = H(Fi) +H(Fj)−H(Fi, Fj) ≥ 0,

In fact, the IG of two (sets of) variables is always non-negative (zero when the variables are
independent from each other), which implies that the data cost would be the smallest if all the
features were represented by a singleCT . On the other hand, our objective function also includes
the compression cost of the CT s.

Clearly, having one large CT over many (possibly uncorrelated) features will typically require
more bits in model cost than it saves in data cost. Therefore, we can use IG to point out good
merge candidates, subsequently employing MDL to decide whether the total cost is reduced, and
hence, whether to approve the merge or not.

The first step then is to compute the IG matrix for all pairs of the current feature sets, which
is a non-negative and symmetric matrix (3). Let |Fi| denote the cardinality, i.e. the number of
features in the feature set Fi. We sort the pairs of feature sets in decreasing order of IG-per-
feature, i.e. normalized by their total cardinality, and start outer iterations to go over these pairs
as the candidate CT s to be merged, say CTi and CTj (5). The starting cost costinit is set to the
total cost with the initial set of CT s (6).

The construction of the new CTi|j then works as follows: we put all the existing patterns
pi,1, . . . , pi,ni and pj,1, . . . , pj,nj from both CT s into the new CT (7). Following the conven-
tion, they are sorted first by length (from longer to shorter) and second by usage (from higher
to lower) (8). Candidate partitioning P̂ is built by dropping feature sets Fi and Fj from P and
including the concatenated set Fi|j (9). Similarly, we build a temporary code table set ĈT by
dropping the candidate tables CTi and CTj and adding the new ĈT i|j (10).

Next, we find all the unique rows of the database induced on Fi|j (11). These patterns of length
(|Fi|+|Fj|) are sorted in decreasing order of their occurrence in the database and constitute the
candidates to be inserted into the new CT . Let pi|j,1, . . . , pi|j,ni|j denote these patterns of the
combined feature set Fi|j in their sorted order of frequency. In our inner iterations (12), we insert
these one-by-one (13), update (i.e. decrease) the usages of the existing overlapping patterns
(14), remove those patterns whose usage drops to zero (15), recompute the code word lengths
with the updated usages (16) and compute the total cost after each insertion. If the total cost is
reduced, we store the candidate partitioning P̂ and the associated set of code tables ĈT (18),
otherwise we continue insertions (from 12) with the next candidate patterns for possible future
cost reduction.
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In the outer iterations, if total cost is reduced the IG between the new feature set Fi|j and the rest
are computed (20). Otherwise the merge is rejected and the candidates P̂ and ĈT are discarded
(22). Next the algorithm continues to search for future merges, and the search terminates when
there are no more pairs of feature sets that can be merged for reduced cost.

Algorithm 2: COMPREX Algorithm
Input: Database D with n tuples and m (categorical) features
Output: A heuristic solution to Problem Statement 1: a feature partitioning

P : {F1, . . . , Fk}, associated set of code tables CT : {CT1, . . . , CTk}, and total
encoded size L(P , CT , D)

1 P ← {F1, . . . , Fm}, Fi = {fi}, 1 ≤ i ≤ m
2 CT ← {CT1, . . . , CTm}, where each CTi is elementary
3 Compute IG between ∀(Fi, Fj) ∈ P , i > j
4 while no convergence, i.e. more merges do
5 for each (Fi, Fj) ∈ P in decreasing normalized IG do
6 Compute costinit ← L(P , CT , D)

7 Put patterns p ∈ CTi and p ∈ CTj into a new ĈT i|j
8 Sort p ∈ ĈT i|j , (1) by length and (2) by usage
9 P̂ ← P\(Fi ∪ Fj) ∪ Fi|j

10 ĈT ← CT \(CTi ∪ CTj) ∪ ĈT i|j
11 Find unique rows (candidate patterns) pi|j in DFi|j

12 for each unique row pi|j,x in decreasing frequency do
13 Insert pi|j,x to new ĈT i|j
14 Decrease usages of overlapping patterns p ∈ ĈT i|j and p ∈ cover(pi|j,x) by

freq(pi|j,x)

15 Remove patterns p ∈ ĈT i|j with usage(p)=0

16 Recompute L(code(p ∈ ĈT i|j)) with new usages
17 if L(P̂ , ĈT , D) < L(P , CT , D) then
18 P ← P̂ and CT ← ĈT

19 if L(P , CT , D) < costinit then
20 Compute IG between Fi|j and ∀Fx ∈ P , Fx 6= Fi|j

21 else
22 Discard P̂ and ĈT

11.1.4 Computational Speedup and Complexity

In Algorithm 2, computationally most demanding steps are (1) finding all the unique rows in the
database under a particular feature subspace when two feature sets are to be merged (11) and (2)
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after each insertion of a new pattern to the code table, finding the existing overlapping patterns
the usages of which to be decreased (14).

With a naive implementation, step (1) is performed on the fly scanning the entire database once
and possibly using many linear scans and comparisons over the unique rows found so far in the
process. Furthermore, step (2) requires a linear scan over the current patterns in the new code
table ĈT i|j for each new insertion. The total computational complexity of these linear searches
depends on the database, however, with the outer and inner iteration levels (Lines 5 and 12,
respectively), those may become computationally infeasible for very large databases.

We improve with a simple design choice. Instead of an integer vector of usage per pattern in
CT , we have a sparse matrix C for patterns versus data points, the binary entries cji indicating
whether data tuple i contains pattern j in its cover. Note that the row sum of the C matrix gives
the usages of the patterns. In such a setting, step (1) (mining for candidate patterns) works as
follows: Let Fi and Fj denote the feature sets to be merged. Let Ci denote the ni × n patterns
versus data tuples matrix for code table CTi and similarly Cj denote the nj×nmatrix for CTj , in
which ni and nj respectively denote the number of patterns each table has. We obtain the usages
for the new candidate patterns (merged unique rows) under the merged feature subspace Fi|j by
multiplying Ci and CT

j into a ni × nj matrix U , which takes O(ninnj).

Next, we sort the merged patterns in decreasing order by their usage Ux,y and insert them to
ĈT i|j one-by-one. Note that we exploit the existing patterns in the code tables to be merged,
rather than finding all the unique rows of the database. This way, we quickly identify good
frequent candidates and consider only ninj of them. Since ni, nj � n, we practically reduce the
number of inner iterations (12) to a constant.

From here, step (2) (insertions) works as follows: Let Ux,y denote the highest usage associated
with the merged pattern pi(x)|pj(y). The insertion of pi(x)|pj(y) into the code table simply
means the addition of a new row to the Ci|j matrix (Ci|j is obtained by concatenating the rows
of Ci and Cj and reordering its rows (1) by length and (2) by usage of the patterns it initially
contains). The new row is then the dot product (i.e. logical AND) of row x in Ci and the row
y in Cj (data tuples which contain both pi(x) and pj(y) in their cover). Moreover, we decrease
the usages of the merged patterns pi(x) and pj(y) by subtracting the new row from both of their
corresponding rows. All these updates are O(n) operations.

All in all, the inner loop (starting in 12) goes over ninj(≈constant) number of candidate patterns
and each insertion takes O(n). Therefore, the inner loop takes O(n).

Next, we consider the outer loop (starting in 5), which tries to merge pairs of code tables. In
the worst case we get O(m2) trials when all merges are discarded. As a result the worst case
complexity of COMPREX becomes O(m2n). In practice, however, many features are correlated
and we obtain a merge at almost every step, yielding approximately linear complexity in both
data size and dimension.
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11.1.5 Anomaly Detection

Compression based techniques are naturally suited for anomaly and rare instance detection. Next
we describe how we exploit our dictionary based compression framework for this task.

In a given code table, the patterns with short code words, that is those that have high usage,
represent the patterns in the data that can effectively compress the majority of the data points. In
other words, they capture the trends summarizing the norm in the data. On the other hand, the
patterns with longer code words are rarely used and thus encode the sparse regions in the data.
Consequently, the data tuples can be scored by their encoding cost for anomalousness.

More formally, given a set of code tables CT1, . . . , CTk found by COMPREX, each data tuple t ∈
D can be encoded by one or more code words from eachCTi, i = {1, . . . , k}. The corresponding
patterns constitute the cover of t as discussed in §11.1.1. The encoding cost of t is then considered
as its anomalousness score; the higher the compression cost, the more likely it is “to arouse
suspicion that it was generated by a different mechanism” [Hawkins, 1980].

score(t) = L(t|CT ) =
∑

F∈P

L(πF (t)|CTF ) =
∑

F∈P

∑

p∈cover(πF (t))

L(code(p)|CTF )

Having computed the compression costs, one can sort them and report the top k data points with
the highest scores as possible anomalies. An alternative way [Smets and Vreeken, 2011] is to
determine a decision threshold θ and flag those points with a compression cost greater than θ as
anomalies. One can use the Cantelli’s Inequality [Grimmett and Stirzaker, 2001] which provides
a well-founded way to determine a good value for the threshold θ for a given confidence level,
that is, an upper bound for the false positive rate. For generality, in our experiments we show the
accuracy at all decision thresholds.

11.2 Experimental Results

In our study, we experimented with many datasets from diverse domains, as shown in Tables 11.2
and 11.3. Other datasets we used include graph and satellite image datasets, which we will
discuss later in the experiments.

We evaluated our method with respect to four criteria: (1) compression cost in bits, (2) running
time, (3) detection accuracy, and (4) scalability. We also compared our results with two state of
the art methods, KRIMP [Smets and Vreeken, 2011] and LOF [Breunig et al., 2000a]. KRIMP

is also a compression based anomaly detection method, but uses a single code table to encode
a dataset. It performs frequent itemset mining as a pre-processing step to generate candidate
patterns for the code table. LOF is a density-based outlier detection method that computes the
local-outlier-factor of data points with respect to their nearest neighbors. Neither of the methods
are parameter-free, they respectively require the minimum support threshold and the number of
neighbors to be considered.
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11.2.1 Compression-cost and Running-time

One goal of our study is to develop a fast method that would model the norm of the data and
hence give low compression cost in bits. In this section, we use both COMPREX and KRIMP for
compressing our datasets and show the total cost in bits and the corresponding running times in
Figure 11.1 (a) and (b). Note that the results for our largest datasets Enron, Connect-4, and Cover-
type are given with broken y-axes with values in millions for cost and thousands for time.

We note that COMPREX achieves very nice compression rates, outperforming KRIMP for all of
the datasets, and providing up to 96% savings in bits (47% on average).

With respect to running time, we notice that for most of the (smaller) datasets, our running time
is only slightly higher than that of KRIMP but still remains under 16 seconds. Even though for
small datasets the run time of KRIMP is negligible, for datasets especially with large number of
features, its running time increases significantly. The computationally most demanding part of
KRIMP is the frequent itemset mining, making it less feasible for large and high dimensional
categorical datasets. For example, for the Connect-4 dataset with 42 features and the Chess
(king,rook vs. king,pawn) datasets with 36 features, KRIMP cannot finish within reasonable time
due to very large candidate sets.

To alleviate this problem, KRIMP accepts a minsup parameter, which is the minimum number of
occurrences of an itemset in the database to be considered as frequent. The higher the minsup
is set, the fewer the extracted itemsets are. However, high minsup comes with a trade-off; the
higher the minsup, the smaller the number of candidates, the smaller the search space and the
worse the final code table approximates the optimal code table. In contrast, our method does not
require any sorts of parameters and frequent itemset mining.

In our experiments, we find closed frequent itemsets with minsup set to 5000 and 500 for the
Connect-4 and Chess (kr-kp) datasets, respectively. Even then, the running time of our method
remains lower than that of KRIMP (see Fig. 11.1). On the other hand, the time required for
frequent itemset mining also depends on the dataset characteristics. For example, we observe in
Figure 11.1 that the running time of KRIMP on (larger) Mushroom is much smaller than that on
the (smaller) Spect-heart dataset, with both having the same number of (22) features.

For our largest datasets (in terms of size and number of features) in Figure 11.1, notice that the
running time of KRIMP is quite large (about 20 mins) for Enron and Connect-4, and (45 mins)
for Covertype. Moreover, its compression cost is still higher than that our method provides. We
conclude that our method becomes more advantageous especially for large datasets.

11.2.2 Detection Accuracy

Besides achieving high compression rate, we would also (if not more) want our method to be ef-
fective in spotting anomalies. In this section, we experiment with various types of data including
transaction, graph and image databases.
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Figure 11.1: (top) Compression cost (in bits) when encoded by COMPREX vs. KRIMP. (bottom)
Running time (in seconds) of COMPREX vs. KRIMP. For large datasets, extremely
many frequent itemsets negatively affect the runtime for KRIMP.
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COMPREX on categorical data

For measuring detection performance, we use two-class datasets. The number of data points from
one class is significantly smaller than that from the other class. We call these classes as minority
and the majority classes, respectively. The data points from the minority class are considered to
be the “anomalies”. Examples to the classes include poisonous vs. edible in Mushroom data,
unaccountable vs. very good in Car data, and win vs. loss in Connect-4 data.

As a measure of accuracy, we use average precision; the average of the precision values obtained
across recall levels. We plot the detection precision, that is the ratio of the number of true
positives to the total number of predicted positives, against the recall (=detection rate), that is
the fraction of total true anomalies that are detected. A point on the plot is obtained by setting
a threshold compression cost—any record with a cost larger than that threshold is flagged as an
anomaly. The corresponding precision and recall are then calculated. By varying the threshold,
we obtain the curve for the entire range of recalls. The average precision then approximates the
area under the precision-recall curve.

Figure 11.2 shows the precision-recall plots of COMPREX and KRIMP on several of our categor-
ical datasets. Here, a higher curve denotes better performance, since it corresponds to a higher
precision for a given recall. The average precision values are also given in Table 11.2, for all
the categorical datasets. Notice that for most datasets COMPREX achieves higher accuracy than
KRIMP. This is obvious especially for the Car, Chess, Led and Nursery datasets. We notice that
the performance of the methods also depends on the detection task. For example, both meth-
ods perform well on the Mushroom dataset, for which the poisonous ones exhibit quite different
features than the edible ones. However, the accuracies of both methods drop for the Connect-4
dataset for which the detection task, i.e. which player is going to win the game given the 8-ply
positions, is much harder.

COMPREX on numerical data

While COMPREX is designed to work with categorical datasets, it can also be used to detect
anomalies in datasets with numerical features. For that, we first convert the continuous numerical
features to discretized nominal features. There exist various techniques to this end. In our study,
we consider several: linear, logarithmic, SAX [Lin et al., 2003], and MDL-based [Kontkanen
and Myllymki, 2007] binning. Linear binning involves dividing the value range of each feature
into equal sized intervals. Logarithmic binning first sorts the feature values and assigns the lower
b-fraction to the first bin, the next b-fraction of the rest to the second bin, and so on, until all
the values are assigned to a bin. SAX has proved to be an effective symbolic representation,
especially for time series data. MDL-based binning estimates variable-width histograms with
optimal bin count automatically, for a given data precision.

We experiment with these various discretization methods under various parameter settings. In
Figure 11.3, we show the accuracy of COMPREX versus KRIMP on the Shuttle dataset, using
logarithmic binning with b=0.5, linear binning with 5 and 10 bins, SAX with 3 bins, and MDL-

160



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

CAR

 

 

CompreX: 0.9957

KRIMP:     0.0628

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

CHESS

 

 

CompreX: 0.6782

KRIMP:     0.0044

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

DERMATOLOGY

 

 

CompreX: 0.4552

KRIMP:     0.379

(a) Car evaluation (b) Chess (kr-k) (c) Dermatology

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

FLARE 0−2

 

 

CompreX: 0.112

KRIMP:     0.1001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

LED

 

 

CompreX: 0.9973

KRIMP:     0.3185

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

NURSERY

 

 

CompreX: 1

KRIMP:     0.528

(d) Solar flare 0-2 (e) Led display (f) Nursery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

CHESS KR−KP

 

 

CompreX: 0.149

KRIMP:     0.063

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

MUSHROOM

 

 

CompreX: 1

KRIMP:     0.938

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

LETTERS P,R

 

 

CompreX: 0.5739

KRIMP:     0.3412

(g) Chess (kr-kp) (W-L) (h) Mushroom (i) Letters P-R

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

DIGITS 0,1

 

 

CompreX: 0.7533
KRIMP:     0.6383

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

CONNECT−4

 

 

CompreX: 0.0125

KRIMP:     0.0045

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection rate/Recall

D
et

ec
tio

n 
pr

ec
is

io
n

COVERTYPE

 

 

CompreX: 0.467

KRIMP:     0.2783

(j) Digits 0-1 (k) Connect-4 (l) Cover-type

Figure 11.2: Performance of COMPREX vs KRIMP on several two-class categorical transaction
datasets. Plotted are, precision vs. recall for various thresholds to flag data points as
an anomaly. Notice that COMPREX outperforms KRIMP for most detection tasks.
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Dataset |D| |F| |P| minsup CompreX Krimp

Car evaluation 1275 6 6 1 0.99 0.06
Chess (k) 4580 6 4 1 0.67 0.01
Dermatology 132 12 12 1 0.45 0.37
Solar flare 0–1 1312 10 6 1 0.19 0.15
Solar flare 0–2 1211 10 6 1 0.11 0.10
Led display 370 7 7 1 0.99 0.31
Nursery 4648 8 6 1 1.00 0.52
Chess (kp) W-L 1689 36 18 500∗ 0.14 0.06
Chess (kp) L-W 1547 36 18 500∗ 0.03 0.03
Letter rec. A–B 809 16 11 1∗ 0.17 0.18
Letter rec. P–R 823 16 11 1∗ 0.57 0.34
Mushroom 4258 22 5 1∗ 1.00 0.93
Digit rec. 0–1 1163 16 12 10 0.75 0.63
Digit rec. 1–7 1163 16 9 20 0.51 0.34
Spect–heart 267 22 16 1∗ 0.12 0.12
Connect–4 44k 42 11 5k∗ 0.02 0.01
Covertype 286k 44 6 280k∗ 0.46 0.27

MAP 0.48 0.26

Table 11.2: Average precision (normalized area under the precision-recall curve) for the cate-
gorical datasets, comparing COMPREX and KRIMP. Further, we give dataset size,
number of features and partitions, and minsup used for KRIMP (star denotes closed
itemsets).

based binning with precision 0.01. Results are similar for many other settings and for the rest
of the numerical datasets, which we omit for brevity. Notice that regardless of the discretization
used, COMPREX performs consistently better than its competitor KRIMP.

To this end, we compare our method with LOF on some numerical datasets. LOF is a widely
used outlier detection method based on local density estimation. While it is quite powerful when
applied to numeric data, it cannot be directly applied to categorical datasets. In this comparison,
both methods require the careful choice of a parameter; the number of nearest neighbors k for
LOF, and the binning method and its corresponding parameter for COMPREX.

In Figure 11.4, we show the accuracy of LOF versus COMPREX with their best parameter choices
on our numerical two-class datasets. Table 11.3 gives the corresponding average precision scores
for all three methods. Notice that COMPREX achieves comparable or better performance than
LOF, even though it operates on discretized data which loses some information due to this pro-
cess, and thus is not as optimized as LOF for numeric data. This shows that COMPREX can
also be applied to datasets with numerical or with a hybrid of both categorical and numerical
features.
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Figure 11.3: Performance of COMPREX vs KRIMP on the two-class numerical transaction
dataset Shuttle. Notice that COMPREX outperforms KRIMP consistently for vari-
ous discretization methods used.
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Figure 11.4: Performance of LOF vs COMPREX with the best choice of parameters on the nu-
merical transaction datasets. Notice that COMPREX achieves comparable or better
performance than LOF even after discretization.

COMPREX on graph data

Given data points and their features in numerical or categorical space, our method can also be
applied to other complex data, including graphs. To this end, we study the Enron graph, in which
nodes represent individuals and the edges represent email interactions. In our setting the nodes
correspond to the data points, and the features to the ego-net features we extract from each node.
The ego-net of a node (ego) is defined as the subgraph of the node, its neighbors, and all the
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Dataset |D| |F| |P| minsup CompreX Krimp LOF

Shuttle 3416 9 5 1 1.00 0.22 0.83
Pageblocks 4941 10 6 1 0.46 0.37 0.23
Yeast 468 8 8 1 0.49 0.17 0.48
Abalone 703 7 3 1 0.42 0.15 0.24

MAP 0.59 0.23 0.45

Table 11.3: Average precision for the numerical datasets, comparing COMPREX, KRIMP and
LOF. Further, we give dataset size, number of features and partitions, and minsup
used for KRIMP.

links between them. We extract 14 numerical ego-net features, such as the number of edges, total
weight, ego-net degree (number of edges connecting the ego-net to the rest of the graph), in- and
out-degree, etc. Features are discretized into 10 linear bins.

In Table 11.4, we show the top 5 email addresses with the highest compression cost found by
COMPREX. The dataset does not contain any ground truth anomalies, therefore we provide anec-
dotal evidence for the discovered “anomalies”. Our first observation is the significantly high
compression cost of the listed points—103 to 107 bits given a global average of 6.72 bits (me-
dian is 4.27). This is due to the rare and high number of patterns used in their cover. Notice
that each of them are covered with 7 patterns compared to a global average of 2.05 (median is
2). Moreover, the usages of the cover patterns is quite small—thus longer code words and high
total compress-cost. Further inspection justifies our results: for example, ‘sally.beck’ (employee
chief operating officer) contains the highest number of (31k) edges in its ego-net and the highest
ego-net degree (of 85k), implying that she is highly connected to the rest of the graph as opposed
to many other nodes in the graph.

name@enron.com cost (bits) |cover| avg usage±std
of cover patterns

sally.beck 107.28 7 3.7 ± 5.4
jeff.dasovich 107.11 7 3.4 ± 3.9
outlook.team 106.70 7 4.8 ± 6.3
david.forster 105.11 7 4.1 ± 5.2
kenneth.lay 103.24 7 5.8 ± 7.5...

...
...

...
robert.badeer 1.53 2 52k ± 4.3k

Table 11.4: Top-5 anomalies for Enron, with one regular-joe example. Given are, email ad-
dress, compression cost, size of cover, and average usages of the cover patterns;
high usages correspond to short codes. Average cost is 6.72 bits, average number of
covering patterns is 2.05.
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COMPREX on image data

Next, for our image datasets for which class labels also do not exist, we provide an anecdotal
and visual study. The image datasets are the satellite images of four major cities from around
the world as shown in Figure 11.5. Each image is split into 25x25 rectangle tiles, for which we
extracted 15 numerical features, and subsequently discretized into 10 linear bins. The first three
features denote the mean RGB values for each tile and the rest denote the Gabor features.

(a) Holy see, Vatican (b) Washington D.C., USA

(c) Forbidden city, Beijing (d) London, UK

Figure 11.5: “Anomalous” tiles—with high compression cost— on the image datasets are high-
lighted with red borders (figures best viewed in color). Notice that COMPREX
successfully spots qualitatively distinct regions that stand out in the images.

In Figure 11.5, top tiles with high compression cost are highlighted in red. We observe that
COMPREX effectively spots interesting and rare regions. For example, the districts of Roman
Catholic Church in Vatican and the Washington Memorial in Washington D.C. that distinctively
stand out in the images are captured in top anomalies. In Forbidden city, COMPREX spots the
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three lakes (Beihai, Zhonghai, Nanhai), the Jingshan Park on its right, as well as the Tianan-
men Square on the south. Finally, in London COMPREX marks the part of Thames river, the
Buckingham Palace as well as several rare plain fields in the city.

11.2.3 Scalability

KRIMP falling short on large datasets arises the question of scalability, which is maybe even
more important than the issue of speed. Therefore, in Figure 11.6, we also show the running
time of both methods for growing dataset and feature sizes on Enron and Connect-4.

We observe that the running time of KRIMP grows significantly with the increasing size in both
cases. The difference is evident especially for growing feature size. This is due to frequent
itemset mining scaling exponentially with respect to number of features. On the other hand, the
increase in running time for our method follows a linear trend indicating that COMPREX scales
better with increasing database size and dimension.
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Figure 11.6: Scalability of COMPREX and KRIMP with increasing dataset and feature size. (top)
Enron with large n, (bottom) Connect-4 with large m. Notice that COMPREX
achieves better scalability for large databases, following a linear trend in growth.

We note that the running time of COMPREX could be further improved by operating on a smaller,
random sample of the data. In a large enough random sample, the patterns are expected to occur
as frequently as they occur in the original dataset and therefore the code tables built after random
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sampling would be close to those built from the entire data. The theoretical and analytical study
of random sampling for code-table compression, in particular the time versus accuracy trade-offs
that the sampling poses, constitutes a promising research direction.

An advantage of our method is that it can work as an any-time algorithm. As it is a bottom-
up approach which seeks for lower total cost over iterations via more merges, the compression
procedure can be stopped at any point given the availability of time. The same goal can be
achieved for KRIMP by setting the minsup parameter accordingly; the higher the minsup, the
lower the running time.

To compare the methods, we show the compression costs achieved at various durations in Fig-
ure 11.7. Notice that for any given run-time duration, COMPREX achieves lower compression
cost than its competitor. Moreover, even KRIMP is allowed to run for longer, it still cannot reach
as low of a cost as COMPREX can in much less time.
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Figure 11.7: Scatter plots of compression cost versus running time of COMPREX and KRIMP.
Notice that COMPREX achieves lower cost at any given time, which KRIMP cannot
catch up with even when let to run for longer.
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11.3 Summary of contributions

In this chapter, we introduced a novel, parameter-free method called COMPREX for the impor-
tant task of anomaly detection in complex multi-dimensional databases. COMPREX builds a data
compression model that uses multiple dictionaries for encoding, and reports the data points with
high compression cost as anomalous. Our method proves effective for both tasks: It provides
higher compression rates at lower running times than its state-of-the-art competitor KRIMP, es-
pecially for large datasets. In addition, it is capable of spotting rare instances effectively, with
detection accuracy that is often higher than its closest competitor KRIMP on categorical datasets,
and LOF, its state-of-the-art competitor on numerical datasets.

Experiments on diverse datasets show that COMPREX successfully generalizes to a broad range
of datasets including image, graph, and traditional relational databases with both categorical and
numerical features. Moreover, it is scalable, with running time growing linearly with increasing
database size and dimension.
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Chapter 12

Events in Time-evolving Graphs

PROBLEM STATEMENT: At what points in time many of the nodes in a given time-varying
graph change their behavior significantly? Can we attribute the change to specific nodes, that
is, can we characterize which nodes change in behavior the most?

In this chapter, we develop an algorithm to spot change-points in a time-varying graph at which
many nodes deviate from their normal ‘behavior’. In a nut-shell our method works as follows.
We first extract time sequence of several network (egonet) features for all nodes in the graph.
Then, we derive a ‘behavior’ vector of all nodes and compare it to recent past ‘behavior’ vectors
detected over several previous time windows. If the current behavior is found to be significantly
different than recent past, we flag the current time window as anomalous and report as an event
has occurred. Moreover, in order to attribute the change to a subset of nodes which contribute to
the change score the most, we compare their ‘behavior’ values and mark those nodes for which
this value differs much more than others.

To demonstrate the effectiveness of our method, we study the texting behavior of users in our
SMS network. This data consists of six months’ of activity and is therefore time-varying. Also,
the edges are weighted, weights denoting the total number of SMSs sent/received between in-
dividual pairs. More specifically, the SMS network constructed from the SMS records includes
over 2 million users with 50 million SMS interactions between them over a period from Dec. 1,
2007 to May 31, 2008.

12.1 Event Detection: Method Description

12.1.1 Feature Extraction

In order to find patterns that nodes of a graph follow, we characterize the nodes with several
features so that each node becomes a multi-dimensional point. In particular, each node is sum-

169



marized by a set of features extracted from its egonet (egonet of a node includes the node itself,
its neighbors, and all the interactions between these nodes). The 12 features considered in this
work are as follows: 1) in-degree, 2) out-degree, 3) in-weight, 4) out-weight, 5) number of neigh-
bors, 6) number of reciprocal neighbors, 7) number of triangles, 8) average in-weight, 9) average
out-weight, 10) maximum in-weight, 11) maximum out-weight, and finally 12) maximum weight
ratio on reciprocated edges in the egonet.

12.1.2 Change-Point Detection

The flow of our method to detect change-points in the behavior of nodes is illustrated in Fig-
ure 12.1. This method is similar to [Idé and Kashima, 2004], but differs in the construction of
the ‘dependency’ matrices C (top right in the figure) as we describe in the following.

Figure 12.1: The Work-flow of Change-Point Detection

Here, the data we study looks like the 3−D tensor on the top left of Figure 12.1, where T denotes
the number of time ticks (T = 183 days), N denotes the number of nodes in our graph (N = 2
million customers), and F denotes the number of features extracted for each node (F = 12 as
described in the previous section). To start with, we take one ‘slice’ of this 3−D T×N×F tensor
for a particular feature Fi, say in-weight, which is a T × N matrix (top middle in the figure).
Next, we define a window of size W over the time-series of values of all nodes for that particular
feature Fi. Then for pair of nodes, we compute the correlation between their time-series vectors
over the window of size W using Pearson’s ρ as follows.
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ρX,Y =

∣∣∣∣
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

∣∣∣∣

In the above equation, X and Y are the length-W vectors for each node pair (X, Y ). So, for each
window we construct a correlation matrix C, where Cx,y = ρ(x, y) over window W. Next, we
slide the window down one time tick (day) and compute the correlations over the next window of
W time ticks. Similarly we keep repeating this process until we reach the end of our data. To be
representative and given the periodic behavior of human nature, we chose the size W as 7 days
(one week). As a result, we end up constructing 177 C matrices (top right in the figure).

By the Perron-Frobenius theorem [Pillai et al., 1912], the largest (principal) eigenvector of each
of the C matrices is positive. The value for each node in the eigenvector can be thought as the
‘activity’ of that node; that is, the more correlated a node is to the majority of the nodes, the
higher its ‘activity’ value will be. Here, we call each such size N eigenvector as the ‘eigen-
behavior’ of all the nodes in the graph on the whole.

Note that in principle, we do not have to explicitly compute the C matrices in order to obtain its
eigenvector(s). Since C = W TW after standardizing W ’s rows, the right singular vectors of W
are the same as the eigenvectors of C. Therefore, we obtain the eigen-behaviors by operating
directly on the W matrices.

Metric to Score Time Points for ‘Event’

After finding all the eigenvectors for all the 177 C matrices, the change-point in the ‘eigen-
behavior’ of the nodes is found as follows. For the eigenvector computed at time say t denoted
by u(t), we compute a ‘typical eigen-behavior’ denoted by r(t− 1) from the previous W ′ eigen-
vectors (bottom right in the figure). We experimented with two different ways to compute the
mentioned typical eigen-behavior. Firstly, we simply took the arithmetic average of all previous
W ′ eigenvectors. Secondly, we constructed a new N ×W ′ matrix, each column being an eigen-
vector over that window, and then we computed the left singular vector of that new matrix using
SVD decomposition. Similar to the principal eigenvector for square positive matrices, the left
singular vector of a positive non-square matrix yields an average ‘behavior’ score for all nodes.
One can think of the left singular vector as the weighted average of eigenvectors in W’.

Finally, after we obtain the ‘typical eigen-behavior’ for each C matrix (for each week) using
either SVD or regular averaging, the ‘eigen-behavior’ u(t) computed at time t is compared to
the ‘typical eigen-behavior’ r(t − 1) by taking the dot-product of those two unit vectors. The
change metric we used is Z = (1 − uT r). Here, if u(t) is perpendicular to r(t − 1), then their
dot-product gives a value of 0, or Z = 1, whereas if u(t) is exactly the same as r(t − 1), then
their dot-product gives a value of 1, or Z = 0. Therefore, Z takes values between 0 and 1, and a
higher value of Z indicates a change-point (bottom left in the figure).
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12.2 Experimental Results

We start our analyses by looking at the distribution of correlation values Cx,y in the C matrices.
Figure 12.2 shows the histogram as well as the CDF of Cx,y values for two different days, Dec.
1 and Dec. 26, for feature F:in-weight.

Figure 12.2: (top) Histogram and (bottom) CDF distribution of correlation scores Cx,y for (left)
Dec. 1 and (right) Dec. 26 using F: in-weight.

Here, one observation is that the distribution of correlations between time-series of nodes is
skewed as might be expected. Surprisingly, though, it is skewed towards large values. That is,
there are lots of pairs with correlation score close to or equal to 1. This happens because over
the time window W of 7 days, most of the nodes have no activity –their W-length vectors are all
0’s and thus the pair-wise correlations of such 0 vectors are computed to be 1. This suggests that
the nodes have bursty activity where nodes have no activity for several weeks and have activity
at bursts.

Another observation is that the total number of correlation scores 1 reduces in Dec. 26 compared
to Dec. 1, suggesting for no activity weeks for fewer nodes, that is, more nodes become active
during the week of Dec. 26. This is expected as this week is the New Year week. We note that
the CDF distributions for these two days also look different. These observations strengthen our
belief of studying correlations between behaviors of nodes would be important in detecting the
change-points in our data.

Next, we compare the results when using SVD versus taking the regular average (AVG) for
computing the ‘typical eigen-behavior’ r(t − 1) of earlier eigenvectors over a window of W’
(see Section 12.1.2). Figure 12.3 shows the so-called Z scores computed (1) when r(t − 1)
is computed with SVD (in blue bars) versus (2) when r(t − 1) is computed by simply taking
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the average (in red lines) for four different values of W’, (from left to right, top to bottom)
W ′ = 5, 7, 20, 50. Notice that the red line almost exactly follows the blue bars. This means that
SVD is giving equal weight (importance) to all W’ eigenvectors in the past same as the AVG
does. Therefore, since computing the average is less expensive, we will use the AVG to compute
r(t− 1) in the rest of our experiments.

We also note that the Z scores follow somewhat a similar trend when different window sizes are
considered. However, the larger the window gets, the more aggregated the results become (notice
that the four spikes for W ′ = 5, 7 reduce to two spikes only for W ′ = 20, 50). In the rest of our
experiments, we use W ′ = 5 over which the r(t− 1) vector is computed by using AVG.

Figure 12.3: Z scores computed when the typical eigen-behavior vector r(t−1) is computed by
taking the SVD (blue bars) versus the regular AVG (red lines) for (from left to right
top to bottom) W ′ = 5, 7, 10, 20. Notice AVG is very similar to SVD.

12.2.1 Detected Change-Points

After computing the deviation scores Z as was explained in Section 3.3, we use a simple heuristic
to flag the high Z scores. Rather than using a threshold value, we simply compute the difference
between two consecutive Z scores and rank the time points according to |Z(t) − Z(t − 1)|.
Figure 12.4 shows the top 10 time ticks for which the difference score is the highest. Here,
feature F is taken to be the “inweight”. Experiments with other features such as “number of
reciprocal edges” and “outdegree” also flag similar time points which we will discuss later in
this section.

In Figure 12.4, we observe that the top 2 time periods correspond to the weeks of Christmas and
New Year (Dec 26, Jan 2). This shows that even though our data comes from India and mostly
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Figure 12.4: Top 10 time points with highest Z-scores flagged by our method (red bars) for
feature F :inweight. Numbers on bars indicate rank of each day by Z-score.

people are not Christian, they would be “celebrating” the Christmas. The reason that Jan 2nd
rather than Jan 1st is flagged is it is a change-point in which things went back to normal.

Another surprising finding is with the 3rd time tick which is Apr 7th. Similar to Jan 2nd, this is
also a time-point where things turned back to normal. The actual interesting day here is indeed
Apr 6th: http://www.infoplease.com/ipa/A0777465.html lists Apr 6th as the
“Hindi New Year” (our data is in 2008). These results suggest that our method is effective in
finding points in time for which the collective behavior of nodes deviate from recent past.

As a sanity check, we ran our method on other features such as number of reciprocal edges and
outdegree. Figure 12.5 shows that our method flags almost the same time points including Jan
2nd and April 7th also with these features. Moreover, the difference/spike in the Z score is
even clearer with these methods. This is intuitive in the sense that even though the “inweight”
(number of SMSs received) is expected to increase on days such as Christmas and New Year, the
number of reciprocated interactions are expected to increase even more (people tend to reply to
celebration messages on such days).

We also compared the results of our method to the results we obtain by using the sheer volume
at each time tick. In particular, we computed the total number of SMSs received (in-weight) per
day and marked the top k = 10 time points for which the most number of SMSs were received
in total. We repeated the same process for total number of reciprocal replies (numrecip) and total
number of out-going contacts (out-degree).

We show the results in Figure 12.6 where the red bars depict the top 10 time points with highest
volume. We observe that just the total volume for all three features was enough to detect change
on for example Dec. 31 and Jan 1. However, we realize that the points reported for each feature
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Figure 12.5: Top 10 time points with highest Z-scores flagged by our method (red bars) for
(left) F :number of reciprocal edges and (right) F :outdegree. Notice the flagged
time points are similar to those using F :inweight in Figure 12.4.

also partly differ from each other and are not as consistent as the earlier results. For instance
April 6, even though was detected as a change-point using features ‘numrecip’ and ‘out-degree’,
was not detected using ‘in-weight’.

The main reason behind these observations is that our method considers every person in the net-
work individually and flags change-points if the majority of them change their ‘normal’ behavior
whereas the total volume considers the aggregated behavior. The aggregated data loses informa-
tion in the individual level and thus is prone to flag change-points if only a few people change
their behavior sufficiently a lot.

(a) F: in-weight (b) F: numrecip (c) F: out-degree

Figure 12.6: Top time points flagged by using total volume (red bars).

12.2.2 Attribution of Change

Here the question is for a given change-point detected in the previous section, can we go back
and detect which node(s) contributed to the change the most?
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Figure 12.7 shows the scatter plot of the values of the eigen-scores u(t) versus the typical pattern
r(t − 1) scores for all the nodes on December 26th. Here, we observe that most of the values
lie on the diagonal, which shows that a majority of the nodes did not change much on their
typical behavior. On the other hand, some points that are far off-diagonal (marked with red stars)
contribute to the Z score the most.
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Figure 12.7: Scatter plot u(t) versus r(t−1) of nodes on December 26th. Each blue dot depicts
a node. Nodes far away from the diagonal change in “behavior” the most (top 5
marked with red stars).

Similarly, Figure 12.8 shows the amount of change ratio |ui(t)−ri(t−1)|
ri(t−1) (%) for 10K nodes. Again,

the same top 5 nodes as in Figure 12.7 are marked in red.
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Figure 12.8: Change ratios (%) of top 10K nodes in u(t) and r(t− 1). Each bar depicts a node

(top 5 with highest change ratio is shown in red).

Since the data does not contain ground truth of anomalies, in Figure 12.9 we plot the time series
(inweights versus days) of these top 5 nodes marked in Figures 12.7 and 12.8 (each row for each
node). Here we observe that, three of the nodes (rows 1, 4 and 5) have no activity on the week
of Dec 26th. This is flagged because they are observed to have some activity over the previous
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weeks. On the other hand the other two nodes (rows 2 and 3) have the opposite behavior: they
start receiving SMSs during Christmas. We also observe that these two sets of nodes lie in
the different halves of the diagonal in Figure 12.7, also indicating an opposite change in their
behaviors.
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Figure 12.9: Time series of inweight values of top 5 nodes with highest deviation in “eigenbe-
havior” marked in Figures 12.7 and 12.8. Beginning and end of week December
26th is marked with red and green vertical bars on the time line, respectively.
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12.3 Summary of contributions

In this chapter, we introduced an algorithm based on ‘eigen-behavior’ analysis to (1) spot ‘change-
points’ in time at which the majority of the nodes in a given network deviate from their normal
behavior; and (2) do ‘attribution’ to point out the specific nodes that are most related to the cause
of a detected change-point.

We validated the effectiveness of our method on a network dataset of millions of mobile phone
users and their SMS interactions over half a year. Although there exists no ground truth informa-
tion in our SMS data analyzed, the experimental results suggest that our method is able to detect
interesting time points.

Our contributions are summarized as the following:

• We used an “eigenbehavior”-based method on the time-series of users and considered the
amount of change in their “eigenbehaviors” to flag change-points in time.

• Our method can also be reverse-engineered to spot the top users who contribute to the
changes the most.

• Realistic anomaly detection is difficult with unlabeled data, but our results have demon-
strated that we were able to detect events that coincide with major holidays and festivals in
our data, as well as users whose change of behavior is evident during these events.

178



Chapter 13

Sensemaking for Graph Anomalies

PROBLEM STATEMENT: How can we use the network structure to summarize a set of (anoma-
lous) nodes, by partitioning them such that for each part we have a simple tour connecting the
grouped nodes, while nodes in different parts are not easily reachable? In other words, how can
we summarize the set of (anomalous) nodes for easy sensemaking?

We motivate the above questions under the anomaly summarization setting. That is, given k
nodes marked by an anomaly detection algorithm, we could group them to reveal associations and
connectors, instead of simply listing them. This provides a better understanding (sensemaking)
of how these nodes are correlated within the graph; whether they are ‘close’ to each other, and
what pathways or other connectors play crucial role in their associations.

While in this chapter we mention the sensemaking for anomalies scenario, these questions find
applications in numerous other settings, examples include the following.

• Given a gene interaction network, an experiment may reveal for particular conditions a
number of genes to be up (or down) regulated [Liekens et al., 2011], how can we partition
them with respect to their closeness in the graph? This would give us a good summary
of groups of close-by correlated genes as well as possible pathways the genes may be
involved in.

• Given k nodes marked by an anomaly detection algorithm, how can we explain the anoma-
lies? Instead of simply listing them, we could group them and reveal their associations
within groups.

• Given an event affecting a set of nodes in a graph (e.g. people affected by a certain disease,
people buying a particular product), how can we group the nodes such that the network
structure can be associated with the spread of the event within groups but not quite across
groups?

• Given a social graph like Facebook and user attributes of interest (e.g. white girls and black
boys in the same school), how can we explain their relations using the graph structure? The
partitions, if any, and connection paths among the chosen students may be of interest to
segregation studies [Shrum et al., 1988] in social sciences among others.
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• Given the Web graph and a set of top ranked pages (nodes) returned by some keyword
search, how can we group these nodes matching the keywords into groups and reveal con-
nection paths among them, rather than simply listing them?

Intuitively, we want to partition the given set of marked nodes such that the nodes within a part
are ‘close-by’ while nodes across parts are far apart. In addition, for the ‘close-by’ nodes in each
part, we want to find a ‘succinct’ subgraph connecting them. Moreover, we rather not visit nodes
of very high degree, such as hubs in social networks, because those nodes connect to virtually
everything in the graph, they do not provide much information by association. Therefore, we
think of such high degree nodes as separators, and try to avoid including them in our ‘succinct’
subgraphs.

For example, consider Figure 13.1. In (a), a list of 20 authors from DBLP are marked. In this
plot, there is no information (other than author names) that explains any correlation among the
authors. In (b), the marked nodes are projected to and highlighted in the co-authorship graph. In
contrast, here it is hard to observe any patterns as there is information overload. We show our
result in (c), which explains the marked nodes with two well-separated groups (islands) as well
as revealing simple connections and connectors (bridges) among all the marked nodes.

We formalize this problem in terms of the Minimum Description Length principle [Grünwald,
2007]: a tour (collection of paths) is simple when we need few bits to direct the user from one
node to the other. Hence we typically do not want to visit nodes of high degree, as it is more
expensive to identify which edge to follow leading from it. Similarly, we require more bits if
we have to visit many unmarked nodes in order to arrive to the next marked node. As such, the
best tour, i.e. the summary, is the one for which we need the least number of bits to identify all
marked nodes.

We show this problem is NP-hard, and has connections to well-known problems in network the-
ory. We discuss a number of approximate methods for finding a partitioning and its respective
simple paths, and introduce DOT2DOT, an efficient algorithm for summarizing marked nodes.
Experimentation shows DOT2DOT correctly groups nodes for which simple paths can be con-
structed, while separating distant nodes.

13.1 DOT2DOT: Method Description

13.1.1 Problem Definition

Given a graph G = (V,E) and a set of marked nodes M ⊆ V , we consider the following two
related problems.

• Problem 1. Optimal partitioning Find a ‘coherent’ partitioning P ofM . Find the optimal
number of partitions |P | automatically.

• Problem 2. Optimal connection subgraphs Find the ‘minimum cost’ set of subgraphs
that connect the nodes in each part pi ∈ P efficiently.
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(c) The “right” connections→ Better sensemaking

Figure 13.1: 20 chosen authors from DBLP. Edges denote co-authorship relations.
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Figure 13.2: Toy graph with 8 marked (black) nodes. Our DOT2DOT algorithm automatically
‘describes’ them in 3 groups, discovering ‘missing connectors’ (nodes ‘4’ and ‘9’).

The two problems we consider above involve three sub-problems:

• (sub-problem 1) how to define the ‘coherence’ of a set of nodes,
• (sub-problem 2) how to define the ‘cost’ for a connection subgraph, and
• (sub-problem 3) how to find the connection subgraph(s) quickly in large graphs.

As an example, let us consider Figure 13.2. In it, we depict a simple graph in which 8 nodes have
been marked. It is clear to see that given the graph structure, the marked nodes naturally form
three groups: p1 = {1, 2, 3}, p2 = {10}, and p3 = {5, 6, 7, 8}, which are all well separated by
the big star-node in the middle. While only nodes 5 and 6 have a direct connection, for each part
there exists a connection subgraph, here highlighted with bold edges, such that we can construct
a simple dot-to-dot ‘road map’ of which branches to follow in order to visit all marked nodes in a
part—without having to visit too many unmarked connector nodes, like node 4 for p1, and node
9 for p3.

Since we are interested in summarizing, that is, in describing the given marked nodes as suc-
cinctly as possible, we borrow ideas from Information Theory and employ the Minimum De-
scription Length (MDL) principle (see Section 8.2 for background on MDL).

13.1.2 Formulating Tours: Theory and Objective

The key idea behind our method builds on an encoding scheme, involving one sender and one
receiver. We assume both the sender and the receiver already know graph G = (V,E) and only
the sender knows the set of marked nodes M . The goal of the sender, then, is to come up with an
encoding scheme to transmit to the receiver the information of which nodes are marked, using
as few bits as possible.

One straightforward way to encode the set of marked nodes is to encode their node-id’s sep-
arately, using log |V | bits each. On the other hand, it might be more efficient to exploit the
neighborhood information for ‘close-by’ nodes. In the simplest case, for example, if nodes u and
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v are both marked and they are direct neighbors, i.e. e(u, v) ∈ E, then the sender can encode
u’s id and then use only log d(u) bits to encode v, where we assume a canonical order on nodes
(say by increasing node-id) and d(u) denotes the degree of u in G. As such, the sender follows
a path from one marked node to the other to encode ‘close-by’ nodes. Depending on the graph
structure, from time to time it might be more efficient to restart encoding from a new node by
directly providing its id, in case the cost of the path to that node exceeds log |V | bits. In fact, that
is exactly what determines the partitioning P of the nodes.

Simply put, one can imagine the way of encoding discussed above as hopping from node to node
for encoding close-by nodes and from time to time flying to a completely new node for encoding
farther nodes until all marked nodes are encoded. This resembles a tour (union of paths) on
the graph that travels from a marked node to another which succinctly describes the marked set
(hence the name DOT2DOT).

In effect, we are after the shortest description for a group of marked nodes M ⊆ V in a graph
G = (V,E). More generally, the idea is that per part pi of P , we find the easiest/simplest
subgraph T in G that spans at least all marked nodes in pi. Simplicity of T is determined by the
number of nodes we visit in this tour, how many unmarked nodes we visit, and in particular how
easily per visited node we can identify which edge we have to follow next; nodes with (very) high
degree hence make the path more complex, or, less likely. Also notice that the simplest subgraph
would in fact be a tree since it would require less bits to refer to a node we have already visited
in our encoding.

In this section, we describe the cost function for a given partitioning P and the given connection
trees for each part pi. We use this cost function as our objective function that we aim to minimize
for model selection.

More formally, we first transmit the number of partitions |P |, for we need at most log |V | bits as
there will be at most |V | marked nodes in total, which in the worst case are all put in separate
parts.

L(|P |) = log |V | (13.1)

Then, per part pi ∈ P , we have a tree T spanning at least the marked nodes of pi. To identify the
root node of T in G we have to spend log |V | bits.

Then, recursively per node t ∈ T , we transmit how many branches t has, denoted by |t|. As t
corresponds to a node vt inG, and d(vt) gives us the out-degree of vt, we can transmit |t| ≤ d(vt)
in log d(vt) bits. On the other hand, since a simple tree would presumably have small branch-
out factor, we choose to encode |t| using universal integer encoding [Grünwald, 2007]. This
encoding specifies that in order to encode a non-zero positive integer n we require LN(n) =
log? n+ log(c) bits with c =

∑
2− logn ≈ 2.865064, and log?(n) = log n+ log log n+ · · · sums

over all positive terms. So, as |t| can be zero (for leaves), we transmit its value in LN(|t| + 1)
bits.

Next, we identify which out-edges of vt have to be visited. This we can encode most succinctly by
assuming a canonical order of all possible subsets of selected edges of that size, and transmitting
the index of the actual subset. This takes log

(
d(vt)
|t|

)
bits.
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Leaf-nodes are easily identified as their number of branches is given as 0. If such is the case, we
traverse back up the tree until we find a node with an unvisited branch. Once all branches have
been visited, we stop transmitting the structure of the tree.

Now that we know which nodes pi ⊂ V are in our tour, we need to know which of these are
marked. Let |T | denote the number of nodes in T , and ||T || the number of marked nodes in
T . As the recipient now knows the tree, and hence |T |, and ||T || ≤ |T | we need log |T | bits to
transmit ||T ||. Next, we need to identify which ||T || nodes of T are marked, which we again do
by a binomial: log

( |T |
||T ||

)
.

As such, for one part pi ∈ P , we have

L(pi) = log |V |+ L(t) + log |T |+ log

( |T |
||T ||

)
(13.2)

in which per node in the tree of pi

L(t) = LN(|t|+ 1) + log

(
d(vt)

|t|

)
+

|t|∑

j

L(b(t, j))

where b(t, j) identifies the node t′ in T we reach from node t by descending branch j (notice that
by its recursive nature, L(t) encodes the branching cost for all tree-nodes).

Putting this together, we get

L(P,M | G) = L(|P |) +
∑

i

L(pi) . (13.3)

Note that our initial assumption that both the sender and the receiver know G does not affect
model selection: as G is constant for all possible sets of marked nodes on G, explicitly transmit-
ting G would only add a constant cost for all possible models under consideration, and hence not
influence measuring the quality of a model.

Given the above formalization, we now only have to find the optimal partitioning P of M , and
the optimal tours per part pi ∈ P such that L(P,M | G) is minimized.

13.1.3 NP-hardness

The total encoding cost L(P,M | G) can score a given set of solutions and point to the best
among them, however it does not provide direct means to find the optimal solution.

In this section, we show that this problem is NP-hard, with a reduction to the well-known Steiner
tree problem: given an undirected unweighted graph G = (V,E) and a subset of nodes X ⊆ V ,
the objective is to find the minimum cost tree that spans all the nodes in X . The cost of a tree is
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defined as the total number of nodes, i.e. total number of edges, in the tree. Note that the tree
may include nodes in X , as well as other nodes which are typically referred to as Steiner nodes.
Steiner trees are well-known in graph theory, and find application in multicast models for finding
good server nodes in computer networks for avoiding network congestion and reducing latency
in multi-user streaming data settings.

Theorem 3 Minimizing L(P,M | G) is NP-hard.

Proof Let G = (V,E) be a graph and let M ⊆ V be the marked nodes. Let k = |V | the number
of nodes. We will construct a graph G′ = (V ′, E ′) such that solving the Steiner tree problem for
G will reduce to finding a partition with optimal cost in G′.

In order to do that, let d be the maximal degree of a node in G. We are now ready to define the
graph G′. The nodes V ′ consists of the nodes V and for each edge e ∈ E we will add s auxiliary
nodes. We will define s later. In addition, we will add a large amount, say r, of isolated nodes,
we will specify r later. For each edge e(v, w) ∈ E we will add a path of s+ 2 nodes connecting
v and w with s nodes that were created specifically for this edge. We will refer to these paths as
auxiliary paths.

Note that auxiliary nodes always have a degree of 2 and they will never be leaves of trees cor-
responding to the optimal partition. That is, either the whole auxiliary path is in the partition or
none of the nodes in that path is included.

The cost of having a non-root auxiliary node in a partition is c = LN2+log
(
2
1

)
. If auxiliary node

is a root, then the cost is cr = LN3 + log
(
2
2

)
.

The encoding of one part is equal to

log |V ′|+ ncs+ corr + log |T |+ log

( |T |
‖T‖

)
+

∑

t∈T,vt∈V

LN|t|+ 1 + log

(
d(vt)

|t|

)
,

where n is the number of auxiliary paths in T . The correction term corr takes into account the
possibility that auxiliary node may be a root term. If this is the case, then corr = cr−c, otherwise
corr = 0. We can bound the last 4 terms by

b = log k + k log k + k(LNd+ 1 + d log d).

We can now bound the cost by

log |V ′|+ ncs+ cr − c+ b.

Let us define s = (cr + c+ b)/c. It is easy to see that the smaller the n, the better is the code for
the tree.

Our last step is to make sure that we will have only part in our partition. In order to do that we
need to make sure that |V ′| is so large that is not beneficial to have more than 1 parts. In order to
do this, we set r = 2kcs+cr+c+b which will guarantee that we will have only one partition.
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The optimal partition in G′ will now have only one part and will have minimal number of auxil-
iary paths. Since each path corresponds to an edge in G, we can transform this to a Steiner tree
in G with minimal number of edges. This proves the theorem.

13.2 Finding Good Paths: Methods

Since minimizing L(P,M | G) is NP-hard, we are interested in fast approximations. To find fast
solutions, we will exploit heuristics for the directed Steiner (d-Steiner) tree problem [Charikar
et al., 1998]: given a directed weighted graph G = (V,E) and a subset of nodes X ⊆ V , the
objective is to find the minimum cost arborescence that spans all the nodes in X , in other words,
a rooted minimum cost tree that has a directed path from the root to every node in X . The cost
of a tree is defined as the sum of the costs of the edges in the tree.

The d-Steiner problem is a well-studied combinatorial optimization problem, for which algo-
rithms have been proposed that provide approximation guarantees [Charikar et al., 1998; Helvig
et al., 2001; Melkonian, 2007; Zelikovsky, 1997]. However, while providing fairly good bounds,
these algorithms all require great amounts of computing power, making them intractable for ap-
plication on large graphs. In this section we therefore propose fast heuristics for large graphs.

Before we proceed with proposed solutions, we first define how we transform the input graph G
to a directed weighted graph G′, which we use in obtaining a solution.

Definition 9 Given an undirected unweighted graph G = (V,E) and a set of marked nodes
M ⊆ V , the transformed graph G′ = (V,E ′) is a directed weighted graph in which each edge
e(u, v) ∈ E is replaced by two directed edges e′(u, v) ∈ E ′ and e′(v, u) ∈ E ′, for which the
weights w′(u, v) = log d(u) and w′(v, u) = log d(v).

13.2.1 Proposed Algorithms

Given the transformed directed weighted graph G′, we want to find the set of trees with minimum
total cost on the marked nodes. Without loss of generality we assume that the marked nodes will
be the leaf nodes in the resulting trees (if a marked node is a non-leaf node, we can always add
its copy and connect it to its copy with a zero-cost edge), therefore from hereafter we refer to the
marked nodes as the terminals.

Finding Bounded-length Paths

Most of our proposed methods use short paths between the terminals as a starting point. There-
fore, we first present an algorithm, called FindBoundedPaths, to find multiple short paths of
up to a certain length (hence, indirectly, up to a certain cost), and in order of increasing length
between the terminal nodes. The threshold on the length of the paths is not a parameter; as it
takes log |V | bits to start a new partition, we set it to log |V |.
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Procedure 1: FindBoundedPaths (G, T )
Input: A graph G = (V,E), terminals T ⊆ V
Output: multiple (asc. length) short paths SP from terminals

1 lengths ← log(degree(V ))
2 paths ← ∅, pathcosts ← ∅, SP ← ∅, curlen← 0
3 foreach t ∈ T do
4 paths .add({t}), pathcosts .add(lengths(t))
5 curlen← curlen + min(pathcosts)
6 while curlen < log(|V |) do
7 pathcosts ← pathcosts −min(costs)
8 foreach v s.t. pathcosts(v) = 0 do
9 path ← paths(v)

10 foreach n ∈ Nv do
11 if n /∈ path then
12 SP .add(from: t, to: n, len: curlen, path)
13 paths .add({path, n})
14 pathcosts .add(lengths(n))

15 paths .remove(v), pathcosts .remove(v)

16 curlen← curlen + min(pathcosts)

17 return SP

FindBoundedPaths employs a BFS-like expansion starting from each terminal until the
threshold path length is reached. The paths from the terminal to the nodes encountered over
this expansion as well as their total lengths are stored. A major advantage of our transformed
graph formulation for the BFS-like expansion is that the cost of all out-edges for a node v are the
same and equal to log d(v). As a result we only need to keep the length per node, rather than per
edge, in our BFS-list.

The pseudo-code is given in Procedure 1. First, lengths is a vector of size |V | that holds log d(v)
for each node v ∈ V (line 1). Second, paths is a dynamic list that stores all current list of paths
during the BFS expansion. Third, pathcosts stores their respective lengths. Last, SP is a struc-
ture list that stores the paths from a terminal to other nodes encountered in the BFS expansion
(2). The paths are indexed by their end nodes and stored in increasing order of length.

In each iteration, we expand the node(s) with the minimum length (7). For each such node v
(8), we expand to its neighbors Nv (10). We first store the path information to these neighbors
(12), and then add the new paths from the root to these neighbors to the paths list (13), and their
respective lengths to the pathcosts list (14) for further expansion. Note that a node can appear
multiple times in our BFS lists since each expansion is associated with only a single unique path
(that is, the path from the root in the BFS tree), and a node may belong to multiple paths. We
continue iterating, i.e. expanding nodes with minimum length (16) until the threshold length is
reached (6).
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At the end of FindBoundedPaths, we have all the paths from every terminal to all the nodes
inG′ that are within a length log |V | path, ordered in increasing length. Notice that the expansion
can be performed completely in parallel for each terminal for speed.

Next, we give fast approximate solutions for finding a low-cost set of trees on the terminals.

DOT2DOT-ConnectedComponents

A basic heuristic to partition the terminals is to simply consider the connected components they
induce on the graph. That is, the terminals that are directly connected are put in the same and
otherwise separate parts. By definition, all the edges are reciprocated in the transformed graph,
and therefore the subgraph induced on each part including two or more nodes is not a directed
acyclic tree (it may as well have cycles of length greater than 2). To find the minimum cost rooted
directed tree(s) (a.k.a. arborescence), we use the Chu-Liu algorithm [Chu and Liu, 1965].

DOT2DOT-MinArborescence

Our second method (Algorithm 1) uses the transitive closure graph of the terminals to find a
minimum arborescence. The transitive closure graph Gt = (T,Et) consists of the terminals and
directed edges e(ti, tj) ∈ Et between terminals having weight equal to the shortest path length
w(ti  tj) from ti to tj , 1 ≤ i, j ≤ |T |. If the shortest paths between all pairs of terminals are
of length less than log |V |, then Gt is simply a directed clique graph. As we find up to length
log |V | paths from every terminal in FindBoundedPaths, a terminal does not have an edge
in Gt to those terminals that are more than this threshold apart from it.

Algorithm 1: DOT2DOT-MINARBORESCENCE

Input: A graph G = (V,E), terminals T ⊆ V
Output: Partitions P : a Steiner tree on each p ∈ P

1 SP ← FindBoundedPaths (G, T )
2 Construct distance-graph (transitive closure) Gt = (Vt, Et, dt), where Vt = T , and for

every (vi, vj) ∈ Et, dt(vi, vj) = min−len(SP(vi, vj)).
3 Add universal node u which connects to ∀vi ∈ Vt with dt(u, vi) = log(|V |).
4 Find minimum arborescence A of Gt.
5 Delete universal node u and its out-edges from A.
6 return ExpandPartition (A, SP , T )

Having constructed the transitive closure graph (2), we add a so-called universal node u with
directed edges e(u, ti) to every terminal ti with weight log |V | (3). We find the minimum weight
arborescence A in this new graph (4). Since the universal node u does not have any incoming
edges, it constitutes the root of A. In fact, the number of out-edges of u in A gives us the number
of parts |P |, and its sub-trees constitute the partitioning P (5). Next, we replace the edges in each
of u’s sub-trees with their corresponding paths in the transformed graph G′ (6). The expanded
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sub-trees may contain both marked and unmarked nodes. Also notice that the expanded sub-trees
might no longer be trees but contain cycles. Therefore, we rerun the arborescence algorithm on
the expanded sub-trees and remove any unmarked leaf nodes in the resulting arborescences,
which yields the final forest of Steiner trees. The min-arborescence algorithm takes O(|V |2) for
dense graphs. As we run it on the closure of marked nodes only, we get O(|M |2).

Procedure 2: ExpandPartition (R, SP , T )
Input: tree(s) R, short paths SP , terminals T
Output: Partitions P : a Steiner tree on each p ∈ P

1 Construct subgraph(s) R′ by replacing each edge in R by its corresponding shortest path.
2 Find minimum arborescence A of R′.
3 Construct Steiner tree(s) S from A by deleting edges in A, if necessary, s.t. all leaves in S

are terminal (marked) nodes.
4 return connected components of S as P .

Algorithm 2: DOT2DOT-1-LEVELTREE

Input: A graph G = (V,E), terminals T ⊆ V
Output: Partitions P : a Steiner tree on each p ∈ P

1 SP ← FindBoundedPaths (G, T )
2 mincost←∞
3 foreach t ∈ T do
4 Nt ← {v ∈ T |SP (t, v) exists}
5 Construct 1-level tree L1 = (Vp, Ep, dp), where Vp = t ∪Nt, and for every

(t, v ∈ Nt) ∈ Ep, dp(t, v) = min(SP (t, v)).
6 P ← ExpandPartition (L1, SP, T )
7 if |Vp| < |T | then
8 P ← P∪ DOT2DOT-1-LEVELTREE (G, T\Vp, SP )

9 else
10 cost← cost of partition P by Eq. 13.3
11 if cost < mincost then
12 mincost← cost, minP ← P

13 return minP

DOT2DOT-1-Level Tree

Our third method (Algorithm 2) builds a (set of) level-1 tree(s) from the transitive closure graph
on the terminals. Simply put, we try each terminal as the root (3) and connect it to the other
terminals with shortest paths on the transformed graph G′ (4-5). If the selected root does not
have shorter than length log |V | paths to all the terminals, a (set of) level-1 tree(s) is built on
the remaining terminals (7-8). We return the least-cost (w.r.t. Eq. 13.3) tree(s) as the forest of
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Steiner trees (10-12). Note that this heuristic algorithm provides a |M |-approximation to the
optimal solution [Charikar et al., 1998].

Algorithm 3: DOT2DOT-k-LEVELTREE

Input: A graph G = (V,E), terminals T ⊆ V
Output: Partitions P : a Steiner tree on each p ∈ P

1 SP ← FindBoundedPaths (G, T )
2 Construct candidate-graph Gc = (Vc, Ec): union of all top-3 shortest paths between all

pairs of terminals.
3 mincost←∞
4 foreach t ∈ T do
5 Lk ← ∅
6 L1 ← min-cost 1-level tree(s), one rooted at t
7 foreach L1 ∈ L1 do
8 S ← leaves(L1), r ← root(L1)
9 if |S| < 2 then continue

10 while S 6= ∅ do
11 Lpk ← PartialkTree(Gc, SP, r, S, k)
12 Lk ← Lk ∪ Lpk
13 S ← S\leaves(Lpk)

14 P ← ExpandPartition (Lk, SP, T )
15 cost← cost of partition P by Eq. 13.3
16 if cost < mincost then
17 mincost← cost, minP ← P

18 return minP

DOT2DOT-k-Level Tree

Our final method generalizes the 1-level tree heuristic to k-level trees. The goal is to start with a
(set of) 1-level tree(s) and successively refine each for lower cost. The main idea is the following:
for a given tree with root r, find one or more intermediate nodes v ∈ V , such that the total cost
from r to each v plus the costs of sub-trees rooted at v’s (each with a mutual set of terminals as
leaves) reduces the initial cost.

More specifically, we construct a k-level tree by a union of sub-trees, each consisting of the root
r, exactly one intermediate node v, and all the descendants of this intermediate node. We refer
to such sub-trees of level k as partial k-trees, and we find them in a greedy manner described as
follows. First, we find a partial k-tree Lpk (if any) that reduces the cost for a subset of terminals
that it spans. Next, we remove the terminals spanned by Lpk from consideration and iterate
this process until all terminals are spanned. Algorithm 3 formally describes the k-level tree
heuristic.
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Procedure 3: PartialkTree (Gc, SP, r, S, k)
Input: A graph Gc = (Vc, Ec), short paths SP , root r, a set S of nodes, level k
Output: partial k-level tree Lpk with intermediate node v ∈ {V, ∅} and leaves(Lpk) ⊆ S

1 foreach v ∈ Vc do
2 if k = 2 then
3 Sort S = {N1, . . . , N|S|} such that

SP(r,Ni)− SP(v,Ni) ≥ SP (r,Ni+1)− SP(v,Ni+1)

4 Find j ∈ {1, . . . , |S|} that minimizes cost(v)← SP(r, v) +
∑j

i=1 SP(v,Ni)
5 S(v)← {N1, . . . , Nj}
6 else
7 S ′ ← S, Lpk ← (r, v), cost(Lpk)←∞
8 while S ′ 6= ∅ do
9 Lpk−1 ← PartialkTree(Gc, SP, v, S

′, k-1)
10 if cost(Lpk) ≤ cost(Lpk−1) then exit while
11 Lpk ← Lpk ∪ Lpk−1
12 S ′ ← S ′\leaves(Lpk−1)

13 cost(v)← cost(Lpk), S(v)← leaves(Lpk)

14 Find v having minimum cost(v)
15 return partial k-level tree Lpk with intermediate node v rooted at r and leaves S(v)

To complete the k-level heuristic, we need to describe its subroutine PartialkTree which,
given a root r and a set of terminals S, finds a low-cost partial k-level tree rooted at r and
spanning (a subset of) the terminals. The PartialkTree heuristic, as given in Procedure 3,
is recursive: in order to find a partial k-level tree, we need to first find certain partial (k-1)-level
trees that span all the given terminals (8-12). The base case is reached for level k = 2, which
works as the following. For each candidate v for the intermediate node, we sort the terminals S
according to the potential savings of inserting node v between the root r and each terminal in
S (3). The potential saving for a terminal ti stands for the difference between the shortest path
lengths w(r  ti) and w(v  ti). These savings can take positive and negative values and are
sorted in decreasing order. Finally, we include consecutive terminals from this sorted list while
their inclusion decreases cost of the partial 2-tree (4-5).

13.2.2 Discussion

Before we conclude this section, we discuss some aspects of the k-level tree heuristic.

Firstly, note that in order to find good intermediate nodes v, Procedure PartialkTree con-
siders all the nodes in the given input graph (1). This raises two issues: 1) we would need the
shortest paths from the root r to every v as well as from v to its descendants, and 2) the iteration
would become computationally infeasible even for moderate size graphs. As a result, we pro-
vide PartialkTree with the so-called candidate graph Gc = (Vc, Ec). The candidate graph
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consists of the union of the nodes and edges in all top-t shortest paths between every pair of
terminals. Since Gc is much smaller than G′ and as we have the shortest paths to the nodes in it
computed, both issues are addressed. In the experiments we use t = 3, which can be adjusted
depending on available computational resources. Considering a larger candidate graph may help
finding lower cost trees while a smaller candidate graph provides lower running time as well as
better visualization.

Secondly, notice that the cost of a partial 2-tree is computed by the sum of the shortest paths from
root r to intermediate node v, and from v to a set of terminals (4). Using FindBoundedPaths
recall that we find short paths from marked nodes to the nodes within log |V | distance. Since v
might be an unmarked node, we might need the shortest path length from an unmarked node to
a marked one. We find the shortest path from unmarked nodes in the candidate graph to marked
nodes using the following Lemma.

Lemma 6 The shortest path from i to j and the shortest path from j to i for all i, j ∈ V ′ in the
transformed graph G′ contain exactly the same nodes with edges in reverse directions. Due to
symmetry, the total weights of the reciprocal shortest paths obey the following equation.

w(i j) = w(j  i)− log d(j) + log d(i)

Proof Let {i → v1 → v2 → . . . vl → j} denote the shortest path from i to j. Notice that any
path from i to j contains an out-edge of i to one of its neighbors, with weight log d(i). Thus,
w(i, v1) = log d(i). Let R =

∑l−1
k=1w(vk, vk+1) + w(vl, j), such that log d(i) + R minimizes

total length of the path. Since all out-edges of a node v ∈ V ′ are equal, we can also write
w(v1, i) +

∑2
k=l w(vk, vk−1) = R. So the reverse path from j to i has length log d(j) +R. As R

gives the shortest path length from i to j, it also gives the shortest from j to i. Hence the lemma
holds.

As a result, given that we know the shortest paths from terminals to other nodes v ∈ V ′ within
log |V |, we can compute the shortest path from any such v to any terminal in constant time using
Lemma 6. On the other hand, notice that for k ≥ 3 in PartialkTree, a descendant of an
unmarked intermediate node might also be unmarked, in which case we would need the shortest
paths between two unmarked nodes and run FindBoundedPaths starting from every new set
of intermediate nodes. In our experiments, for speed we restrict ourselves to k = 2.

13.3 Experimental Results

In this section, we evaluate our proposed method; first we give intuitive results on synthetic exam-
ples, second we quantitatively compare the performance of the four proposed heuristic methods
DOT2DOT-* (COMPONENTS, MINARBORESCENCE, 1-, and 2-LEVELTREE), and finally we
provide case studies to show qualitative performance on real-world graphs.
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13.3.1 Synthetic examples

We start by testing our method through three examples on a synthetic 100 × 100 grid graph, as
well as one example on the well-known Zackary’s karate graph [Zachary, 1977].

First, as shown in Figure 13.3(a), we select 8 marked (blue square) nodes relatively close to each
other on the grid graph, and run all four of our approximation methods. We highlight (by orange
bold edges) the minimum description cost tree found (orange nodes: connectors)—notice that it
provides succinct connections among the marked nodes. Next we place 4 of the marked nodes
farther apart in the grid graph, in which case our method successfully partitions the marked nodes
and provides 2 connection trees for each as shown in Figure 13.3(b).

(a) (b) (c)

(d) (e)

Figure 13.3: Synthetic examples: (a) 8 marked (square) nodes placed close to each other on a
grid, (b) same 8 nodes in (a) spaced out on the grid, forming 2 parts, (c) connecting
the dots, (d) recovering missing connector, (e) 7 marked nodes on Karate graph,
forming 3 parts.

Second, we place the marked nodes intermittently on the grid as shown in Figure 13.3(c). In-
tuitively, human would connect these dots to form a rectangle—and so does our method. Fig-
ure 13.3(d) shows a set of marked nodes forming an almost full rectangle on the grid, except one
node in the middle left unmarked. Notice that our method successfully recovers this ‘left-behind’
node as a significant connector.

Finally, we mark 7 nodes on the Karate graph as depicted in Figure 13.3(e). Our method parti-
tions the nodes into 3 parts that are well separated through high degree hub nodes.
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13.3.2 Comparing the heuristics

In this section, we aim to understand the average performance of the four approximation methods
proposed in Section 13.2. To do so, we run simulations on three real graphs and compare their
average description cost. In each simulated run we test the heuristics on a different set of marked
nodes. The set of marked nodes are selected via random walk sampling, which we describe next.
The dataset information is given in Table 13.1.

Name |V | |E| Description

NETSCIENCE 379 914 Author collaborations
GSCHOLAR 83K 148K Academic article citations
DBLP 329K 1094K Author collaborations

Table 13.1: Dataset summary used for DOT2DOT.

To select a set of k marked nodes, we follow a random walk sampling scheme. First, we fix
a sampling rate s. Then, we choose and mark a node at random in the given graph. Next we
randomly visit k′ < k of its neighbors, and mark each neighbor with probability s. We continue
this process until we have k marked nodes in total.
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Figure 13.4: Comparison of our heuristics: total cost (bits) versus various sampling rates s to
choose the marked nodes.

In Figure 13.4, we show average description cost (in bits) versus sampling rate s={0.1, . . . , 0.9}
of our simulations (k′ is set to 3, k′=1, 2 gives similar results). We notice comparable perfor-
mance results on all three graphs; the simplest heuristic COMPONENTS provides the costliest,
while MINARBORESCENCE gives the most succinct description among the four methods on av-
erage. In addition, 2-LEVELTREE provides competitive results to MINARBORESCENCE, and
outperforms 1-LEVELTREE as would be expected.

In addition, notice the downward trend of the cost for increasing sampling rate. This is expected,
as for higher s the marked nodes are chosen among closer nodes. This also explains the relatively
larger gap in performance between 2-LEVELTREE and MINARBORESCENCE for small s, as for
farther apart nodes a higher than 2 level tree might be required.
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Finally, we give the running time of our methods in Figure 13.5. We notice that due to the
iterative nature of looking for good intermediate nodes, k-LEVELTREE heuristics (L1 and L2
respectively) take longer than the others. At the same time, L2 completes in about 50 seconds
on our largest graph DBLP and can be further sped up by providing it with a smaller candidate
graph. Since FINDBOUNDEDPATHS takes the most considerable time in our framework, we
propose to run all heuristics and report the best result with the minimum cost.
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Figure 13.5: Run time of proposed methods on three real graphs.

13.3.3 Case studies on real graphs

Our method can provide useful insight about the connections and connectors among a group
of nodes in a given graph. As such, we develop DOT2DOT as an interactive tool that aids in
visualization and sensemaking. In this section, we provide qualitative analysis on two large
real-world graphs.

Authors in DBLP

We first employ DOT2DOT among authors from various fields in computer science in the DBLP
dataset. In particular, we select 2 major conferences in certain fields and mark the top 10 authors
from each, who have the most number of papers appearing at that particular conference.

In Figure 13.6(a) we show the connection tree our method finds among respective authors from
VLDB and CHI which are in the fields of databases and human computer interaction, respec-
tively. Notice that the authors from these two fields are considerably well separated in the tree.
We also observe a connector node among the communities: Duen Horng Chau, a PhD student
at Carnegie Mellon (also a co-author) whose research focuses on bridging data mining, human
computer interaction, and visualization.
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We obtain similar results for the authors from RECOMB (computational biology) and KDD
(data mining and machine learning) in Figure 13.6(b). Notice the simple connections among
the authors within the same field and otherwise well separated communities. The connector is
David Heckerman, the director of the eScience team at Microsoft Research whose work focuses
on learning from, and analysis of biological and medical data.

In the next example from DBLP we look at authors from NIPS (machine learning) and PODS
(database systems), 5 authors from each. DOT2DOT connects the authors from each field through
a few connectors as shown in Figure 13.6(c). Notice there are two parts in our partitioning; which
suggests that authors from these two communities are sufficiently apart in the graph.

Articles in GoogleScholar

We next apply DOT2DOT to summarize academic articles on certain topics from GSCHOLAR.
By their titles, we mark nodes in the citation graph containing specified keywords.

In Figure 13.7(a) we show 8 marked articles containing both ‘large graphs’ and ‘visual’ keywords
in their title. Our visualization highlights the resulting partitioning on the candidate graph we
generate by the union of top-3 shortest paths among the marked nodes. We find that DOT2DOT

partitions the marked nodes into 4 parts, 3 of which are singletons. The connection tree for the
largest part provides a concise summary for the 5 nodes in this part, with only two connectors.
Also notice that the singleton nodes are at least three hops apart from this tree.

In the second example, we mark a random set of the articles with the keywords ‘association rule’
together with ‘visual’ and/or ‘text’ in their title. Here, we expect the articles to naturally split into
two groups, one group on visualizing association rules and the other on association rule mining in
text data. Our results, as shown in Figure 13.7(b), agree with our intuition: visualization articles
are linked up through a meaningful connector and ‘text’ articles form separate multiple parts. It
is interesting to observe that they can not be glued together by a single connection tree as in the
former scenario.
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Figure 13.6: Connection trees among authors from DBLP with most number of papers at spec-
ified conferences. (a) connector Duen Horng Chau: bridging data mining and
human-computer interaction, (b) connector David Heckerman: mining biomedical
data, (c) two trees sufficiently apart.
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Figure 13.7: Connection trees among articles from GSCHOLAR with the specified keywords
in their title. (a) one tree summarizing 5 marked nodes while singletons reside
farther apart, (b) one tree summarizing ‘visualization’ articles while ‘text’ articles
are scattered.
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13.4 Summary of contributions

In this chapter, we introduced DOT2DOT1, a novel method to ‘describe’ a set of marked nodes
in a graph; by grouping ‘close-by’ nodes together as well as providing ‘concise’ connections
among the nodes in each group.

We motivated this problem and our solutions under the setting where the marked nodes are
thought as anomalous nodes reported by an anomaly detection algorithm, like ODDBALL. On
the other hand, we note that our problem framework is general and can find applications in
various other settings such as gene pathway discovery, product adoption summarization and un-
derstanding of adoption correlation with graph structure, and visualization.

Our main contributions are listed as the following.

• Problem formulation: We formalize the problem of ‘describing a set of chosen nodes in
a graph’ as an encoding problem. Our formulation exploits the Minimum Description
Length principle: the best description is the one for which we need the least number of
bits to encode the marked nodes. As such, our method does not require any user-specified
parameters such as the number of groups.

• Fast algorithms: We show that our problem formulation has connections to the directed
Steiner tree problem [Charikar et al., 1998], and that finding the minimum cost (in bits)
solution is NP-hard. We propose fast solutions for large graphs.

• Experiments on real graphs: Experiments on real academic collaboration and citation as
well as synthetic graphs demonstrate the effectiveness of DOT2DOT in discovering good
connectors and connections that agree with human intuition.

1Source code of DOT2DOT: www.cs.cmu.edu/∼lakoglu/#code

199



Part IV

Conclusion and Future directions
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Chapter 14

Concluding Remarks

To review, we first summarize our major contributions and then give the impact of this thesis.
We conclude with possible interesting future research directions.

14.1 Research Summary and Contributions

In this thesis, we focused on three interrelated aspects of the study of networks: (1) we analyzed
the structure and dynamics of real-world networks to understand the regularities they exhibit, (2)
using the understanding of how networks form and evolve we created several generative models,
and finally (3) we developed new techniques to spot anomalies in network data in various settings.
For a list of publications this work appeared in, see Appendix A.

14.1.1 New Patterns in Network Topology and Human Communications

In Part I, we analyzed numerous large (millions of nodes and edges) real-world networks from
many diverse domains including political campaign donations, computer network traffic, blog
citations, social and Web networks, as well as human communication networks. While previous
work focused on static unweighted networks, we shifted our focus to dynamic and weighted
networks. We discovered surprising new patterns, which we briefly review here. We refer to §3.3
and §4.4 for more details.

• “Rebel probability” and oscillating/constant-size connected components: We are among
the first to focus on next-largest connected components (NLCCs) and their dynamics. In
particular, we showed that (1) NLCCs look like chain graphs; (2) real graphs exhibit a
“gelling” point at which the small components merge and a giant connected component
(GCC) emerges; (3) after the gelling point, secondary and tertiary components cannot grow
beyond a certain size beyond which they get absorbed to the GCC; (4) graph fractal di-
mension of components is stable over time; and (5) rebel probability —that a newcomer
node will not join the GCC— drops exponentially with its degree and increases linearly
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with the fraction-size of NLCCs. The “rebel” probability (microscopic dynamics) explains
the component sizes oscillating around constant-size (macroscopic dynamics).

• “Fortification effect” and other non-linear weighted-network patterns: We are the
first to focus on weights on graph edges and their dynamics. In particular, we showed that
(1) total weight of a node and its degree follow power laws, and weight between two nodes
follows a gravitational-force-like relation with the total weights of those nodes; (2) total
weight of a graph grows superlinearly with number of its edges over time, which we call
fortification; (3) weight additions over time are bursty; and (4) principal eigenvalues and
number of edges of a graph follow a power law relation over time.

• Power-laws in human communications: In order to understanding human communica-
tion patterns, we analyzed billions of human communication (phone call, SMS, and instant
message) records of millions of users over several months. (1) We found that the number
of maximal cliques a node participates in follows a power-law relation with its degree;
which translates to “popularity” growing superlinearly with the number of contacts. (2)
We proposed the 3PL function, which models the reciprocity of user pairs very well, and
better than bivariate Pareto and Yule. We observed that reciprocity is higher (a) for mutual
pairs with larger local network overlap, that is, for people with more common friends; and
(b) for mutual pairs with larger degree-similarity, that is, for people with similar number
of contacts. (3) We also proposed the TLAC distribution, which fits a vast majority of
individual phone call durations the best, much better than lognormal and exponential.

14.1.2 Realistic Generative Models of Networks

In Part II, we focused on the problem of how to build a generative model that could produce
realistic-looking synthetic networks. We presented two generators for general graphs that mimic
a long list of topological properties of real-world networks. We also developed an agent-based
generator for human communication graphs, that mimic human behavior well. We review these
models briefly next. We refer to §6.3 and §7.2 for more details.

• Realistic generative models for graphs: Our first model Recursive Tensor Model (RTM)
is a simple, recursive generator based on Kronecker tensor multiplication. We rigorously
proved that RTM produces several desired characteristics, such as bursty traffic, i.e. bursty
weight additions. On the other hand, it creates multinomials rather than power laws, for
example in degree distributions. Later, we proposed Random Typing Graphs (RTG) based
on a simple ‘random typing’ procedure which is shown to mimic natural behavior very
well. RTG meets all the desirable properties, being realistic (matching all eleven patterns),
simple, parsimonious, flexible, and fast.

• Utility-driven model for human communications: We also designed an intuitive graph
generator PaC, for modeling human communication behavior. In this model, each node
(a) uses only local information, and (b) uses no randomness, but instead tries to maximize
a well-defined utility function. This agent-based model allows us to understand the local
mechanisms forming communication networks and answer what-if scenarios. Based on the
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utility function of PaC, we can explore what the impact of certain changes (eg. increase in
price-per-minute, flat call rate) would be on the structure and evolution of the network.

14.1.3 Tools for Anomaly and Event Detection in Networks

In Part III, we developed five novel methods for anomaly detection, each addressing the problem
in a different setting. In particular, the methods address the problem for (1) plain unlabeled
graphs, (2) binary- and (3) categorical-attributed graphs, (4) time-varying graphs, and finally (5)
sensemaking and visualization of anomalies. We briefly highlight our contributions below and
respectively refer to §9.3, §10.3, §11.3, §12.3, and §13.4.

• Automatic anomaly detection in plain graphs: We proposed a novel method, called
ODDBALL, to detect outlier nodes in graph data, rather than in a collection of data points.
The previous state-of-the-art had several limitations, such as the assumption of the exis-
tence of node labels and ground truth information. We developed our method so as to avoid
these assumptions and to (1) work for unlabeled and weighted graphs, and (2) operate in a
completely unsupervised fashion.

• Parameter-free mining and clustering in attributed graphs: We introduced a novel
clustering model, called PICS, to find groups of nodes in an attributed graph with (1) sim-
ilar connectivity, and (2) attribute homogeneity. The nodes deviating from the discovered
patterns correspond to bridge-nodes with connections across clusters or outlier-nodes that
do not belong well to any cluster. Two key advantages of our method are (1) it requires no
parameters such as the number of clusters and similarity functions to be tuned, and (2) its
running time scales linearly with total graph and attribute size.

We also proposed a new approach, called COMPREX, for identifying anomalies in com-
plex attributed graphs, that exploits pattern-based compression. The key features of this
approach are (1) it builds the models directly from data and requires no parameters to be
tuned, (2) it generalizes to a broad range of complex data, including graph, image and
relational databases with various attributes, and (3) it proves effective on a broad range of
datasets showing large improvements in both compression rate, as well as anomaly detec-
tion accuracy, outperforming its state-of-the-art competitors.

• Automatic event detection and “attribution” in time-evolving graphs: We developed
an algorithm to quantify “change” for a graph growing/changing over time that flags those
time points for which the change is significant as “events”. Two key features of the al-
gorithm are (1) it enables “anomaly attribution”, that is, it points out those nodes that go
through the highest degree of change, and (2) it works in an online fashion, by efficiently
updating scores over time.

• Sensemaking and visualization for anomalies: We introduced a novel solution, called
DOT2DOT, to visualize and summarize a given set of (anomalous) nodes in a graph. It
groups ‘close-by’ nodes together and provides ‘concise’ connections among the nodes in
each group, instead of simply listing them. This provides insight into what coarser groups
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the nodes form, and thus facilitates summarization. It also shows good connection path-
ways between the given nodes as well as other key ‘connector’ nodes that play a crucial
role in bridging the connections in between. We built an interactive visualization and ex-
ploration tool that enables end users specify their nodes of interest, visualize the discovered
connection subgraphs, and explore further the neighborhood subgraphs around the given
set of nodes on demand.

14.2 Community Impact

Our work in this thesis is making broader impact to academia and industry:

Our RTG generator raised a lot of interest with respect to its ties to earlier history of mathematics
on random typing, and furthermore won the Best Knowledge Discovery Paper award in the
Conference on Principles and Practice of Knowledge Discovery (PKDD) 2009. The software
has been made publicly available and been used in the research community.

Our ODDBALL won the Best Paper award in the Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD) 2010. It has also been integrated into Carnegie Mellon’s
Pegasus Tera-Scale Graph Mining system. Its stand-alone source code is made available and
has been downloaded from all around the world. It has been a main component of the anomaly
detection system developed for the ADAMS (Anomaly Detection at Multi Scale) collaborative
research initiative supported by DARPA, for insider threat detection.

Our COMPREX and its proposed extension to the time-evolving setting led to two patents (filed
with high-impact score) at IBM Research Labs. Compression has been primarily used in com-
munications theory and databases, for reduced transmission cost and storage cost and increased
throughput and query performance; our work is one of the few to explore compression for vari-
ous data mining tasks. Moreover, our event detection system contributed to the Network Science
Collaborative Technology Alliance (NS-CTA) supported by Army Research Labs.

14.3 Vision and Future Research Directions

Graphs are powerful and unified tools, effectively capturing long-range relations between the ob-
jects they represent. Not only is the theory of graphs abound with fascinating research problems,
but also the practical usage of graphs is quite prevalent, as many real-world problems can be
cast as graph problems. Therefore, I view graph mining as an exciting field to work in, with a
promising future at the confluence of theory and practice.

All real data inherently contain patterns; intuitively even complex systems are often largely gov-
erned by a few underlying simpler mechanisms, which introduce considerable redundancy in the
form of patterns. Therefore, it is intriguing and natural to attempt to find patterns in real data. Be-
ing closely related to pattern discovery, anomaly detection has multi-billion dollar applications
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in finance (credit card, accounting fraud detection), health care (insurance claim fraud, disease
outbreak, rare disease detection), security (network intrusion, insider threat detection), biology
(neuroscience and genetics), and many more. Therefore, understanding how a complex system
operates and detecting explanatory and emergent patterns (and anomalies therein) will continue
to be a fascinating area in the future.

As real-world graphs like social networks and the Web continue growing and the technology to
collect and store data continue advancing, huge amounts of data will become available. As a
result scalability will become an even greater challenge. As older algorithms become obsolete
due to their memory assumptions, mining patterns efficiently and spotting anomalies as early as
possible in huge collections of data will require novel data mining approaches.

While I believe that pattern mining, anomaly detection, and scalability are promising research
areas, finding solutions to domain-specific questions in other fields is also of interest. As the
semantics captured by graphs differ, so do the problems they pose. Consequently, I believe that
graph mining has a lot of potential for cross-domain collaborations in a variety of fields.

In general terms, it is interesting and crucial to develop scalable methods that provide means to
discover patterns, spot anomalies/events, and to summarize and interpret large complex graphs.
Below I elaborate on specific future research directions.

• Patterns and anomalies in complex graphs A vast majority of existing work on graphs
is designed for plain undirected graphs. Real-world graphs, however, can appear in much
richer forms (as directed weighted graphs, correlated with other graphs, with node and
edge attributes, changing over time). For example Facebook data contains user-user in-
teractions, user-wall post-user relations, user-product recommendations, user interests and
demographics, all correlated and evolving over time. It remains an interesting open prob-
lem to study the inter-relations among multiple correlated graphs that represent more com-
plex data, and to find patterns and anomalies in such complex graphs.

• Scalability As real-world data keep growing, their graph representations require peta-bytes
of storage. This makes scalability a real bottleneck in algorithm design. While in the
past the main goal of most graph mining algorithms was to be effective, the recent trend
has been to build algorithms that are both effective and efficient on possibly disk-resident
graphs that do not fit in the main memory. Future research could address this issue (1)
by developing effective heuristics and ideally theoretically sound approximate algorithms
which run in sub/linear time for large graphs, and (2) by designing algorithms so as to be
able to exploit map-reduce type abstractions for parallelism.

• Graph summarization and understanding One main component of understanding data
is to visualize it, however with the scale of real graphs visualization has become a real chal-
lenge. A good visualization requires a succinct summary of the graph. Future work could
address this problem at two levels: (1) macro-level analysis involves summarizing com-
plex graphs at large. For complex multi-facet graphs, the goal is to build novel clustering
and compression models to offer the users a high-level understanding, and (2) micro-level
analysis involves summarizing certain parts of interest in the graph (e.g., subsets of nodes,
small neighborhoods, etc.).
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Appendix A

List of publications

Part I: Patterns of Networks and
Part II: Generative Models of Networks

• L. Akoglu. M. McGlohon, and C. Faloutsos. RTM: Laws and a Recursive Generator
for Weighted Time-Evolving Graphs. IEEE International Conference on Data Mining
(ICDM), 2008

• M. McGlohon, L. Akoglu, and C. Faloutsos. Weighted Graphs and Disconnected Com-
ponents: Patterns and a Generator. ACM Special Interest Group on Knowledge Discovery
and Data Mining (SIG-KDD), 2008

• N. Du, C. Faloutsos, B. Wang, L. Akoglu. Large human communication networks: patterns
and a utility-driven generator. ACM Special Interest Group on Knowledge Discovery and
Data Mining (SIG-KDD), 2009

• L. Akoglu, C. Faloutsos. RTG: A Recursive Realistic Graph Generator using Random
Typing. Data Mining and Knowledge Discovery Journal (DAMI), 2009

• U Kang, M. McGlohon, L. Akoglu, and C. Faloutsos. Patterns on the Connected Compo-
nents of Terabyte-Scale Graphs. IEEE International Conference on Data Mining (ICDM),
2010

• P. O. S. Vaz de Melo, L. Akoglu, C. Faloutsos, A. F. Loureiro. Surprising Patterns for
the Call Duration Distribution of Mobile Phone Users. European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), 2010

• L. Akoglu, P. O. S. Vaz de Melo, C. Faloutsos. Quantifying Reciprocity in Large Weighted
Communication Networks. Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), 2012

Part III: Anomaly Detection

• L. Akoglu, M. McGlohon, C. Faloutsos. OddBall: Spotting Anomalies in Weighted
Graphs. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
2010

• L. Akoglu, C. Faloutsos. Event Detection in Time Series of Mobile Communication
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Graphs. 27th Army Science Conference, 2010
• L. Akoglu, H. Tong, B. Meeder, C. Faloutsos. PICS: Parameter-free Identification of Co-

hesive Subgroups in Large Attributed Graphs. SIAM International Conference on Data
Mining (SDM), 2012

• L. Akoglu, H. Tong, J. Vreeken, C. Faloutsos. CompreX: Fast and Reliable Anomaly De-
tection in Categoric Data. ACM International Conference on Information and Knowledge
Management (CIKM), 2012

• L. Akoglu, J. Vreeken, H. Tong, D. H. Chau, C. Faloutsos. Islands and Bridges: Making
Sense of Marked Nodes in Large Graphs. Carnegie Mellon University Technical Report
CMU-CS-12-124, 2012
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Illes J. Farkas, Imre Derényi, Albert-László Barabási, and Tamas Vicsek. Spectra of ‘real-world’
graphs: Beyond the semi-circle law. Physical Review E, 64, 2001. 15

Peter R. Fisk. The graduation of income distributions. Econometrica, 29(2):171–185, 1961. 60

Gary Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of web communities. In
KDD, pages 150–160. 2000. 110, 111

Gary Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-organization and identifica-
tion of web communities. IEEE Computer, 35(3), March 2002. 16

Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. An approach to spacecraft anomaly de-
tection problem using kernel feature space. In KDD, pages 401–410, 2005. 109

Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. On community outliers
and their efficient detection in information networks. In KDD, pages 813–822, 2010. 108

D. Garlaschelli and M. I. Loffredo. Patterns of Link Reciprocity in Directed Networks. Phys.
Rev. Lett., 93:268701, 2004. 47
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