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ABSTRACT
Given a real, and weighted person-to-person network which
changes over time, what can we say about the cliques that it
contains? Do the incidents of communication, or weights on
the edges of a clique follow any pattern? Real, and in-person
social networks have many more triangles than chance would
dictate. As it turns out, there are many more cliques than
one would expect, in surprising patterns.

In this paper, we study massive real-world social networks
formed by direct contacts among people through various per-
sonal communication services, such as Phone-Call, SMS, IM
etc. The contributions are the following: (a) we discover sur-
prising patterns with the cliques, (b) we report power-laws
of the weights on the edges of cliques, (c) our real networks
follow these patterns such that we can trust them to spot
outliers and finally, (d) we propose the first utility-driven
graph generator for weighted time-evolving networks, which
match the observed patterns. Our study focused on three
large datasets, each of which is a different type of commu-
nication service, with over one million records, and spans
several months of activity.

1. INTRODUCTION
Questions have emerged from research on social networks.

What patterns should we expect in a network of human-to-
human interactions? How can we spot anomalies (e.g., tele-
marketers, spammers)? What will be the net effect if we
lower the price of each phone-call?

Social networks, and graphs in general, have had an in-
crease of interest recently. The related applications are nu-
merous and almost everywhere in people’s modern life. On-
line social networks, like Facebook (www.facebook.com) and
LinkedIn (www.linkedin.com), mimic publicly the telecom-
munication networks where and what people communicate
privately. Product recommendation systems, such as Ama-
zon(www.amazon.com) and Netflix(www.netflix.com), rely
on a network of trust and collaboration [18]. Computer net-
works have predictable relations regarding intrusion detec-
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tion [23], security, and virus propagation. It is important
in all the above applications to spot anomalies and out-
liers [1] [4][13][20]. Anomaly detection [9] is tightly con-
nected to patterns: if most of the nodes in our network
closely follow a power-law, then the few deviations that
do exist are probably outliers. Several patterns have been
reported for un-weighted graphs, like small diameter (’six
degrees’) [36], shrinking diameter [21], scale-free (power-
law) [35] or lognormal [6] or Double Pareto LogNormal (DPLN)
distributions [24] [31] for the in- and out-degrees etc.

In this paper, we are investigating the following questions:

• When we isolate the cliques in a network, what pat-
terns do they follow? How large are our social circles
on average? If someone has many contacts, does that
indicate popularity?

• What patterns do the edge weights follow, both in tri-
angles and in general cliques? Specifically, in a trian-
gle, all three nodes are equivalent in topology, but is
it normal if all three weights are equal as well?

• How can we design an intuitive generator that will nat-
urally reproduce all the above behaviors? Most exist-
ing generators try to mimic the skewed degree distrib-
ution, but fail to incorporate the weight information.
Here, we want a utility-driven generator, which should
try to model the way in which humans decide when
and whom to contact. Our guiding principle is that
humans balance a trade-off between the cost of the
communication (in time and money), and its benefit
(in valuable information and emotional support).

Let’s elaborate on the last item, the utility-driven gener-
ator. Many preferential-attachment [5] guided models as-
sume that a newly-added node is more likely to be linked
to the most popular node of the current graph. However, in
real world scenarios, incoming nodes are typically unaware
of such global structural knowledge of the network. More-
over, most earlier generators dictate that nodes/humans will
choose contacts at random; in contrast, we argue that they
choose contacts to maximize some utility. Our goal is to de-
sign an intuitive graph generator, where each node (a) uses
only the local information, and (b) uses no randomness, but
instead tries to maximize a well-defined utility function.

Such a generator should be carefully designed so that the
resulting graphs follow all the observed patterns (old and
new). The major advantage over older generators is that it
can answer what if scenarios. For example, if the connection
price of each phone-call goes up, will this decrease the aver-
age number of friends/edges? What about a change in the
price-per-minute? What if there is a flat rate?



We examine multiple large anonymized human communi-
cation networks, where we have the hash-codes of the source,
and the destination, as well as the time-stamp of the con-
tact (Phone-Call, IM, or SMS - the specific service is also
anonymized). For ease of presentation, we will refer to these
contacts as Phone-Calls generally. The analysis of human
communication networks is important because various per-
sonal communication services and applications are ubiqui-
tous. Furthermore, as unlike many artificial social networks,
such as the scientific collaboration network which emerges
as a one-mode projection of the bipartite graph between
authors and papers, the massive anonymized human com-
munication networks are formed from the real-time direct
contact events of people. They can fully capture the under-
lying realistic social structures, and lay a solid foundation
for our upcoming work.

The paper is organized as follows. Section 2 reviews re-
lated work. Section 3 proposes background materials. Sec-
tion 4 presents our observed patterns. Section 5 describes
the utility-driven model. Section 6 gives the conclusion.

2. RELATED WORK
The network formation problem has been studied by many

researchers from the fields of statistical physics, economics,
game theory, combinatorial optimization and computer sci-
ence. A major class of network models extend from the clas-
sic Erdös-Rényi(ER) random graph model [14] where edges
are randomly placed among nodes. Many famous graph
generators belong to this class, including the small-world
model [37], the preferential-attachment model [5], the forest
fire model [21], as well as the recent ’butterfly’ model [22].
[See [3] and [8] for a detailed review]

There is another whole class of network models, often re-
ferred to as games of network formation, mainly from the
fields of economics and game theory. Here, linking between
two nodes is regarded as a strategic activity and the net-
work structure can arise from the collective interactions be-
tween the nodes. Laoutaris [19] proposes a network forma-
tion game, where links have costs and lengths, and players
have preference weights on the other players, to study the
properties of pure Nash equilibria [26] in different settings.
Albers [2], Demaine [11], and Fabrikant [16] study a simi-
lar game where players do not have fixed budgets and the
cost function is defined in terms of the sum of the number
of edges. Even-Dar [15] proposes a network creation game
where nodes act as buyers and sellers such that the resulting
graphs are bipartite.

Moreover, Onnela [28][29] and Nanavati [25] have also
used mobile phone-call data to examine and characterize
the social interactions of cell-phone users. Seshadri [32] fur-
ther shows that the degree distribution of large scale mo-
bile phone-call networks can be better fitted using the lesser
known but more suitable DPLN distribution[24][31], which
is close to yet more precise than the power-law distribution.

In summary, our work differs from earlier work as fol-
lows: most research work on network formation games is
only interested in the effect of specific linking strategies on
the properties of the system equilibria. By contrast, our
work studies how the microscopic behavior of each node
can collectively influence the emerged macroscopic network
structure itself. We are the first to discover the patterns
where people can form cliques, and how the edge weights
can be distributed in cliques. Moreover, we give the first

3

0

2

4

1

Figure 1: Maximal clique example. Here we have
two maximal cliques {0,1,2,3} and {1,2,4}.

utility-driven graph generator that is able to reproduce the
weighted time-evolving networks, which can have both the
old and the new patterns.

3. BACKGROUND
A simple graph G is represented as a set of nodes V (G)

and a set of edges E(G). The weight of the edge eij ∈ E(G)
is quantified by the number of contact times between node
i and j over the studied period, and is denoted by wij . The

total weight wi of node i is defined as wi =
Pdi

k=1 wik where
di is the degree of node i. In social network analysis, so-
cial cohesion [34] is often used to explain and develop so-
ciological theories. Examples of cohesive subgroups include
sports teams, work groups, student unions etc. Mathemati-
cal analysis of social cohesion has been a hot research topic
for many years. The clique model is one of the classic and
well-known graph models used for studying cohesive sub-
groups [30][34].

Given subgraph Gi, if ∀u, v ∈ V (Gi),∃(u, v) ∈ E(G), then
Gi is called a complete subgraph or a clique of G. In this pa-
per, we assume that mathematically, a triangle is the small-
est clique possible. If there is no other subgraph Gj that is
also a clique of G with V (Gj) ⊃ V (Gi), Gi is further called
a maximal clique of G. In Figure 1, {0,1,2,3} and {1,2,4}
are two maximal cliques, because cliques {0,1,2}, {0,1,3},
{0,2,3}, and {1,2,3} are included in {0,1,2,3}. ∀vi ∈ V (G),
let C(vi) denote the set of the maximal cliques which contain
vi, so C(0) = {{0, 1, 2, 3}}, and C(1) = {{0, 1, 2, 3}, {1, 2, 4}}.

The complete clique enumeration is a classic NP-complete
problem [7]. However, real world social networks have sev-
eral unique properties such as the sparsity and scale-freeness.
People who share a common friend are highly likely to be-
come friends themselves [17]. This kind of locality generates
triangles which further form larger cliques. Consequently,
we are able to design an efficient algorithm for practical sit-
uations. Following earlier literature, we use the algorithm
Peamc[12] to find the complete set of all the maximal cliques
in our human communication networks.

4. PATTERNS AND OBSERVATIONS
Here, we seek to find the patterns that our social networks

can have. Starting with a description of the datasets, and
the known recurring patterns that hold for the real world
networks, we report three newly discovered patterns that our
datasets seem to follow. The first is Clique-Degree Power-
Law(CDPL), correlating the ith largest degree with the av-
erage number of maximal cliques, which seems to remain
rather stable over time so that we trust them to further
detect outliers and spot anomalies. The second is Clique
Participation Law(CPL), which gives the distribution of the
number of maximal cliques that each node participates in.
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Figure 2: Known properties of communication net-
works. (a) is the pdf of the number of partners in
graph GS1

T1, GS1
T3, and GS1

T5. (b) is the pdf of the total
calls in the same graphs. Both are in logarithmic
scales, and follow a DPLN distribution. The rest
networks behave similarly.

Finally, the third comes Triangle Weight Law(TWL), de-
scribing how the weights are distributed on the edges of
triangles, based on which we could further make predictions
about the missing values of the edge weights in time-evolving
weighted networks.

4.1 Data Description
The datasets analyzed are made of a large collection of

records from several human communication services includ-
ing voice, data, IM, SMS etc. Each record is represented as
a triple < IDi, IDj , T ime >, where < IDi > and < IDj >
are generally referred to as the caller and callee. During
a particular time period, there can be multiple times for
a pair of people to communicate with each other, and the
accumulated number of communication times between IDi

and IDj is defined as the edge weight between node i and j.
We have the weighted graphs extracted from the records of
three types of services (S1, S2 and S3), referred to as GS1,
GS2, and GS3 respectively. Each type of service has on aver-
age about 1 million records, which were collected by different
geographic locations. Apart from this spatial diversity and
the service type variety, we also incorporate temporal diver-
sity by collecting data for each type of service during five
consecutive time periods represented from T1 to T5, so GS1

T1

is the graph of service type S1 in time period T1, and GS2
T5

is the graph of service type S2 in time period T5 etc.
Notice that we only focus on the link between the caller

and callee. It is important to know that our work is only
an aggregate statistical analysis, and therefore, we do not
study any individual’s behavior from any specific type of
communication service. More importantly, any information
that could identify users is stripped to access. We only use
the encrypted user id in this study, and restrict our inter-
est only in the statistical findings that are held within the
networks.

4.2 Old Patterns
We first consider the total number of unique callers and

callees which are often referred to as the partners associated
with every user. This essentially corresponds to the degree of
each node. Then we calculate the total number of calls made
or received by each user, which is represented by the node
weight. We show the full results in Figure 2 for GS1

T1 (the
beginning), GS1

T3 (the middle), and GS1
T5 (the last), because

Figure 3: Partners-Calls distribution of GS1
T1 in loga-

rithmic scales. Black dots are the medians by loga-
rithmic binning. Least square fit slope is 1.24.

GS2
T1 ∼ GS2

T5 and GS3
T1 ∼ GS3

T5 have similar observations.
We also study the correlation between the number of part-

ners and the total number of contacts per user (shown in
Figure 3). It is observed that there is a “fortification effect”
leading to a Snapshot Power Law(SPL) [22]. The more part-
ners an individual has, the superlinearly more calls he makes
and receives. Here, the result of service type S1 in the first
time period GS1

T1 is reported, for that the fortification effect
is very stable and leads to similar results in the rest.

4.3 New Patterns
In this section, we will give the newly discovered findings

of our human communication networks, and discuss the po-
tential ways in which they can be utilized.

4.3.1 Clique-Degree Power-Law
As defined previously, ∀vi ∈ V (G), di is the number of

all the partners that vi has, and C(vi) represents the set of
all the maximal cliques that vi participates in. Is there any
relationship between di and |C(vi)| ? We can imagine that
if a particular user has doubled his partners, it tends to be
easier for him to participate in doubled social circles as well.
This kind of relationship seems to be linear, and sounds
reasonable. However, this is often not the case. For our real
world social networks, the number of social circles actually
over-doubles by following a Clique-Degree Power-Law.

Figure 4 plots the number of partners vs. the number
of maximal cliques averaged over all the nodes with that
many of partners, from T1 to T5. The result is surprising
because for any given node, the clique-participation is super-
linearly related to its degree. In addition, we notice that the
exponent takes values in the range [1.84, 1.88], [2.04, 2.21]
and [1.41, 1.58] for GS1, GS2, and GS3, which seems to be
stable over time.

Observation 1. (Clique-Degree Power-Law (CDPL)).
The number of maximal cliques that a node participates in,
is super-linearly related to its degree. Given di and Cdi

avg,
they follow a power-law :

Cdi
avg ∼ dα

i (1)

where α is the exponent of CDPL, and remains about con-
stant over time.

The direct application of CDPL is to spot outliers. In
Figure 4, all of the detected anomalies are marked by red
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Figure 4: Clique-Degree Power-Law. Number of partners vs. the average number of maximal cliques in
GS1 ∼ GS3 from T1 to T5. All of the exponents are fitted with R2 > 0.95. Notice that CDPL is very stable
over time. The detected outliers are marked by red circles.

y z

(a) Centered with vertex vy (b) Centered with vertex vz

Figure 5: Detected typical outliers. Both vy and
vz (in GS1

T3 and GS1
T5 from Figure 4) have too many

unrelated partners, resulting in a star-like subgraph.

circles. We can see that these points present a clear pattern
which does not conform to the established normal behavior.
In other words, for these users the actual number of the
maximal cliques that they belong to is significantly distant
from the one that they should have according the number
of their friends.

It is also interesting to notice that some outliers are sta-
ble and persistent, such as node vx and vy from GS1

T1 to GS1
T3,

while others are more casual and bursty, such as node vz in
GS1

T5, and the circled outliers in GS3
T5. Figure 5 shows the ego-

centric subgraphs centered with node vy and vz, which are
composed of the connections among their neighbors in T5.
Clearly, for node vy, although it has a large number of part-
ners, it only belongs to few maximal cliques on the left upper
part of Figure 5(a). As to node vz, almost no connections
exist among its partners. Because any automatic customer
service id is excluded from our communication networks,

the anomalous behavior of vy and vz makes them more like
the tele-marketers. In fact, there are more outliers in the
last time period T5 than the others, especially in the net-
work GS3

T5 of the third communication service. We guess it is
probably because there is actually a big holiday in T5, and
the third communication service is the cheapest and most
widely used application by people.

4.3.2 Clique Participation Law
Based on the discovered maximal cliques, we are able to

study how people get involved into them. Figure 6 shows the
distribution of the number of maximal cliques that people
actually participate in. That is, in graph G, it plots the
correlation between the number of maximal cliques (x-axis)
and the pdf of nodes (y-axis) that get involved in that many
of maximal cliques. We observe that there exists a power-law
followed by this kind of relationship, which is called Clique
Participation Law.

Observation 2. (Clique Participation Law (CPL)).
For a given number of maximal cliques, say nclique, and the
set Vclique = {vi|vi ∈ V (G), |C(vi)| = nclique}, we have

nclique ∼ |Vclique|cp (2)

where cp is the clique participation exponent of CPL, and
keeps about constant over time.

According to the above discussion, for most people in real
world social networks, they are often involved in a small
number of maximal cliques (or social circles). Only a few
of them are really ’social butterflies’ that can actively span
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Figure 6: Clique-Participation Law. PDF of #Max-
imal Cliques in GS1

T1 ∼ GS3
T1. The rest graphs behave

similarly.

T1 T2 T3 T4 T5

GS1 -1.78 -1.74 -1.76 -1.70 -1.68

GS2 -1.63 -1.56 -1.52 -1.56 -1.54

GS3 -3.21 -3.50 -3.46 -3.50 -3.01

Table 1: Power-Law exponents of CPL in GS1 ∼ GS3

from T1 to T5. Notice the stability.

many social circles simultaneously. In Figure 6, we report
the results from GS1 ∼ GS3 only in T1 for brevity, because
in Table 1 we observe that CPL is rather stable over time,
leading to similar plots in the rest.

Actually, the CPL pattern could be potentially applied
to help the operators to make better designed family plans.
Because we have a model of the distribution of user behav-
ior to form close-knit groups, we can propose better pricing
strategies that charge users differently according to the size
of their social circles. For example, in most cases people only
belong to one or two cliques, which may be formed by their
families or best friends. We can design specific billing plans
which are favorable to the communications among members
of the same clique who are also the customers of the same
operator. Even if our friends are the customers of other op-
erators, we may still like to invite them to join us, because
we know that it will be good for all of us. As a result, this
could implicitly improve the loyalty of the current users, and
may further help to increase the rate at which new customers
sign up the plans. Moreover, we can also reward a few loyal
users who span multiple social groups, because they might
help to achieve a quick market promotion by introducing
new products and services to their friends.

4.3.3 Triangle Weight Law
According to the clique definition, each node in a clique

has connections with all the other nodes. Although it is
very intuitive that all these nodes are equivalent in topology,
will this also mean that they could have equally close rela-
tionships? In our communication networks, the edge weight
wij gives the total number of contact times between i and
j, which is an important indicator to show how intimately
they could relate to each other. Since that triangle is the
base case of a clique, given any triangle {i, j, k}, will wij ,
wik, and wjk hold approximately equal values because of
the structure equivalence between i, j, and k? Although
this intuitive conjecture seems to make sense, we have made
very unexpected and striking discoveries in the real social
networks, which are described as follows.

Observation 3. (Triangle Weight Law (TWL)).
For any triangle, let MaxWeight, MidWeight, and MinWeight
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Figure 7: Triangle Weight Law. Minimum, medium,
and maximum weights in all 3 pairs are plotted in
logarithmic scales. Least square fits all have R2 >
0.95 in GS1

T1 ∼ GS3
T1.
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Figure 8: Persistence of Triangle Weight Law. Ex-
ponent α, β, and γ (red, blue, green) in GS1 ∼ GS3

remain about constant from T1 to T5.

denote the maximum, medium, and the minimum edge weight
respectively. In all our graphs, they follow three power-laws:

MaxWeight ∼ MidWeightα (3)

MaxWeight ∼ MinWeightβ (4)

MidWeight ∼ MinWeightγ (5)

where α, β, and γ are the power-law exponents which remain
constant in weighted time-evolving social networks.

As a result, for the given triangle {i, j, k}, rather than be-
ing approximately equal, wij , wik and wjk are significantly
different from each other. Figure 7 gives the results from
the networks GS1 ∼ GS3 in the same time period T1. To
achieve a good fit, we bucketize the x-axis with logarithmic
binning [27], and for each bin, we compute the average value
of y. Moreover, Figure 8 shows the three exponents of TWL
in GS1 ∼ GS3 from T1 to T5. Notice that α, β, and γ of
these graphs take values in the range [1.3,1.6], [1.7,2.2], and
[1.2,1.4], which seem persistent and stable.



In practical situations, due to missing data we can only
have partial network information to analyze. For example,
in Figure 9, given the weighted egocentric subgraph that
link e23 belongs to, what can we say about the missing w23?
Where the link prediction [10] tries to predict between which
unconnected nodes a link will form next, our problem here
concerns how to estimate the value of an edge weight, be-
cause we already know there is a link between node 2 and 3.
We formulate this problem as the weight prediction prob-
lem, which not only is important to fill and complete the
missing values, but also is useful for discovering anomalous
links, because if the actual value of w23 is significantly dif-
ferent from the predicted value, it would be highly unusual.

Based on the above discussion, we can find that TWL
can help to solve the weight prediction problem due to its
persistence and generality. Formally, given eij ∈ E(G), let
4 denote the set of all the edges (excluding eij itself) of
the triangles that eij belongs to. ∀ek ∈ 4, w(ek) denotes
the weight of ek. The minimum and maximum values of
w(ek) are represented as 4min and 4max accordingly. On
one hand, if wij < 4min or wij > 4max, the numerical
relationship between wij and the weights on the other two
edges in any given triangle is determined, so we can use
either equation (4) and (5) or (3) and (4) to estimate wij

directly. On the other, if wij ∈ [4min,4max], wij might
be the minimum in one triangle, while might be the maxi-
mum in another triangle. Therefore, for ∀ek ∈ 4, we define
φ(eij ,ek)(x) to represent one of the three equations (3) ∼ (5)
based on the particular numerical relationship that eij and
ek could hold. The return value of φ(eij ,ek)(x) is the es-
timated weight for edge ek given the possible value x of
wij . Here, we assume that all edge weights are positive in-
tegers. Let wmin be the minimum estimated value of wij

when wij < 4min, and wmax be the maximum estimated
value of wij when wij > 4max. Then the optimal value of
wij is given as:

ŵij = argmin
X

ek∈4
(w(ek)− φ(eij ,ek)(x)) (6)

where x ∈ [wmin, wmax]. We evaluate this approach in
GS1 ∼ GS3 by comparing ŵij with wij for each edge in
T1, T3 and T5. Due to the persistence of TWL, we set
α = 1.5, β = 2.2, and γ = 1.2 for GS1; α = 1.3, β = 1.7, and
γ = 1.4 for GS2; α = 1.4, β = 2.1, and γ = 1.3 for GS3. Let
ε = |ŵij − wij | denote the prediction error. The the aver-
age prediction accuracy of ε = 0 (the exact prediction) and
ε = 1 is around 0.21 and 0.32 accordingly. One problem of
this simple method is that it can not predict wij , if the edge
eij does not belong to any triangle. To solve this problem,
and further improve the prediction accuracy is an area of
future work.

5. UTILITY-DRIVEN GENERATIVE MODEL
The next goal is to design a generative model that mim-

ics people’s natural communication behaviors. The guiding
principle is that such a model should be utility driven, as op-
posed to earlier models (preferential attachment [5], forest-
fire [21], butterfly [22], etc.) which are mainly randomness-
guided generators.

On one hand, every communication, such as phone-call,
SMS, and e-mail, has a cost in terms of money, time, and
equipment. On the other hand, it has a benefit, otherwise
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Figure 9: Weight Prediction Problem. What can we
say about w23 ?

humans would not do it. The benefits can be psychologi-
cal and emotional (talking to friends makes us happy), or
monetary (stock tip), or desirable in other ways. For ease of
presentation, we refer to the benefit as if it is measured by
emotional dollars. The point of this thought experiment is
to set up a utility-driven model for the social contacts of hu-
mans, which should be more realistic and more informative
than the ones using randomness.

Therefore, we assume that people are rational agents, and
we design our generator to guide the behavior of each agent
according to a well-defined utility function. Ideally, the fun-
damental macro-phenomena of a social network should then
emerge from the simple local behavior of each agent/human.

5.1 Model Description
Following the above discussion, we now present our utility-

driven model PaC as a Pay and Call game. Assume a set-
ting where a set A of n distinct agents create links to one an-
other through phone calls. In every round of the game, each
agent’s strategy is to choose among other peers to whom he
will make calls and build links. Links are undirected. Once
agent ai ∈ A calls aj ∈ A, there will be a link between them.
The total number of phone-calls that ai and aj give to each
other is treated as the weight on the undirected link between
them. The PaC model essentially includes the following four
ingredients:

• It adopts the agent-based modeling approach. Each
agent has a friendliness value, an exponential lifetime,
a certain amount of capital, and the expected payoffs
from talking to strangers.

• The goal of each agent is to invest his limited capital
into phone-calls and maximize the potential payoffs
from each conversation.

• The per-minute gain of a conversation will be gradually
saturated, and finally both of the callers and callees will
lose interest, and stop the conversation.

• Each agent ai can ask his partners for recommenda-
tions. Every partner recommends the profitable agents
from his own partners, so ai benefits from talking to
the most profitable agent within the recommendations.

Friendliness and Exponential Lifetime . Each agent has
a friendliness value Fi ∈ (0, 1) to show his personality. Fi

approaching to 1 means the agent is very open and friendly,
and Fi close to 0 means he is very shy and introverted. ai

has a probability Pl, uniformly chosen from 0 to 1, to stay in
the game, and has the probability 1− Pl to leave the game.
Once an old agent leaves, all his links will be removed, and
a new agent replaces his position with the friendliness and
Pl initialized to new values.



Utility-driven Phone-Calls and Saturation . An agent’s
payoffs are the difference between the benefits and costs.
The benefits are defined based on the following consider-
ations. Two open agents usually can benefit emotionally
from a happy conversation. When an open agent meets a
shy agent, they may benefit less from their conversation.
Finally, two shy agents might gain little in the end. In
addition, after two agents have been talking for a while,
they may gradually lose interest, and gain less emotionally
as time goes by. For agent ai and aj , they can achievep

Fi × Fj ×αm−1 emotional dollars per minute from a con-
versation, where α ∈ (0, 1) is called the saturation factor
to represent the loss of interest, and m is the number of
minutes for which they have been talking.

For an m-minutes long conversation, the total benefits are
defined as

benefits =
p

Fi × Fj ×
X

(1 + α + α2 + ... + αm−1)

=
p

Fi × Fj × 1− αm

1− α
(7)

The costs are the expenses of phone-calls, which include Cini

and Cpm. Cini is the cost to initiate a phone-call, and Cpm

is the per-minute fee. The total costs for an m-minutes call
will be Cini + m×Cpm, so our utility function is defined as

payoffs = benefits− Cini −m× Cpm (8)

and each agent starts and maintains a conversation until the
payoffs by equation 8 reach the maximum value or the agent
has used all his money.

Expected Payoffs on Strangers . At first, each agent
is given an initial capital which is enough to make one call
only. Since none of the agents have ever talked before, for
agent ai, he first uniformly calls a stranger aj , and keeps the
conversation until either the payoffs by equation 8 begin to
decrease or he spends all his money in the call (ai.capital <=
0). When the call is finished, ai and aj will achieve the
payoffs Pj from the conversation. A link is built between ai

and aj with weight 1, and ai will remember the payoffs Pj

earned by talking to aj . Because aj was first a stranger to
ai before they met, ai also updates his expected payoffs from
talking to strangers as :

Sexp =

P
Pi

1 + S
(9)

where S is the total number of times talking to strangers,
and Pi is the payoffs achieved at each time. Sexp is initialized
to 0 in the beginning. In each round of the game, agent ai

is only allowed to call aj for one time. If ai still has some
money left (note that the payoffs earned in the current round
can only be used in the next round), he will continue to
interact with other strangers.

Recommendations: Once agent ai has some partners, he
will first prioritize his partners according to the remembered
payoffs, and talk to them respectively. If the payoffs of the
currently chosen partner is less than ai’s expected payoffs
from strangers (Sexp ≥ 0), ai will stop talking to partners
and choose to call strangers again. He first asks his partners
for recommendations. Every partner will tell ai how much
money he actually earned by talking to his own partners
last time. ai can then pick the most profitable agent out of
the partners of his partners. If all the recommended agents
are already his partners, ai will uniformly choose a stranger
from the rest.

In summary, the PaC model is formulated in the pseudocode
of algorithm 1.

Algorithm 1: PaC Model

Input: Cini, Cpm, α

foreach ai ∈ A do1
if ai stays with probability ai.Pl and2
ai.capital ≥ Cini + Cpm then

if N(ai) = ∅ then3
Talk2Strangers(ai)4

else5
Talk2Partners(ai)6

if ai quits with probability 1− ai.Pl then7
Replace ai with a newly born agent8

Procedure Talk2Strangers(ai)

Input: current agent ai

total ← 01
if N(ai) 6= ∅ and ai finds the most profitable agent he never2
talks to from the recommendations then

aj ← the most profitable agent3
else4

aj ←GetRandom(A)5

while ai.capital ≥ Cini + Cpm and ai.Sexp ≥ 0 do6
maximize payoffs with constraint ai.capital ≥ 0 by7
equation 8
add aj to N(ai), add ai to N(aj)8
aj .capital ← aj .capital + payoffs9
total ← total + payoffs10
update ai.Sexp and aj .Sexp by equation 911

ai.capital ← ai.capital + total12

Procedure Talk2Partners(ai)

Input: current agent ai

total ← 01
prioritize N(ai) according to the descending order of the2
remembered payoffs
for k ← 1 to |N(ai)| do3

Pk ← ai’s remembered payoffs from ak4
if Pk ≥ ai.Sexp then5

maximize payoffs with constraint ai.capital ≥ 0 by6
equation 8
increase the weight on the link between ai and ak by 17
aj .capital ← aj .capital + payoffs8
total ← total + payoffs9

else10
Talk2Strangers(ai)11
break12

if ai.capital ≤ 0 then break13

ai.capital ← ai.capital + total14

5.2 Model Validation
How accurate is our model? Our goal here is to show

that our model is able to generate degree, weight and clique
distributions that mimic a real graph like our communica-
tion networks. Notice that we only want to show qualitative
match of the properties. Exact fitting is outside the scope
of this paper. We decided to test our model with respect
to all the usual patterns, and specifically the degree distri-
bution, weight distribution, as well as the snapshot power
law. We also want to qualitatively check against our newly
discovered clique-related patterns, the CDPL, CPL, and the
TWL. We simulated the model 35 times for 100,000 nodes,
with Cini = 0.1, Cpm = 0.4 and α = 0.9. Figure 10 shows
the results of these checkpoints. The top row is the ac-
tual graph GS1

T1, and the bottom row is a synthetic graph,
generated by our PaC model. Figure 10(a)∼(c) show the
old patterns, and Figure 10(d)∼(f) illustrate the new ones.
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Figure 10: Qualitative comparison between the real graph (top row) and our synthetic graph (bottom row).
PaC gives skewed distributions like the real ones.
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Figure 11: PDF of Connected-Component Size. The
sizes of the connected-components in GS1

T1 (the left)
and in the synthetic graph (the right) follow the
power-law distribution.

Moreover, in Figure 11, we see that except for the giant con-
nected component which is an isolated point distant from the
rest, the size distribution of the connected-components con-
forms to a power-law. The exponents take values within the
range observed in real world networks with a least-square
fit of R2 > 0.95. In all cases, notice that PaC gives skewed
distributions that are remarkably close to the real ones.

5.3 Model Analysis
From earlier research [24][31], we understand how heavy-

tailed distributions such as power-law, lognormal and DPLN
could arise for the degree distribution and the node weight
distribution. According to Mitzenmacher [24], lognormal
distributions can be naturally generated by multiplicative
processes. For a biological example, at each step j, an or-
ganism may grow or shrink by a certain percentage accord-
ing to a random variable Fj . If Xj denotes the current size
of the organism, Xj = FjXj−1 where Fj is independent of
Xj−1. Consider ln Xj = ln X0 +

Pj
k=1 ln Fk if Fk, 1 ≤ k ≤ j,

are independent lognormal distributions, then Xj is always
lognormal. If Fk are not lognormal, but are independent
and identically distributed with finite mean and variance, by
Central Limit Theorem,

Pj
k=1 ln Fk converges to a normal

distribution, and Xj will asymptotically approach a lognor-
mal distribution [24]. If Xj is lower bounded by a minimum
value, then the distribution will become a power-law. If we
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Figure 12: The ratio of partners (left), and calls
(right) between two different snapshots of PaC fol-
low the lognormal distribution. The parabolic line
is fitted in red.

sample the series from X0 to Xj by a geometrically distrib-
uted random time k, we will have a geometric mixture of
lognormal distributions. This will turn out to be a DPLN
distribution with two power-laws at both tails [24].

Following the PowerTrack method in [31], we analyze em-
pirically the generative process of our PaC model by taking
two snapshots GTi and GTj at time step Ti and Tj with
j− i ≥ 1. Among the common agents between GTi and GTj ,

we calculate the ratio
XTj

XTi
, where Xt represents either the

degree or the weight for each node. In Figure 12, the distrib-
utions of the ratio for both of the degree and weight appear
to be parabolic in logarithmic scales. This provides good
evidence that a lognormal multiplicative process is involved
in the temporal evolution of our model. Another important
issue is that we also need to test the independence between
partners and their ratios, and the same for the calls. Here,
the correlation coefficients, which are necessary but not suf-
ficient for independence[31], are very small: -0.02 and -0.04
for partners and calls respectively. Finally, in our model,
for each round of the game, every agent has the probability
Pl to stay or leave the game, which essentially results in a
geometric lifetime. Therefore, although we do not explic-
itly assume any prior distribution about the ratio (the File
Model in [24] explicitly assumes a lognormal distribution for
Fk), the PaC model is still able to mimic the DPLN degree
distribution and the node weight distribution which are iden-



tical with the real social networks. Moreover, for each agent,
asking for recommendation from his neighbors is actually fa-
vorable to forming triangles. In the extreme case, if node vi

is recommended by all his di neighbors in a single round of
the game, vi will participate in at most di(di − 1)/2 trian-
gles with exponent 2. Because triangle is the base case and
could be included in larger maximal cliques, the power-law
exponent for CDPL is usually less than 2.

By comparing with the existing graph generators, we see
that preferential-attachment guided models usually ignore
the weight information, and only generate the giant con-
nected component [22]. The butterfly [22] model can re-
produce all the connected components, however it does not
include the weight either. In contrast, our model is able to
reproduce the networks that have not only the patterns hold-
ing in un-weighted networks, but also the patterns followed
by the weighted networks.

6. CONCLUSION
The main contributions are: (a) we found surprising pat-

terns that cliques follow, like the CDPL and CPL; (b) we ob-
served the weights on the edges of triangles followed power-
laws TWL; (c) the discovered patterns are stable and per-
sistent in several, diverse, real social networks, and finally
(d) we propose the first utility-driven graph generator for
weighted time-evolving networks.

The (anonymized) datasets had over one million records,
spanning several months, and over various (anonymized) ser-
vices. Thanks to our new patterns, we discovered several
outliers. Closer inspection showed that they indeed had very
suspicious behaviors. Further investigation was impossible,
due to privacy issues.

Moreover, our PaC model stands out from the rest, be-
cause (a) it does not use randomness (using a utility function
instead) (b) it only uses local information (c) it still gener-
ates graphs that follow all the old and new patterns. Based
on its utility function of PaC, we can explore what is the
impact of, say, lower prices, on the shape of the network, as
well as several other ’what if’ questions.
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