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Abstract

How do real, weighted graphs change over time? What
patterns, if any, do they obey? Earlier studies focus on un-
weighted graphs, and, with few exceptions, they focus on
static snapshots. Here, we report patterns we discover on
several real, weighted, time-evolving graphs. The reported
patterns can help in detecting anomalies in natural graphs,
in making link prediction and in providing more criteria
for evaluation of synthetic graph generators. We further
propose an intuitive and easy way to construct weighted,
time-evolving graphs. In fact, weprove that our genera-
tor will produce graphs which obey many patterns and laws
observed to date. We also provide empirical evidence to
support our claims.

1 Introduction

Static, unweighted graphs have attracted a lot of inter-
est recently, with several fascinating discoveries. Numerous
generators also try to mimick these patterns. Very recently,
time-evolving graphs have attracted some attention, how-
ever, graphs that are both weighted and dynamic have been
relatively unexplored. Here we focus on weighted graphs -
both static snapshots of them, as well as dynamic properties.

Given a set of edge weights on a graph, a few questions
come to mind. What patterns do the weights obey? Do they
follow a Gaussian distribution, for a given snapshot in time?
How, if at all, is the edge weight related to the popularity of
its adjacent nodes? Which of these static patterns persist
over time?

In this work, we answer all these questions, and we show
that there are some unexpected patterns. In summary, the
contributions are the following: (1) We present several new
patterns for weighted, time-evolving graphs. (2) We give a
simple generative model (RTM, for Recursive Tensor Mul-
tiplication) that generates weighted, time-evolving graphs
that obey all the old and new properties. (3) We prove [1]
thatRTMproduces several desired characteristics.

The most striking patterns we discover here are: (a) the

first eigenvalueλ1,w(t) of theweightedadjacency matrix at
time t, follows a power law with respect to the total num-
ber of edgesE(t) at time t, for several time-ticks. (b) a
similar power law holds for the first eigenvalueλ1(t) of the
0-1 adjacency matrix, with different slope, of course. (c)
for a given time snapshot, the weightwi,j for edge(i, j) is
closely related to the total weightswi andwj of its adjacent
nodesi andj.

The rest of the paper is organized as follows: Section 2
surveys earlier work. Section 3 provides dataset descrip-
tions. Section 4 lists laws and observations. Section 5 gives
details of ourRTM generator. Section 6 presents experi-
mental results. We conclude in Section 7.

2 Related Work

Real-world graph properties: Many impressive pat-
terns including power laws that real-world graphs obey have
been discovered in [12, 3, 8, 10, 17]. Studies on spectral
properties of power-law graphs can found in [9, 13, 16, 18].

Graph generators: Several graph generators have been
proposed in [7, 2, 19, 12, 11]. See [5] for a detailed survey
on graph generators.

3 Data Description

We studied several large real-world weighted graphs de-
scribed in detail in Table 1. In particular,BlogNetcontains
blog-to-blog links, NetworkTraffic records IP-source/IP-
destination pairs, along with the number of packets sent. Bi-
partite networksAuth-Conf, Keyw-Conf, andAuth-Keyware
all from DBLP and have the submission records of authors
to conferences with specified keywords.CampaignOrgis
from the US FEC, a public record of donations between po-
litical candidates and organizations.

For NetworkTraffic and CampaignOrg datasets, the
weights on the edges are actual weights representing num-
ber of packets and donation amounts, respectively. For the
remaining datasets, the edge weights are simply the number
of occurences of the edges. For instance, if authori submits
a paper to conferencej for the first time, the weight ofei,j



Name N , E, time Description
BlogNet 60K, 125K, 80 days Social network of blogs based on citations
NetworkTraffic 21K, 2M, 52 mo. Network traffic: packets sent from IP source to IP destination
AuthorConference 17K, 22K, 25 yr. DBLP Author-to-Conference associations
KeywordConference 10K, 23K, 25 yr. DBLP Keyword-to-Conference associations
AuthorKeyword 27K, 189K, 25 yr. DBLP Author-to-Keyword associations
CampaignOrg 23K, 877K, 28 yr. U.S. electoral campaign donations (available from FEC)

Table 1. Weighted datasets studied in this work.

Symbol Description

G Graph representation of datasets
V Set of nodes for graphG
E Set of edges for graphG
N Number of nodes, or|V |
E Number of edges, or|E|
ei,j Edge between nodei and nodej
wi,j Weight on edgeei,j

wi Weight of nodei (sum of weights of incident edges)
A 0-1 Adjacency matrix of the un-weighted graph
Aw Real-value adjacency matrix of the weighted graph
ai,j Entry in matrixA
λ1 Principal eigenvalue of unweighted graph
λ1,w Principal eigenvalue of weighted graph
A,B, C Tensors used to illustrate recursive tensor product
ai,j,k Entry of a tensor
I Initial tensor inRTMmodel
GA t-graph (time-evolving graph) represented by tensorA

Dt tth slice of final tensorD in RTM
st Total weight ofDt

et Number of edges ofDt

WD Total weight of a tensorD, or
∑

t
st

sD,r Temporal profile ofD at resolutionr
pD,r Normalized temporal profile ofD at resolutionr

Table 2. Table of symbols used in notation.

is set to1. If the same author later submits another paper to
the same conference, the edge weight becomes2.

Throughout this paper we will use the graph representa-
tion of the datasets we study. A weighted graphG = (V , E)
consists of a set of nodesV , connected by a set of undi-
rected, weighted edgesE . No multiple edges between two
nodes are allowed - however, we will account for repeated
edges in edge weights. By nature, none of the datasets we
study contain self-loops.

In a weighted graphG, letei,j be the edge between nodei

and nodej. We shall refer to these two nodes as the‘neigh-
boring nodes’or ‘incident nodes’of edgeei,j . Let wi,j be
the weight on edgeei,j . The total weightwi of nodei is
defined as the sum of weights of all its incident edges, that
is wi =

∑di

k=1 wi,k, wheredi denotes its degree. As we
show later, there is a relation between a given edge weight
wi,j and the weights of its neighboring nodeswi andwj .

A complete list of the symbols used throughout text is
listed in Table 2.

4 Laws and Observations

4.1 LPL: Principal eigenvalue over time

Plotting the largest(principal) eigenvalue of the0-1 ad-
jacency matrixA of our datasets over time, we notice that
the principal eigenvalue grows following a power law with
increasing number of edges. This observation is true es-
pecially after thegelling point. The ‘gelling point’ is de-
fined to be the point at which a giant connected component
(GCC) appears in real-world graphs - after this point, prop-
erties such as densification and shrinking diameter become
increasingly evident. See [12] for details.

Observation 1 (λ1 Power Law (LPL)) In real graphs, the
principal eigenvalueλ1(t) and the number of edgesE(t)
over time follow a power law with exponent less than 0.5,
especially after the ‘gelling point’. That is,

λ1(t) ∝ E(t)α, α ≤ 0.5

We report the power law exponents in Fig. 1. Note that
we fit the given linesafter the gelling point which is shown
by a vertical line for each dataset. Notice that the given
slopes are less than 0.5, with the exception of theCampaig-
nOrgdataset, with slope≈ 0.53. This result is in agreement
with graph theory. See [1] for details.

4.2 LWPL: Weighted principal eigenvalue
over time

Given that unweighted (0-1) graphs follow theλ1 Power
Law, one may ask if there is a corresponding law for
weighted graphs. To this end, we also compute the largest
eigenvalueλ1,w of theweightedadjacency matrixAw. The
entrieswi,j of Aw now represent the actual edge weight be-
tween nodei and j. We notice thatλ1,w increases with
increasing number of edges following a power law with a
higher exponent than that of itsλ1 Power Law. We show
the experimental results in Fig. 2.

Observation 2 (λ1,w Power Law (LWPL)) Weighted real
graphs exhibit a power law for the largest eigenvalue of the
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weighted adjacency matrixλ1,w(t) and the number of edges
E(t) over time. That is,

λ1,w(t) ∝ E(t)β

In our experiments, the exponentβ ranged from0.5 to 1.6.

4.3 EWPL: Edge Weights Power Law

We observe that the weight of a given edge and weights
of its neighboring two nodes are correlated. Our observa-
tion is similar to Newton’s Gravitational Law stating that
the gravitational force between two point masses is propor-
tional to the product of the masses.

Observation 3 (Edge Weights Power Law(EWPL))
Given a real-world graphG, ‘communication’ defined as
the weight of the link between two given nodes has a power
law relation with the weights of the nodes. In particular,
given an edgeei,j with weightwi,j and its two neighbor
nodesi andj with weightswi andwj , respectively,

wi,j ∝

(√

(wi − wi,j) ∗ (wj − wi,j)

)γ

We report corresponding experimental findings in Fig. 3.

5 Generative Recursive Tensor Model (RTM)

How could we have a simple generative model that will
obey all the patterns we know so far, as well as the newly
discovered ones for weighted graphs? Specifically, we
would like the model to exhibit:

1. SUGP: Static Unweighted Graph Properties: (a) small
diameter [19], (b) power-law degree distribution [4, 8].

2. SWGP: Static Weighted Graph Properties: (a) the
Edge Weight Power Paw (EWPL) (Observation 3), (b)
the Snapshot Power Law (SPL) [14].

3. DUGP: Dynamic Unweighted Graph Properties:
(a) the Densification Power Law (DPL) [12], (b)
shrinking diameter [12], (c) theλ1 Power Paw
(LPL)(Observation 1), (d) bursty edge additions [15].

4. DWGP: Dynamic Weighted Graph Properties: (a) the
λ1,w Power Law (LWPL)(Observation 2), (b) bursty
weight additions [14], (c) the Weight Power Law
(WPL) [14].

At the high level, our idea is to use recursion,
in conjunction with tensors (n-dimensional extension
of matrices). Recursion and self-similarity naturally
lead to modular network behavior (“communities-within-
communities”), power laws and bursty traffic. Earlier

work used self-similarity to generate static snapshots of un-
weighted graphs [6].

Here, we show how to build a generator that will match
all of the properties listed. The idea is to use recursion not
only on the adjacency matrix, but also on thetime dimen-
sion. Specifically, we start with a small tensorI that has
3 sides (‘modes’): (a) senders (b) recipients and (c) time.
We call the graph represented by a tensor a ‘t-graph’ that
evolves over time (See Fig. 4(a-b)). Then, we recursively
substitute every cell(i, j, t) of the original tensorI, with
a copy of itself, and multiply it with the valueai,j,t (See
Fig. 4(c) for illustration and Definition 1 for full details).
Thanks to the self-similarity of the construct, we expect the
resulting tensor to have all the properties that we want.

5.1 Description

For the construction, we choose an initial(N × N × τ)
tensorI with nonzero cells(i, j, t) indicating an edge from
nodei to nodej at time tickt. We initialize the cells so that
the initial t-graph(t- for time-evolving)GI represented byI
looks like a miniature real-world graph. See [1] for details
about initialization.

We propose to useRecursive Tensor Multiplicationto
produce a time-evolving graph. Our method extends Kro-
necker product1 of two matrices by adding a third ‘mode’.
Kronecker product of two matrices is defined as follows:
Given two matricesA and B of sizes (N × M) and
(N ′ × M ′), respectively, the Kronecker product ofA and
B, namely matrixC of dimension(N ∗ N ′) × (M ∗ M ′) is
given by

C = A ⊗ B =








a1,1B a1,2B . . . a1,MB
a2,1B a2,2B . . . a2,MB

...
...

. . .
...

aN,1B aN,2B . . . aN,MB








Definition 1 (Recursive Tensor Multiplication (RTM))
Given two tensorsA of size (N × M × τ) and B of
size (N ′ × M ′ × τ ′), Recursive Tensor MultiplicationC
of A and B is obtained by replacing each cellai,j,t of
tensorA with ai,j,t ∗ B. The resulting tensorC is of size
(N ∗ N ′) × (M ∗ M ′) × (τ ∗ τ ′) such that

c((i−1)∗N+i′),((j−1)∗M+j′),((k−1)∗τ+k′) = ai,j,k ∗ bi′,j′,k′ .

An example of the Recursive Tensor Multiplication of a
(3 × 3 × 3) tensor by itself is given in Fig. 4(c).

To generate a growing graph over time, we get the‘Re-
cursive Tensor Multiplication’of the initial (N × N × τ)

1Unfortunately, Kronecker productC of two matricesA andB is also
called Kronecker Tensor multiplication, despiteA, B, C are matrices. To
disambiguate, we use the nameRTMwhereA, B, C are in fact tensors.
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(a) Committee - Candidate (b) Network Traffic (c) Blog Network (d) Author - Conference

Figure 1. Illustration of the LPL. 1st eigenvalue λ1(t) of the 0-1 adjacency matrix A versus number of
edges E(t) over time. The vertical lines indicate the gelling point.

(a) Committee - Candidate (b) Network Traffic (c) Blog Network (d) Author - Conference

Figure 2. Illustration of the LWPL. 1st eigenvalue λ1,w(t) of the weightedadjacency matrix Aw versus
number of edges E(t) over time. The vertical lines indicate the gelling point.
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(a) Committee - Candidate (b) Network Traffic (c) Blog Network (d) Author - Conference

Figure 3. Illustration of the EWPL. Given the weight of a part icular edge in the final snapshot of real
graphs (x-axis), the multiplication of total weights(y-ax is) of the edges incident to two neighboring
nodes follow a power law. A line can be fit to the median values a fter logarithmic binning on the
x-axis. Upper and lower bars indicate 75% and 25% of the data, respectively.
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(a) (4 × 4 × 3) tensor→ t-slices

(b) corresponding t-graph over time (c)RTMof a tensor by itself

Figure 4. (a) An example for the initial tensor I of size (4×4×3). The ‘t-slices’ represent the changes
on the adjacency matrix at every other time step. (b) The corr esponding graph represented by the
tensor in part (a). It changes according to the ‘t-slices’ ov er time. (c) An example (3× 3× 3) tensor I
is given on the left. Recursive tensor product of I by itself, that is, the resulting (32 × 32 × 32) tensor
D = I ©t I is given on the right.

tensorI by itselfk times as:

Ik = D = I ©t I ©t . . . ©t I
︸ ︷︷ ︸

k times

and then we take the final tensorD to represent our data.
The data spansτk number of time ticks withNk nodes.
At every time stept (t = {1, 2, ..., τk}), we get the t-slice
(See Definition 2 below)Dt of D, and for each nonzero
cell ai,j of Dt, we add an edge between nodei and nodej
with weightai,j . If the edge already exists, we increase the
weightwi,j by the same amount.

Definition 2 (t-slice of a tensorT ) Given a tensorT of
size(N × M × τ), t-slice ofT is a matrixTt such that

Tt ≡ T (i, j, t), ∀i, ∀j, 1 ≤ i ≤ N, 1 ≤ j ≤ M

Definition 3 ((Normalized) temporal (t-) profile of T )
Given a tensorT of size (N × M × τ), let st denote
the total weight of its t-slice. Then, the t-profile ofT
is a (1 × τ) vector, such thatsT ,0 ≡ (s1, s2, . . . , sτ ).
Total weightWT of T can be written as

∑τ

t=1 st. Then,
normalized t-profile ofT is a (1 × τ) vector, such that
pT ,0 ≡ ( s1

WT
, s2

WT
, . . . , sτ

WT
).

5.2 Theorems and Proofs

Theorem 1 (Self-similar and Bursty Edge/Weight Additions)
Let edge/weight additions forI with pI,0 be self-similar
and bursty for which the slope of the entropy plot is

slope = H(pI,0) = −

τ∑

i=1

pI,0(i)log2(pI,0(i)),

After k iterations ofRTM, edge/weight arrivals over time
for D are also self-similar and bursty. The slope of the en-
tropy plot overall aggregation levelsr ofD is equal to

slope = H(pD,r) = H(pI,0), ∀r

whereH(pD,r) is the slope of the entropy plot at aggrega-
tion level r. Furthermore, the slope does not change with
the value ofk, that is, burstiness is independent of scale.

Proof See [1].

Theorem 2 (Weight Power Law (WPL)) If the initial
graphGI exhibits the WPL [14] atall time ticks, that is,
number of edgesE(t) and total weightW (t) over time
follow a power law with exponentα, GD shows the same
property at time ticks1, τ1, τ2, . . . , τk with exactly the
same exponentα.

Proof See [1].

6 Experimental Results

As a comparison with real-world data, we give the plots
showing reported laws forBlogNetand the plots our model
generated forN = 10, τ = 2 andk = 3 in Fig.5. In partic-
ular, we show (a) the Densification Power Law (DPL); (b)
the Weight Power Law (WPL); (c) theλ1 Power Law (LPL),
(d) theλ1,w Power Law (LWPL) and finally, (e) the Edge
Weight Power Law (EWPL) from left to right. Note that
characteristics matched byRTM include both those from
previous work as well as additional patterns discovered in
this work. Other desired characteristics such as small and
shrinking diameter, the gelling point, etc. are also matched,
but omitted here for brevity.
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Figure 5. Plots showing related laws that real-world graphs obey for BlogNeton the 1st row and for
our RTMgenerator on the 2nd row.

7 Conclusion

This is one of the few papers that focus on real, weighted,
time-evolving graphs. The contributions are the following:

1. We discovered several patterns that such graphs follow,
like theLPL, and theEWPL.

2. We gave a simple, recursive generator that mimicks a
long list of laws observed on weighted time-evolving
graphs, as well as on unweighted and/or static graphs.

3. We rigorously proved [1] thatRTMproduces many de-
sired characteristics.
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