

Shebuti Rayana

Leman Akoglu*

Computer Science

Introduction

Stony Brook University Computer Science

How do consumers learn about product quality?

Advertisements

Consumer review websites (Yelp, TripAdvisor etc.)

David C. Lynbrook, NY ## 0 friends 19 reviews

★ ★ ★ ★ 3/14/2015

What can say the curry is amazing naan was fresh and soft and delectable. I had tandoori wings it was delicious as well. I love the food and the decor was nice. The service was awesome as well. Chef owner is a kind man gonna be back here for many years to come

Impact of consumer reviews on sales?

+1 star-rating increases revenue by 5-9%

Harvard Study by M. Luca Reviews, Reputation, and Revenue: The Case of Yelp.com

Opinion Spam

Paid/Biased reviewers write fake reviews

unjustly promote / demote products or businesses

Problem

David C. Lynbrook, NY ## 0 friends

🗙 🗙 🗙 ★ 🛧 3/14/2015

What can say the curry is amazing naan was fresh and soft and delectable. I had tandoori wings it was delicious as well. I love the food and the decor was nice. The service was awesome as well. Chef owner is a kind man gonna be back here for many years to come

🗙 🗙 🗙 ★ 🛧 6/2/2015

wow. i feel bad for white people, exc me caucasian who think this is indianf ood. its not. its bad. if you can do it, swing on over to hicksville to taste something real. this is like calling a McRib a serious bbq meal.

Humans only slightly better than chance

Finding Deceptive Opinion Spam by Any Stretch of the Imagination Ott et al. 2011

Goal: a "collective" approach

Stony Brook

University Computer Science

Overview

Main contributions:

SpEagle : a Collective approach to opinion spam

- is unsupervised
- can easily leverage labels (SpEagle⁺)
- improves detection performance
- Computationally light version : SpLite
 - significant speed-up

Related Work

	Review Network	Review Text	Review Behavior	Supervision
Ott'2011		1		supervised
Mukherjee' 2013		√	✓	supervised
Jindal'2008			✓	supervised
Co-training [Li'2011]			✓	semi-supervised
Wang'2011	1		✓	unsupervised
FraudEagle	✓			unsupervised
SpEagle	1	1	1	unsupervised
SpEagle ⁺	✓	1	1	semi-supervised

Opinion Spam Detection: Problem

- A network classification problem
- Given
 - User-Review-Product network (tri-partite)
 - Features extracted from metadata (i.e. text, behavior)
 - for users, reviews, and products
- Classify network objects into type-specific classes
 - Users ('benign' vs. 'spammer')
 - Products ('non-target' vs. 'target')
 - Reviews ('genuine' vs. 'fake')

Proposed Approach: SpEagle

Stony Brook

University

Proposed Approach: SpEagle⁺

Collective Opinion Spam Detection

Stony Brook

University Computer Science

Stony Brook University Computer Science

SpEagle

- A collective classification approach (unsupervised)
 - Objective function utilizes pairwise Markov Random Fields

SpEagle

prior

- A collective classification approach (unsupervised)
 - Objective function utilizes pairwise Markov Random Fields
 - Inference problem (NP-hard)
- Loopy Belief Propagation (LBP)

SpEagle

prior

- A collective classification approach (unsupervised)
 - Objective function utilizes pairwise Markov Random Fields
 - Inference problem (NP-hard)
- Loopy Belief Propagation (LBP)

Collective Opinion Spam Detection

Stony Brook

University

Priors

Review Text

Feature Extraction from Metadata

	User Features	Product Features	Review Features
Behavioral			
lext	 review length (#words) avg content similarity max content similarity 	 review length average content similarity maximum content similarity 	 ratio subjective/objective description length ratio of exclamation sent. freq. of similar reviews % capital letters review length ratio 1st person pronoun

Feature Extraction from Metadata

	User Features	Product Features	Review Features
Behavioral	 maximum #reviews/day ratio of +ve/-ve reviews avg/weighted rating deviation rating deviation entropy temporal gaps entropy burstiness of reviews 	 maximum #reviews/day ratio of +ve/-ve reviews avg/weighted rating deviation rating deviation entropy temporal gaps entropy 	 rank order of reviews absolute/thresholded rating deviation extremity of rating early time frame singleton review
Text	 review length (#words) avg content similarity max content similarity 	 review length avg content similarity max content similarity 	 ratio subjective/objective description length ratio of exclamation sent. freq. of similar reviews % capital letters review length ratio 1st person pronoun

Feature Extraction from Metadata

Feature Analysis

Collective Opinion Spam Detection

Spam Score & Prior Computation

Q: How to handle features with different scales?A: Cumulative distribution:

• For each feature l, $1 \le l \le F$ and its corresponding value x_{li} for node i

 $f(x_{li}) = \begin{cases} 1 - P(X_l \le x_{li}), & \text{if high is suspicious } (H) \\ P(X_l \le x_{li}), & \text{otherwise } (L) \end{cases}$

Combine F values for each node i:

$$S_i = 1 - \sqrt{\frac{\sum_{l=1}^{F} f(x_{li})^2}{F}}$$

Priors: $\phi_i \leftarrow \{1 - S_i, S_i\}$

SpEagle

prior

- A collective classification approach (unsupervised)
 - Objective function utilizes pairwise Markov Random Fields
 - Inference problem (NP-hard)
- Loopy Belief Propagation (LBP)

Edge Potentials

	User ($\psi^{t=`write}$)	$ (\psi^{t='belong'}) $	Product
Review	benign	spammer	non-target	target
genuine	1	0	$1-\epsilon$	ϵ
fake	0	1	ϵ	$1-\epsilon$

Classification

Beliefs as class probabilities:

- Prob_i(spammer) = b_i(y_i : spammer)
- Prob_k(fake) = b_k(y_k : fake)

SpEagle⁺: Leveraging Labels

- SpEagle can work semi-supervised
 - Can incorporate labels seamlessly
 - Can use user, review, and/or product labels
- For labeled nodes, priors are set to:
 - $\varphi \leftarrow \{\epsilon, 1 \epsilon\}$ for spam category
 - (i.e., fake, spammer, or target)
 - $\varphi \leftarrow \{1 \epsilon, \epsilon\}$ for non-spam

category

Data Sets

- 3 Yelp datasets¹: recommended vs. non-recommended
 - YelpChi –hotel and restaurant reviews from Chicago
 - YelpNYC restaurant reviews from New York City
 - YelpZip –restaurants reviews from zipcodes in NJ, VT, CT, PA

Dataset	#Reviews	#Users	#Products
	(filtered %)	$(\text{spammer }\%)^2$	(rest.&hotel)
YelpChi	67,395~(13.23%)	38,063~(20.33%)	201
YelpNYC	359,052 (10.27%)	160,225 (17.79%)	923
YelpZip	608,598 (13.22%)	260,277~(23.91%)	$5,\!044$

¹ Datasets are made available to the community

² A spammer has at least one filtered review

Labeling users with >0 filtered reviews as spammers

Avg(max(frac_filtered, frac_nonfiltered))

Stony Brook University

Evaluation Metrics

- Area Under Curve (AUC)
 - for ROC curve (TPR vs. FPR)
- Average Precision (AP)
 - AUC for Precision-Recall curve
- Precision@k : ratio of spam in top k
- NDCG@k : weighted scoring which favors top items $NDCG@k = \frac{DCG@k}{IDCG@k}$ for $DCG@k = \sum_{i=1}^{k} \frac{2^{l_i} - 1}{\log_2(i+1)}$

Experiment Results

SpEagle superior to existing methods

			User F	anking		Review Ranking						
	AP			AUC			AP			AUC		
	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip
Random	0.2024	0.1782	0.2392	0.5000	0.5000	0.5000	0.1327	0.1028	0.1321	0.5000	0.5000	0.5000
FRAUDEAGLE	0.2537	0.2233	0.3091	0.6124	0.6062	0.6175	0.1067	0.1122	0.1524	0.3735	0.5063	0.5326
WANG ET AL.	0.2659	0.2381	0.3306	0.6167	0.6207	0.6554	0.1518	0.1255	0.1803	0.5062	0.5415	0.5982
Prior	0.2157	0.1826	0.2550	0.5294	0.5081	0.5269	0.2241	0.1789	0.2352	0.6707	0.6705	0.6838
SpEagle	0.3393	0.2680	0.3616	0.6905	0.6575	0.6710	0.3236	0.2460	0.3319	0.7887	0.7695	0.7942
$SPEAGLE^+(1\%)$	0.3967	0.3480	0.4245	0.7078	0.6828	0.6907	0.3352	0.2757	0.3545	0.7951	0.7829	0.8040
$SPLITE^+$ (1%)	0.3777	0.3331	0.4218	0.6744	0.6542	0.6784	0.3124	0.2550	0.3448	0.7693	0.7631	0.7923

Different priors: User & Review priors most informative

			User R	anking		Review Ranking						
	AP			AUC				\mathbf{AP}		AUC		
	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip
Random	0.2024	0.1782	0.2392	0.5000	0.5000	0.5000	0.1327	0.1028	0.1321	0.5000	0.5000	0.5000
SpEagle (U)	0.3197	0.2624	0.2808	0.6767	0.6483	0.6183	0.3043	0.2400	0.1427	0.7783	0.7629	0.5940
SpEagle (P)	0.1550	0.1357	0.1814	0.3905	0.3930	0.3801	0.0755	0.0640	0.0806	0.1643	0.2536	0.2277
SpEagle (R)	0.3226	0.2575	0.3449	0.6771	0.6477	0.6562	0.3098	0.2378	0.3180	0.7820	0.7656	0.7884
SPEAGLE (UR)	0.3398	0.2680	0.3615	0.6905	0.6575	0.6709	0.3241	0.2460	0.3320	0.7887	0.7695	0.7942
SPEAGLE (URP)	0.3393	0.2680	0.3616	0.6905	0.6575	0.6710	0.3236	0.2460	0.3319	0.7887	0.7695	0.7942

NDCG@k : YelpChi

Labels improve performance significantly

NDCG@k : YelpNYC

Labels improve performance significantly

NDCG@k : YelpZip

Labels improve performance significantly

Stony Brook University

SpLite: Experimental Results

			User F	anking		Review Ranking						
	AP			AUC			AP			AUC		
	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip
Random	0.2024	0.1782	0.2392	0.5000	0.5000	0.5000	0.1327	0.1028	0.1321	0.5000	0.5000	0.5000
FRAUDEAGLE	0.2537	0.2233	0.3091	0.6124	0.6062	0.6175	0.1067	0.1122	0.1524	0.3735	0.5063	0.5326
WANG ET AL.	0.2659	0.2381	0.3306	0.6167	0.6207	0.6554	0.1518	0.1255	0.1803	0.5062	0.5415	0.5982
Prior	0.2157	0.1826	0.2550	0.5294	0.5081	0.5269	0.2241	0.1789	0.2352	0.6707	0.6705	0.6838
SpEagle	0.3393	0.2680	0.3616	0.6905	0.6575	0.6710	0.3236	0.2460	0.3319	0.7887	0.7695	0.7942
$SPEAGLE^+(1\%)$	0.3967	0.3480	0.4245	0.7078	0.6828	0.6907	0.3352	0.2757	0.3545	0.7951	0.7829	0.8040
$SPLITE^+$ (1%)	0.3777	0.3331	0.4218	0.6744	0.6542	0.6784	0.3124	0.2550	0.3448	0.7693	0.7631	0.7923

SpEagle⁺ vs SpLite⁺ perform comparably

Table 8: NDCG@k performance comparison of SPEAGLE vs. SPLITE (with 1% supervision on all datasets)

			User F	lanking			Review Ranking							
	YelpChi YelpNYC		YelpZip		YelpChi		Yel	pNYC	YelpZip					
k	SP'LE	SpLite	Sp'le	SpLite	Sp'le	SpLite	Sp'le	SpLite	Sp'le	SpLite	SP'LE	SpLite		
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9354	0.9334	0.9694	0.9651	0.9219	0.9377		
200	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.8469	0.8007	0.9665	0.9595	0.9200	0.9379		
300	1.0000	0.9995	1.0000	1.0000	0.9997	1.0000	0.7373	0.6986	0.9597	0.9584	0.9216	0.9377		
400	0.9645	0.9589	1.0000	1.0000	0.9998	1.0000	0.6682	0.6397	0.9615	0.9571	0.9248	0.9360		
500	0.8841	0.8677	1.0000	1.0000	0.9998	1.0000	0.6255	0.6103	0.9610	0.9529	0.9234	0.9276		
600	0.8205	0.8107	1.0000	1.0000	0.9998	1.0000	0.6089	0.5740	0.9620	0.9432	0.9236	0.9121		
700	0.7731	0.7650	1.0000	1.0000	0.9999	1.0000	0.5864	0.5556	0.9552	0.8925	0.9240	0.9021		
800	0.7416	0.7279	1.0000	1.0000	0.9999	1.0000	0.5587	0.5317	0.9179	0.8351	0.9199	0.8977		
900	0.7157	0.6980	1.0000	1.0000	0.9999	1.0000	0.5458	0.5279	0.8775	0.7923	0.9138	0.8899		
1000	0.6803	0.6670	1.0000	1.0000	0.9999	1.0000	0.5361	0.5218	0.8463	0.7577	0.9052	0.8810		

Running Time & Scalability

SpLite⁺ is orders of magnitude faster than SpEagle⁺

Collective Opinion Spam Detection

Summary

Main contributions:

SpEagle : a Collective approach to opinion spam

- is unsupervised
- can easily leverage labels (SpEagle⁺)
- improves detection performance
- Computationally light version : SpLite (SpLite⁺)
 - significant speed-up

Thank You!

Code and Data available:

http://shebuti.com/collective-opinion-spam-detection/ srayana@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~datalab/

Collective Opinion Spam Detection