
Rayana & Akoglu 

	  Shebu'	  Rayana	   	  	  	  Leman	  Akoglu*	  
	  
	  
	  
	  

Metadata	  



Rayana & Akoglu 2 

¡  How	  do	  consumers	  learn	  about	  product	  quality?	  
§  Adver'sements	  

§  Consumer	  review	  websites	  (Yelp,	  TripAdvisor	  etc.)	  
	  
	  

¡  Impact	  of	  consumer	  reviews	  on	  sales?	  

Collective Opinion Spam Detection 

+1	  star-‐ra'ng	  increases	  
revenue	  by	  5-‐9%	  	  	  
	  	  
Harvard	  Study	  by	  M.	  Luca	  	  
Reviews,	  Reputa'on,	  andRevenue:	  The	  Case	  ofYelp.com	  



Rayana & Akoglu 3 

¡  Paid/Biased	  reviewers	  write	  fake	  reviews	  
§  unjustly	  promote	  /	  demote	  products	  or	  businesses	  

Collective Opinion Spam Detection 

Problem	   ?	  

Humans	  only	  slightly	  beUer	  than	  chance	  
Finding	  Decep've	  Opinion	  Spam	  by	  Any	  Stretch	  of	  the	  Imagina'on	  OU	  et	  al.	  2011	  	  



Rayana & Akoglu 4 Collective Opinion Spam Detection 

O
nl
in
e	  
Re

vi
ew

	  S
ys
te
m
	  

Review	  network	  

Meta	  Data	  

spammer	  

target	  product	  

fake	  review	  

Collective Opinion Spam Detection:
Bridging Review Networks and Metadata

Shebuti Rayana

Stony Brook University

Department of Computer Science

srayana@cs.stonybrook.edu

Leman Akoglu

Stony Brook University

Department of Computer Science

leman@cs.stonybrook.edu

ABSTRACT
Online reviews capture the testimonials of “real” people and
help shape the decisions of other consumers. Due to the
financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
lessly integrate semi-supervision, i.e., a (small) set of labels
if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.

1. INTRODUCTION
Online product and business reviews are increasingly valu-

able sources for consumers to make decisions on what to pur-
chase, where to eat, which care provider to see, etc. They
are powerful since they reflect testimonials of “real” peo-
ple, unlike e.g., advertisements. Financial incentives associ-
ated with reviews, however, have created a market of (often
paid) users to fabricate fake reviews to either unjustly hype
(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
growth [16], while one-third of all consumer reviews on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 11 - 14, 2015, Sydney, NSW, Australia
Copyright 2015 ACM. ISBN 978-1-4503-3664-2/15/08...$15.00
DOI: http://dx.doi.org/10.1145/2783258.2783370

Review  Text Behavioral  Data

M
et
a  
Da

ta
Re

vi
ew

  N
et
wo

rk
La
be
ls

... ...

GREAT  place  to  eat  at!!!!!  The  

service  is  good  but  its  a  little  to  

LOUD  in  there  as  its  attached  

to  the  mall  so  I  would  think  it  

would  have  been  a  little  less  

noisy,  the  wait  was  way  TOO  

LONG  but  that’s  what  you  get  

on  a  Friday  night.  The  food  was  

a  little  BLAND!!!!!  :(        

...

...

...

...

...

Ranklists

p(spammer)

p(fake)

p(target)

1 00.5

Fake Genuine
If  any?

x%

S  
p  
E  
a  
g  
l  e

...

Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.

Collective Opinion Spam Detection:
Bridging Review Networks and Metadata

Shebuti Rayana

Stony Brook University

Department of Computer Science

srayana@cs.stonybrook.edu

Leman Akoglu

Stony Brook University

Department of Computer Science

leman@cs.stonybrook.edu

ABSTRACT
Online reviews capture the testimonials of “real” people and
help shape the decisions of other consumers. Due to the
financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
lessly integrate semi-supervision, i.e., a (small) set of labels
if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.

1. INTRODUCTION
Online product and business reviews are increasingly valu-

able sources for consumers to make decisions on what to pur-
chase, where to eat, which care provider to see, etc. They
are powerful since they reflect testimonials of “real” peo-
ple, unlike e.g., advertisements. Financial incentives associ-
ated with reviews, however, have created a market of (often
paid) users to fabricate fake reviews to either unjustly hype
(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
growth [16], while one-third of all consumer reviews on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 11 - 14, 2015, Sydney, NSW, Australia
Copyright 2015 ACM. ISBN 978-1-4503-3664-2/15/08...$15.00
DOI: http://dx.doi.org/10.1145/2783258.2783370

Review  Text Behavioral  Data

M
et
a  
Da

ta
Re

vi
ew

  N
et
wo

rk
La
be
ls

... ...

GREAT  place  to  eat  at!!!!!  The  

service  is  good  but  its  a  little  to  

LOUD  in  there  as  its  attached  

to  the  mall  so  I  would  think  it  

would  have  been  a  little  less  

noisy,  the  wait  was  way  TOO  

LONG  but  that’s  what  you  get  

on  a  Friday  night.  The  food  was  

a  little  BLAND!!!!!  :(        

...

...

...

...

...

Ranklists

p(spammer)

p(fake)

p(target)

1 00.5

Fake Genuine
If  any?

x%

S  
p  
E  
a  
g  
l  e

...

Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.

Collective Opinion Spam Detection:
Bridging Review Networks and Metadata

Shebuti Rayana

Stony Brook University

Department of Computer Science

srayana@cs.stonybrook.edu

Leman Akoglu

Stony Brook University

Department of Computer Science

leman@cs.stonybrook.edu

ABSTRACT
Online reviews capture the testimonials of “real” people and
help shape the decisions of other consumers. Due to the
financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
lessly integrate semi-supervision, i.e., a (small) set of labels
if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.

1. INTRODUCTION
Online product and business reviews are increasingly valu-

able sources for consumers to make decisions on what to pur-
chase, where to eat, which care provider to see, etc. They
are powerful since they reflect testimonials of “real” peo-
ple, unlike e.g., advertisements. Financial incentives associ-
ated with reviews, however, have created a market of (often
paid) users to fabricate fake reviews to either unjustly hype
(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
growth [16], while one-third of all consumer reviews on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 11 - 14, 2015, Sydney, NSW, Australia
Copyright 2015 ACM. ISBN 978-1-4503-3664-2/15/08...$15.00
DOI: http://dx.doi.org/10.1145/2783258.2783370

Review  Text Behavioral  Data

M
et
a  
Da

ta
Re

vi
ew

  N
et
w
or
k

La
be
ls

... ...

GREAT  place  to  eat  at!!!!!  The  

service  is  good  but  its  a  little  to  

LOUD  in  there  as  its  attached  

to  the  mall  so  I  would  think  it  

would  have  been  a  little  less  

noisy,  the  wait  was  way  TOO  

LONG  but  that’s  what  you  get  

on  a  Friday  night.  The  food  was  

a  little  BLAND!!!!!  :(        

...

...

...

...

...

Ranklists

p(spammer)

p(fake)

p(target)

1 00.5

Fake Genuine
If  any?

x%

S  
p  
E  
a  
g  
l  e

...

Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.



Rayana & Akoglu 5 

Main	  contribu'ons:	  
¡  SpEagle	  :	  a	  Collec=ve	  approach	  to	  opinion	  spam	  

	  

§  is	  unsupervised	  	  
§  can	  easily	  leverage	  labels	  (SpEagle+)	  	  	  
§  improves	  detec'on	  performance	  	  

¡  Computa'onally	  light	  version	  :	  SpLite	  
§  significant	  speed-‐up	  
	   Collective Opinion Spam Detection 

Re
vi
ew

	  n
et
w
or
k	  

M
et
ad

at
a	  



Rayana & Akoglu 6 Collective Opinion Spam Detection 

Review	  
Network	  

Review	  
Text	  

Review	  
Behavior	  

Supervision	  

OU’2011	   	  	  	  	  	  ✓	   supervised	  
Mukherjee’	  
2013	  

	  	  	  	  	  ✓	  
	  

	  	  	  	  	  	  	  ✓	   supervised	  

Jindal’2008	   	  	  	  	  	  	  ✓	   supervised	  
Co-‐training	  
[Li’2011]	  

	  	  	  	  	  	  ✓	   semi-‐supervised	  

Wang’2011	   	  	  	  	  	  	  ✓	   	  	  	  	  	  	  ✓	   unsupervised	  
FraudEagle	   	  	  	  	  	  ✓	   unsupervised	  
SpEagle	   	  	  	  	  	  ✓	   	  	  	  	  ✓	   	  	  	  	  	  	  ✓	   unsupervised	  
SpEagle+	   	  	  	  	  	  ✓	   	  	  	  	  ✓	   	  	  	  	  	  	  ✓	   semi-‐supervised	  



Rayana & Akoglu 7 

A	  network	  classifica=on	  problem	  
¡  Given	  	  

§  User-‐Review-‐Product	  network	  (tri-‐par'te)	  
§  Features	  extracted	  from	  metadata	  (i.e.	  text,	  behavior)	  	  

–	  for	  users,	  reviews,	  and	  products	  
¡  Classify	  network	  objects	  into	  type-‐specific	  classes	  

§  Users	  (‘benign’	  vs.	  ‘spammer’)	  
§  Products	  (‘non-‐target’	  vs.	  ‘target’)	  
§  Reviews	  (‘genuine’	  vs.	  ‘fake’)	  

Collective Opinion Spam Detection 

writes	   belongs	  
U R P



Rayana & Akoglu 8 Collective Opinion Spam Detection 

Workflow	  



Rayana & Akoglu 9 Collective Opinion Spam Detection 

Workflow	  



Rayana & Akoglu 10 

¡  A	  collec've	  classifica'on	  approach	  (unsupervised)	  
§  Objec've	  func'on	  u'lizes	  pairwise	  Markov	  Random	  Fields	  

Collective Opinion Spam Detection 

Node	  labels	  as	  	  
random	  variables	  

edge	  
poten=al	  
(label-‐label)	  

prior	  belief	   edge	  poten=al	  
(label-‐observed	  label)	  

max	  
	  	  y 

edge	  type	  
t	  

t	  



Rayana & Akoglu 11 

¡  A	  collec've	  classifica'on	  approach	  (unsupervised)	  
§  Objec've	  func'on	  u'lizes	  pairwise	  Markov	  Random	  Fields	  
-‐	  Inference	  problem	  (NP-‐hard)	  

¡  Loopy	  Belief	  Propaga'on	  (LBP)	  

Collective Opinion Spam Detection 

edge	  type	  
prior	  

1) Repeat for each node:  

2) At convergence: 

edge	  
poten=al	  

j	  

i	  



Rayana & Akoglu 12 

¡  A	  collec've	  classifica'on	  approach	  (unsupervised)	  
§  Objec've	  func'on	  u'lizes	  pairwise	  Markov	  Random	  Fields	  
-‐	  Inference	  problem	  (NP-‐hard)	  

¡  Loopy	  Belief	  Propaga'on	  (LBP)	  

Collective Opinion Spam Detection 

edge	  type	  
prior	  

1) Repeat for each node:  

2) At convergence: 

edge	  
poten=al	  



Rayana & Akoglu 13 

	  	  	  	  	  	  	  	  	  	  	  Metadata	  

	  
	   	  Features	  

	  	  	  	  	  	  	  	  	  Spam	  Scores	  

	   	  	  	  Priors	  

Collective Opinion Spam Detection 

Users:	  ‘benign’	  ‘spammer’	  
Products:	  ‘non-‐target’	  ‘target’	  
Reviews:	  ‘genuine’	  ‘fake’	  



Rayana & Akoglu 14 Collective Opinion Spam Detection 

User	  Features	   Product	  Features	   Review	  Features	  
•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  avg/weighted	  ra'ng	  

devia'on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  
•  burs'ness	  of	  reviews	  

•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  avg/weighted	  ra'ng	  

devia'on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  

•  rank	  order	  of	  reviews	  
•  absolute/thresholded	  

ra'ng	  devia'on	  
•  extremity	  of	  ra'ng	  
•  early	  'me	  frame	  
•  singleton	  review	  

•  review	  length	  (#words)	  
•  avg	  content	  similarity	  
•  max	  content	  similarity	  

•  review	  length	  
•  average	  content	  similarity	  
•  maximum	  content	  

similarity	  

•  ra'o	  subjec've/objec've	  
•  descrip'on	  length	  
•  ra'o	  of	  exclama'on	  sent.	  
•  freq.	  of	  similar	  reviews	  
•  %	  capital	  leUers	  
•  review	  length	  
•  ra'o	  1st	  person	  pronoun	  

Te
xt
	  

Be
ha

vi
or
al
	  



Rayana & Akoglu 15 Collective Opinion Spam Detection 

User	  Features	   Product	  Features	   Review	  Features	  
•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  avg/weighted	  ra'ng	  

devia'on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  
•  burs'ness	  of	  reviews	  

•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  avg/weighted	  ra'ng	  

devia'on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  

•  rank	  order	  of	  reviews	  
•  absolute/thresholded	  

ra'ng	  devia'on	  
•  extremity	  of	  ra'ng	  
•  early	  'me	  frame	  
•  singleton	  review	  

•  review	  length	  (#words)	  
•  avg	  content	  similarity	  
•  max	  content	  similarity	  

•  review	  length	  
•  avg	  content	  similarity	  
•  max	  content	  similarity	  

•  ra'o	  subjec've/objec've	  
•  descrip'on	  length	  
•  ra'o	  of	  exclama'on	  sent.	  
•  freq.	  of	  similar	  reviews	  
•  %	  capital	  leUers	  
•  review	  length	  
•  ra'o	  1st	  person	  pronoun	  

Te
xt
	  

Be
ha

vi
or
al
	  



Rayana & Akoglu 16 Collective Opinion Spam Detection 

User	  Features	   Product	  Features	   Review	  Features	  
•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  	  avg/Weighted	  Ra=ng	  

Devia=on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  
•  burs'ness	  of	  reviews	  

•  maximum	  #reviews/day	  
•  ra'o	  of	  +ve/-‐ve	  reviews	  
•  	  avg/Weighted	  Ra=ng	  

Devia=on	  
•  ra'ng	  devia'on	  entropy	  	  
•  temporal	  gaps	  entropy	  	  

•  rank	  order	  of	  reviews	  
•  absolute/thresholded	  

ra'ng	  devia'on	  
•  extremity	  of	  ra'ng	  
•  early	  'me	  frame	  
•  singleton	  review	  

•  review	  length	  (#words)	  
•  avg	  content	  similarity	  
•  max	  content	  similarity	  

•  review	  length	  
•  avg	  content	  similarity	  
•  max	  content	  similarity	  

•  ra'o	  subjec've/objec've	  
•  Descrip=on	  Length	  
•  ra'o	  of	  exclama'on	  sent.	  
•  freq.	  of	  similar	  reviews	  
•  %	  capital	  leUers	  
•  review	  length	  
•  ra'o	  1st	  person	  pronoun	  

Te
xt
	  

Be
ha

vi
or
al
	  

term members of a review site rather than veterans, which is
characterized by BST. We also show the review features in
Table 2 (bottom). Note that all the features are categorized
into two—behavioral versus text-based. Text-based ones are
solely derived from review content. Behavioral features are
based on time stamps, ratings, distributions, ranks, etc. In
the experiments, we evaluate the e↵ectiveness of individual
features as well as the feature categories.

Given a set of values {x
1i

, . . . , x
Fi

} for the F features of a
node i, the next step is to combine them into a spam score
S
i

2 [0, 1], such that the class priors can be initialized as {1�
S
i

, S
i

}. The features, however, may have di↵erent scales and
varying distributions. To unify them into a comparable scale
and interpretation, we leverage the cumulative distribution
function (CDF). In particular, when we design the features,
we have an understanding of whether a high (H) or a low

(L) value is more suspicious for each feature. For example,
high average rating deviation (avgRD) and low entropy of
rating distribution (ERD) are suspicious. To quantify the
extremity of a feature value x, we then use the empirical
CDF to estimate the probability that the data contains a
value as low or as high as x. More formally, for each feature
l, 1  l  F , and its corresponding value x

li

, we compute

f(x
li

) =

(
1� P (X

l

 x
li

), if high is suspicious (H)

P (X
l

 x
li

), otherwise (L)

where X
l

denotes a real-valued random variable associated
with feature l with probability distribution P . To compute
f(·), we use the empirical probability distribution of each
feature over all the nodes of the given type. Overall, the
features with suspiciously low or high values all receive low
f values. Finally we combine these f values to compute the
spam score of a node i as follows.

S
i

= 1�

sP
F

l=1

f(x
li

)2

F
(2)

Figure 2 shows the CDF of example features for filtered
(considered as spam) versus recommended (considered as
non-spam) reviews and associated reviewers in one of our
Yelp datasets. Notice that spam review(er)s obtain higher
values for certain features (e.g., those in top row) and lower
values for some others (bottom row)—hence the (H) and (L)
distinction in the f(·) function above. Also notice that the
individual features provide only weak evidence on their own,
as the CDF curves of the classes are somewhat close to each
other. We aim to obtain a stronger signal by combining the
multiple evidence from all the features using Eqn. (2).

2.2.2 Semi-supervised SpEagle

One of the key advantages of our formulation is that it
enables seamless integration of labeled data when available.
We describe two possible ways to incorporate label infor-
mation. The first scenario does not involve any learning on
the labeled data. Specifically, given the labels for a set of
nodes (reviews, users, and/or products), we simply initiate
the priors as {✏, 1 � ✏} for those that are associated with
spam (i.e., fake, spammer, or target), and {1 � ✏, ✏} oth-
erwise. The priors of unlabeled nodes are estimated from
metadata as given in Eqn. (2). The inference procedure re-
mains the same. As this integration does not require model
training or any other changes, it is extremely e�cient. It is
particularly suitable when the size of the labeled data is too
small or unbalanced to learn from.

Table 2: Features for users, products, and reviews
derived from metadata; categorized as behavior and
text-based. H/L depicts if a High/Low value of the
feature is more likely to be associated with spam.

User & Product Features

B
e
h
a
v
io
r

MNR H Max. number of reviews written in a day [18, 20]
PR H Ratio of positive reviews (4-5 star) [20]
NR H Ratio of negative reviews (1-2 star) [20]

avgRD H Avg. rating deviation avg(|d
i⇤|) of user (prod-

uct) i’s reviews [5, 15, 20], where |d

ij

| is absolute
rating deviation of i’s rating from j’s average rat-
ing: avg

eij2Ei⇤ |dij |, for dij = r

ij

�avg

e2E⇤j r(e)
WRD H Weighted rating deviation [15], where reviews

are weighed by recency:

P
eij2Ei⇤

|dij |wij
P

eij2Ei⇤
wij

, for

w

ij

= 1

(tij)
↵ (t

ij

is rank order of review e

ij

among reviews of j, ↵ = 1.5 is decay rate)
BST H Burstiness [5, 20]—spammers are often short-

term members of the site.

x

BST

(i) =

(
0, if L(i)� F (i) > ⌧

1�

L(i)�F (i)

⌧

, otherwise

where L(i)�F (i) is number of days between last
and first review of i, ⌧ = 28 days.

ERD L Entropy of rating distribution of user’s (prod-
uct’s) reviews [new]

ETG L Entropy of temporal gaps �
t

’s. Given the tem-
poral line-up of a user’s (product’s) reviews, each
�

t

denotes the temporal gap in days between
consecutive pairs [new]

T
e
x
t

RL L Avg. review length in number of words [20]
ACS H Avg. content similarity—pairwise cosine simi-

larity among user’s (product’s) reviews, where a
review is represented as a bag-of-bigrams [5, 15]

MCS H Max. content similarity—maximum cosine simi-
larity among all review pairs [18, 20]

Review Features

B
e
h
a
v
io
r

Rank L Rank order among all the reviews of product [9]
RD H Absolute rating deviation from product’s average

rating [13]
EXT H Extremity of rating [18]: x

EXT

= 1 for ratings
{4, 5}, 0 otherwise (for {1, 2, 3})

DEV H Thresholded rating deviation of review e

ij

[18]:

x

DEV

(i) =

(
1, if

|rij�avge2E⇤j r(e)|
4

> �

1

0, otherwise

where �

1

is learned by recursive minimal entropy
partitioning

ETF H Early time frame [18]—spammers often review
early to increase impact. x

ETF

(f(e
ij

)) = 1 if
f(e

ij

) > �

2

, and 0 otherwise, where,

f(e
ij

) =

(
0, if T (i, j)� F (j) > �

T (i,j)�F (j)

�

, otherwise

where T (i, j)�F (j) is the di↵erence between the
time of review e

ij

and first review j, for � = 7
months, and �

2

is estimated by recursive minimal
entropy partitioning

ISR H Is singleton? If review is user’s sole review, then
x

ISR

= 1, otherwise 0 [new]

T
e
x
t

PCW H Percentage of ALL-capitals words [9, 13]
PC H Percentage of capital letters [13]
L L Review length in words [13]

PP1 L Ratio of 1st person pronouns (‘I’, ‘my‘, etc.) [13]
RES H Ratio of exclamation sentences containing ‘!’ [13]
SW H Ratio of subjective words (by sentiWordNet) [13]
OW L Ratio of objective words (by sentiWordNet) [13]
F H Frequency of review (approximated using locality

sensitive hashing) [new]
DL

u

L Description length (information-theoretic) based
on unigrams (i.e., words) [new]

DL
b

L Description length based on bigrams [new]

term members of a review site rather than veterans, which is
characterized by BST. We also show the review features in
Table 2 (bottom). Note that all the features are categorized
into two—behavioral versus text-based. Text-based ones are
solely derived from review content. Behavioral features are
based on time stamps, ratings, distributions, ranks, etc. In
the experiments, we evaluate the e↵ectiveness of individual
features as well as the feature categories.

Given a set of values {x
1i

, . . . , x
Fi

} for the F features of a
node i, the next step is to combine them into a spam score
S
i

2 [0, 1], such that the class priors can be initialized as {1�
S
i

, S
i

}. The features, however, may have di↵erent scales and
varying distributions. To unify them into a comparable scale
and interpretation, we leverage the cumulative distribution
function (CDF). In particular, when we design the features,
we have an understanding of whether a high (H) or a low

(L) value is more suspicious for each feature. For example,
high average rating deviation (avgRD) and low entropy of
rating distribution (ERD) are suspicious. To quantify the
extremity of a feature value x, we then use the empirical
CDF to estimate the probability that the data contains a
value as low or as high as x. More formally, for each feature
l, 1  l  F , and its corresponding value x

li

, we compute

f(x
li

) =

(
1� P (X

l

 x
li

), if high is suspicious (H)

P (X
l

 x
li

), otherwise (L)

where X
l

denotes a real-valued random variable associated
with feature l with probability distribution P . To compute
f(·), we use the empirical probability distribution of each
feature over all the nodes of the given type. Overall, the
features with suspiciously low or high values all receive low
f values. Finally we combine these f values to compute the
spam score of a node i as follows.

S
i

= 1�

sP
F

l=1

f(x
li

)2

F
(2)

Figure 2 shows the CDF of example features for filtered
(considered as spam) versus recommended (considered as
non-spam) reviews and associated reviewers in one of our
Yelp datasets. Notice that spam review(er)s obtain higher
values for certain features (e.g., those in top row) and lower
values for some others (bottom row)—hence the (H) and (L)
distinction in the f(·) function above. Also notice that the
individual features provide only weak evidence on their own,
as the CDF curves of the classes are somewhat close to each
other. We aim to obtain a stronger signal by combining the
multiple evidence from all the features using Eqn. (2).

2.2.2 Semi-supervised SpEagle

One of the key advantages of our formulation is that it
enables seamless integration of labeled data when available.
We describe two possible ways to incorporate label infor-
mation. The first scenario does not involve any learning on
the labeled data. Specifically, given the labels for a set of
nodes (reviews, users, and/or products), we simply initiate
the priors as {✏, 1 � ✏} for those that are associated with
spam (i.e., fake, spammer, or target), and {1 � ✏, ✏} oth-
erwise. The priors of unlabeled nodes are estimated from
metadata as given in Eqn. (2). The inference procedure re-
mains the same. As this integration does not require model
training or any other changes, it is extremely e�cient. It is
particularly suitable when the size of the labeled data is too
small or unbalanced to learn from.

Table 2: Features for users, products, and reviews
derived from metadata; categorized as behavior and
text-based. H/L depicts if a High/Low value of the
feature is more likely to be associated with spam.

User & Product Features

B
eh

a
vi
o
r

MNR H Max. number of reviews written in a day [18, 20]
PR H Ratio of positive reviews (4-5 star) [20]
NR H Ratio of negative reviews (1-2 star) [20]

avgRD H Avg. rating deviation avg(|d
i⇤|) of user (prod-

uct) i’s reviews [5, 15, 20], where |d

ij

| is absolute
rating deviation of i’s rating from j’s average rat-
ing: avg

eij2Ei⇤ |dij |, for dij = r

ij

�avg

e2E⇤j r(e)
WRD H Weighted rating deviation [15], where reviews

are weighed by recency:

P
eij2Ei⇤

|dij |wij
P

eij2Ei⇤
wij

, for

w

ij

= 1

(tij)
↵ (t

ij

is rank order of review e

ij

among reviews of j, ↵ = 1.5 is decay rate)
BST H Burstiness [5, 20]—spammers are often short-

term members of the site.

x

BST

(i) =

(
0, if L(i)� F (i) > ⌧

1�

L(i)�F (i)

⌧

, otherwise

where L(i)�F (i) is number of days between last
and first review of i, ⌧ = 28 days.

ERD L Entropy of rating distribution of user’s (prod-
uct’s) reviews [new]

ETG L Entropy of temporal gaps �
t

’s. Given the tem-
poral line-up of a user’s (product’s) reviews, each
�

t

denotes the temporal gap in days between
consecutive pairs [new]

T
ex
t

RL L Avg. review length in number of words [20]
ACS H Avg. content similarity—pairwise cosine simi-

larity among user’s (product’s) reviews, where a
review is represented as a bag-of-bigrams [5, 15]

MCS H Max. content similarity—maximum cosine simi-
larity among all review pairs [18, 20]

Review Features

B
eh

a
vi
o
r

Rank L Rank order among all the reviews of product [9]
RD H Absolute rating deviation from product’s average

rating [13]
EXT H Extremity of rating [18]: x

EXT

= 1 for ratings
{4, 5}, 0 otherwise (for {1, 2, 3})

DEV H Thresholded rating deviation of review e

ij

[18]:

x

DEV

(i) =

(
1, if

|rij�avge2E⇤j r(e)|
4

> �

1

0, otherwise

where �

1

is learned by recursive minimal entropy
partitioning

ETF H Early time frame [18]—spammers often review
early to increase impact. x

ETF

(f(e
ij

)) = 1 if
f(e

ij

) > �

2

, and 0 otherwise, where,

f(e
ij

) =

(
0, if T (i, j)� F (j) > �

T (i,j)�F (j)

�

, otherwise

where T (i, j)�F (j) is the di↵erence between the
time of review e

ij

and first review j, for � = 7
months, and �

2

is estimated by recursive minimal
entropy partitioning

ISR H Is singleton? If review is user’s sole review, then
x

ISR

= 1, otherwise 0 [new]

T
ex
t

PCW H Percentage of ALL-capitals words [9, 13]
PC H Percentage of capital letters [13]
L L Review length in words [13]

PP1 L Ratio of 1st person pronouns (‘I’, ‘my‘, etc.) [13]
RES H Ratio of exclamation sentences containing ‘!’ [13]
SW H Ratio of subjective words (by sentiWordNet) [13]
OW L Ratio of objective words (by sentiWordNet) [13]
F H Frequency of review (approximated using locality

sensitive hashing) [new]
DL

u

L Description length (information-theoretic) based
on unigrams (i.e., words) [new]

DL
b

L Description length based on bigrams [new]

term members of a review site rather than veterans, which is
characterized by BST. We also show the review features in
Table 2 (bottom). Note that all the features are categorized
into two—behavioral versus text-based. Text-based ones are
solely derived from review content. Behavioral features are
based on time stamps, ratings, distributions, ranks, etc. In
the experiments, we evaluate the e↵ectiveness of individual
features as well as the feature categories.

Given a set of values {x
1i

, . . . , x
Fi

} for the F features of a
node i, the next step is to combine them into a spam score
S
i

2 [0, 1], such that the class priors can be initialized as {1�
S
i

, S
i

}. The features, however, may have di↵erent scales and
varying distributions. To unify them into a comparable scale
and interpretation, we leverage the cumulative distribution
function (CDF). In particular, when we design the features,
we have an understanding of whether a high (H) or a low

(L) value is more suspicious for each feature. For example,
high average rating deviation (avgRD) and low entropy of
rating distribution (ERD) are suspicious. To quantify the
extremity of a feature value x, we then use the empirical
CDF to estimate the probability that the data contains a
value as low or as high as x. More formally, for each feature
l, 1  l  F , and its corresponding value x

li

, we compute

f(x
li

) =

(
1� P (X

l

 x
li

), if high is suspicious (H)

P (X
l

 x
li

), otherwise (L)

where X
l

denotes a real-valued random variable associated
with feature l with probability distribution P . To compute
f(·), we use the empirical probability distribution of each
feature over all the nodes of the given type. Overall, the
features with suspiciously low or high values all receive low
f values. Finally we combine these f values to compute the
spam score of a node i as follows.

S
i

= 1�

sP
F

l=1

f(x
li

)2

F
(2)

Figure 2 shows the CDF of example features for filtered
(considered as spam) versus recommended (considered as
non-spam) reviews and associated reviewers in one of our
Yelp datasets. Notice that spam review(er)s obtain higher
values for certain features (e.g., those in top row) and lower
values for some others (bottom row)—hence the (H) and (L)
distinction in the f(·) function above. Also notice that the
individual features provide only weak evidence on their own,
as the CDF curves of the classes are somewhat close to each
other. We aim to obtain a stronger signal by combining the
multiple evidence from all the features using Eqn. (2).

2.2.2 Semi-supervised SpEagle

One of the key advantages of our formulation is that it
enables seamless integration of labeled data when available.
We describe two possible ways to incorporate label infor-
mation. The first scenario does not involve any learning on
the labeled data. Specifically, given the labels for a set of
nodes (reviews, users, and/or products), we simply initiate
the priors as {✏, 1 � ✏} for those that are associated with
spam (i.e., fake, spammer, or target), and {1 � ✏, ✏} oth-
erwise. The priors of unlabeled nodes are estimated from
metadata as given in Eqn. (2). The inference procedure re-
mains the same. As this integration does not require model
training or any other changes, it is extremely e�cient. It is
particularly suitable when the size of the labeled data is too
small or unbalanced to learn from.

Table 2: Features for users, products, and reviews
derived from metadata; categorized as behavior and
text-based. H/L depicts if a High/Low value of the
feature is more likely to be associated with spam.

User & Product Features

B
eh

a
vi
o
r

MNR H Max. number of reviews written in a day [18, 20]
PR H Ratio of positive reviews (4-5 star) [20]
NR H Ratio of negative reviews (1-2 star) [20]

avgRD H Avg. rating deviation avg(|d
i⇤|) of user (prod-

uct) i’s reviews [5, 15, 20], where |d

ij

| is absolute
rating deviation of i’s rating from j’s average rat-
ing: avg

eij2Ei⇤ |dij |, for dij = r

ij

�avg

e2E⇤j r(e)
WRD H Weighted rating deviation [15], where reviews

are weighed by recency:

P
eij2Ei⇤

|dij |wij
P

eij2Ei⇤
wij

, for

w

ij

= 1

(tij)
↵ (t

ij

is rank order of review e

ij

among reviews of j, ↵ = 1.5 is decay rate)
BST H Burstiness [5, 20]—spammers are often short-

term members of the site.

x

BST

(i) =

(
0, if L(i)� F (i) > ⌧

1�

L(i)�F (i)

⌧

, otherwise

where L(i)�F (i) is number of days between last
and first review of i, ⌧ = 28 days.

ERD L Entropy of rating distribution of user’s (prod-
uct’s) reviews [new]

ETG L Entropy of temporal gaps �
t

’s. Given the tem-
poral line-up of a user’s (product’s) reviews, each
�

t

denotes the temporal gap in days between
consecutive pairs [new]

T
ex
t

RL L Avg. review length in number of words [20]
ACS H Avg. content similarity—pairwise cosine simi-

larity among user’s (product’s) reviews, where a
review is represented as a bag-of-bigrams [5, 15]

MCS H Max. content similarity—maximum cosine simi-
larity among all review pairs [18, 20]

Review Features

B
eh

a
vi
o
r

Rank L Rank order among all the reviews of product [9]
RD H Absolute rating deviation from product’s average

rating [13]
EXT H Extremity of rating [18]: x

EXT

= 1 for ratings
{4, 5}, 0 otherwise (for {1, 2, 3})

DEV H Thresholded rating deviation of review e

ij

[18]:

x

DEV

(i) =

(
1, if

|rij�avge2E⇤j r(e)|
4

> �

1

0, otherwise

where �

1

is learned by recursive minimal entropy
partitioning

ETF H Early time frame [18]—spammers often review
early to increase impact. x

ETF

(f(e
ij

)) = 1 if
f(e

ij

) > �

2

, and 0 otherwise, where,

f(e
ij

) =

(
0, if T (i, j)� F (j) > �

T (i,j)�F (j)

�

, otherwise

where T (i, j)�F (j) is the di↵erence between the
time of review e

ij

and first review j, for � = 7
months, and �

2

is estimated by recursive minimal
entropy partitioning

ISR H Is singleton? If review is user’s sole review, then
x

ISR

= 1, otherwise 0 [new]

T
ex
t

PCW H Percentage of ALL-capitals words [9, 13]
PC H Percentage of capital letters [13]
L L Review length in words [13]

PP1 L Ratio of 1st person pronouns (‘I’, ‘my‘, etc.) [13]
RES H Ratio of exclamation sentences containing ‘!’ [13]
SW H Ratio of subjective words (by sentiWordNet) [13]
OW L Ratio of objective words (by sentiWordNet) [13]
F H Frequency of review (approximated using locality

sensitive hashing) [new]
DL

u

L Description length (information-theoretic) based
on unigrams (i.e., words) [new]

DL
b

L Description length based on bigrams [new]

X

w

�log(freq(w))

temporal	  order	  
words	  in	  review	  



Rayana & Akoglu 17 Collective Opinion Spam Detection 

(H)igher	  more	  suspicious	  

(L)ower	  more	  suspicious	  



Rayana & Akoglu 18 

Q:	  How	  to	  handle	  features	  with	  different	  scales?
A:	  Cumula've	  distribu'on:	  
¡  For	  each	  feature	  l ,	  1 ≤	  l ≤	  F and	  its	  corresponding	  
value	  xli	  for	  node	  i 

	  

¡  Combine	  F	  values	  for	  each	  node	  i:	  

¡  Priors	  :	  
Collective Opinion Spam Detection 

term members of a review site rather than veterans, which is
characterized by BST. We also show the review features in
Table 2 (bottom). Note that all the features are categorized
into two—behavioral versus text-based. Text-based ones are
solely derived from review content. Behavioral features are
based on time stamps, ratings, distributions, ranks, etc. In
the experiments, we evaluate the e↵ectiveness of individual
features as well as the feature categories.

Given a set of values {x
1i

, . . . , x
Fi

} for the F features of a
node i, the next step is to combine them into a spam score
S
i

2 [0, 1], such that the class priors can be initialized as {1�
S
i

, S
i

}. The features, however, may have di↵erent scales and
varying distributions. To unify them into a comparable scale
and interpretation, we leverage the cumulative distribution
function (CDF). In particular, when we design the features,
we have an understanding of whether a high (H) or a low

(L) value is more suspicious for each feature. For example,
high average rating deviation (avgRD) and low entropy of
rating distribution (ERD) are suspicious. To quantify the
extremity of a feature value x, we then use the empirical
CDF to estimate the probability that the data contains a
value as low or as high as x. More formally, for each feature
l, 1  l  F , and its corresponding value x

li

, we compute

f(x
li

) =

(
1� P (X

l

 x
li

), if high is suspicious (H)

P (X
l

 x
li

), otherwise (L)

where X
l

denotes a real-valued random variable associated
with feature l with probability distribution P . To compute
f(·), we use the empirical probability distribution of each
feature over all the nodes of the given type. Overall, the
features with suspiciously low or high values all receive low
f values. Finally we combine these f values to compute the
spam score of a node i as follows.

S
i

= 1�

sP
F

l=1

f(x
li

)2

F
(2)

Figure 2 shows the CDF of example features for filtered
(considered as spam) versus recommended (considered as
non-spam) reviews and associated reviewers in one of our
Yelp datasets. Notice that spam review(er)s obtain higher
values for certain features (e.g., those in top row) and lower
values for some others (bottom row)—hence the (H) and (L)
distinction in the f(·) function above. Also notice that the
individual features provide only weak evidence on their own,
as the CDF curves of the classes are somewhat close to each
other. We aim to obtain a stronger signal by combining the
multiple evidence from all the features using Eqn. (2).

2.2.2 Semi-supervised SpEagle

One of the key advantages of our formulation is that it
enables seamless integration of labeled data when available.
We describe two possible ways to incorporate label infor-
mation. The first scenario does not involve any learning on
the labeled data. Specifically, given the labels for a set of
nodes (reviews, users, and/or products), we simply initiate
the priors as {✏, 1 � ✏} for those that are associated with
spam (i.e., fake, spammer, or target), and {1 � ✏, ✏} oth-
erwise. The priors of unlabeled nodes are estimated from
metadata as given in Eqn. (2). The inference procedure re-
mains the same. As this integration does not require model
training or any other changes, it is extremely e�cient. It is
particularly suitable when the size of the labeled data is too
small or unbalanced to learn from.

Table 2: Features for users, products, and reviews
derived from metadata; categorized as behavior and
text-based. H/L depicts if a High/Low value of the
feature is more likely to be associated with spam.

User & Product Features

B
eh

a
vi
o
r

MNR H Max. number of reviews written in a day [18, 20]
PR H Ratio of positive reviews (4-5 star) [20]
NR H Ratio of negative reviews (1-2 star) [20]

avgRD H Avg. rating deviation avg(|d
i⇤|) of user (prod-

uct) i’s reviews [5, 15, 20], where |d

ij

| is absolute
rating deviation of i’s rating from j’s average rat-
ing: avg

eij2Ei⇤ |dij |, for dij = r

ij

�avg

e2E⇤j r(e)
WRD H Weighted rating deviation [15], where reviews

are weighed by recency:

P
eij2Ei⇤

|dij |wij
P

eij2Ei⇤
wij

, for

w

ij

= 1

(tij)
↵ (t

ij

is rank order of review e

ij

among reviews of j, ↵ = 1.5 is decay rate)
BST H Burstiness [5, 20]—spammers are often short-

term members of the site.

x

BST

(i) =

(
0, if L(i)� F (i) > ⌧

1�

L(i)�F (i)

⌧

, otherwise

where L(i)�F (i) is number of days between last
and first review of i, ⌧ = 28 days.

ERD L Entropy of rating distribution of user’s (prod-
uct’s) reviews [new]

ETG L Entropy of temporal gaps �
t

’s. Given the tem-
poral line-up of a user’s (product’s) reviews, each
�

t

denotes the temporal gap in days between
consecutive pairs [new]

T
ex
t

RL L Avg. review length in number of words [20]
ACS H Avg. content similarity—pairwise cosine simi-

larity among user’s (product’s) reviews, where a
review is represented as a bag-of-bigrams [5, 15]

MCS H Max. content similarity—maximum cosine simi-
larity among all review pairs [18, 20]

Review Features

B
eh

a
vi
o
r

Rank L Rank order among all the reviews of product [9]
RD H Absolute rating deviation from product’s average

rating [13]
EXT H Extremity of rating [18]: x

EXT

= 1 for ratings
{4, 5}, 0 otherwise (for {1, 2, 3})

DEV H Thresholded rating deviation of review e

ij

[18]:

x

DEV

(i) =

(
1, if

|rij�avge2E⇤j r(e)|
4

> �

1

0, otherwise

where �

1

is learned by recursive minimal entropy
partitioning

ETF H Early time frame [18]—spammers often review
early to increase impact. x

ETF

(f(e
ij

)) = 1 if
f(e

ij

) > �

2

, and 0 otherwise, where,

f(e
ij

) =

(
0, if T (i, j)� F (j) > �

T (i,j)�F (j)

�

, otherwise

where T (i, j)�F (j) is the di↵erence between the
time of review e

ij

and first review j, for � = 7
months, and �

2

is estimated by recursive minimal
entropy partitioning

ISR H Is singleton? If review is user’s sole review, then
x

ISR

= 1, otherwise 0 [new]

T
ex
t

PCW H Percentage of ALL-capitals words [9, 13]
PC H Percentage of capital letters [13]
L L Review length in words [13]

PP1 L Ratio of 1st person pronouns (‘I’, ‘my‘, etc.) [13]
RES H Ratio of exclamation sentences containing ‘!’ [13]
SW H Ratio of subjective words (by sentiWordNet) [13]
OW L Ratio of objective words (by sentiWordNet) [13]
F H Frequency of review (approximated using locality

sensitive hashing) [new]
DL

u

L Description length (information-theoretic) based
on unigrams (i.e., words) [new]

DL
b

L Description length based on bigrams [new]



Rayana & Akoglu 19 

¡  A	  collec've	  classifica'on	  approach	  (unsupervised)	  
§  Objec've	  func'on	  u'lizes	  pairwise	  Markov	  Random	  Fields	  
-‐	  Inference	  problem	  (NP-‐hard)	  

¡  Loopy	  Belief	  Propaga'on	  (LBP)	  

Collective Opinion Spam Detection 

edge	  type	  
prior	  

1) Repeat for each node:  

2) At convergence: 

edge	  
poten=al	  



Rayana & Akoglu 20 

	  

Collective Opinion Spam Detection 

lowing parameter settings are used, for a small ✏ value.1

 s=+ Product
User good bad

benign 1� ✏ ✏
spammer 2✏ 1� 2✏

 s=� Product
User good bad

benign ✏ 1� ✏
spammer 1� 2✏ 2✏

Given the model parameters (�
i

, 8i 2 V and  s for
s 2 {+,�}), the task is to infer the maximum likelihood
assignment of states (class labels) to the random variables
associated with the nodes, in other words, to find the y that
maximizes the joint probability of the network as given in
Eqn. (1). This is the inference problem which is combina-
torially hard. The enumeration of all possible assignments
is exponential to the network size and thus intractable for
large graphs. Exact inference is known to be NP-hard for
general MRFs, where instead iterative approximate infer-
ence algorithms such as Loopy Belief Propagation (LBP)
[31] are used. We describe the details of the inference pro-
cedure in the context of our proposed method below.

2.2 Proposed Method SpEagle

Besides the relational information between users and prod-
ucts, there exist a variety of metadata in review datasets.
Those include the text content of reviews, timestamps, and
star ratings. Earlier work have used metadata to design
features that are indicative of spam [9, 13, 19, 22, 28].
FraudEagle, on the other hand, completely excludes meta-
information and solely relies on the relational structure of
the data. The main motivation of this work is to bridge
the relational data and the metadata to improve detection
performance. In particular, we aim to leverage the meta-
data to estimate initial class probabilities for users, prod-
ucts, and reviews, which we incorporate as prior potentials
of the nodes under a new MRF model.

Our motivation requires two main changes to be made
in the FraudEagle framework. First, we represent the
reviews as nodes inside the network. As such, we model
the relational data as a user–review–product network, where
each review node is connected to its corresponding user and
product nodes (See Figure 1). The reason is that we can
use metadata to estimate a “suspicion score” not only for
users and products, but also for reviews. Representing re-
views explicitly as nodes enables us to readily integrate this
information to the formulation as prior potentials of reviews.

The second change is related to the semantics of class la-
bels for products. The domain of class labels for products
in FraudEagle is L

P

= {good-quality, bad-quality}. How-
ever, the metadata does not lend itself to estimating mean-
ingful priors for these classes. Two possible ways of infer-
ring product quality, average rating and sentiment analysis
of reviews, could be misleading—both average ratings and
review sentiment of products associated with fake reviewing
are tempered with, and thus are not reliable. We could,
on the other hand, use the metadata to perform behav-
ioral analysis on products to characterize the likelihood that
they are under manipulation (See §2.2.1). In other words,
the “suspicion score” of a product estimated from metadata
would not translate to its quality but to its likelihood of be-
ing a target of opinion spam. Therefore, in our formulation
the products are labeled as L

P

= {non-target, target}. As
the semantics of the network representation has changed, we

1Sensitivity analysis in [1] found that ✏ 2 [0.01, 0.15] yields desir-
able and comparable results. In this work we use ✏ = 0.1.

also discard the sentiment, i.e. the signs on the edges and
use an unsigned network G = (V,E). This is because under
the new setting, a targeted product can be associated with
negative as well as positive fake reviews, when manipulated
with an intent to defame or to hype, respectively.
The joint probability of our formulation can be written

similar to Eqn. (1), where the node set V = U [ P [ R
now consists of three types of nodes, including the Q re-
view nodes R = {r

1

, . . . , r
Q

}, with labels from domain L

R

=
{genuine, fake}. Moreover, the compatibility potentials are
typed as  t

ij

reflecting the two types of relations in the net-
work; the user-review edges (u

i

, r
k

, t = ‘write’) 2 E and the
review-product edges (r

k

, p
j

, t = ‘belong’) 2 E. In terms of
setting the model parameters, we estimate the prior poten-
tials �

i

from metadata for all three types of nodes, 8i 2 V ,
which we describe in §2.2.1. On the other hand, we initialize
the compatibility potentials  t

ij

so as to enforce homophily
[17]. In particular, we assume that all the reviews written
by spammers (benign users) are fake (genuine), and that
with high probability fake (genuine) reviews belong to tar-
geted (non-targeted) products; although with some proba-
bility fake reviews may also belong to non-targeted prod-
ucts as part of camouflage, and similarly genuine reviews
may co-exist along with fake reviews for targeted products.
Nevertheless, we assume that the majority of the reviews for
targeted (non-targeted) products are fake (genuine), which
possibly needs to hold true for a spam campaign to be able
to manipulate the average rating of a targeted product suc-
cessfully. Overall, SpEagle uses the following settings.

Table 1: Compatibility potentials  

t

used by SpEagle.

User ( t=‘write’)
Review benign spammer
genuine 1 0
fake 0 1

( t=‘belong’) Product
non-target target

1� ✏ ✏
✏ 1� ✏

Next, we describe how we estimate the prior potentials
from metadata for all the user, review, and product nodes.
Then, we introduce the semi-supervised version of SpEa-

gle and show how labels can be used if available. We pro-
vide an outline of our algorithm and present the inference
steps for computing the class assignments. Finally, we intro-
duce a light version of SpEagle for computational speed-up.

2.2.1 From metadata to features to priors

To estimate the prior potentials, we first extract indicative
features of spam from available metadata (ratings, times-
tamps, review text) and then convert them to prior class
probabilities. The priors are estimated for all three types
of nodes. As such, we compute features for users, products,
and reviews separately. Most of our features have been used
several times in previous work on opinion spam detection
including [5, 9, 13, 15, 18, 20], while several are introduced
in this work. Table 2 includes brief descriptions for the fea-
tures. Most of them are self-explanatory, and hence we omit
detailed explanation for brevity. Instead, we provide refer-
ences to prior work where they have also been used.
In particular, we show the user and product features in

Table 2 (top). All but one of these features can be de-
fined for both, where we either consider all reviews of a
user or all reviews of a product. One feature (BST) applies
only to users, which captures the burstiness related to the
age of a user, defined as the number of days between their
first and the last review. Intuitively, spammers are short-

writes	   belongs	  



Rayana & Akoglu 21 

Beliefs	  as	  class	  probabili'es:	  
	  

§  Probi(spammer)	  =	  bi(yi	  :	  spammer)	  

§  Probk(fake)	  =	  bk(yk	  :	  fake)	  

§  Probj(target)	  =	  bj(yj	  :	  target)	  

Collective Opinion Spam Detection 



Rayana & Akoglu 22 

¡  SpEagle	  can	  work	  semi-‐supervised	  
§  Can	  incorporate	  labels	  seamlessly	  
§  Can	  use	  user,	  review,	  and/or	  product	  labels	  

¡  For	  labeled	  nodes,	  priors	  are	  set	  to:	  
§  	  φ	  ←	  {ϵ,	  1	  −	  ϵ}	  for	  spam	  category	  	  
	  	  	  (i.e.,	  fake,	  spammer,	  or	  target)	  
§ φ	  ←	  {1−	  ϵ,	  ϵ}	  for	  non-‐spam	  
	  	  	  category	  

Collective Opinion Spam Detection 



Rayana & Akoglu 23 

¡  3	  Yelp	  datasets1:	  recommended	  vs.	  non-‐recommended	  
§  YelpChi	  –hotel	  and	  restaurant	  reviews	  from	  Chicago	  	  
§  YelpNYC	  –restaurant	  reviews	  from	  New	  York	  City	  
§  YelpZip	  –restaurants	  reviews	  from	  zipcodes	  in	  	  NJ,	  VT,	  CT,	  PA	  

Collective Opinion Spam Detection 

1	  Datasets	  are	  made	  available	  to	  the	  community	  
2	  A	  spammer	  has	  at	  least	  one	  filtered	  review	  

2	  



Rayana & Akoglu 24 Collective Opinion Spam Detection 

#reviews	  

Avg(	  max(frac_filtered,	  frac_nonfiltered)	  )	  

#reviews	  



Rayana & Akoglu 25 

¡  Area	  Under	  Curve	  (AUC)	  	  
§  for	  ROC	  curve	  (TPR	  vs.	  FPR)	  

¡  Average	  Precision	  (AP)	  
§  AUC	  for	  Precision-‐Recall	  curve	  

¡  Precision@k	  :	  ra'o	  of	  spam	  in	  top	  k	  

¡  NDCG@k	  :	  weighted	  scoring	  which	  favors	  top	  items	  

Collective Opinion Spam Detection 



Rayana & Akoglu 26 

¡  SpEagle	  superior	  to	  exis'ng	  methods	  

¡  Different	  priors:	  User	  &	  Review	  priors	  most	  informa've	  

Collective Opinion Spam Detection 

Table 6: Precision@k of SpEagle

+ for review ranking on all three datasets with varying % of labeled data.
YelpChi YelpNYC YelpZip

k 0% 1% 5% 10% 0% 0.5% 1% 2% 0% 0.25% 0.5% 1%

100 0.7400 0.9300 0.9650 0.9950 0.4400 0.9650 0.9630 0.9930 0.4300 0.8740 0.8540 0.9090
200 0.5900 0.8195 0.9565 0.9600 0.4600 0.9595 0.9625 0.9790 0.5150 0.8850 0.8935 0.9130
300 0.5333 0.6910 0.9477 0.9500 0.4433 0.9557 0.9553 0.9713 0.5133 0.8303 0.9037 0.9173
400 0.4975 0.6162 0.9245 0.9408 0.4350 0.8935 0.9587 0.9710 0.5250 0.7823 0.8972 0.9225
500 0.5020 0.5736 0.8772 0.9344 0.4100 0.8076 0.9586 0.9664 0.5260 0.7574 0.8750 0.9212
600 0.4900 0.5617 0.8008 0.9110 0.3983 0.7602 0.9603 0.9633 0.5150 0.7320 0.8500 0.9218
700 0.4600 0.5407 0.7451 0.8671 0.3943 0.7079 0.9521 0.9623 0.4971 0.7090 0.8307 0.9226
800 0.4587 0.5125 0.7015 0.8078 0.3900 0.6685 0.9067 0.9616 0.4900 0.6946 0.8138 0.9178
900 0.4544 0.5018 0.6739 0.7570 0.3844 0.6307 0.8586 0.9610 0.4833 0.6711 0.7938 0.9106
1000 0.4510 0.4944 0.6471 0.7141 0.3820 0.5982 0.8225 0.9597 0.4880 0.6453 0.7744 0.9004

Table 7: AP and AUC performance of SpEagle when priors are initialized (estimated from metadata) for var-
ious node types; (U)sers, (R)eviews, (P)roducts (rest set to unbiased). P-priors yield the lowest performance,
while R-priors are the most e↵ective.

User Ranking Review Ranking

AP AUC AP AUC

Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
SpEagle (U) 0.3197 0.2624 0.2808 0.6767 0.6483 0.6183 0.3043 0.2400 0.1427 0.7783 0.7629 0.5940
SpEagle (P) 0.1550 0.1357 0.1814 0.3905 0.3930 0.3801 0.0755 0.0640 0.0806 0.1643 0.2536 0.2277
SpEagle (R) 0.3226 0.2575 0.3449 0.6771 0.6477 0.6562 0.3098 0.2378 0.3180 0.7820 0.7656 0.7884
SpEagle (UR) 0.3398 0.2680 0.3615 0.6905 0.6575 0.6709 0.3241 0.2460 0.3320 0.7887 0.7695 0.7942

SpEagle (URP) 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

   Y'Chi         Y'Chi       Y'NYC       Y'NYC       Y'Zip       Y'Zip
     (U)             (R)            (U)             (R)           (U)             (R)

Av
er

ag
e 

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5
text behavioral text+behavioral

  Y'Chi      Y'Chi      Y'NYC      Y'NYC       Y'Zip      Y'Zip
    (U)            (R)             (U)            (R)             (U)            (R)

Ar
ea

 u
nd

er
 c

ur
ve

0

0,2

0.4

0.6

0.8

1
text behavioral text+behavioral

Figure 4: (top) AP and (bottom) AUC performance
of SpEagle when various feature types are used to
estimate priors; text, behavior, all (See Table 2) on
all datasets for both (U)ser and (R)eview ranking.

only text-based versus only behavioral features (for all user,
review, and product nodes) as compared to using all the pos-
sible features. Figure 4 shows the AP and AUC performance
across all datasets for both user and review ranking.

We observe that using text-based features alone yields in-
ferior performance compared to behavioral features. More-
over, behavioral features alone produce comparable re-
sults to using all the features, where the di↵erences across
datasets and (U)ser vs. (R)eview ranking tasks are insignif-
icant. These findings are in agreement with those in [20],
which found that their behavioral features performed very
well, whereas the linguistic features were not as e↵ective.

3.4 SpLite performance
In light of our analysis results, we aim to design a “light”

version of SpEagle that is computationally more e�cient.

al
l R F

DL
u

DL
b

PC
PC

W L
PP

1
RE

S
SW O

W IS
R RD

Ra
nk

EX
T

DE
V

ET
F

RD
+E

XT
RD

+E
TF

RD
+I

SR

Av
er

ag
e 

Pr
ec

isi
on

0  

0.1

0.2

0.3

0.4
all R priors R prior (single) R priors (pairs)

al
l R F

DL
u

DL
b

PC
PC

W L
PP

1
RE

S
SW O

W IS
R RD

Ra
nk

EX
T

DE
V

ET
F

RD
+E

XT
RD

+E
TF

RD
+I

SR

Av
er

ag
e 

Pr
ec

isi
on

0  

0.1

0.2

0.3

0.4
all R priors R prior (single) R priors (pairs)

al
l R F

DL
u

DL
b

PC
PC

W L
PP

1
RE

S
SW O

W IS
R RD

Ra
nk

EX
T

DE
V

ET
F

RD
+E

XT
RD

+E
TF

RD
+I

SR

Av
er

ag
e 

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4
all R priors R prior (single) R priors (pairs)

Figure 5: AP performance of SpEagle when all
(green), individual (blue), and behavioral pairs (red,
only 3 shown) of (R)eview features are used to esti-
mate review priors (rest set to unbiased), on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

Our analyses suggest that (1) review priors alone are the
most e↵ective, and achieve comparable performance to using
priors for all user, review, and product nodes, and that (2)
behavioral features are superior to text-based features.

Table 4: AP and AUC performance of compared methods on all three datasets.
User Ranking Review Ranking

AP AUC AP AUC

Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
FraudEagle 0.2537 0.2233 0.3091 0.6124 0.6062 0.6175 0.1067 0.1122 0.1524 0.3735 0.5063 0.5326
Wang et al. 0.2659 0.2381 0.3306 0.6167 0.6207 0.6554 0.1518 0.1255 0.1803 0.5062 0.5415 0.5982
Prior 0.2157 0.1826 0.2550 0.5294 0.5081 0.5269 0.2241 0.1789 0.2352 0.6707 0.6705 0.6838
SpEagle 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

SpEagle

+(1%) 0.3967 0.3480 0.4245 0.7078 0.6828 0.6907 0.3352 0.2757 0.3545 0.7951 0.7829 0.8040
SpLite

+ (1%) 0.3777 0.3331 0.4218 0.6744 0.6542 0.6784 0.3124 0.2550 0.3448 0.7693 0.7631 0.7923

Table 5: Precision@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

User Ranking Review Ranking

k

P
r
i
o
r

F
r
a
u
d
E
a
g
l
e

W
a
n
g

e
t
a
l
.

S
p
E
a
g
l
e

P
r
i
o
r

F
r
a
u
d
E
a
g
l
e

W
a
n
g

e
t
a
l
.

S
p
E
a
g
l
e

100 0.32 0.30 0.21 0.73 0.38 0.25 0.24 0.74

200 0.26 0.30 0.19 0.59 0.33 0.18 0.26 0.59

300 0.23 0.38 0.21 0.52 0.33 0.21 0.25 0.53

400 0.21 0.33 0.26 0.49 0.32 0.29 0.25 0.50

500 0.18 0.29 0.27 0.50 0.31 0.27 0.25 0.50

600 0.17 0.28 0.27 0.49 0.32 0.25 0.26 0.49

700 0.18 0.27 0.29 0.46 0.31 0.22 0.26 0.46

800 0.18 0.26 0.30 0.46 0.32 0.22 0.25 0.46

900 0.18 0.26 0.30 0.46 0.32 0.20 0.23 0.45

1000 0.19 0.28 0.32 0.45 0.31 0.20 0.23 0.45

100 0.34 0.21 0.15 0.44 0.34 0.10 0.17 0.44

200 0.30 0.19 0.19 0.46 0.32 0.12 0.22 0.46

300 0.28 0.17 0.18 0.44 0.34 0.09 0.27 0.44

400 0.27 0.21 0.17 0.44 0.34 0.11 0.21 0.44

500 0.25 0.22 0.17 0.41 0.33 0.11 0.22 0.41

600 0.23 0.27 0.17 0.40 0.32 0.13 0.22 0.40

700 0.22 0.37 0.16 0.39 0.32 0.12 0.22 0.39

800 0.22 0.45 0.16 0.39 0.32 0.13 0.20 0.39

900 0.22 0.50 0.15 0.38 0.31 0.13 0.22 0.38

1000 0.22 0.45 0.16 0.38 0.32 0.14 0.20 0.38

100 0.51 0.55 0.18 0.44 0.51 0.29 0.86 0.43
200 0.48 0.52 0.18 0.53 0.51 0.29 0.92 0.52
300 0.46 0.48 0.20 0.52 0.51 0.29 0.61 0.51
400 0.44 0.49 0.20 0.54 0.48 0.30 0.46 0.53

500 0.42 0.48 0.20 0.52 0.47 0.29 0.38 0.53

600 0.41 0.47 0.21 0.51 0.46 0.28 0.35 0.52

700 0.41 0.47 0.21 0.50 0.44 0.29 0.32 0.50

800 0.40 0.49 0.22 0.50 0.45 0.29 0.34 0.49

900 0.39 0.48 0.22 0.49 0.44 0.28 0.30 0.48

1000 0.39 0.47 0.22 0.50 0.43 0.28 0.27 0.49

3.3 Analyzing priors
Next we investigate the informativeness of feature cate-

gories and individual features in estimating e↵ective priors.

User vs. Review vs. Product priors.

We start by analyzing the user, review, and product pri-
ors. To study the e↵ectiveness of a certain group of priors
(e.g., user, or user+review), we only initialize the priors for
the nodes in that group in the graph (as estimated from
metadata) and set the remaining node priors to unbiased,
i.e. {0.5, 0.5}. We then compare the performance of SpEa-
gle with priors of various groups.

Table 7 shows the AP and AUC performance of SpEa-

gle across datasets with various prior groups. We find that
the review priors produce the most e↵ective results, followed

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

(a) User Ranking (b) Review Ranking

Figure 3: NDCG@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip for both
user and review ranking. Also shown are results for
SpEagle

+ with varying % of labeled data.

by user priors, and product priors. The di↵erence in per-
formance is especially pronounced on our largest dataset
YelpZip. To our surprise, we find that the product priors
alone yield performance that is lower than that by random
ranking. As a result, SpEagle with only user and review
priors performs almost as well as using all the priors.

Text- vs. Behavior-based priors.

Recall from Table 2 that our features are derived from
review text as well as behavioral clues. Here we investigate
the performance of SpEagle when priors are estimated from



Rayana & Akoglu 27 

¡  Labels	  improve	  performance	  significantly	  	  

Collective Opinion Spam Detection 



Rayana & Akoglu 28 Collective Opinion Spam Detection 

¡  Labels	  improve	  performance	  significantly	  	  



Rayana & Akoglu 29 Collective Opinion Spam Detection 

¡  Labels	  improve	  performance	  significantly	  	  



Rayana & Akoglu 30 

Light	  version	  of	  	  	  	  
SpEagle	  

	  

SpLite	  (SpLite+)	  



Rayana & Akoglu 31 Collective Opinion Spam Detection 

Table 4: AP and AUC performance of compared methods on all three datasets.
User Ranking Review Ranking

AP AUC AP AUC

Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
FraudEagle 0.2537 0.2233 0.3091 0.6124 0.6062 0.6175 0.1067 0.1122 0.1524 0.3735 0.5063 0.5326
Wang et al. 0.2659 0.2381 0.3306 0.6167 0.6207 0.6554 0.1518 0.1255 0.1803 0.5062 0.5415 0.5982
Prior 0.2157 0.1826 0.2550 0.5294 0.5081 0.5269 0.2241 0.1789 0.2352 0.6707 0.6705 0.6838
SpEagle 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

SpEagle

+(1%) 0.3967 0.3480 0.4245 0.7078 0.6828 0.6907 0.3352 0.2757 0.3545 0.7951 0.7829 0.8040
SpLite

+ (1%) 0.3777 0.3331 0.4218 0.6744 0.6542 0.6784 0.3124 0.2550 0.3448 0.7693 0.7631 0.7923

Table 5: Precision@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

User Ranking Review Ranking

k

P
r
i
o
r

F
r
a
u
d
E
a
g
l
e

W
a
n
g

e
t
a
l
.

S
p
E
a
g
l
e

P
r
i
o
r

F
r
a
u
d
E
a
g
l
e

W
a
n
g

e
t
a
l
.

S
p
E
a
g
l
e

100 0.32 0.30 0.21 0.73 0.38 0.25 0.24 0.74

200 0.26 0.30 0.19 0.59 0.33 0.18 0.26 0.59

300 0.23 0.38 0.21 0.52 0.33 0.21 0.25 0.53

400 0.21 0.33 0.26 0.49 0.32 0.29 0.25 0.50

500 0.18 0.29 0.27 0.50 0.31 0.27 0.25 0.50

600 0.17 0.28 0.27 0.49 0.32 0.25 0.26 0.49

700 0.18 0.27 0.29 0.46 0.31 0.22 0.26 0.46

800 0.18 0.26 0.30 0.46 0.32 0.22 0.25 0.46

900 0.18 0.26 0.30 0.46 0.32 0.20 0.23 0.45

1000 0.19 0.28 0.32 0.45 0.31 0.20 0.23 0.45

100 0.34 0.21 0.15 0.44 0.34 0.10 0.17 0.44

200 0.30 0.19 0.19 0.46 0.32 0.12 0.22 0.46

300 0.28 0.17 0.18 0.44 0.34 0.09 0.27 0.44

400 0.27 0.21 0.17 0.44 0.34 0.11 0.21 0.44

500 0.25 0.22 0.17 0.41 0.33 0.11 0.22 0.41

600 0.23 0.27 0.17 0.40 0.32 0.13 0.22 0.40

700 0.22 0.37 0.16 0.39 0.32 0.12 0.22 0.39

800 0.22 0.45 0.16 0.39 0.32 0.13 0.20 0.39

900 0.22 0.50 0.15 0.38 0.31 0.13 0.22 0.38

1000 0.22 0.45 0.16 0.38 0.32 0.14 0.20 0.38

100 0.51 0.55 0.18 0.44 0.51 0.29 0.86 0.43
200 0.48 0.52 0.18 0.53 0.51 0.29 0.92 0.52
300 0.46 0.48 0.20 0.52 0.51 0.29 0.61 0.51
400 0.44 0.49 0.20 0.54 0.48 0.30 0.46 0.53

500 0.42 0.48 0.20 0.52 0.47 0.29 0.38 0.53

600 0.41 0.47 0.21 0.51 0.46 0.28 0.35 0.52

700 0.41 0.47 0.21 0.50 0.44 0.29 0.32 0.50

800 0.40 0.49 0.22 0.50 0.45 0.29 0.34 0.49

900 0.39 0.48 0.22 0.49 0.44 0.28 0.30 0.48

1000 0.39 0.47 0.22 0.50 0.43 0.28 0.27 0.49

3.3 Analyzing priors
Next we investigate the informativeness of feature cate-

gories and individual features in estimating e↵ective priors.

User vs. Review vs. Product priors.

We start by analyzing the user, review, and product pri-
ors. To study the e↵ectiveness of a certain group of priors
(e.g., user, or user+review), we only initialize the priors for
the nodes in that group in the graph (as estimated from
metadata) and set the remaining node priors to unbiased,
i.e. {0.5, 0.5}. We then compare the performance of SpEa-
gle with priors of various groups.

Table 7 shows the AP and AUC performance of SpEa-

gle across datasets with various prior groups. We find that
the review priors produce the most e↵ective results, followed

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

(a) User Ranking (b) Review Ranking

Figure 3: NDCG@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip for both
user and review ranking. Also shown are results for
SpEagle

+ with varying % of labeled data.

by user priors, and product priors. The di↵erence in per-
formance is especially pronounced on our largest dataset
YelpZip. To our surprise, we find that the product priors
alone yield performance that is lower than that by random
ranking. As a result, SpEagle with only user and review
priors performs almost as well as using all the priors.

Text- vs. Behavior-based priors.

Recall from Table 2 that our features are derived from
review text as well as behavioral clues. Here we investigate
the performance of SpEagle when priors are estimated from

Table 8: NDCG@k performance comparison of SpEagle vs. SpLite (with 1% supervision on all datasets).
User Ranking Review Ranking

YelpChi YelpNYC YelpZip YelpChi YelpNYC YelpZip

k Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9354 0.9334 0.9694 0.9651 0.9219 0.9377
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8469 0.8007 0.9665 0.9595 0.9200 0.9379
300 1.0000 0.9995 1.0000 1.0000 0.9997 1.0000 0.7373 0.6986 0.9597 0.9584 0.9216 0.9377
400 0.9645 0.9589 1.0000 1.0000 0.9998 1.0000 0.6682 0.6397 0.9615 0.9571 0.9248 0.9360
500 0.8841 0.8677 1.0000 1.0000 0.9998 1.0000 0.6255 0.6103 0.9610 0.9529 0.9234 0.9276
600 0.8205 0.8107 1.0000 1.0000 0.9998 1.0000 0.6089 0.5740 0.9620 0.9432 0.9236 0.9121
700 0.7731 0.7650 1.0000 1.0000 0.9999 1.0000 0.5864 0.5556 0.9552 0.8925 0.9240 0.9021
800 0.7416 0.7279 1.0000 1.0000 0.9999 1.0000 0.5587 0.5317 0.9179 0.8351 0.9199 0.8977
900 0.7157 0.6980 1.0000 1.0000 0.9999 1.0000 0.5458 0.5279 0.8775 0.7923 0.9138 0.8899
1000 0.6803 0.6670 1.0000 1.0000 0.9999 1.0000 0.5361 0.5218 0.8463 0.7577 0.9052 0.8810

The computationally most demanding component of
SpEagle is feature extraction (network inference is only
linear-time in number of edges in the graph [31]). Armed
with the above conclusions, our goal is then to identify a
few behavioral features for only the review nodes to be used
in estimating priors fast. The rest of the priors, i.e., those
for user and product nodes, are to be set to unbiased.

Figure 5 shows the AP performance of SpEagle (R) (as
discussed in Table 7) for the review ranking task on all three
datasets, when all the review features (blue bar), individual
review features (green bars), as well as pairs of behavioral
features (red bars, only 3 shown) are used. We find that
while there exists no single feature that produces high per-
formance across all datasets, using only two behavioral fea-
tures often yields similar performance to using all.

We design SpLite to utilize only the RD and EXT fea-
tures for estimating priors for only the review nodes. The
rest are set to unbiased. Table 8 compares SpEagle and
SpLite under 1% labeled data across all datasets for both
ranking tasks, and Figure 6 illustrates the running times.
Notice that SpLite reduces the feature extraction and hence
prior estimation overhead significantly, while yielding quite
comparable performance to SpEagle.

#edges �105
2 4 6 8 10 12

se
co
nd
s

100

102

104

106

SpEagle
SpEagle+(1%)
SpLite
SpLite+(1%)

�����

������

105 T T i I

C/5
"O Q

§ 10 - " 7 " "
o
CD
C/5

10°
Y'Chi Y'NYC Y'Zip

SpEagle network inference
SpLite network inference

SpEagle feature extraction
SpLite feature extraction

Figure 6: (top) Total running time of SpEagle vs.
SpLite, (bottom) Break-down of runtime: feature
extraction and network inference, for all datasets.

4. RELATED WORK
Opinion spam is one of the new forms of Web-based spam,

and has been the focus of academic research in the last 7-8
years. We organize the various approaches to this problem
into three groups: behavior-, language-, and graph-based.

Behavior-based approaches. The approaches in this cat-
egory often leverage indicative features of spam extracted
from the metadata associated with user behavior (e.g., rat-
ing distribution), review content (e.g., number of capital
letters), and product profile (e.g., brand and price). The
seminal work by Jindal and Liu [9] use supervised learn-
ing based on 36 such features on a (pseudo) ground truth
dataset, constructed by labeling the duplicate reviews in an
Amazon dataset as fake reviews. Li et al. [13] train semi-
supervised models, and use the two views from reviews and
users under a co-training framework to spot fake reviews.
Jindal et al. [10] propose rule-based discovery of unusual
patterns in review data associated with the rating and brand
distribution of a user’s reviews. Other work that study rat-
ing based behavior of users include [7] and [15]. More re-
cently, Mukherjee et al. [18] utilize reviewing behaviors of
users in an unsupervised Bayesian inference framework to
detect opinion spammers. Xie et al. [28] monitor tempo-
ral behavior of products by tracking their average rating,
review count, and ratio of singleton reviewers, to spot sus-
picious single-time reviewers. Those spammers are particu-
larly challenging to detect, as they provide only a single re-
view. Besides detecting individual spammers, there has also
been work on identifying spammer groups through group-
level behavioral indicators of spam [19, 29].

Language-based approaches. Methods in this category
focus on the characteristics of language that the opinion
spammers use and how it di↵ers from the language used
in genuine reviews. This line of work is also related to
studies in deception [21]. Ott et al. [22] learn supervised
models to detect deceptive reviews based on linguistic fea-
tures of reviews as well as features borrowed from studies in
psychology. Amazon Mechanical Turk has been employed
to crowdsource fake reviews by paying anonymous online
users to write fake hotel reviews. Feng et al. [6] investi-
gate syntactic stylometry for deception detection, and show
that features derived from context-free-grammar parse trees
improve performance over shallow lexico-syntactic features.
An investigation by Mukherjee et al. [20] analyzed the

e↵ectiveness of linguistic and behavioral clues on a Yelp
dataset with filtered and recommended reviews, and found
that linguistic features are not as e↵ective and that Yelp’s
filter might be using a behavioral based approach.

	  
¡  SpEagle+	  vs	  SpLite+	  perform	  comparably	  



Rayana & Akoglu 32 

Table 8: NDCG@k performance comparison of SpEagle vs. SpLite (with 1% supervision on all datasets).
User Ranking Review Ranking

YelpChi YelpNYC YelpZip YelpChi YelpNYC YelpZip

k Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9354 0.9334 0.9694 0.9651 0.9219 0.9377
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8469 0.8007 0.9665 0.9595 0.9200 0.9379
300 1.0000 0.9995 1.0000 1.0000 0.9997 1.0000 0.7373 0.6986 0.9597 0.9584 0.9216 0.9377
400 0.9645 0.9589 1.0000 1.0000 0.9998 1.0000 0.6682 0.6397 0.9615 0.9571 0.9248 0.9360
500 0.8841 0.8677 1.0000 1.0000 0.9998 1.0000 0.6255 0.6103 0.9610 0.9529 0.9234 0.9276
600 0.8205 0.8107 1.0000 1.0000 0.9998 1.0000 0.6089 0.5740 0.9620 0.9432 0.9236 0.9121
700 0.7731 0.7650 1.0000 1.0000 0.9999 1.0000 0.5864 0.5556 0.9552 0.8925 0.9240 0.9021
800 0.7416 0.7279 1.0000 1.0000 0.9999 1.0000 0.5587 0.5317 0.9179 0.8351 0.9199 0.8977
900 0.7157 0.6980 1.0000 1.0000 0.9999 1.0000 0.5458 0.5279 0.8775 0.7923 0.9138 0.8899
1000 0.6803 0.6670 1.0000 1.0000 0.9999 1.0000 0.5361 0.5218 0.8463 0.7577 0.9052 0.8810

The computationally most demanding component of
SpEagle is feature extraction (network inference is only
linear-time in number of edges in the graph [31]). Armed
with the above conclusions, our goal is then to identify a
few behavioral features for only the review nodes to be used
in estimating priors fast. The rest of the priors, i.e., those
for user and product nodes, are to be set to unbiased.

Figure 5 shows the AP performance of SpEagle (R) (as
discussed in Table 7) for the review ranking task on all three
datasets, when all the review features (blue bar), individual
review features (green bars), as well as pairs of behavioral
features (red bars, only 3 shown) are used. We find that
while there exists no single feature that produces high per-
formance across all datasets, using only two behavioral fea-
tures often yields similar performance to using all.

We design SpLite to utilize only the RD and EXT fea-
tures for estimating priors for only the review nodes. The
rest are set to unbiased. Table 8 compares SpEagle and
SpLite under 1% labeled data across all datasets for both
ranking tasks, and Figure 6 illustrates the running times.
Notice that SpLite reduces the feature extraction and hence
prior estimation overhead significantly, while yielding quite
comparable performance to SpEagle.

#edges �105
2 4 6 8 10 12

se
co
nd
s

100

102

104

106

SpEagle
SpEagle+(1%)
SpLite
SpLite+(1%)

�����

������

105 T T i I

C/5
"O Q

§ 10 - " 7 " "
o
CD
C/5

10°
Y'Chi Y'NYC Y'Zip

SpEagle network inference
SpLite network inference

SpEagle feature extraction
SpLite feature extraction

Figure 6: (top) Total running time of SpEagle vs.
SpLite, (bottom) Break-down of runtime: feature
extraction and network inference, for all datasets.

4. RELATED WORK
Opinion spam is one of the new forms of Web-based spam,

and has been the focus of academic research in the last 7-8
years. We organize the various approaches to this problem
into three groups: behavior-, language-, and graph-based.

Behavior-based approaches. The approaches in this cat-
egory often leverage indicative features of spam extracted
from the metadata associated with user behavior (e.g., rat-
ing distribution), review content (e.g., number of capital
letters), and product profile (e.g., brand and price). The
seminal work by Jindal and Liu [9] use supervised learn-
ing based on 36 such features on a (pseudo) ground truth
dataset, constructed by labeling the duplicate reviews in an
Amazon dataset as fake reviews. Li et al. [13] train semi-
supervised models, and use the two views from reviews and
users under a co-training framework to spot fake reviews.
Jindal et al. [10] propose rule-based discovery of unusual
patterns in review data associated with the rating and brand
distribution of a user’s reviews. Other work that study rat-
ing based behavior of users include [7] and [15]. More re-
cently, Mukherjee et al. [18] utilize reviewing behaviors of
users in an unsupervised Bayesian inference framework to
detect opinion spammers. Xie et al. [28] monitor tempo-
ral behavior of products by tracking their average rating,
review count, and ratio of singleton reviewers, to spot sus-
picious single-time reviewers. Those spammers are particu-
larly challenging to detect, as they provide only a single re-
view. Besides detecting individual spammers, there has also
been work on identifying spammer groups through group-
level behavioral indicators of spam [19, 29].

Language-based approaches. Methods in this category
focus on the characteristics of language that the opinion
spammers use and how it di↵ers from the language used
in genuine reviews. This line of work is also related to
studies in deception [21]. Ott et al. [22] learn supervised
models to detect deceptive reviews based on linguistic fea-
tures of reviews as well as features borrowed from studies in
psychology. Amazon Mechanical Turk has been employed
to crowdsource fake reviews by paying anonymous online
users to write fake hotel reviews. Feng et al. [6] investi-
gate syntactic stylometry for deception detection, and show
that features derived from context-free-grammar parse trees
improve performance over shallow lexico-syntactic features.
An investigation by Mukherjee et al. [20] analyzed the

e↵ectiveness of linguistic and behavioral clues on a Yelp
dataset with filtered and recommended reviews, and found
that linguistic features are not as e↵ective and that Yelp’s
filter might be using a behavioral based approach.

Collective Opinion Spam Detection 

Table 8: NDCG@k performance comparison of SpEagle vs. SpLite (with 1% supervision on all datasets).
User Ranking Review Ranking

YelpChi YelpNYC YelpZip YelpChi YelpNYC YelpZip

k Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9354 0.9334 0.9694 0.9651 0.9219 0.9377
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8469 0.8007 0.9665 0.9595 0.9200 0.9379
300 1.0000 0.9995 1.0000 1.0000 0.9997 1.0000 0.7373 0.6986 0.9597 0.9584 0.9216 0.9377
400 0.9645 0.9589 1.0000 1.0000 0.9998 1.0000 0.6682 0.6397 0.9615 0.9571 0.9248 0.9360
500 0.8841 0.8677 1.0000 1.0000 0.9998 1.0000 0.6255 0.6103 0.9610 0.9529 0.9234 0.9276
600 0.8205 0.8107 1.0000 1.0000 0.9998 1.0000 0.6089 0.5740 0.9620 0.9432 0.9236 0.9121
700 0.7731 0.7650 1.0000 1.0000 0.9999 1.0000 0.5864 0.5556 0.9552 0.8925 0.9240 0.9021
800 0.7416 0.7279 1.0000 1.0000 0.9999 1.0000 0.5587 0.5317 0.9179 0.8351 0.9199 0.8977
900 0.7157 0.6980 1.0000 1.0000 0.9999 1.0000 0.5458 0.5279 0.8775 0.7923 0.9138 0.8899
1000 0.6803 0.6670 1.0000 1.0000 0.9999 1.0000 0.5361 0.5218 0.8463 0.7577 0.9052 0.8810

The computationally most demanding component of
SpEagle is feature extraction (network inference is only
linear-time in number of edges in the graph [31]). Armed
with the above conclusions, our goal is then to identify a
few behavioral features for only the review nodes to be used
in estimating priors fast. The rest of the priors, i.e., those
for user and product nodes, are to be set to unbiased.

Figure 5 shows the AP performance of SpEagle (R) (as
discussed in Table 7) for the review ranking task on all three
datasets, when all the review features (blue bar), individual
review features (green bars), as well as pairs of behavioral
features (red bars, only 3 shown) are used. We find that
while there exists no single feature that produces high per-
formance across all datasets, using only two behavioral fea-
tures often yields similar performance to using all.

We design SpLite to utilize only the RD and EXT fea-
tures for estimating priors for only the review nodes. The
rest are set to unbiased. Table 8 compares SpEagle and
SpLite under 1% labeled data across all datasets for both
ranking tasks, and Figure 6 illustrates the running times.
Notice that SpLite reduces the feature extraction and hence
prior estimation overhead significantly, while yielding quite
comparable performance to SpEagle.

#edges �105
2 4 6 8 10 12

se
co
nd
s

100

102

104

106

SpEagle
SpEagle+(1%)
SpLite
SpLite+(1%)

�����

������

105 T T i I

C/5
"O Q

§ 10 - " 7 " "
o
CD
C/5

10°
Y'Chi Y'NYC Y'Zip

SpEagle network inference
SpLite network inference

SpEagle feature extraction
SpLite feature extraction

Figure 6: (top) Total running time of SpEagle vs.
SpLite, (bottom) Break-down of runtime: feature
extraction and network inference, for all datasets.

4. RELATED WORK
Opinion spam is one of the new forms of Web-based spam,

and has been the focus of academic research in the last 7-8
years. We organize the various approaches to this problem
into three groups: behavior-, language-, and graph-based.

Behavior-based approaches. The approaches in this cat-
egory often leverage indicative features of spam extracted
from the metadata associated with user behavior (e.g., rat-
ing distribution), review content (e.g., number of capital
letters), and product profile (e.g., brand and price). The
seminal work by Jindal and Liu [9] use supervised learn-
ing based on 36 such features on a (pseudo) ground truth
dataset, constructed by labeling the duplicate reviews in an
Amazon dataset as fake reviews. Li et al. [13] train semi-
supervised models, and use the two views from reviews and
users under a co-training framework to spot fake reviews.
Jindal et al. [10] propose rule-based discovery of unusual
patterns in review data associated with the rating and brand
distribution of a user’s reviews. Other work that study rat-
ing based behavior of users include [7] and [15]. More re-
cently, Mukherjee et al. [18] utilize reviewing behaviors of
users in an unsupervised Bayesian inference framework to
detect opinion spammers. Xie et al. [28] monitor tempo-
ral behavior of products by tracking their average rating,
review count, and ratio of singleton reviewers, to spot sus-
picious single-time reviewers. Those spammers are particu-
larly challenging to detect, as they provide only a single re-
view. Besides detecting individual spammers, there has also
been work on identifying spammer groups through group-
level behavioral indicators of spam [19, 29].

Language-based approaches. Methods in this category
focus on the characteristics of language that the opinion
spammers use and how it di↵ers from the language used
in genuine reviews. This line of work is also related to
studies in deception [21]. Ott et al. [22] learn supervised
models to detect deceptive reviews based on linguistic fea-
tures of reviews as well as features borrowed from studies in
psychology. Amazon Mechanical Turk has been employed
to crowdsource fake reviews by paying anonymous online
users to write fake hotel reviews. Feng et al. [6] investi-
gate syntactic stylometry for deception detection, and show
that features derived from context-free-grammar parse trees
improve performance over shallow lexico-syntactic features.
An investigation by Mukherjee et al. [20] analyzed the

e↵ectiveness of linguistic and behavioral clues on a Yelp
dataset with filtered and recommended reviews, and found
that linguistic features are not as e↵ective and that Yelp’s
filter might be using a behavioral based approach.

	  
¡  SpLite+	  is	  orders	  of	  magnitude	  faster	  than	  SpEagle+	  



Rayana & Akoglu 33 

Main	  contribu'ons:	  
¡  SpEagle	  :	  a	  Collec=ve	  approach	  to	  opinion	  spam	  

	  

§  is	  unsupervised	  	  
§  can	  easily	  leverage	  labels	  (SpEagle+)	  	  	  
§  improves	  detec'on	  performance	  	  

¡  Computa'onally	  light	  version	  :	  SpLite	  (SpLite+)	  	  
§  significant	  speed-‐up	  
	   Collective Opinion Spam Detection 

Re
vi
ew

	  n
et
w
or
k	  

M
et
ad

at
a	  



Rayana & Akoglu 34 Collective Opinion Spam Detection 

 
Code and Data available: 

http://shebuti.com/collective-opinion-spam-detection/ 
srayana@cs.stonybrook.edu 

 
http://www.cs.stonybrook.edu/~datalab/ 

 


