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ABSTRACT
Anomalies are often indicators of malfunction or inefficiency in
various systems such as manufacturing, healthcare, finance, etc.
While the literature is abundant in effective detection algorithms
due to this practical relevance, autonomous anomaly detection is
rarely used in real-world scenarios. Especially in high-stakes appli-
cations, a human-in-the-loop is often involved in processes beyond
detection such as sense-making and troubleshooting. Motivated
by the financial fraud verification problem, we introduce ALARM
(for Analyst-in-the-Loop Anomaly Reasoning andManagement);
a comprehensive end-to-end framework that supports the anom-
aly mining cycle from detection to action and is applicable more
broadly to domains beyond finance. Besides unsupervised detec-
tion of emerging anomalies, it offers anomaly explanations and
an interactive GUI for human-in-the-loop processes—visual explo-
ration, sense-making, and ultimately action-taking via designing
new detection rules—that help close “the loop” as the new rules com-
plement rule-based supervised detection, typical of many deployed
systems in practice. We demonstrate ALARM’s efficacy quantita-
tively and qualitatively through a series of case with fraud analysts
from the financial industry.
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1 INTRODUCTION
Anomalies appear in many real-world domains, often as indicators
of fault, inefficiency or malfunction in various systems such as
manufacturing, environmental monitoring, surveillance, finance,
computer networks, to name a few. Therefore, a large body of
literature has been devoted to outlier detection algorithms [3, 5, 9]
as well as open-source tools [2, 11, 20, 33].

Despite effective outlier detection algorithms, autonomous anom-
aly detection systems are rarely used in real world scenarios as
off-the-shelf algorithms do not work well in complex situations [27].
The reason is that anomaly detection is an under-specified problem
and statistical outliers are not always semantically relevant [31].
Therefore, fully automatic approaches are often impractical and the
human expert (or analyst) participation and intervention are crucial.
Especially in high-stakes applications, it is required, often as part
of mandated policies, that the detected anomalies (credit card users
flagged as malicious) go through an auditing process where the
human reasons, validates and troubleshoots these anomalies.

Motivation. Anomaly explanation aims to equip the human
analyst with the understanding of why the detected anomalies
stand out [26]. Stand-alone explanations, however, are typically
not directly utilized to improve downstream steps. There also exist
various visual analytics tools specifically developed to aid detec-
tion by human perception or visual inspection to aid verification
[17, 29, 30]. However, while the explanations and visualizations
are expected to help the analyst gain sufficient “insight” into the
anomalies, they lack explicit guidance toward decision-making
and action-taking. Moreover, these detection, explanation and vi-
sualization techniques are often developed separately rather than
supporting an end-to-end pipeline for human-in-the-loop anomaly
mining and management for real world applications.

Application Scenario. Motivated by these gaps in the litera-
ture, we propose an end-to-end framework for anomaly mining,
reasoning and management that not only equips the human-in-the-
loop with anomaly explanations but also puts these explanations to
use toward guiding the analyst in action-taking. Our work is driven
by its applications in finance (related to bank/credit/merchant fraud
and money-laundering detection and management), yet it can easily
be utilized in other domains in which anomaly mining is critical.

Specifically, as shown in Fig. 1(left), we envision a deployed
system where the incoming (in our case, transaction) data stream
is screened through a database (i.e. ensemble) of anomaly detection
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ALARM: Analyst-in-the-Loop Anomaly Reasoning and Management
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Figure 1: (left) The series of steps that the proposed ALARM framework supports for end-to-end anomaly discovery and
management. (right) A screenshot of ALARM’s GUI for visual exploration, verification and action-taking (i.e. new rule design).

rules for flagging the known type of anomalies. Rule-based detection
is quite common in many real world deployed systems, thanks
to the simplicity and transparency of rules (a small set of feature
predicates), fast inference time, and ability to design and deploy new
rules in a decentralized fashion by several experts and analysts. The
overarching goal here is to quickly detect and verify new, emerging
fraudulent activities and design and deploy new rule(s) that can
automatically detect similar fraud in the near and far future.

OurWork. Toward this goal, we put forth the following pipeline
of components. (1) Unsupervised Detection: Besides rule-based
supervised detection, the data is also passed through an unsuper-
vised detection algorithm, xStream [25, 32], for spotting emerging,
unknown anomalies. (2) Explanation:We develop a built-in, model-
specific explanation algorithm for xStream that estimates feature
importance weights, reflective of subspaces in which the anom-
alies stand out the most. Importantly, the value of explanations
depend on how humans put them into use [15] and to the extent
that they are useful for humans in improving a downstream task
[14, 28]. (3) Visual Exploration and Rule Design, with Human
Interaction: To this end, as Fig. 1(right) illustrates, we leverage the
explanations to present discovered anomalous patterns (i.e. clus-
ters) to the analyst through an interactive visual interface (inset A).
Anomaly clusters indicate repeating cases, of which the analyst is
interested to “catch” future occurrences. The analyst can use our
visual analysis tool to inspect any cluster toward verifying true
vs. false positives (inset B). Notably, this is a critical step as not all
statistical outliers are interesting anomalies, due to the “semantic
gap” [31]. For true/semantic anomalies, we further leverage expla-
nations to present candidate rules that best capture the verified
anomalous pattern (inset C). Finally, an interactive interface allows
the analyst to revise any of the candidates or design a new rule that
can capture these instances (high coverage) but not others (high pu-
rity) (inset D). The newly designed rule(s) are then transferred onto

the existing rule database toward flagging similar future anomalies,
contributing to supervised detection and thereby closing “the loop”.
In summary, this work introduces the following main contributions.
• End-to-end Pipeline for Human-in-the-loop Anomaly Dis-
covery and Management: We develop a new end-to-end frame-
work, calledALARM (forAnalyst-in-the-LoopAnomalyReasoning
andManagement), that supports (𝑖) unsupervised emerging anom-
aly detection, (𝑖𝑖) human-in-the-loop reasoning and verification,
and (𝑖𝑖𝑖) guided action-taking in the form of interactively designing
new detection rules for future anomalies of similar nature.
• Anomaly Explanations-by-Design: We equip the unsuper-
vised detection algorithm xStream [25, 32] with model-specific
(rather than post hoc/model-agnostic) explanations (i.e. feature
importances), capable of handling mixed-type data. We quantita-
tively evaluate the accuracy of the feature-importance based expla-
nations by utilizing generative models that simulate mixed-type
anomalies. Notably, explanations are further utilized downstream;
for anomalous pattern discovery and candidate rule generation.
• Interactive Visual Toolkit for Verification and Rule Design:
We create a GUI that summarizes detected anomalies in clusters
(reducing one-by-one inspection overhead), allows visual inspec-
tion and exploration toward verification, and presents candidate
rules for interactive, multi-objective rule design (insets A–D in
Fig. 1).
• Financial Application and User Study: We employ our end-
to-end framework in the financial domain wherein detecting and
managing emerging fraudulent schemes in a timely fashion is
critical. User studies with three real-world fraud analysts across
three case studies and two datasets demonstrate the efficacy and
efficiency that ALARM provides, complementing current practice.

2 OVERVIEW & BACKGROUND
In our proposed ALARM pipeline, the first step is effectively detect-
ing the emerging/novel phenomena in the incoming data stream.
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To this end, we employ xStream [25], which is recently extended to
Apache Spark based distributed anomaly detection [32]. xStream
is designed for streaming data, and can seamlessly handle feature-
evolving, mixed-type data as it appears in many practical applica-
tions. Moreover, distributed detection is not only advantageous for
real world domains where the data is too large to fit in a single
machine, but also when data collection is inherently distributed
over many servers, as is the case in the financial bank industry.
Despite being an effective algorithm, xStream allows us to extend
to a built-in (i.e. model-specific) explanation method.

Two downstream components of ourALARM framework, namely
(1) anomaly explanation and the (2) interactive visual exploration
and rule design toolkit, are developed newly as part of the current
work in order to assist human analysts in the loop post detection,
and thus closing the loop from detection to action.

2.1 Anomaly Detection with xStream: Review
xStream consists of three main steps, which we review briefly for
the paper to be self-contained, and refer to [25] for details.
2.1.1 Step 1. Data Projection. Given mixed-type data x𝑖 ∈ R𝐷 ,
xStream creates a low-dim. sketch s𝑖 via random projections [1, 12]:

s𝑖 = (x𝑇𝑖 r1, . . . , x𝑇𝑖 r𝐾 ) (1)

where {r1, . . . , r𝐾 } depict𝐾 sparse random vectors s.t. r𝑘 [𝐹 ] ∈ {±1}
with prob. 1/3, and zero otherwise [1]. For streaming data, entries
of r𝑘 is computed on-the-fly via hashing, rewriting Eq. (1) as

s𝑖 [𝑘] =
∑︁
𝐹 ∈F𝑟

ℎ𝑘 (𝐹 ) · x𝑖 [𝐹 ] +
∑︁
𝐹 ∈F𝑐

ℎ𝑘 (𝐹 ⊕ x𝑖 [𝐹 ]) · 1 , 𝑘 = 1 . . . 𝐾 (2)

where ℎ𝑘 (·) is a hash function, F𝑟 and F𝑐 respectively denote the
set of real-valued and categorical features, x𝑖 [𝐹 ] is point 𝑖’s value
of feature 𝐹 , and ⊕ depicts the string-concatenation.
2.1.2 Step 2. Denstiy Estimation with Half-space Chains.
Anomaly detection relies on density estimation at multiple scales
via a set of so-called Half-space Chains (HC), a data structure akin
to multi-granular subspace histograms. Each HC has a length 𝐿,
along which the (projected) feature space F𝑝 is recursively halved
on a randomly sampled (with replacement) feature, where 𝑓𝑙 ∈
{1, . . . , 𝐾} denotes the feature at level 𝑙 = 1, . . . , 𝐿.

Given a sketch s, the goal is to efficiently identify the bin it falls
into at each level. Let 𝚫 ∈ R𝐾 be the vector of initial bin widths,
equal to half the range of the projected data along each dimension
𝑓 ∈ F𝑝 . Let z̄𝑙 ∈ Z𝐾 denote the bin identifier of s at level 𝑙 , initially
all zeros. At level 1, bin-id is updated as z̄1 [𝑓1] = ⌊s[𝑓1]/𝚫[𝑓1]⌋. At
consecutive levels, it can be computed incrementally, as

z̄𝑙 [𝑓𝑙 ] = ⌊z𝑙 [𝑓𝑙 ]⌋ s.t. z𝑙 [𝑓𝑙 ] =
{
s[𝑓𝑙 ]/𝚫[𝑓𝑙 ] if 𝑜 (𝑓𝑙 , 𝑙) = 1, and
2z𝑙 [𝑓𝑙 ] o.w.; if 𝑜 (𝑓𝑙 , 𝑙) > 1

(3)

where 𝑜 (𝑓𝑙 , 𝑙) denotes the number of times feature 𝑓𝑙 = {1, . . . , 𝐾}
has been sampled in the chain until and including level 𝑙 . Then,
level-wise (multi-scale) densities are estimated by counting the
number of points with the same bin-id per level.

Overall, xStream is an ensemble of 𝑀 HCs, H = {𝐻𝐶 (𝑚) :=
(𝚫, f (𝑚) , C (𝑚) )}𝑀

𝑚=1 where eachHC is associatedwith (i) bin-width
per feature 𝚫 ∈ R𝐾 , (ii) sampled feature per level f (𝑚) ∈ Z𝐿 , and
(iii) counting data structure per level C (𝑚) = {𝐶 (𝑚)

𝑙
}𝐿
𝑙=1.

2.1.3 Step 3. Anomaly Scoring. To score a point for anomalous-
ness, count of points in the bin that its sketch falls into at each level
𝑙 of a HC, denoted 𝐶 (𝐻𝐶 )

𝑙
[z̄𝑙 ], is extrapolated via multiplying by

2𝑙 s.t. the counts are comparable across levels. Then, the smallest
extrapolated count is considered the anomaly score, i.e.

𝑂 (𝑚) (s) = min
𝑙

2𝑙 ·𝐶 (𝑚)
𝑙

[z̄𝑙 ] . (4)

The average across all HCs is the final anomaly score; the lower
the score, the lower is the density and higher the anomalousness.

3 ANOMALY EXPLANATION
Given the detected anomalies by xStream, we aim formodel-specific
explanations per anomaly, i.e., individual explanations. As detection
is based on density estimates in feature subspaces, explanations
aim to reflect feature importances.

3.1 Estimating Feature Importances
To estimate the weight of a feature for a high-score anomaly, we
follow a simple procedure that leverages the ensemble nature of
xStream. In a nutshell, it identifies the half-space chains in the
ensemble that “use” the feature in binning the feature space, and
(re)calculates the the anomaly score of the point only based on this
set of chains. The higher it is, the more important the feature is in
assigning a high score to the (anomalous) point.

Specifically, recall from Sec. 2.1.2 that f (𝑚) ∈ Z𝐿 denotes the
sequence of features used in halving the feature space by chain𝑚.
Given𝑀 chainsH = {𝐻𝐶 (𝑚) }𝑀

𝑚=1, and a feature 𝑓 to estimate its
importance for a (projected) point s, we partition the chains into
two groups: those that do and do not “use” 𝑓 in f (𝑚) .

The definition of “use” needs care here, due to how the anomaly
score of a point is estimated by a chain. Note in Eq. (4) that the
level 𝑙 at which the extrapolated count is the minimum provides
the score; in effect, only the features up to 𝑙 contribute to a point’s
score. Therefore, a feature is considered “used” by a chain if it is a
halving feature from the top down to this scoring level only.

Let 𝑙s denote the level at which a point s is scored by a chain. A
feature 𝑓 is used by chain𝑚 if 𝑓 ∈ f (𝑚) [1] . . . f (𝑚) [𝑙s]. LetM (𝑓 )

𝑢

denote the chain indices that use feature 𝑓 . Then, the importance
weight of 𝑓 for point s is given as:

𝑤 (𝑓 |s) = 1

|M (𝑓 )
𝑢 |

∑︁
𝑚∈M (𝑓 )

𝑢

𝑂 (𝑚) (s) . (5)

Note that feature importances differ by point, and hence are indi-
vidualized, since 𝑙s is dependent on the input point.

We note that several alternative importance measures did not
perform well, such as the difference between scores from the chains
that do and do not use 𝑓 , or the drop in the anomaly score when
the chains that use 𝑓 are removed. The reason is multicollinearity;
when chains that did not use an important feature 𝑓 used correlated
features instead, they continued to yield a high anomaly score.

3.2 From Projected to Original Features
Recall from Sec. 2.1.1 that xStream creates projection features
𝑘 = {1 . . . 𝐾} to sketch high-dimensional and/or mixed-type data.
The chains are built using the projected features, thus, the estimated
importances above are for those “compound” features.

To this end, the relations between the projected and original
features can be captured as a sparse bipartite graph. Nodes 𝑘 =
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{1 . . . 𝐾} on one side depict the projected featureswith pre-computed
feature importances (node weights) as described in Sec. 3.1. Nodes
𝐹 = {1 . . . |F𝑟 ∪ F𝑐 |} on the other side depict the original features.
Note that this graph is built separately for each (anomalous) point
x to be explained. Thanks to the binary hash functions, there exists
an edge (𝑘, 𝐹 ) only when ℎ𝑘 (𝐹 ) ≠ 0 (or for categorical F, when
ℎ𝑘 (𝐹 ⊕ x[𝐹 ]) ≠ 0), with expected density 1/3.

To attribute importances from projection features to the original
features, a simple approach could sum the importances of the pro-
jection features whose compound an original feature participates
in. However, this may attribute spurious importance from a neigh-
bor that is important due to a different feature in its compound. It
would also fail to tease apart additive feature attributions [23] in
the presence of multicollinearity. As an intermediate solution, we
go beyond the direct neighbors and diffuse in the graph the initial
projection feature weights via random walk with restart [10].

Let A ∈ {0, 1} (𝐾×|F𝑟∪F𝑐 | ) denote the adjacency matrix of the bi-
partite graph, 𝝅 = 𝝅𝑜 ∥𝝅𝑝 denote the concatenated ‘topic-sensitive’
Pagerank vector for the original and projected features, respectively,
andw𝑝 be the vector of projected feature importance weights based
on Eq. (5). w𝑝 is normalized to capture the fly-back probabilities,
and 𝝅 is initialized randomly and normalized over iterations. Then,

𝝅 (𝑡+1)
𝑝 := (1 − 𝛼 ) × A𝝅 (𝑡 )

𝑜 + 𝛼 × w𝑝 (6)

𝝅 (𝑡+1)
𝑜 := (1 − 𝛼 ) × A𝑇 𝝅 (𝑡+1)

𝑝 (7)

iteratively compute the original feature importances 𝝅𝑜 , using the
restart probability 𝛼 = 0.15.

4 EVALUATION: ANOMALY EXPLANATION
4.1 Simulation
To assess the performance of our feature explanations, we require
data containing anomalies with ground-truth feature importance
weights, which (to our knowledge) does not publicly exist. To this
end, we create a new simulator synthesizing anomalies in subspaces
along with feature importances. A basic simulator could generate
data from a predefined distribution, altering subset of features to
create anomalies. However, it may produce unrealistic data. Also,
consider the case where features A and B are expanded by different
factors (5 times and 10 times respectively). It is not clear which
feature, A or B, is more responsible for outlierness.

To overcome the above difficulties, we propose using generative
models with real-world data to synthesize anomalous points and
feature importances. We use the variational auto-encoder (VAE)
[16] to capture complex data distributions with both real-valued
and categorical features. A VAE embeds a training point x into a
lower-dim. z. At training stage, the encoder minimizes the distance
of a surrogate posterior𝑞𝜙 (x|z) to the true 𝑝𝜃 (z), while the decoder
maximizes 𝑝𝜃 (x|z). The likelihood of anomaly can be determined
by VAE’s reconstruction probability 𝑝𝜃 (x|z), which we also use
to calculate feature importances, by comparing the reconstruction
probability of a feature is altered vs. not altered.

Given a dataset, we feed all the normal points into the VAE and
generate𝑚 normal points {x𝑖𝑛𝑜𝑟 }𝑚𝑖=1 with {z𝑖 }𝑚

𝑖=1 hidden variables.
Then, we set a threshold 𝜏 for anomalous points as:

𝜏 = 𝜖 · min
𝑖=1,...,𝑚

[log 𝑝𝜃 (x𝑖𝑛𝑜𝑟 |z𝑖 )] (8)

which is the scaled minimum likelihood of a point being normal,
with 𝜖 specifies the tightness of the threshold. Next we generate
the anomalies and feature importance vectors. For each anomaly,
we first sample a normal instance x with hidden z. Given a subset
of features “to-inflate”, which can differ per anomaly, we “inflate”
point x along each specific dimension 𝑗 to acquire xinflated𝑗 . For
real-valued 𝑗 , the point is placed in a low-density region far from
normal points (global) or in the vicinity of normal points yet with
low probability (local). For categorical 𝑗 , the point’s value is re-
placed by one with lower probability, calculated from the empirical
distribution. Then 𝑗 ’s importance weight is:

e𝑗 = max{ 0, log𝑝𝜃 (x|z) − log𝑝𝜃 (xinflated𝑗 |z) } . (9)

If the posterior log-probability log𝑝𝜃 (xcandidate |z) (a.k.a. anom-
aly score 𝑠) of point xcandidate, with inflated values for all features in
the subset, is low, i.e. smaller than threshold 𝜏 , then it is added to the
anomaly pool along with its feature importances e . We continue
this process until 𝑘 anomalies are generated.
4.2 Experiment Setup
Data: We evaluate our anomaly explanation-by-feature impor-
tances approach on three real-valued and three mixed-type datasets,
which are commonly used in anomaly detection literature for tabu-
lar data. Table 1 lists the dataset names and descriptions. All data
are publicly available at the UCI machine learning repository [6].1

Table 1: Dataset statistics.
Name Type |F𝑐 | |F𝑟 |
Seismic Mixed 4 11
KDDCUP Mixed 3 31
Hypothyroid Mixed 12 6
Cardio Real-val 0 21
Satellite Real-val 0 36
BreastW Real-val 0 9

For each dataset, we re-
move data points with miss-
ing values and apply normal
points to our simulator to gen-
erate 5000 normal points and
500 anomalies. We randomly
inflate 1/3 features for each
anomaly. Real-valued features
are inflated to yield either global or local anomalies, as described
in Sec. 4.1. Categorical features are inflated by replacing value with
that of lowest probability.
Baselines: We evaluate our method along with two popular ex-
planation methods: SHapley Additive exPlanations (SHAP) [23]
and Depth-based Isolation Forest Feature Importance (DIFFI) [4].
SHAP is a model-free method for interpreting the output of any ma-
chine learning model. SHAP’s feature importance can be computed
using the predictions of both xStream as well as Isolation Forest
(IF) [21] algorithm—one of the state-of-the-art anomaly detection
methods for tabular data [7]. In contrast, DIFFI is a feature impor-
tance method that is specifically based on using IF as the backbone
anomaly detection method.

In addition, we compare feature importances by xStream with-
out as well as with feature projection to varying dimensions for
𝐾 . We set the other hyperparameter values sufficiently large as
suggested in [25] so as to obtain good detection performance.
Metrics: The main metric for evaluation is ranking based, quantify-
ing how well we rank the features by importance; namely Normal-
ized Discounted Cumulative Gain (NDCG) [13]. NDCG sums the
relevance-weighted scores of the items in the predicted ranking to
an ideal ranking. We prefer NDCG as it i) gives more weight to the
top anomalous features (we apply log 2 as the base of the discount

1Also downloadable from http://odds.cs.stonybrook.edu

http://odds.cs.stonybrook.edu
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Table 2: Ranking quality of features by importance produced by xStream and baselines, measured by NDCG. “†” indicates cases
when detection performance is larger than 0.99 AUROC. In parenthesis is the recorded average time to acquire the explanation.

Method Seismic KDDCUP Hypothyroid Cardio Satellite BreastW
IF+SHAP (∼ 5 mins) 0.874±0.002† 0.740±0.010† 0.810±0.011 0.828±0.005† 0.907±0.001† 0.957±0.008†

DIFFI (≤ 1 min) 0.867±0.013† 0.726±0.008† 0.824±0.023 0.823±0.004† 0.868±0.005† 0.912±0.006†
xStream +SHAP (≥ 130 hrs) 0.875±0.006† 0.695±0.007 0.830±0.010† 0.847±0.005† 0.912±0.003† 0.955±0.007†

xStream w/out proj. (≤ 1 min) 0.873±0.018† 0.670±0.010 0.828±0.020† 0.836±0.008† 0.910±0.006† 0.827±0.005†

Table 3: Ranking quality of features by importance using xStream with projection; using varying number of projection
dimensions 𝐾 , measured by NDCG. “∗” and “†” indicate cases when detection performance is larger than 0.95 and 0.99 AUROC,
respectively. In parenthesis is the recorded average time to acquire the explanation.

Method Seismic KDDCUP Hypothyroid Cardio Satellite BreastW
xStream w/ proj. 𝐾=15 (≤ 1 min) 0.666±0.006 ∗ 0.424±0.006 0.532± 0.024 0.706±0.005 † 0.628±0.006 † 0.837±0.004 †

xStream w/ proj. 𝐾=20 (≤ 1 min) 0.688±0.002 ∗ 0.444±0.013 0.560±0.008 0.713±0.009 † 0.652±0.004 † 0.850±0.005 †

xStream w/ proj. 𝐾=30 (≤ 1 min) 0.702±0.003 ∗ 0.488±0.006 ∗ 0.542±0.016 0.752±0.005 † 0.675±0.007 † 0.865±0.004 †

factor), and ii) can use ground-truth feature importances as the
relevance score. We also measure the time for xStream and other
comparison methods to acquire feature importance explanations.

4.3 Results
Table 2 displays the NDCG ranking quality w.r.t. to the synthe-
sized ground-truth feature importances, as well as the approximate
computational time required, comparing xStream (without pro-
jection) and various baseline methods. The highest NDCG scores
are achieved with the combination xStream +SHAP (for detec-
tion+explanation, respectively) for almost all datasets. However, it
is computationally quite demanding, taking more than 130 hours.
The IF+SHAP combination provides a faster solution, delivering
results in about 5 minutes, as it uses sped-up computations of
SHAP [22] for tree-based methods like IF. xStream and DIFFI,
two model-specific explanation methods, are even faster. xStream
(w/out projection) is comparable to state-of-the-art explanation
models or often the runner-up for many of the datasets. Impor-
tantly, xStream can be applied to distributed and/or streaming
data, which makes it more appealing and practical for large data
real-world systems, in comparison to DIFFI and IF+SHAP.

Table 3 shows the NDCG scores of xStream with different num-
ber of projections. The usage of projection diminishes xStream’s
capability to detect and subsequently explain the anomalies. In other
words, when projection is used there is a noticeable decrease in
both AUROC and NDCG. The decline may be driven by two factors.
First, when xStream is used with projection, its detection accuracy
decreases which associates with lesser quality chains, making it
difficult to obtain an explanation. Second, the graph propagation-
based attribution is a heuristic and may not be accurate in fully
capturing the direct feature effects. Nevertheless, the use of projec-
tion allows xStream to explain feature-evolving streaming data
without requiring a complete retraining of the algorithm, making
it more suitable for real-time applications.

Besides quantitative comparison, we also note disagreement
among the explanations themselves, where different methods yield
feature importances with significant variations [18]. This suggests
that no explanation can be considered the definitive truth for end-
users, and highlights the importance of the human in the loop:
rather than blindly accepting the feature importances produced by

any specific algorithm, analysts should be able to actively partici-
pate in the anomaly mining, reasoning, and management cycle.

5 FROM EXPLANATION TO ACTION: A NEW
TOOLKIT FOR ANOMALY MANAGEMENT

The premise of anomaly explanations is to equip the human-in-
the-loop with a deeper insight and understanding regarding the
nature of the flagged anomalies. However, explanations are only as
valuable as they are useful for the analysts [15], ideally in improving
a downstream task with a measurable objective [14, 28].

In many real world scenarios, including our financial application
domain, the analyst’s main goal is to derive enough knowledge
from the explanations so as to be able to prevent future anomalies of
the same nature. The action toward that goal may be fixing or trou-
bleshooting various components of a system that the analyst has
access to and full control over, or involve instigating new policies
regarding how the system is allowed to operate in the future.

Particularly in the financial domain, the analyst aims to deploy
a new detection rule for the potential recurrences of the detected
threat. Rule-based detection systems are typical of many deployed
applications in the real world for several reasons. First, rules are
simple; they are short and readable by humans. Second, they enable
fast filtering of potentially streaming incoming data. Moreover, a
database or ensemble of rules allow multiple analysts to populate
the database with new rules independently, in a decentralized fash-
ion. Therefore, our overarching approach to putting explanations
into action is to build a new toolkit that facilitates designing new
rules for emerging threats. The toolkit is to allow inspecting and
attending not only to the anomalies as detected by an algorithm
but also to those as reported by external sources (e.g. other banks,
card customers, etc.).

To best support the human in the loop, we build a visual and
interactive graphical user interface (GUI) for ALARM. It consists
of four main building blocks, as detailed in Sec.5.1-5.4, that respec-
tively fulfill our key design requirements: First, the anomalies need
to be summarized—by grouping similar anomalies—as individually
inspecting each anomaly would be too time-consuming if several
hundred are flagged. Analysts are interested to capture anomalous
groups or patterns (that may continue to emerge in the future),
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rather than one-off anomalies. Second, human analysts often pre-
fer visually inspecting how the data generally look like and how
the anomalies stand out. Their main goal in inspecting is to ver-
ify if the anomalies are truly semantically relevant or otherwise
false positives. Third, analysts could benefit from automatically
generated candidate rules. Data-driven rules provide a reasonable
starting point that the analyst can revise, reducing the time from de-
tection to response. Some analysts may be more novice than others
and find a starting point helpful. Finally, the GUI should support
fully interactive rule design that allows adding/removing feature
predicates. Analysts often have years of expertise in identifying
useful predicates that capture recurring attack vectors. They may
also prefer some features over others for their cost-efficiency as
well as for various policy reasons (justifiable, privacy, ethical, etc.).

5.1 Summary View (Sum):
Given a list of anomalies to be inspected, the summary view clusters
them by similarity. Similarity is based on the feature importances as
estimated by anomaly explanation (Sec. 3), rather than feature val-
ues in the original space. That is, we use sim(𝝅𝑜,𝑖 , 𝝅𝑜,𝑖′ ) that helps
group the points that stand out as anomalous in similar subspaces.

Figure 2: Summary View groups the anomalies into user-
given # clusters (membership by symbol), and also conveys
the score (color) and feature importances (per anomaly).

As Fig. 2 illustrates, anomalies are presented in a 2-dimensional
MDS embedding space [19] for visualization, which preserves the
aforementioned pairwise similarities as best as possible. The analyst
can choose the number of clusters, where different symbols depict
the cluster membership of the anomalies. The color of the points
reflect their anomaly score from xStream. Clicking a point opens
up a window that shows its feature importances in horizontal bars.

While the anomalies to be inspected could be the top 𝑘 highest
scoring points from xStream, ALARM also allows the analyst to
import points of their own interest to inspect; e.g. (labeled) anom-
alies obtained via external reporting. In that case, the analyst data
is passed onto xStream, which provide anomaly scores and expla-
nations for the labeled points. Summary View displays only these
labeled anomalies of interest, with explanations from xStream that
are used toward clustering.
5.2 Exploration View (Expl):
Fig. 3 illustrates the tools that ALARM offers for data exploration,
consisting of four main components that can aid sense-making and
verification: Histogram, Density plot and Parallel plot display
the comparison of anomalies vs. inliers with a single, two and
multiple dimensions respectively. For all three components, the

analyst is able to select which features to display. Finally, Lookout
[8] presents a few scatter plots which are automatically selected
feature pairs that maximally-explain (“maxplain”) the anomalies
in two dimensions, i.e. wherein the anomalies stand out the most.
Analyst can choose the budget interactively, adjusting the number
of plots that can be used to maxplain all the anomalies.

5.3 Rule Candidates View (Cand):
Given a group of anomalies, x-PACS algorithm [24] generates con-
cise rules, with a small set of predicates, that characterize the anoma-
lous pattern. It estimates the univariate kernel and histogram den-
sity of the anomalous points, respectively for each numerical and
nominal feature, to identify the intervals or values of significant
peaks. It then combines these from selected features, where the fea-
ture intervals that define the peaks are presented as the predicates.

Fig. 4 shows a screenshot of our Rule Candidates View, which
displays up to three rules that satisfy two user-specified thresholds:
coverage (C) and purity (P). C is the fraction of anomalies in the
group that comply with the rule, and P is the fraction of inlier points
that do not pass the rule. As such, the higher both C and P are, the
better, as they associate with high recall but low false alarm rates.

5.4 Rule Design Interface (RDI):
Fig. 5 illustrates a screenshot of ALARM’s interface toward facil-
itating the design of a new rule with high coverage and purity.
The analyst can select a candidate rule to revise or design a rule
from scratch by adding or deleting features, and adjusting their
values. Real-valued feature predicates are adjusted by sliders that
allow specifying intervals, and categorical features can be assigned
a value by scrolling through a drop-down list. “Calculate Scores”
button displays the coverage and purity of the latest set of predi-
cates. Upon completion, the rule can be saved locally or in a rule
database used for supervised anomaly detection.

6 FINANCIAL APPLICATION: USER STUDY
6.1 User Study Setup
Participants: We recruited three professional fraud analysts from
Capital One bank to participate in our user study. The analysts had
years of experience respectively, with card fraud, bank fraud, and
AML (anti-money laundering) as part of their job.
Data: We conducted the user studies on two separate datasets
with ground-truth anomalies. First dataset Czech is based on our
simulator. From the 1999 Czech Financial Dataset2, We applied
our simulator (see Sec.4.1) and simulated 1,000 normal points and
3 anomalous clusters with 20 anomalies each, based on different
inflated feature subspaces. Data contains 2 numerical and 4 cate-
gorical features, as well as the inlier or anomaly cluster labels.

Second dataset Card contains a random sample of Capital One
credit card transactions for a specific vendor over a period of time
when they experienced a high (attempted) fraud rate. The credit
card data has been anonymized with features renamed, numeric
values renormalized, and categorical values hash-encoded. The
dataset consists of 374 transactions, 82 of which are fraudulent

2https://www.kaggle.com/datasets/mariammariamr/1999-czech-financial-dataset

https://www.kaggle.com/datasets/mariammariamr/1999-czech-financial-dataset
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Figure 3: Exploration View offers visual tools that allow inspection of the anomalies, as contrasted with the non-anomalies.

Figure 4: Rule Candidates
View displays up to three
data-driven rules that satisfy
typed-in thresholds.

Figure 5: Rule Design Interface
allows fully-interactive rule
generation along with associ-
ated metrics.

or attempted fraudulent transactions. Each transaction has 3 nu-
meric and 4 categorical features, and a label indicating whether the
transaction is normal or a fraudulent one.
Procedure: We quantitatively evaluate the effectiveness and time-
efficiency thatALARM provides via case studies.We also conduct an
interview study and report qualitative feedback from the analysts.

Case Studies: We conducted three case studies on Czech and
two case studies on Card. Each study is associated with a specific
task. To avoid leakage or prior familiarity between tasks, we used
a separate one of three anomalous clusters in Czech for each task.
Card came equipped with an existing domain-rule from earlier
investigation, which helped prevent this issue. We describe the
different tasks as follows.
• Task 1: On Czech, we first ask the analyst to write a rule 1.a)
using self-tools3, and then 1.b) using ALARM. We measure and
compare i) quality (coverage C and purity P) of rules as well as
ii) time it takes to write them (denoted time-to-rule). On Card,
we skip step 1.a) as the dataset readily came with an associated
domain rule, developed by earlier investigators. This study is to
quantify the added benefit of ALARM vs. ad-hoc tools that analysts
otherwise use.
• Task 2: On Czech, we ask the analysts to explore the automati-
cally generated rules and improve one candidate rule using the
exploration (Expl) and the rule design interface (RDI). Wemeasure
how quickly and how much they can improve the rules, in terms
of average C and P. On Card, the rule to be improved is the readily

3Our analysts across various fraud domains used various ad-hoc tools such as Excel,
pivot tables, SQL, etc. In contrast, ALARM proved to be a unified tool for all.

available domain-rule. This study is to quantify the added benefit
of Expl and RDI in improving a potentially suboptimal rule.
• Task 3: on Czech, we ask the analyst to write rules solely using
Expl and RDI. We measure i) proximity of analyst-generated rules
to the ground-truth, and ii) time it takes to write them (compared
to avg. analyst time-to-rule via self-tools). We do not provide
the analysts with any candidate rules. This study is to measure
ALARM’s role in helping the analyst get to the ideal rule.
Metrics: We measure the coverage (C) and purity (P) of the rules
designed as well as the duration or time-to-rule in all case studies.
Interview Study: We followed the studies with a list of interview
questions to which the analysts responded with short answers. The
interview probed for their feedback regarding the usability and
functionality of ALARM.

6.2 Case Study Results
Fig. 6 for Task 1 (ad-hoc tools vs. ALARM) demonstrates that
the analysts using ALARM generally produced comparable
rules to those using ad-hoc tools or to the pre-existing do-
main rule. On Czech, analysts have generated higher coverage
rules using ad-hoc tools, only by having a disjunctive “OR” clause
that treats the anomalies as two groups (while the latest version
of ALARM now supports “OR” conditions). On Card, all analysts
consistently produced rules with higher coverage than that of the
domain-rule, sacrificing purity slightly. Since the analysts target
financial fraud, they typically prioritize high coverage to avoid
potentially large monetary losses from false negatives.

CZECH CARD

C CP P PC PC Time
Ad-hoc ALARM Domain ALARM

Time Time Time

Tim
e (m

in)

Figure 6: Task 1 contrasts rules by ad-hoc tools (Czech) or the
domain-rule (Card) vs. ALARM-based rules across analysts.

Furthermore,ALARM is more efficient.Different from ad-hoc
tools, ALARM’s putting “the components in one place” provides an
advantage. Average time-to-rule on Czech using ALARM (around
6 mins) is shorter than the time of ad-hoc tools (8 mins). On Card,
all analysts were quick (also 6 mins) to produce rules comparable
to the domain-rule without any training, whereas the domain rules
are created with significantly longer time (“about 10-30 mins”) and
require specialized domain knowledge.
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Fig. 7 for Task 2 (initial-rule vs. improve-w/ALARM) shows
that ALARM’s interactive exploration and rule design can
assist in improving existing rules. On Czech, all analysts se-
lected the same initial rule from among the candidates due to its
simplicity (single predicate), and two of the three were able to im-
prove to higher coverage without changing purity, within 2 mins
on average. On Card, all three analysts have improved the purity
of the domain-rule, with only one having to sacrifice coverage
slightly, in about 6 mins on average. The improvements on Card
are particularly notable, since the domain-rule for Card is already
a carefully-crafted deployed rule.

CZECH CARD

Figure 7: Task 2 contrasts ALARM-based rules by the analysts
vs. init. candidate-rule on Czech and domain-rule on Card.

On Task 3 (ground-truth vs. ALARM-w/out-Cand) we find
that the ALARM-based rules explored by the analysts and the
(hidden) ground-truth rule are consistent with each other,
regarding their common usage of a predicate that aligns with the
crucial ground-truth predicate (balance between 60000 and 75000).

Figure 8: Task 3: ALARM-
based rules by analysts
vs. ground-truth rule on
Czech.

As shown in Fig. 8, while one
analyst built a very similar rule
to the ground-truth w.r.t. cover-
age and purity, the others traded
those in opposite directions4 by
choosing different predicates be-
sides balance. The study show-
cased the space of alternative
rules that ALARM allowed the
analysts to explore and choose
from based on other hard-to-
quantify metrics such as policy, ethics, and deployment cost.
6.3 Discussion on Lessons Learned
We compile a list of learned lessons based on the analysts’ inter-
views. Overall, the analysts foundALARM to be “valuable for explor-
ing the data and anomalies”, “useful for comparing and contrasting”,
and helpful in identifying “specific pockets of risk”.
On efficiency: Analysts agreed thatALARM is “a large time saver”,
and enjoyed that it allowed them to “instantly generate rule candi-
dates”, “quickly adjust thresholds and calculate how these adjustments
affected the coverage and purity”, as well as “quickly getting a sense
of where the anomalies are and how they’re spread/clustered”.
On automation & interaction:While some analysts found Cand,
i.e. “automatic rule mining component to be the most useful”, oth-
ers perceived it as “unable to generate optimal rules” which made
them “reluctant to trust” it “in favor of writing [their] own”. RDI was
unanimously valued both in terms of the efficacy and efficiency it
provided over manual practice: “attempt to iterate ... was a massive
value proposition as compared to doing this manually.”
4As automatic candidates were not allowed in Task 3, Analyst2, who had found them
most useful previously, started with a large trade-off and chose to focus on coverage.

On complexity: All analysts consistently took most advantage of
the simple histogram and density plots, and some also the “string”
(i.e. parallel) plot to “quickly and easily identify where anomalies
were located”. However, MDS based summary viz. (esp. the axes) and
the LookOut were deemed “too complex to get into”; suggesting that
“individuals less familiar with ML may need robust setup instructions
in order to understand and use [those]”.
Other desired functionalities: Several commented that the “abil-
ity of the user to choose their own clusters” (also split or merge
existing clusters) would be “a powerful part of this tool”. While
designing their rule, they liked to observe “highlights on visuals
of the regions covered by rule”. One analyst suggested to add the
flexibility to import additional data (e.g. last month’s records from
a specific vendor) while another suggested the ability to add new,
analyst-crafted features. Broadly, all analysts were eager to “experi-
ment with the tool using live data in [their] respective field” based on
which they could “make more specific suggestions for improvement”.

7 CONCLUSION
We presented ALARM, a new framework for end-to-end anomaly
mining, reasoning and management that supports the human ana-
lyst in the loop. It offers unsupervised detection, anomaly explana-
tions and an interactive GUI that guides analysts toward action, i.e.
new rule design. User studies with fraud analysts validateALARM’s
efficacy in finance, yet it can apply to combating emerging threats
in many other domains.
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